
FAWNSort: Energy-efficient Sorting of 10GB

Vijay Vasudevan, Lawrence Tan, Michael Kaminsky, Michael A. Kozuch,
David Andersen Padmanabhan Pillai

Carnegie Mellon University Intel Labs Pittsburgh

1 Introduction

In this document, we describe our submission for the 2010
10GB JouleSort competition. Our system consists of a
machine with a low-power server processor and five flash
drives, sorting the 10GB dataset in 21.2 seconds (±0.227s)
seconds with an average power of 104.9W (±0.8W). This
system sorts the 10GB dataset using only 2228 Joules (±12
J), providing 44884 (±248) sorted records per Joule.

Our entry for the 10GB competition tried to use the most
energy-efficient platform we could find that could hold the
dataset in memory to enable a one-pass sort. We decided
to use a one-pass sort on this hardware over a two-pass
sort on more energy efficient hardware (such as Intel Atom-
based boards) after experimenting with several energy effi-
cient hardware platforms that were unable to address enough
memory to hold the 10GB dataset in memory. The low-
power platforms we tested suffered from either a lack of I/O
capability or high, relative fixed power costs, both stemming
from design decisions made by hardware vendors rather than
being informed by fundamental properties of energy and
computing.

2 Hardware

Our system uses an Intel Xeon L3426 1.86GHz quad-core
processor (with two hyperthreads per core, TurboBoost-
enabled) paired with 12GB of DDR3-1066 DRAM (2
DIMMS were 4GB modules and the other 2 DIMMS were
2GB modules). The mainboard is a development board from
2009 based on an Intel 3420 chipset (to the best of our
knowledge, this confers no specific power advantage com-
pared to off-the-shelf versions of the board such as the Su-
perMicro X8SIL-F or Intel S3420GPV Server Board), and
we used a Prolimatech “Megahalems” fanless heatsink for
the processor.

For storage, we use 4 SATA-based Intel X25-E flash
drives (three had a 32GB capacity and one had 64GB), and 1
PCIe-based Fusion-io ioDrive (80GB). We use a 300W stan-
dard ATX power supply (FSP300) with a built-in and en-
abled cooling fan.

The storage devices were configured as follows: one small
partition of a 32GB X25-E contained the OS. The other three

X25-Es, the leftover portions of the OS disk, and the Fusion-
IO (partitioned into three 10GB partitions) were arranged in
a single partition software RAID-0 configuration. Both the
input and output file were located in a single directory within
this partition. We use a Fusion-io in addition to 4 X25-Es be-
cause the SATA bus exists on the DMI bus with a bandwidth
limitation of 10Gbps in theory and slightly less in practice.
The Fusion-io is on the PCIe bus, which is independent of
the DMI bus and has a much higher bandwidth to the pro-
cessor and memory system. Using both types of devices to-
gether therefore allowed us to more easily saturate the I/O
and CPU capabilities of our system.

2.1 System price and power

The Fusion-io 80GB ioDrive (˜$3000) and the 4 Intel X25-E
drives (˜$400 for the 32GB drives and ˜$800 for the 64GB
drive) combine for approximately $5000 of the system cost.
The power supply, processor, mainboard, power supply, and
12GB of DRAM cost approximately $1500 for a total sys-
tem cost of approximately $6500. The system price is thus
dominated by the flash storage components.

The total power consumption of the system peaks at about
116 W during the experiment, but as mentioned below, av-
erages about 105W over the duration of the sort runs. While
we do not have individual power numbers for each compo-
nent during the experiment, the {processor, DRAM, moth-
erboard, power supply} combination consumes about 31 W
at idle, the Fusion-io adds 6W at idle, and each X25-E adds
about 1W to the idle power consumption for a total of 43 W
at idle with all components attached.

3 Software

All of our results are using Ubuntu Linux version 9.04
with kernel version 2.6.28 for driver compatibility with the
Fusion-io device. We used ext4 with journaling disabled on
the RAID-0 device. We use the provided gensort util-
ity to create the 108 100-byte records and use the provided
valsort to validate our final output file.

For sorting, we use a trial version of NSort soft-
ware (http://www.ordinal.com) with the parameters
shown in Figure 1.

1

http://www.ordinal.com

nsort -o /raid0/output
-processes=8 -memory=11600M
-method=radix
-field=name:key,size:10,off:0,character
-key=key
-field=name:val,size:89,off:10,character
-statistics
-file_system=/raid0,direct,

transfer_size:50M,count:2
inputdata

Figure 1: NSort Parameters Used

Similar to previous entries that used NSort to compete for
JouleSort [3, 4], we meet the 2010 designation for the Day-
tona category because NSort is a general sort software pack-
age.

4 Measurement

We measure the energy consumption during our sort experi-
ment using a WattsUp Pro .NET power meter ([6]) specified
as accurate to within 0.1%. We connect the power meter to
a separate machine using the onboard USB interface and use
publicly available software for the power meter to log the
power meter output once per second. For each run, we start
the logging software on a separate machine before the NSort
experiment and then run the nsort command on the sorting
machine, letting the sort complete and the power draw return
to idle before manually stopping the logging software. We
use the timestamps available on the logging meter to corre-
late the power draw values with the sort experiment.

We use /usr/bin/time to measure the runtime of
NSort. Finally, we calculate the energy consumed by aver-
aging the power values that are measured once per second
over the duration of the run and multiplying that average
power by the runtime reported by /usr/bin/time. We
use the power numbers corresponding to the highest values
for which the sort benchmark ran for the full second. For
example, for our 21.278s experiment, we use the highest 20
values to average the power, ignoring the first and last val-
ues of the 22 pertinent entries—the sort may have run dur-
ing only parts of the first and last seconds over which the
power meter was logging power, so we only include values
for which we know all seconds have been accounted for. We
use this calculated average power and multiply by the actual
runtime of the experiment to calculate the total number of
joules.

Our system is placed on a desk in an office/cubicle en-
vironment (not mounted in a chassis). We use a very large
fanless heatsink for our processor, and the ambient cooling
provided for the office environment was sufficient for sus-
tained operation of all components at load.

5 Results
Our results are summarized in the table below:

Time (s) Power (W) Energy (J) SRecs/J
Run 1 21.278 105.4 2242.5 44593
Run 2 21.333 104.1 2219.8 45049
Run 3 21.286 104.9 2232.6 44791
Run 4 21.454 104.1 2233.7 44769
Run 5 20.854 106.0 2211.5 45218
Avg 21.241 104.9 2228.0 44884
Error 0.227 0.849 12.273 247.564

We log the statistics provided by NSort for comparison
with [3]. The table below summarizes the information (Uti-
lization measured out of a total of 800% and bandwidth mea-
sured in terms of MB/s for reading and writing the data).

In CPU Out CPU Input BW Output BW
Util Util (MB/s) (MB/s)

Run 1 343 628 973.71 1062
Run 2 339 651 953.29 1074
Run 3 339 613 971.82 1056
Run 4 336 622 975.61 1050
Run 5 343 646 976.56 1081
Avg 340 632 970.198 1065
Error 3 16.078 9.626 12.759

Our system improves upon the January 2010 Daytona
winner by nearly a factor of two, and also improves upon the
January 2010 Indy winner by 26% [2]. The latter group’s
more recent entry closes this gap to 5% for the Indy desig-
nation and 12% for the Daytona designation.

6 Experiences
Those familiar with our prior work on energy-efficient clus-
ter computing may find it surprising that our submission
used a server-class system as opposed to a low-power com-
ponent system like the Intel Atom. The reasons for this
choice were dominated by the ability of our server system
to hold the entire 10GB dataset in DRAM to enable a one-
pass sort—in this case, the energy efficiency benefits of per-
forming a one-pass sort outweighed the hardware-based en-
ergy efficiency of low-power platforms that must perform a
two-pass sort. Our submission tried to use the most energy-
efficient platform we could find that allowed for a one-pass
sort, and this turned out to use the low-frequency Xeon plat-
form described above. Below, we describe some details
about what other systems we tried before settling on the en-
try system described above.

6.1 Alternative Platforms
We tried several alternative low-power configurations based
on the Intel Atom as part of our research into the “low-power

2

components at massive-scale” FAWN architecture [1]. In
particular, we began with the Zotac Ion board based on an
Intel Dual-core Atom 330 (also used by Beckmann et. al)
paired with 4 Intel X25-E drives. Without any special soft-
ware tweaking, we were able to get approximately 35000
SRecs/J at an average power of about 33W. We also tried to
use the NVidia GPU available on the Ion to do a portion of
the sorting, but found that the I/O was the major bottleneck
regardless.

We also experimented with a single core Atom board
by Advantech paired with 1 X25-E, and a dual-core Atom
Pineview development board with two X25-Es. These
boards were both lower power than the Zotac Ion—the
Pineview board moved from a three-chip to a two-chip so-
lution, placing the graphics and memory controllers on-die,
thus reducing chipset power slightly. We also tried attaching
a Fusion-io board to a dual-core Atom system, but because
the Fusion-io currently requires significant host processing
and memory, the Atom could not saturate the capabilities of
the drive and so was not currently a good fit.

6.2 Lessons learned

The fact that the Xeon system performed better than the
Atom was not entirely surprising to us, given our recent
experiences applying our FAWN approach to benchmarks
other than sorting [5]. We have found that two factors play
a big role in determining relative efficiency: non-linearities
in dataset size and node configurations, and the lack of op-
timizations of general purpose software for “wimpy plat-
forms”. In the first case, the ability to store the 10GB dataset
in memory on the Xeon platform but not on the Atom is
identical to experiments run for matrix multiplication bench-
marks, where the Xeon is more efficient for the matrix size
range that fits in the 8MB cache of the Xeon but which ex-
ceeds the 1MB cache on the Atom. The second case is ex-
emplified by our measurements of encryption benchmarks
on both systems, and is corroborated by Beckmann et. al’s
concurrent submission to the Joulesort competition using the
Zotac Ion platform, showing that rewriting software can be
necessary to obtain the peak performance out of these low-
power systems.

From the hardware perspective, the Atom platform ap-
pears capable of further improvements to energy efficiency
of sorting, but is currently limited in practice due to several
factors, none that appear to be fundamental but simply due to
choices made by hardware vendors of low-power platforms:

• High idle/fixed cost power – the boards we’ve used have
all idled at 15-20W even though their peak is only about
10-15W higher. Fixed costs affect both traditional pro-
cessors and low-power CPUs alike, but the proportion-
ally higher fixed-cost:peak-power ratio on the Atom di-
minishes some of the benefits of the low-power proces-
sor.

• Architecture/Bus limitations – Most of the Atom boards
we had only had two SATA connectors on board. Su-
permicro recently released one that has 6 ports avail-
able, but the SATA bus is currently connected to the
processor over the DMI bus. The DMI bus has a
bandwith limitation of 10Gbps per direction—at ap-
proximately 250MB/s per X25-E for sequential reads,
one requires only about 4 X25-Es before saturating the
bus, so two additional ports are not useful to increase
throughput, only for providing higher per-node capac-
ity. Thus, we were unable to find a system that both
provided lower fixed power costs (the Pineview) and
one that provided a balanced amount of I/O to saturate
the processor (the Zotac Ion).

• The Linux block layer is not optimized for SSDs and
makes it difficult to saturate several modern flash drives
with a dual-core Atom. For example, each block re-
quest triggers the kernel to add randomness to the ker-
nel entropy pool, a cost that is normally low given the
relatively slow speed of magnetic disks, but which is
one cause of lower performance on I/O-bound but con-
strained systems. We are currently looking into many
more software optimizations to see if we can make bet-
ter use of the I/O capability available on newer Atom
boards with more SATA ports. Moreover, since Linux
version 2.6.28, there have been several modifications
to the block layer that attempt to better support flash
SSDs, which should improve performance for both
low-power and traditional systems.

6.3 Outlook
If the low-power platforms could address the same amount
of memory as the traditional servers to make a one-pass sort
possible on both architectures, we expect that Atom-based
platforms’ improved hardware energy efficiency would best
the Xeon platforms in sorting because of the better balance
between processing and I/O. However, should the gap be-
tween per-node memory on the two platforms remain, the
node with more memory will win out for workloads that
critically depend on working set size. The power cost of
DRAM may begin to dominate for those looking to enable a
one-pass sort for larger datasets, and when comparing two-
pass sorts on different architectures, a low-power platform,
properly architected, should compete well for the small-to-
medium dataset Joulesort competitions, up until the point
that the network power or storage power starts to dominate.

On this last point, we will also note that it is possible to
amortize the cost of a very fast network into the compute
infrastructure itself. For example, a recent startup called
SeaMicro (http://www.seamicro.com) has devel-
oped a 512-core Intel Atom machine that consumes a max of
2kW (not including the storage but including the 1.28Tbps
networking backplane and I/O controllers)—an amortized
cost of only 4W per “node” and consuming six times less
power than today’s Atom systems at peak. Assuming that

3

http://www.seamicro.com

the I/O architecture can match the processing capability, we
believe that such a system may be successful for the largest
Joulesort competitions.

References
[1] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,

L. Tan, and V. Vasudevan. FAWN: A fast array of wimpy
nodes. In Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, Oct. 2009.

[2] A. Beckmann, U. Meyer, P. Sanders, and J. Singler.
Energy-efficient sorting using solid state disks. http://
sortbenchmark.org/ecosort_2010_Jan_01.pdf,
2010.

[3] J. D. Davis and S. Rivoire. Building energy-efficient systems
for sequential workloads. Technical Report MSR-TR-2010-30,
Microsoft Research, Mar. 2010.

[4] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis.
JouleSort: A balanced energy-efficient benchmark. In Proc.
ACM SIGMOD, Beijing, China, June 2007.

[5] V. Vasudevan, D. G. Andersen, M. Kaminsky, L. Tan,
J. Franklin, and I. Moraru. Energy-efficient cluster computing
with FAWN: Workloads and implications. In Proc. e-Energy
2010, Passau, Germany, Apr. 2010. (invited paper).

[6] WattsUp. .NET Power Meter. http://wattsupmeters.
com.

4

http://sortbenchmark.org/ecosort_2010_Jan_01.pdf
http://sortbenchmark.org/ecosort_2010_Jan_01.pdf
http://wattsupmeters.com
http://wattsupmeters.com

	Introduction
	Hardware
	System price and power

	Software
	Measurement
	Results
	Experiences
	Alternative Platforms
	Lessons learned
	Outlook

