
Energy-efficient Cluster Computing with FAWN:
Workloads and Implications

Vijay Vasudevan, David Andersen, Michael Kaminsky∗

Lawrence Tan, Jason Franklin, Iulian Moraru

Carnegie Mellon University, ∗Intel Labs Pittsburgh

Abstract
This paper presents the architecture and motivation for a cluster-
based, many-core computing architecture for energy-efficient, data-
intensive computing. FAWN, a Fast Array of Wimpy Nodes, con-
sists of a large number of slower but efficient nodes coupled with
low-power storage. We present the computing trends that motivate
a FAWN-like approach, for CPU, memory, and storage. We follow
with a set of microbenchmarks to explore under what workloads
these “wimpy nodes” perform well (or perform poorly). We con-
clude with an outline of the longer-term implications of FAWN that
lead us to select a tightly integrated stacked chip-and-memory ar-
chitecture for future FAWN development.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Dis-
tributed Systems; D.4.2 [Operating Systems]: Storage Manage-
ment; D.4.8 [Operating Systems]: Performance—Measurements

General Terms
Performance, Experimentation, Measurement

Keywords
Design, Energy Efficiency, Performance, Measurement, Cluster
Computing, Flash

1. INTRODUCTION

Power is becoming an increasingly large financial and scaling bur-
den for computing and society. The power draw of large data cen-
ters is a growing fraction of their cost—up to 50% of the three-year
total cost of owning a computer —to the point that companies such
as Microsoft, Google, and Yahoo! have built new data centers close
to large and cost-efficient hydroelectric power sources [12]. Dat-
acenter density is limited by their ability to supply and cool 10–
20 kW of power per rack and up to 10–20 MW per datacenter [16].

Future datacenters may require as much as 200 MW [16], and today,
datacenters are being constructed with dedicated electrical substa-
tions to feed them. While power constraints have pushed the pro-
cessor industry toward multi-core architectures, energy-efficient al-
ternatives to traditional disk and DRAM-based cluster architectures
have been slow to emerge.

As an energy-efficient alternative for data-intensive computing,
we present a cluster architecture called a Fast Array of Wimpy
Nodes, or FAWN. A FAWN consists of a large number of slower
but efficient nodes that each draw only a few watts of power, cou-
pled with low-power storage. We have explored prototype FAWN
nodes ranging from five-year old, 500MHz embedded devices us-
ing CompactFlash storage, to more modern Intel Atom-based nodes
with fast solid-state drives.

In this paper, we describe the long-lasting, fundamental trends in
the scaling of computation and energy that suggest that the FAWN
approach will become dominant for increasing classes of work-
loads. First, as we show in §2, slower processors are more efficient:
they use fewer joules of energy per instruction than higher speed
processors. Second, dynamic power scaling techniques are less ef-
fective than reducing a cluster’s peak power consumption. After ex-
amining CPU scaling trends, we similarly examine the same scaling
questions for both memory capacity/speed and for storage.

We then summarize our experience with real FAWN archi-
tectures for a variety of workloads: seek-bound, I/O-throughput
bound, memory-bound, and CPU-bound. FAWN can be several
times more efficient than traditional systems for I/O-bound work-
loads, and on par with or more efficient for many memory and CPU-
limited applications (§3). We also highlight where FAWN nodes are
less energy-efficient than traditional systems.

We conclude with a future roadmap for FAWN-like hardware,
exploring two diverging paths for constructing low-GHz, manycore
systems for data-intensive applications.

2. COMPUTING TRENDS

The FAWN approach to building well-matched cluster systems has
the potential to achieve high performance and be fundamentally
more energy-efficient than conventional architectures for serving
massive-scale I/O and data-intensive workloads. We measure sys-
tem performance in work done per second and measure energy-
efficiency in work done per Joule (equivalently, performance per
Watt). FAWN is inspired by several fundamental trends:

Increasing CPU-I/O Gap: Over the last several decades, the gap
between CPU performance and I/O bandwidth has continually

1

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Figure 1: Max speed (MIPS) vs. Instruction efficiency
(MIPS/W) in log-log scale. Numbers gathered from publicly-
available spec sheets and manufacturer product websites.

grown. For data-intensive computing workloads, storage, network,
and memory bandwidth bottlenecks often cause low CPU utiliza-
tion.

FAWN Approach: To efficiently run I/O-bound data-intensive,
computationally simple applications, FAWN uses wimpy proces-
sors selected to reduce I/O-induced idle cycles while maintaining
high performance. The reduced processor speed then benefits from
a second trend:

CPU power consumption grows super-linearly with speed. Op-
erating processors at higher frequency requires more energy, and
techniques to mask the CPU-memory bottleneck come at the cost
of energy efficiency. Branch prediction, speculative execution, out-
of-order execution and increasing the amount of on-chip caching
all require additional processor die area; modern processors dedi-
cate as much as half their die to L2/3 caches [14]. These techniques
do not increase the speed of basic computations, but do increase
power consumption, making faster CPUs less energy efficient.

FAWN Approach: A FAWN cluster’s slower CPUs dedicate more
transistors to basic operations. These CPUs execute significantly
more instructions per Joule than their faster counterparts (Figure 1):
multi-GHz superscalar quad-core processors can execute approxi-
mately 100 million instructions per Joule, assuming all cores are
active and avoid stalls or mispredictions. Lower-frequency in-
order CPUs, in contrast, can provide over 1 billion instructions per
Joule—an order of magnitude more efficient while still running at
1/3rd the frequency.

Worse yet, running fast processors below their full capacity
draws a disproportionate amount of power:

Dynamic power scaling on traditional systems is surprisingly
inefficient. A primary energy-saving benefit of dynamic voltage
and frequency scaling (DVFS) was its ability to reduce voltage as
it reduced frequency [29], but modern CPUs already operate near
minimum voltage at the highest frequencies.

Even if processor energy was completely proportional to load,
non-CPU components such as memory, motherboards, and power
supplies have begun to dominate energy consumption [4], requir-

 0

 500

 1000

 1500

 2000

 2500

 1 10 100 1000 10000 100000

In
st

ru
ct

io
ns

/s
ec

/W
 in

 m
illi

on
s

Instructions/sec in millions

Custom ARM Mote

XScale 800Mhz

Xeon7350

Atom Z500

Figure 2: Processor efficiency when adding fixed 0.1W system
overhead.

ing that all components be scaled back with demand. As a re-
sult, running a modern, DVFS-enabled system at 20% of its ca-
pacity may still consume over 50% of its peak power [27]. Despite
improved power scaling technology, systems remain most energy-
efficient when operating at peak utilization. Given the difficulty of
scaling all system components, we must therefore consider “con-
stant factors” for power when calculating a system’s instruction ef-
ficiency. Figure 2 plots processor efficiency when adding a fixed
0.1W cost for system components such as Ethernet. Because pow-
ering 10Mbps Ethernet dwarfs the power consumption of the tiny
sensor-type processors that consume only micro-Watts of power,
their efficiency drops significantly. The best operating point exists
in the middle of the curve, where the fixed costs are amortized while
still providing energy efficiency.

Newer techniques aim for energy proportionality by turning ma-
chines off and using VM consolidation, but the practicality of these
techniques is still being explored. Many large-scale systems often
operate below 50% utilization, but opportunities to go into deep
sleep states are few and far between [4], while “wake-up” or VM
migration penalties can make these techniques less energy-efficient.
Also, VM migration may not apply for some applications, e.g.,
if datasets are held entirely in DRAM to guarantee fast response
times.

Even if techniques for dynamically scaling below peak power
were effective, operating below peak power capacity has one more
drawback:

Peak power consumption limits data center density. Data cen-
ters must be provisioned for a system’s maximum power draw. This
requires investment in infrastructure, including worst-case cool-
ing requirements, provisioning of batteries for backup systems on
power failure, and proper gauge power cables. FAWN significantly
reduces maximum power draw in comparison to traditional cluster
systems that provide equivalent performance, thereby reducing in-
frastructure cost, reducing the need for massive overprovisioning,
and removing one limit to the achievable density of data centers.

Finally, energy proportionality alone is not a panacea: systems
ideally should be both proportional and efficient at 100% load. In

2

this paper, we show that there is significant room to improve energy
efficiency, and the FAWN approach provides a simple way to do so.

2.1 Memory trends
The previous section examined the trends that cause CPU power to
increase drastically with an increase in sequential execution speed.
In pursuit of a balanced system, one must ask the same question of
memory and storage as well.

Understanding DRAM power draw. DRAM has, at a high level,
three major categories of power draw:

Idle/Refresh power draw: DRAM stores bits in capacitors; the
charge in those capacitors leaks away and must be periodically re-
freshed (the act of reading the DRAM cells implicitly refreshes the
contents). As a result, simply storing data in DRAM requires non-
negligible power.

Precharge and read power: The power consumed inside the
DRAM chip. When reading a few bits of data from DRAM, a larger
line of cells is actually precharged and read by the sense amplifiers.
As a result, random accesses to small amounts of data in DRAM
are less power-efficient than large sequential reads.

Memory bus power: A significant fraction of the total memory
system power draw—perhaps up to 40%—is required for transmit-
ting read data over the memory bus back to the CPU or DRAM
controller.

Design tradeoffs: Designers can somewhat improve the efficiency
of DRAM (in bits read per joule) by clocking it more slowly, for
the same reasons mentioned for CPUs. In addition, both DRAM
access latency and power grow with the distance between the CPU
(or memory controller) and the DRAM: without additional ampli-
fiers, latency increases quadratically with trace length, and power
increases at least linearly. This effect creates an intriguing tension
for system designers: Increasing the amount of memory per CPU
simultaneously increases the power cost to access a bit of data. The
reasons for this are several: To add more memory to a system, desk-
tops and servers use a bus-based topology that can handle a larger
number of DRAM chips; these buses have longer traces and lose
signal with each additional tap. In contrast, the low-power DRAM
used in embedded systems (cellphones, etc.), LPDDR, uses a point-
to-point topology with shorter traces, limiting the number of mem-
ory chips that can be connected to a single CPU, and reducing sub-
stantially the power needed to access that memory.

2.2 Storage Power Trends
The energy draw of magnetic platter-based storage is related to
several device characteristics, such as storage bit density, capac-
ity, throughput, and latency. Spinning the platter at faster speeds
will improve throughput and seek times, but requires more power
because of the additional rotational energy and air resistance. Ca-
pacity increases follow bit density improvements and also increase
with larger platter sizes, but air resistance increases quadratically
with larger platter sizes, so larger platters also require more power
to operate.

Figure 3 demonstrates this tradeoff by plotting the efficiency ver-
sus speed for several modern hard drives, including enterprise, mo-

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300

M
B

pe
r J

ou
le

Max MBps

MB/second vs. MB/J

15K
10K
7200
5400
4200

RPM

Figure 3: Power increases with rotational speed and platter
size. Solid shapes are 3.5” disks and outlines are 2.5” disks.
Speed and power numbers acquired from product specification
sheets.

bile, desktop, and “Green” products.1 The fastest drives spin at
between 10-15K RPM, but they have a relatively low energy effi-
ciency as measured by MB per Joule of max sustained sequential
data transfer. The 2.5” disk drives are nearly always more energy
efficient than the 3.5” disk drives. The most efficient drives are
2.5” disk drives running at 5400 RPM. Energy efficiency therefore
comes at the cost of per-device storage capacity for magnetic hard
drives.

Our preliminary investigations into flash storage power trends
indicate that the number of IOPS provided by the device scales
roughly linearly with the power consumed by the device, likely be-
cause these devices increase performance through chip parallelism
instead of by increasing the speed of a single component.

3. WORKLOADS

In this section, we describe under what conditions a FAWN archi-
tecture can provide superior energy efficiency, and where traditional
architectures can be as efficient, or in some cases, more energy-
efficient than low-power systems.

3.1 Metrics
Evaluating large systems using only performance metrics such as
throughput or latency is slowly falling out of favor as energy and
space constraints inform the design of modern large scale systems.
There are several metrics for energy efficiency, but the one we fo-
cus on is “work done per Joule” of energy, or equivalently, “perfor-
mance per Watt.”

Low-power VLSI designs have alternatively looked at the
“energy-delay product,” which multiplies the amount of energy to
do an amount of work with the time it takes to do that amount of

1The figure uses MB/s data from vendor spec sheets, which are often best-case
outer-track numbers. The absolute numbers are therefore somewhat higher than what
one would expect in typical use, but the relative performance comparison is likely
accurate.

3

work. This penalizes solutions that reduce the amount of energy
by reducing performance for energy efficiency gains. Others have
gone further by proposing using “energy delay2” to further penalize
solutions that simply reduce voltage at the expense of performance.

However, for large-scale cluster computing applications that are
consuming a significant fraction of energy in datacenters world-
wide, “work done per Joule” is an appropriate metric. This metric
relies on being able to parallelize workloads, which is often explic-
itly provided by data-intensive computing models such as MapRe-
duce [8] that harness data-parallelism.

More specifically, when the amount of work is fixed but paral-
lelizable, one can use a larger number of slower machines yet still
finish the work in the same amount of time—for example, ten nodes
running at one-tenth the speed of a traditional node. If the aggregate
power used by those ten nodes is less than that used by the tradi-
tional node, then the ten-node solution is more energy-efficient.

3.2 Taxonomy
We begin with a broad classification of the types of workloads
found in data-intensive computing whose solution requires large-
scale datacenter deployments:

1. I/O-bound workloads
2. Memory/CPU-bound workloads
3. Latency-sensitive, but non-parallelizable workloads
4. Large, memory-hungry workloads

The first of these workloads, I/O-bound workloads, have run-
ning times that are determined primarily by the speed of the I/O
devices (typically disks for data-intensive workloads). I/O-bound
workloads can be either seek- or scan-bound, and represent the low-
hanging fruit for the FAWN approach, as described in our earlier
work [2]. The second category includes CPU and memory-bound
workloads, where the running time is limited by the speed of the
CPU or memory system.

The last two categories represent workloads where the FAWN
approach may be less useful. Latency-sensitive workloads require
fast responses times to provide, for example, an acceptable user-
experience; anything too slow (e.g., more than 50ms) impairs the
quality of service unacceptably. Finally, large, memory-hungry
workloads frequently access data that can reside within the memory
of traditional servers (on the order of a few to 10s of gigabytes per
machine today). As we describe in Section 3.5.2, the data structure
created in grep when searching for millions of short phrases re-
quires several gigabytes of memory and is accessed randomly. This
causes frequent swapping on FAWN nodes with limited memory,
but fits entirely in DRAM on modern servers.

3.3 I/O-bound workloads
Our prior work proposed the Fast Array of Wimpy Nodes (FAWN)
architecture, which uses a large number of “wimpy” nodes that
act as data storage/retrieval nodes [2]. These nodes use energy-
efficient, low-power processors combined with low-power storage
and a small amount of DRAM. We compare FAWN-type systems
with traditional architectures to understand which system is more
energy-efficient in terms of work done per Joule. For all subse-
quent experiments, we use a “Watts Up?” power meter that logs
power draw at the wall socket once per second [28]. We sum the

System / Storage QPS Watts Queries
Joule

Embedded Systems
Alix3c2 / Sandisk(CF) 1298 3.75 346

Modern Systems
Server i7 / Fusion-io 61494 194 317.0
Desktop i7 / X25-E (x6) 59448 98.0 606.6
Atom* / X25-E 10760 22.3 482.5

Table 1: Query performance and efficiency for different ma-
chine configurations. The Atom node is a prototype.

number of Joules during the course of each experiment to compute
energy efficiency values, and report the average power draw during
the course of the experiment where appropriate.

The first workload, small-key value lookup, examines exact key-
value queries at large scale such as those seen in memcached and
Amazon’s Dynamo [9]. The second workload class examines un-
structured text mining queries similar to those expressed by simple
tools such as greping through a massive dataset, or by more com-
plex frameworks such as Hadoop and MapReduce.

3.3.1 Key-value lookup

Table 1 presents the exploration that we began in our previous work.
It shows the rate at which various node configurations can service
requests for random key-value pairs (1 KB values) from an on-disk
dataset, via the network. The best embedded system (Alix3c2) us-
ing CompactFlash (CF) storage was six times more power-efficient
(in queries/joule) than even the low-power desktop node with a
2008-era SATA-based flash device.

The low-power server market has expanded dramatically within
the last year. We have since benchmarked several modern systems
to understand which platform can provide the highest queries per
Joule for persistent key-value storage. We have included in our
comparisons three different systems that all use modern flash de-
vices. At the high-end server level (Server i7), we use a dual-socket
quad-core, rackmount Intel Core i7 (Nehalem) processor system
with 16 GB of DRAM and an 80 GB Fusion-io ioDrive on a PCI-e
interface. To approximate a modern low-power server, we used a
prototype Intel “Pineview” Atom-based system with two 1.8GHz
cores, 2 GB of DRAM and an Intel X25-E SATA-based SSD. Un-
fortunately, production versions of this system were not available
at the time we conducted this research: The prototype had only a
100 Mbps Ethernet, which limited its performance, and the mother-
board used low-efficiency voltage converters, which increased its
power consumption. Between these extremes, we configured a
“desktop” Core i7-based system with a single quad-core Core i7
860, 2 GB of DRAM, and 6 X25-E SATA drives. We attempted to
balance this system by adding two SATA PCI-e cards because the
motherboard supported only 4 SATA ports. We also reduced the
power of this system by replacing the 40 W graphics card with a
PCI card, and removed several extra DRAM chips for this partic-
ular experiment; through these efforts we reduced the desktop idle
power to 45 W.

Table 1 shows that both the high-end server and desktop sys-
tem could serve about 60,000 1 KB queries per second from flash
(queries and responses are over the network); the server’s power

4

 0

 50

 100

 150

 200

 250

 300

 350

 400

S
o
rt

 R
a
te

 (
M

B
p
s
)

Sort Speed Comparison

Sort Speed

Atom+X25E
i7-Desktop+4-X25E

i7-Svr+FusionIO

Figure 4: Sort speed on three modern architectures.

draw was 194 W averaged over the length of the experiment,
whereas the desktop’s was far less at 98 W. Thus, the desktop sys-
tem was twice as energy-efficient as the server machine. In contrast,
the Atom system could only provide 10,760 queries per second be-
cause it was limited by the 100 Mbps Ethernet. Despite drawing
only 22.3 W, its limited performance placed its energy efficiency in
between the other two systems.

There are two interesting observations to be made about these re-
sults. First, we note that the 60,000 queries/sec that both the server
and the desktop provided is below saturation of the storage devices:
The Fusion-io can provide 100,000 4 KB random reads per sec-
ond and each X25-E can theoretically provide 35,000 4 KB random
reads based on filesystem benchmarking tools such as iozone [15]
and fio [1]. Understanding this disparity is a topic of ongoing
work. However, we note that when all values are retrieved from
the filesystem buffer cache and avoid going to the device driver,
the i7 systems can saturate a 1 Gbps network with requests, sug-
gesting that the problem is specific to the I/O interface between our
software and the flash devices–e.g., the onboard SATA controller
on the i7-Desktop may be unable to handle a higher request rate,
requiring that the X25-Es connect through enterprise-level external
PCI-e HBA cards instead.

Some of the performance bottlenecks may be fixed through soft-
ware optimization while others may be more fundamentally related
to the required processing or hardware architecture of the individ-
ual systems. None of the modern systems above are perfectly bal-
anced in their use of CPU, memory and I/O, so we cannot make
a strong conclusion about which platform will eventually be the
most energy-efficient once any software bottlenecks are removed.
But the main takeaway is that the lower-power systems (Atom and
Desktop i7) are currently significantly more energy-efficient than
traditional server architectures, and understanding the bottlenecks
of each system should inform the design of future energy-efficient
and balanced platforms for persistent key-value storage.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

S
o
rt

 E
ff
ic

ie
n
c
y
 (

M
B

p
J
)

Sort Efficiency Comparison

Sort Efficiency

Atom+X25E
i7-Desktop+4-X25E

i7-Svr+FusionIO

Figure 5: Sort efficiency; Atom - 28 W, i7-Desktop - 87 W, i7-
server: 205 W.

3.3.2 Scan-bound Workloads

The next set of workloads that we examine are scan-bound work-
loads, which involve large sequential reads (instead of small ran-
dom reads as in the seek-bound workloads described above). This
section presents a sort scan-bound workload and energy efficiency
on both traditional and FAWN nodes.

NSort: We evaluate sort using NSort [20], a commercial sort
software product used by the authors of the JouleSort bench-
mark [23] to evaluate their hardware systems; NSort is currently the
software used by the winner of the JouleSort competition. We tried
to optimize the parameters to provide the highest performance by
both specifying the optimal number of parallel sort threads for each
architecture and trying to evenly distribute I/O load across multiple
flash devices when appropriate. We follow the benchmark regard-
ing the structure of the records to be sorted: 90-byte values with
10-byte keys. As one indicator that the tuning was at least mod-
estly effective, the sort efficiency on all three platforms we tested is
1.7–4x higher than the 2009 JouleSort winner.

We present the results for a 10 GB sort (randomly permuted
records) in Figure 4 and Figure 5. The Atom-based FAWN with
two X25-Es can sort at 95 MB/sec while consuming 2760 Joules,
27.6 W averaged during the run, making it the most energy-efficient
of all three architectures. The i7-Desktop system with 4 X25-Es
could sort at nearly twice that speed, but consumed 87 W on av-
erage, so its efficiency was lower. Finally, the Core i7 server with
a Fusion IO could sort at 381 MB/sec but consumed 205 W aver-
age during the run, so its efficiency closely matched the i7 Desktop
system.

The i7 processors were not 100% utilized during the sort bench-
mark, suggesting that there should be capability to add more I/O
to the system. However, we discovered other architectural limits
in the process. For example, the DMI interface bandwidth on the
i7-Desktop is 10 Gbps per direction, so placing additional X25-Es
did not improve performance. This highlights the importance of de-
veloping balanced systems: excess processing capability is wasted
if the hardware design is unable to saturate both the CPU and I/O
simultaneously, reducing energy efficiency compared to more bal-

5

anced systems. Newer i7 designs interface the CPU directly with
the PCI-e bus, so PCI-e based flash devices may benefit from this
better balance.

3.4 Memory/CPU-bound workloads
In the previous section, we discussed workloads whose working
sets were large enough to require access to disks or flash, and
that the computations on that data are simple enough to make the
workload I/O-bound. In this section, we explore some worst-case
workloads designed to be more energy-efficient on traditional, high-
power, high-speed systems than low-power, low-speed systems.

3.4.1 Memory-bound

Workload description: We created a synthetic memory-bound
benchmark that takes advantage of out-of-order execution and large
caches. This benchmark repeatedly performs a matrix transpose
multiplication, reading the matrix and vector data from memory and
writing the result to memory. We chose matrix transpose specif-
ically to have poor locality. The matrix data is in row-major for-
mat, which means that the transpose operation cannot sequentially
stream data from memory. Each column of the matrix is physically
separated in memory, requiring strided access and incurring more
frequent cache evictions when the matrix does not fit entirely in
cache.

The vector multiplications are data-independent to benefit from
instruction reordering and pipelining, further biasing the workload
in favor of modern high-speed, complex processors. We ran the
benchmark with various input matrix sizes. We estimate the metric
of performance, FLOPS (floating point operations per second) as
the number of multiply operations performed, though we note that
this workload is more memory-intensive than CPU-intensive.2

Evaluation hardware: In this experiment, we compared only
the i7-Desktop to our Atom chipset; the i7-Server’s large fixed
costs make it less efficient than the i7-Desktop in all cases. The i7-
Desktop operates 4 cores at a max of 2.8GHz, though we used the
Linux CPU ondemand scheduler to choose the appropriate speed
for each workload. The i7 860 has a 32 KB L1 cache and a 256 KB
L2 cache per core, and also has an 8 MB L3 cache shared across
all 4 cores. We enabled two-way Hyper-threading (Simultaneous
Multi-Threading) so that the system exposed 8 “processors” to the
operating system. Finally, we removed all but one X25-E and one
2 GB DRAM DIMM to further reduce power. At idle, the power
consumed by the machine was 40 W and at full load would reach
130 W.

The Atom’s processor cores each have a 24 KB L1 data cache
and a 512 KB L2 cache. Two-way hyper-threading was enabled,
exposing 4 “processors” to the OS. At idle, the Atom system con-
sumed 18 W and at full load would reach 29 W.

Results: Figure 6 shows the energy efficiency (in KFLOPS/W)
of our matrix multiply benchmark as a function of the size of the
matrix being multiplied. When the matrix fits in the L1 data cache
of both the i7-Desktop and the Atom, the Atom is roughly twice as
efficient as the i7-Desktop. As the matrix size exceeds the L1 data
cache, most memory accesses hit in L2 cache, and the efficiency

2Comparing the FLOPS numbers here to those found in other CPU-intensive bench-
marks such as in the Green500 competition will underestimate the actual computational
capabilities of the platforms we measured, because this benchmark primarily measures
memory I/O, not floating point operations.

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 1 4 16 64 256 1024 4096 16384

KF
LO

PS
 p

er
 W

at
t

Matrix Size Per Core (KiB)
Atom-4T Corei7-8T

 L1 Size
(Both)

 L2 Core i7
L2 Atom

 L3 Core i7 (per core)

Figure 6: Efficiency vs. Matrix Size. Green vertical lines show
cache sizes of each processor.

drops by nearly a factor of two for both systems, with the Atom
retaining higher energy efficiency.

The i7-Desktop’s efficiency drops even further as the matrix size
exhausts the 256 KB of L2 cache per core and accesses hit in L3.
As the matrix size overflows the L2 cache on the Atom, most ac-
cesses then fall back to DRAM and efficiency remains flat there-
after. Meanwhile, the matrix size fits within the 8 MB L3 cache of
the i7. Once the matrix grows large enough, most of its accesses
then fall back to DRAM, and its energy efficiency drops below that
of the Atom.

The main takeaway of this experiment is that when the working
set fits in the same caches of each architecture, the Atom is up to
twice as energy-efficient as the i7-Desktop. However, when the
workload fits in the L2/L3 cache of the i7-Desktop but exhausts the
Atom’s on-die cache, the i7-Desktop is considerably more efficient,
sometimes by a factor of four.

In other words, workloads that are cache-resident on a traditional
system but not on a FAWN can be more efficient on the traditional
system simply because of the amount of cache available on tradi-
tional systems.

The above experiment used OpenMP to run multiple threads si-
multaneously, eight threads on the i7-Desktop and four threads on
the Atom. Running multiple threads is required to fully tax the CPU
and memory systems of each node. We also ran the same experi-
ment with one thread, to see how efficiency scales with load. Fig-
ure 7 shows that with one thread, the i7-Desktop is more efficient
regardless of the size of the matrix.

This can be explained by fixed power costs. The i7-Desktop run-
ning one thread consumed 70 W (versus 40 W at idle), and the
Atom running one thread consumed 20 W (versus 18 W at idle).
The Atom platform we evaluated therefore has a large cost of not
operating at full capacity. Its energy-proportionality is much worse
than that of the i7-Desktop. Because the Atom was, at best, only
twice as energy efficient as the i7-Desktop for this worst-case work-
load at 100% load, the inefficient chipset’s power overhead domi-

6

 256

 512

 1024

 2048

 4096

 8192

 16384

 16 64 256 1024 4096 16384 65536

K
F

L
O

P
S

 p
e
r

W
a
tt

Matrix Size Per Core (KiB)

Efficiency vs. Matrix Size

Atom-1T
Corei7-1T

Figure 7: Efficiency vs. Matrix Size, Single Thread

nates the CPU power and reduces the energy efficiency at low-load
significantly.3

3.4.2 CPU-bound

The matrix multiplication workload above requires frequent mem-
ory accesses per computation. Next, we look at a CPU-intensive
task: cryptography. Table 2 shows several assembly-optimized
OpenSSL speed benchmarks on the i7-Desktop and Atom systems
described above. On SHA-1 workloads, we find that the Atom-
based platform is slightly more efficient in terms of work done per
Joule than the i7-Desktop architecture, and for RSA sign/verify, the
reverse is true.

This flip in efficiency appears to be due to the optimization
choices made in the assembly code versions of the algorithms. The
OpenSSL “C” implementations of both SHA-1 and RSA are both
more efficient on the Atom; we hypothesize that the asm version
is tuned for high-performance CPUs. The SHA-1 assembly imple-
mentation, in contrast, was recently changed to use instructions that
also work well on the Atom, and so its efficiency again exceeds that
of the i7-Desktop. These results suggest that, first, CPU-bound op-
erations can be as or more efficient on low-power processors, and
second, they underscore that nothing comes for free: code must
sometimes be tweaked, or even rewritten, to run well on these dif-
ferent architectures.

3.5 Limitations
FAWN and other low-power manycore cluster architectures may
be unsuited for some datacenter workloads. These workloads can
be broadly classified into two categories: latency-sensitive, non-
parallelizable workloads and memory-hungry workloads.

3In the case of our particular system, many of the fixed energy costs are due to
non-“server” components: the GPU and video display circuitry, extra USB ports, and
so on. Some components, however, such as the Ethernet port, cannot be eliminated.
These same factors preclude the use of extremely low-power CPUs, as discussed in
Section 2.

Workload i7-Desktop Atom
SHA-1

MB/s 360 107
Watts 75 19.1
MB/J 4.8 5.6

SHA-1 multi-process
MB/s 1187 259
Watts 117 20.7
MB/J 10.1 12.51

RSA
Sign/s 8748 1173.5
Verify/s 170248 21279.0
Watts 124 21.0
Sign/J 70.6 55.9
Verify/J 1373 1013

Table 2: Encryption Speed and Efficiency

3.5.1 Latency-sensitive, non-parallelizable

As mentioned previously, the FAWN approach of reducing speed
for increased energy efficiency relies on the ability to parallelize
workloads into smaller discrete chunks, using more nodes in paral-
lel to meet performance goals; this is also known as the scale-out
approach. Unfortunately, not all workloads in data-intensive com-
puting are currently amenable to this type of parallelism.

Consider a workload that requires encrypting a 64 MB chunk of
data within 1 second, and assume that a traditional node can opti-
mally encrypt at 100 MB/sec and a wimpy node at 20 MB/sec. If the
encryption cannot be parallelized, the wimpy node will not encrypt
data fast enough to meet the strict deadline of 1 second, whereas
the traditional node would succeed. Note that if the fastest system
available was insufficient to meet a particular latency deadline, par-
allelizing the workload here would no longer be optional for either
architecture. Thus, the move to many-core architectures (with indi-
vidual core speed reaching a plateau) poses a similar challenge of
requiring application parallelism.4

3.5.2 Memory-hungry workloads

Workloads that demand large amounts of memory per process are
another difficult target for FAWN architectures. We examined a
workload derived from a machine learning application that takes a
massive-data approach to semi-supervised, automated learning of
word classification. The problem reduces to counting the num-
ber of times each phrase, from a set of thousands to millions of
phrases, occurs in a massive corpus of sentences extracted from the
Web. Our results are promising but challenging. FAWN converts
a formerly I/O-bound problem into a memory size-bound prob-
lem, which requires algorithmic and implementation attention to
work well. The Alix3c2 wimpies can grep for a single pattern at
25 MB/sec, close to the maximum rate the CF can provide. How-

4Indeed, this challenge is apparent to the designers of next-generation crypto-
graphic algorithms: Several of the entrants to the NIST SHA-3 secure hash compe-
tition include a hash-tree mode for fast, parallel cryptographic hashing. The need for
parallel core algorithms continues to grow as multi- and many-core approaches find
increased success. We believe this general need for parallel algorithms will help make
the “wimpy” manycore approach even more feasible.

7

ever, searching for thousands or millions of phrases with the naive
Aho-Corasick algorithm in grep requires building a DFA data
structure that requires several gigabytes of memory. Although this
structure fit in the memory of conventional architectures equipped
with 8–16 GB of DRAM, it quickly exhausted the 256 MB of
DRAM on each individual wimpy node.

To enable this search to function on a node with tight memory
constraints, we optimized the search using a rolling hash function
and large bloom filter to provide a one-sided error grep (false pos-
itive but no false negatives) that achieves roughly twice the energy
efficiency (bytes per second per Watt) as a conventional node [19].
As an added benefit, this technique also increased the performance
of the search on the conventional node by improving cache perfor-
mance.

However, this improved efficiency came at the cost of consider-
able implementation effort. Our experience suggests that efficiently
using wimpy nodes for some scan-based workloads will require
the development of easy-to-use frameworks that provide common,
heavily-optimized data reduction operations (e.g., grep, multi-word
grep, etc.) as primitives. This represents an exciting avenue of fu-
ture work: while speeding up hardware is difficult, programmers
have long excelled at finding ways to optimize CPU-bound prob-
lems.

An interesting consequence of this optimization was that the
same techniques to allow the problem to fit in DRAM on a wimpy
node drastically improved cache performance on more conventional
architectures: We were able to apply the techniques we developed
to double the speed of virus scanning on desktop machines [7].

4. IMPLICATIONS AND OUTLOOK

In Section 2, we outlined several power scaling trends for modern
computer systems. Our workload evaluation in the previous section
suggested that these trends hold for CPU in real systems—and that,
as a result, using slower (“wimpy”) processors represents an oppor-
tunity to reduce the total power needed to solve a problem if that
problem can be solved at a higher degree of parallelism.

In this section, we draw upon the memory scaling trends we dis-
cussed to present a vision for a future FAWN system: Individual
“nodes” consisting of a single CPU chip with a modest number
of relatively low-frequency cores, with a small amount of DRAM
stacked on top of it, connected to a shared interconnect. This archi-
tecture is depicted in Figure 8. The reasons for such a choice are
several:

Many, many cores. The first consequence of the scaling trends is
clear: A future energy-efficient system for data-intensive workloads
will have many, many cores, operating at quite modest frequencies.
The limits of this architecture will be the degree to which algo-
rithms can be parallelized (and/or load-balanced), and the static
power draw imposed by CPU leakage currents and any hardware
whose power draw does not decrease as the size and frequency of
the cores decrease.

However, the move to many-core does not imply that individual
chips must have modest capability. Indeed, both Intel and startups
such as Tilera have demonstrated prototypes with 48–100 cores on
a single chip. Such a design has the advantage of being able to
cheaply interconnect cores on the same chip, but suffers from lim-

Figure 8: Future FAWN roadmap: Many-core, low-frequency
chip with stacked DRAM per core.

ited off-chip IO and memory bandwidth compared to the amount of
CPU on chip.

Less memory, stacked. We chose a stacked DRAM approach be-
cause it provides three key advantages: Higher DRAM bandwidth,
lower DRAM latency (perhaps half the latency of a traditional
DIMM bus architecture) and lower DRAM power draw. The disad-
vantage is the limited amount of memory available per chip. Using
the leading edge of today’s DRAM technologies, an 8Gbit DRAM
chip could be stacked on top of a small processor; 1GB of DRAM
for a single or dual-core Atom is at the low end of an acceptable
amount of memory for many workloads. From the matrix multipli-
cation workload in the previous section, we expect that this decision
will result in a similar efficiency “flip-flop”: Workloads that fit in
memory on a single wimpy node with 1GB of DRAM would run
much more efficiently than they would on a comparable large node,
but the wimpy would be less efficient for the range of problems
that exceed 1GB but are small enough to fit in DRAM on a more
conventional server.

However, the challenges posed by this architecture raise several
issues:

Optimization back in vogue. Software efficiency was once a com-
munity focus: ekeing every last drop of performance or resource
from a system was a laudable goal. With the rapid growth of
data-intensive computing and a reliance on Moore’s law, today’s
developers are less likely to optimize resource utilization, instead
focusing on scalability at the detriment of node efficiency [3]. In-
stead, the focus has been on scalability, reliability, managability,
and programmability of clusters. With a FAWN-like architecture,
each node has fewer resources, making the job of the program-
mers harder. Our prior work has shown that the limited amount
of memory per node has required the design of new algorithms [19]
and careful balance of performance and memory footprint for in-
memory hashtables [2]. These difficulties are compounded by the
higher expected node count in FAWN architectures—not only does
resource utilization become more important, these architectures
will further stress scalability, reliability, and managability.

8

Heterogeneity. The existence of problems for which conventional
server architectures still reign suggests that clusters must embrace
heterogeneity in computing resources. Today’s large-scale systems
already must deal with heterogeneity because of arbitrary node fail-
ures and cluster purchasing schedules, but the existence of more
energy-efficient, slower nodes will require that application and in-
frastructure software treat them as first-class resources with energy
metrics playing a larger role in resource allocation decisions.

Metrics. We have so far evaluated energy efficiency in work done
per Joule, which combines performance and power together as the
only metrics. However, energy’s impact on data-intensive comput-
ing is more broad—recent work has shown that platforms such as
the Atom have other externalities, such as increased variability and
latency, which affects service level agreements and other such qual-
ity of service metrics [21]. A focus of our ongoing work is to reduce
these latencies and variability without microarchitectural redesigns,
and also to devise metrics to properly capture and quantify these
more difficult externalities.

5. RELATED WORK

FAWN follows in a long tradition of ensuring that systems are bal-
anced in the presence of scaling challenges and of designing sys-
tems to cope with the performance challenges imposed by hardware
architectures.

System Architectures: JouleSort [23] is a recent energy effi-
ciency benchmark; its authors developed a SATA disk-based “bal-
anced” system coupled with a low-power (34 W) CPU that signif-
icantly out-performed prior systems in terms of records sorted per
joule. The results from this earlier work match our own in finding
that a low-power CPU is easier to balance against I/O to achieve
efficient sorting performance.

More recently, several projects have begun using low-power
processors for datacenter workloads to reduce energy consump-
tion [6, 18, 10, 26, 13, 17]. The Gordon [6] hardware architecture
argues for pairing an array of flash chips and DRAM with low-
power CPUs for low-power data intensive computing. A primary
focus of their work is on developing a Flash Translation Layer suit-
able for pairing a single CPU with several raw flash chips. Simu-
lations on general system traces indicate that this pairing can pro-
vide improved energy efficiency. CEMS [13], AmdahlBlades [26],
and Microblades [17] also leverage low-cost, low-power commod-
ity components as a building block for datacenter systems, sim-
ilarly arguing that this architecture can provide the highest work
done per dollar and work done per joule. Microsoft has recently
begun exploring the use of a large cluster of low-power systems
called Marlowe [18]. This work focuses on taking advantage of
the very low-power sleep states provided by this chipset (between
2–4 W) to turn off machines and migrate workloads during idle pe-
riods and low utilization, initially targeting the Hotmail service. We
believe these advantages would also translate well to FAWN, where
a lull in the use of a FAWN cluster would provide the opportunity
to significantly reduce average energy consumption in addition to
the already-reduced peak energy consumption that FAWN provides.
Dell recently begun shipping VIA Nano-based servers consuming
20–30 W each for large webhosting services [10].

Considerable prior work has examined ways to tackle the “mem-
ory wall.” The Intelligent RAM (IRAM) project combined CPUs

and memory into a single unit, with a particular focus on energy ef-
ficiency [5]. An IRAM-based CPU could use a quarter of the power
of a conventional system to serve the same workload, reducing to-
tal system energy consumption to 40%. FAWN takes a thematically
similar view—placing smaller processors very near flash—but with
a significantly different realization. Notably, our vision for a fu-
ture FAWN with stacked DRAM grows closer to the IRAM vision,
though avoiding the embedded DRAM that plagued the IRAM im-
plementation. Similar efforts, such as the Active Disk project [22],
focused on harnessing computation close to disks. Schlosser et
al. proposed obtaining similar benefits from coupling MEMS with
CPUs [24].

Sleeping: A final set of research examines how and when to put
machines to sleep. Broadly speaking, these approaches examine the
CPU, the disk, and the entire machine. We believe that the FAWN
approach compliments them well. Because of the data-intensive
focus of FAWN, we focus on several schemes for sleeping disks:
Hibernator [30], for instance, focuses on large but low-rate OLTP
database workloads (a few hundred queries/sec). Ganesh et al. pro-
posed using a log-structured filesystem so that a striping system
could perfectly predict which disks must be awake for writing [11].
Finally, Pergamum [25] used nodes much like our wimpy nodes to
attach to spun-down disks for archival storage purposes, noting that
the wimpy nodes consume much less power when asleep. The sys-
tem achieved low power, though its throughput was limited by the
wimpy nodes’ Ethernet.

6. CONCLUSION

This paper presented the computing trends that motivate our Fast
Array of Wimpy Nodes (FAWN) architecture, focusing on the con-
tinually increasing CPU-Memory and CPU-I/O gap and the super-
linear increase in power vs. single-component speed. Our eval-
uation of a variety of workloads, from worst-case seek-bound I/O
workloads to pure CPU or memory benchmarks, suggests that over-
all, lower frequency nodes are substantially more energy efficient
than more conventional high-performance CPUs. The exceptions
lie in problems that cannot be parallelized or whose working set
size cannot be split to fit in the cache or memory available to the
smaller nodes. These trends point to a realistic, but difficult, path
for energy efficient computing: Accepting tight constraints on per-
node performance, cache, and memory capacity, together with us-
ing algorithms that scale to an order of magnitude more processing
elements. While many data-intensive workloads may fit this model
nearly out-of-the-box, others may require substantial algorithmic
and implementation changes.

Acknowledgments

We would like to thank Ken Mai for his help with understanding
memory trends. Amar Phanishayee contributed extensively to the
design and implementation of the FANW-KV key value system
used for several of the experiments described in Section 3.3. We
would also like to thank Kanat Tangwongsan for his aid in develop-
ing the matrix multiply benchmark used in this work. Finally, we
would like to thank Michael Kozuch for his extensive insights and
feedback on our work. This work was supported in part by gifts
from Network Appliance, Google, and Intel Corporation, and by
grant CNS-0619525 from the National Science Foundation.

9

References

[1] Flexible I/O Tester. http://freshmeat.net/projects/
fio/.

[2] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan,
and V. Vasudevan. FAWN: A fast array of wimpy nodes. In Proc.
22nd ACM Symposium on Operating Systems Principles (SOSP), Big
Sky, MT, Oct. 2009. (best paper award).

[3] E. Anderson and J. Tucek. Efficiency matters! In Proc. HotStorage,
Big Sky, MT, Oct. 2009.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional com-
puting. Computer, 40(12):33–37, 2007.

[5] W. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang.
Evaluation of existing architectures in IRAM systems. In Workshop on
Mixing Logic and DRAM, 24th International Symposium on Computer
Architecture, June 1997.

[6] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: Using flash
memory to build fast, power-efficient clusters for data-intensive appli-
cations. In 14th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’09), Mar.
2009.

[7] S. K. Cha, I. Moraru, J. Jang, J. Truelove, D. Brumley, and D. G. An-
dersen. SplitScreen: Enabling efficient, distributed malware detection.
In Proc. 7th USENIX NSDI, San Jose, CA, Apr. 2010.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In Proc. 6th USENIX OSDI, San Francisco, CA, Dec.
2004.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proc. 21st ACM Sympo-
sium on Operating Systems Principles (SOSP), Stevenson, WA, Oct.
2007.

[10] Dell XS11-VX8. Dell fortuna. http://www1.euro.dell.
com/content/topics/topic.aspx/emea/corporate/
pressoffice/2009/uk/en/2009_05_20_brk_000, 2009.

[11] L. Ganesh, H. Weatherspoon, M. Balakrishnan, and K. Birman. Op-
timizing power consumption in large scale storage systems. In Proc.
HotOS XI, San Diego, CA, May 2007.

[12] K. Gray. Port deal with Google to create jobs. The
Dalles Chronicle, http://www.gorgebusiness.com/2005/
google.htm, Feb. 2005.

[13] J. Hamilton. Cooperative expendable micro-slice servers
(CEMS): Low cost, low power servers for Internet scale ser-
vices. http://mvdirona.com/jrh/TalksAndPapers/
JamesHamilton_CEMS.pdf, 2009.

[14] Intel. Penryn Press Release. http://www.intel.com/
pressroom/archive/releases/20070328fact.htm.

[15] Iozone. Filesystem Benchmark. http://www.iozone.org.
[16] R. H. Katz. Tech titans building boom. IEEE Spectrum, Feb. 2009.
[17] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-

hardt. Understanding and designing new server architectures for
emerging warehouse-computing environments. In International Sym-
posium on Computer Architecture (ISCA), Beijing, China, June 2008.

[18] Microsoft Marlowe. Peering into future of cloud comput-
ing. http://research.microsoft.com/en-us/news/
features/ccf-022409.aspx, 2009.

[19] I. Moraru and D. G. Andersen. Fast cache for your text: Accelerat-
ing exact pattern matching with feed-forward bloom filters. Technical
Report CMU-CS-09-159, Department of Computer Science, Carnegie
Mellon University, Nov. 2009.

[20] C. Nyberg and C. Koester. Ordinal Technology - NSort home page.
http://www.ordinal.com, 2007.

[21] V. J. Reddi, B. Lee, T. Chilimbi, and K. Vaid. Web search using small
cores: Quantifying the price of efficiency. Technical Report MSR-TR-
2009-105, Microsoft Research, Aug. 2009.

[22] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active disks for
large-scale data processing. IEEE Computer, 34(6):68–74, June 2001.

[23] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort:
A balanced energy-efficient benchmark. In Proc. ACM SIGMOD, Bei-
jing, China, June 2007.

[24] S. W. Schlosser, J. L. Griffin, D. F. Nagle, and G. R. Ganger. Filling the
memory access gap: A case for on-chip magnetic storage. Technical
Report CMU-CS-99-174, Carnegie Mellon University, Nov. 1999.

[25] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti. Perga-
mum: Replacing tape with energy efficient, reliable, disk-based
archival storage. In Proc. USENIX Conference on File and Storage
Technologies, San Jose, CA, Feb. 2008.

[26] A. Szalay, G. Bell, A. Terzis, A. White, and J. Vandenberg. Low power
Amdahl blades for data intensive computing, 2009.

[27] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering energy proportionality with non energy-proportional sys-
tems – optimizing the ensemble. In Proc. HotPower, San Diego, CA,
Dec. 2008.

[28] WattsUp. .NET Power Meter. http://wattsupmeters.com.
[29] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for

reduced CPU energy. In Proc. 1st USENIX OSDI, pages 13–23, Mon-
terey, CA, Nov. 1994.

[30] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkes. Hiberna-
tor: Helping disk arrays sleep through the winter. In Proc. 20th ACM
Symposium on Operating Systems Principles (SOSP), Brighton, UK,
Oct. 2005.

10

http://freshmeat.net/projects/fio/
http://freshmeat.net/projects/fio/
http://www1.euro.dell.com/content/topics/topic.aspx/emea/corporate/pressoffice/2009/uk/en/2009_05_20_brk_000
http://www1.euro.dell.com/content/topics/topic.aspx/emea/corporate/pressoffice/2009/uk/en/2009_05_20_brk_000
http://www1.euro.dell.com/content/topics/topic.aspx/emea/corporate/pressoffice/2009/uk/en/2009_05_20_brk_000
http://www.gorgebusiness.com/2005/google.htm
http://www.gorgebusiness.com/2005/google.htm
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_CEMS.pdf
http://mvdirona.com/jrh/TalksAndPapers/JamesHamilton_CEMS.pdf
http://www.intel.com/pressroom/archive/releases/20070328fact.htm
http://www.intel.com/pressroom/archive/releases/20070328fact.htm
http://www.iozone.org
http://research.microsoft.com/en-us/news/features/ccf-022409.aspx
http://research.microsoft.com/en-us/news/features/ccf-022409.aspx
http://www.ordinal.com
http://wattsupmeters.com

	Introduction
	Computing Trends
	Memory trends
	Storage Power Trends

	Workloads
	Metrics
	Taxonomy
	I/O-bound workloads
	Key-value lookup
	Scan-bound Workloads

	Memory/CPU-bound workloads
	Memory-bound
	CPU-bound

	Limitations
	Latency-sensitive, non-parallelizable
	Memory-hungry workloads

	Implications and Outlook
	Related Work
	Conclusion

