
Achieving a Billion Requests Per Second Throughput
on a Single Key-Value Store Server Platform via Full Stack Architecting

Sheng Li†, Hyeontaek Lim‡, Victor W. Lee†, Jung Ho Ahn§, Anuj Kalia‡,

Michael Kaminsky†, David G. Andersen‡, Seongil O§, Sukhan Lee§, Pradeep Dubey†

†Intel Labs, ‡Carnegie Mellon University, §Seoul National University
†{sheng.r.li, victor.w.lee, michael.e.kaminsky, pradeep.dubey}@intel.com,
‡{hl, akalia, dga}@cs.cmu.edu, §{gajh, swdfish, infy1026}@snu.ac.kr

Abstract
Distributed in-memory key-value stores (KVSs), such as

memcached, have become a critical data serving layer in
modern Internet-oriented datacenter infrastructure. Their per-
formance and efficiency directly affect the QoS of web services
and the efficiency of datacenters. Traditionally, these systems
have had significant overheads from inefficient network pro-
cessing, OS kernel involvement, and concurrency control. Two
recent research thrusts have focused upon improving key-value
performance. Hardware-centric research has started to ex-
plore specialized platforms including FPGAs for KVSs; results
demonstrated an order of magnitude increase in throughput
and energy efficiency over stock memcached. Software-centric
research revisited the KVS application to address fundamental
software bottlenecks and to exploit the full potential of mod-
ern commodity hardware; these efforts too showed orders of
magnitude improvement over stock memcached.

We aim at architecting high performance and efficient KVS
platforms, and start with a rigorous architectural characteri-
zation across system stacks over a collection of representative
KVS implementations. Our detailed full-system characteriza-
tion not only identifies the critical hardware/software ingre-
dients for high-performance KVS systems, but also suggests
new optimizations to achieve record-setting throughput: 120
million requests per second (MRPS) (167 MRPS when with
client-side batching) on a single commodity server. Our system
delivers the best performance and energy efficiency (RPS/watt)
demonstrated to date with existing KVSs—including the best-
published FPGA-based and GPU-based claims. We propose a
future manycore platform, and via detailed simulations demon-
strate the capability of achieving a billion RPS with a single
server constructed following our principles.

1. Introduction
Distributed in-memory key-value stores such as mem-

cached [30] have become part of the critical infrastructure

for large scale Internet-oriented datacenters. They are de-

ployed at scale across server farms inside companies such as

Facebook [32], Twitter [42], Amazon [2], and LinkedIn [28].

Unfortunately, traditional KVS implementations such as the

widely used memcached do not achieve the performance that

modern hardware is capable of: They use the operating sys-

tem’s network stack, heavyweight locks for concurrency con-

trol, inefficient data structures, and expensive memory manage-

ment. These impose high overheads for network processing,

concurrency control, and key-value processing. As a result,

memcached shows poor performance and energy efficiency

when running on commodity servers [27].

As a critical layer in the datacenter infrastructure, the perfor-

mance of key-value stores affects the QoS of web services [32],

whose efficiency in turn affects datacenter cost. As a result,

architects and system designers have spent significant effort

improving the performance and efficiency of KVSs. This has

led to two different research efforts, one hardware-focused and

one software-focused. The hardware-based efforts, especially

FPGA-based designs [5, 6, 27, 40], improve energy efficiency

by more than 10 times compared to legacy code on commodity

servers. The software-based research [11,12,20,26,29,31,34]

instead revisits the key-value store application to address fun-

damental bottlenecks and to leverage new features on com-

modity CPU and network interface cards (NICs), which have

the potential to make KVSs more friendly to commodity hard-

ware. The current best performer in this area is MICA [26],

which achieves 77 million requests per second (MRPS) on

recent commodity server platforms.

While it is intriguing to see that software optimizations can

bring KVS performance to a new level, a number of questions

remain unclear: 1) whether the software optimizations can

exploit the true potential of modern platforms; 2) what the

essential optimization ingredients are and how these ingredi-

ents improve performance in isolation and in collaboration;

3) what the implications are for future platform architectures.

We believe the answers to these questions will help architects

design the next generation of high performance and energy

efficient KVS platforms.

Unlike prior research focusing on hardware or software in

isolation, this work uses a full-stack methodology (software

through hardware) to understand the essence of KVSs and

to architect high performance and energy efficient KVS plat-

forms. On the software side, we focus on the major KVS

software components: the network stack, KV processing,

memory management, and concurrency control. On the hard-

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

ware side, we architect a platform with balanced compute,

memory, and network resources. We begin with a rigorous

and detailed characterization across system stacks, from ap-

plication to OS and to bare-metal hardware. We evaluate

four KVS systems, ranging from the most recent (MICA)

to the most widely used (memcached). Our holistic system

characterization provides important full-stack insights on how

these KVSs use modern platforms, from compute to memory
and to network subsystems. Guided by these insights, we

optimize MICA and achieve record-setting performance of

120 Million RPS (167 MRPS when with client-side batch-

ing) and energy efficiency of 302 kilo RPS/watt (401 kilo

RPS/watt when with client-side batching) on our commodity

CPU-based system. Our system delivers best performance

and energy efficiency (RPS/watt) demonstrated to date, over

existing KVSs including the best-published FPGA-based [40]

and GPU-based [16,43] claims. Finally, based on these full-

stack insights, we propose a future manycore-based and whole-

system-optimized platform architecture with the right system
balance among compute, memory, and network, to illuminate

the path to future high performance and energy efficient KVS

platforms. Our detailed simulations demonstrate that the re-

sulting design is capable of exceeding a billion requests per

second on a quad-socket server platform.

2. Modern Platforms and the KVS Design Space

This section describes recent improvements in hardware and

software, efficient KVS implementations, and the synergies

between them.

2.1. Modern Platforms

The core count and last level cache (LLC) size of modern

platforms continues to increase. For example, Intel Xeon

processors today have as many as 18 powerful cores with

45MBs of LLC. These multi-/manycore CPUs provide high

aggregate processing power.

Modern NICs, aside from rapid improvements in bandwidth

and latency, offer several new features to better work with

high-core-count systems: multiple queues, receiver-side scal-

ing (RSS), and flow-steering to reduce the CPU overhead of

NIC access [9,37]. Multiple queues allow different CPU cores

to access the NIC without contending with each other, and

RSS and flow-steering enable the NIC to distribute a sub-

set of incoming packets to different CPU cores. Processors

supporting write-allocate-write-update-capable Direct Cache

Access (wauDCA) [17],1 implemented as Intel Data Direct

I/O Technology (Intel DDIO) [8] in Intel processors, allow

both traditional and RDMA-capable NICs to inject packets

directly into the processor’s LLC. The CPU can then access

the packet data without going to main memory, with better

1This paper always refers to DCA as the wauDCA design [17] (e.g., Intel

Data Direct I/O Technology [8]) instead of the simplified Prefetch Hint [17]

based implementation (e.g., Intel I/OAT [18]).

control over cache contention should the I/O data and CPU

working sets conflict.

Figure 1 briefly illustrates how these new technologies

work together to make modern platforms friendly to network-

intensive applications. Before network processing starts, a pro-

cessor creates descriptor queues inside its LLC and exchanges

queue information (mostly the head and tail pointers) with

the NIC. When transmitting data, the processor prepares data

packets in packet buffers, updates some transmit descriptors

in a queue, and notifies the NIC through memory-mapped IO

(MMIO) writes. The NIC will fetch the descriptors from the

descriptor queue and packets from the packet buffers directly

from LLC via wauDCA (e.g., Intel DDIO), and start trans-

mission. While this process is the same as with single-queue

NICs, multi-queue NICs enable efficient parallel transmission

from multiple cores by eliminating queue-contention, and par-

allel reception by providing flow-steering, implemented as

Intel Ethernet Flow Director (Intel Ethernet FD) [13] in Intel

NICs. With flow-steering enabled NICs, each core is assigned

a specific receive queue (RX Q), and the OS or an application

requests the NIC to configure its on-chip hash table for flow-

steering. When a packet arrives, the NIC first applies a hash

function to a portion of the packet header, and uses the result

to identify the associated RX Q (and thus the associated core)

by looking up the on-chip hash table. After that, the NIC will

inject the packet and then the corresponding RX Q descriptor

directly into the processor LLC via wauDCA. The core can

discover the new packets either by polling or by an interrupt

from the NIC. The NIC continues processing new packets.

Using wauDCA (e.g., Intel DDIO), network I/O does not al-

ways lead to LLC misses: an appropriately structured network

application thus has the possibility to be as cache-friendly as

non-networked programs do.

With fast network I/O (e.g., 100+ Gbps/node), the OS

network stack becomes a major bottleneck, especially for

small packets. Userspace network I/O, such as PacketShader

I/O [14] and Intel Data Plane Development Kit (DPDK) [10],

can utilize the full capacity of high speed networks. By elim-

inating the overheads of heavy-weight OS network stacks,

these packet I/O engines can provide line-rate network I/O

for very high speed links (up to a few hundred Gbps), even
for minimum-sized packets [14,39]. Furthermore, userspace

networking can also be kernel-managed [4, 38] to maximize

its benefits.

Although modern platforms provide features to enable fast

in-memory KVSs, using them effectively is nontrivial. Un-

fortunately, most stock KVSs still use older, unoptimized

software techniques. For example, memcached still uses the

traditional POSIX interface, reading one packet per system

call. This renders it incapable of saturating multi-gigabit links.

Thus, we navigate through the KVS design space to shed light

on how KVSs should exploit modern platforms.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

M
ai

n
m

em
or

y

Core L1$
L2$

Core L1$
L2$

N
et

w
or

k
on

 C
hi

p Pkt Buf Pkt Buf
RXQ1

RXQn

Pkt Buf Pkt Buf
TXQ1

TXQn

LLC

Manycore Processor with wauDCA

RX FIFO

RX Q1

RX Qn

TX FIFO

TX Q1

TX Qn

Hash
Table

Hash
Func

Q idx Addr

Update

Multi-queue NIC
with flow-steering

wauDCA
PCIe

Gen3/4

RX
Descriptor

TX
Descriptor

RX

TX

Figure 1: A modern system with write-allocate-write-update-capable Direct Cache Access (wauDCA), e.g., Intel DDIO [8],
and a multi-queue NIC with flow-steering, e.g., Intel Ethernet Flow Director [13], to support high performance network
intensive applications.

Network stack Example systems

Kernel memcached [30], MemC3 [12]

Userspace Chronos [21], MICA [26]

Concurrency control Example systems

Mutex memcached, MemC3

Versioning Masstree [29], MemC3, MICA

Partitioning Chronos, MICA

Indexing Replacement policy Example systems

Chained hash table Strict LRU memcached

Cuckoo hash table CLOCK MemC3

Lossy hash index FIFO/LRU/Approx.LRU MICA

Memory management Example systems

SLAB memcached, MemC3

Log structure RAMCloud [34]

Circular log MICA

Table 1: Taxonomy of design space of key-value store (KVS) systems.

2.2. Design Space of KVSs

Despite their simple semantics and interface, KVSs have a

huge design and implementation space. While the original

memcached uses a conservative design that sacrifices perfor-

mance and efficiency, newer memcached-like KVSs, such as

MemC3 [12], Pilaf [31], MICA [26], FaRM-KV [11], and

HERD [20], optimize different parts of the KVS system to

improve performance. As a complex system demanding hard-

ware and software co-design, it is hard to find a “silver bullet”

for KVSs, as the best design always depends on several factors

including the underlying hardware. For example, a datacenter

with flow-steering-capable networking (e.g., Intel Ethernet

FD) has a different subset of essential ingredients of an appro-

priate KVS design from a datacenter without it. Table 1 shows

a taxonomy of the KVS design space in four dimensions: 1)

the networking stack; 2) concurrency control; 3) key-value

processing; and 4) memory management.

The networking stack refers to the software framework

and protocol used to transmit key-value requests and responses

between servers and clients over the network. memcached

uses OS-provided POSIX socket I/O, but many newer, high-

performance systems often use a userspace network stack to

avoid kernel overheads and to access advanced NIC features.

For example, Intel DPDK and Mellanox RDMA driversexpose

network devices and features to user applications, bypassing

the kernel.

Concurrency control is how the KVS exploits parallel data

access while maintaining data consistency. memcached relies

on a set of mutexes (fine-grained locking) for concurrency

control, while many newer systems use optimistic locking

mechanisms including versioned data structures. Versioning-

based optimistic locking reduces lock contention by optimiz-

ing the common case of reads that incur no memory writes.

It keeps metadata to indicate the consistency of the stored

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

key-value data (and associated index information); this meta-

data is updated only for write operations, and read operations

simply retry the read if the metadata and read data versions

differ. Some designs partition the data for each server core,

eliminating the need for consistency control.

Key-value processing comprises key-value request pro-

cessing and housekeeping in the local system. Hash tables are

commonly used to index key-value items in memcached-like

KVSs. In particular, memcached uses a chained hash table,

with linked lists of key-value items to handle collisions. This

design is less common in newer KVSs because simple chain-

ing is inefficient in both speed and space due to the pointer

chasing involved. Recent systems use more space- and mem-

ory access-friendly schemes such as lossy indexes (similar to

a CPU cache’s associative table) or recursive eviction schemes

such as cuckoo hashing [35] and hopscotch hashing [15]. Re-

placement policies specify how to manage the limited memory

in the server. For example, memcached maintains a full LRU

list for each class of similar-sized items, which causes con-

tention under concurrent access [12]; it is often replaced by

CLOCK or other LRU-like policies for high performance.

Memory management refers to how the system allocates

and deallocates memory for key-value items. Most systems

use custom memory management to reduce the overhead of

malloc() [30], to reduce TLB misses via huge pages [12,30],

and to help enforce the replacement policy [26, 30]. One

common scheme is SLAB that defines a set of size classes

and maintains a memory pool for each size class to reduce

the memory fragmentation. There are also log-structured

schemes [34], including a circular log that optimizes memory

access for KV insertions and simplifies garbage collection and

item eviction [26].

3. Experimental Methods
Our ultimate goal is to achieve a billion RPS on a single

KVS server platform. However, software and hardware co-

design/optimization for KVS is challenging. Not only does a

KVS exercise all main system components (compute, memory,

and network), the design space of both the system architecture

and KVS algorithms and implementation are huge, as de-

scribed in Section 2. We therefore use a multi-stage approach.

We first optimize the software to exploit the full potential

of modern architecture with efficient KVS designs and gain

full-stack insights on the essential hardware and software in-

gredients. We then use these full-stack insights to architect

future platforms that can deliver over a billion RPS per KVS

server.

To pick the best KVS software design to start with, we have

to navigate through the large design space of KVS and ideally

try all the combinations of the design taxonomy as in Table 1,

which is a nearly impossible task. Thus, we chooseMICA [26],

a state-of-the-art KVS software design as the starting point

for optimization to fully exploit the potential of modern plat-

forms. MICA is a KVS that uses a partitioned/sharded design

Partition

Partition

Core

Core

GET data path PUT data path

MICA EREW MICA CREW

Main memory Processor

Partition

Partition

Core

Core

Main memory Processor

Figure 2: Partitioning/sharding in MICA.

Dataset Count Key size Value size Max pkt size

Tiny 192 Mi 8 B 8 B 88 B

Small 128 Mi 16 B 64 B 152 B

Large 8 Mi 128 B 1,024 B 1,224 B

X-large 8 Mi 250 B 1,152 B 1,480 B

Table 2: Workloads used for experiments. Max packet
size is largest packet size including the overhead of pro-
tocol headers (excluding the 24-byte Ethernet PHY over-
head). All data sets have a minimum 10GB memory re-
quirement. Both Uniform key popularity and skewed key
popularity follow a Zipf distribution (skewness of 0.99)
are used. Workloads with 95% and 50% GET ratios are
used to highlight how KVSs operate for read-intensive
and write-intensive applications, respectively.

and high-speed key-value structures. It achieved 77 MRPS

on a single KVS server, orders of magnitude faster than other

KVSs. It partitions the key-value data and allocates a single

core to each partition, which is accessed by cores depending

on the data access mode as shown in Figure 2. In exclusive
read exclusive write (EREW) mode, MICA allows only the

“owner core” of a partition to read and write the key-value

data in the partition, eliminating the need for any concurrency

control. In concurrent read exclusive write (CREW) mode,

MICA relaxes this access constraint by allowing cores to ac-

cess any partition for GET requests (whereas keeping the same

constraint for PUT requests), which requires MICA to use a

versioning-based optimistic locking scheme. In MICA, remote

key-value requests for a key must arrive at an appropriate core

that is permitted to access the key’s partition. This request

direction is achieved by using flow-steering as described in

Section 2.1 and making clients to specify the partition of the

key explicitly in the packet header.

We use YCSB for generating key-value items for our work-

load [7] as shown in Table 2. The STANDARD workload used

in several of our experiments later is defined as a uniform

workload with tiny items and a 95% GET ratio.

Our experiment system contains two dual-socket systems

with Intel® Xeon™E5-2697 v2 processors (12 core, 30MB

LLC, 2.7GHz) supporting Intel DDIO (an implementation of

wauDCA on Intel processors). Each system is equipped with

128GB of DDR3-1600 memory and four Intel®flow-steering-

capable X520-QDA1 NICs, with total network bandwidth of

160Gbps per system.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

���

���

���

���

���

� � � � � � 	
 � � �� �� ��

��

�
��

��
��

��
��

��
�

��
��

��
!�

��
"�

�#�
%

%����%�&"�

��� �������! #�%

Figure 3: MICA’s number-of-cores scalability with 1
10GbE port and one socket. We use STANDARD workload
and EREW mode. RX batch size is the average number of
packets MICA fetches per I/O operation from the NIC via
DPDK because RX packets may queued up before CPUs
processing them, which represents the amount of KV pro-
cessing work per I/O operation. All numbers are normal-
ized to their values at one core, where the actual RPS, RX
batch size, and IPC are 5.78 MRPS, 32 packets per I/O op-
eration, and 1.91 (IPC per core), respectively.

4. High Performance and Energy Efficient KVS
on Commodity Systems

We first describe our optimizations guided by detailed full-

system characterization, achieving 120 MRPS and beyond on

our experiment platform. Then, we present insights gained

from cross-layer performance analysis on system implications

of KVS software design choices, as well as the essential ingre-

dients for high performance KVS systems.

4.1. Architecture Balancing and System Optimization

Because KVSs exercise the entire software stack and all major

hardware components, a balance between compute, memory,

and network resources is critical. An unbalanced system will

either limit the software performance or waste expensive hard-

ware resources. An important optimization step is to find the

compute resources required to saturate a given network band-

width, for example, a 10GbE link. Figure 3 shows MICA’s

throughput when using one 10GbE link with an increasing

number of CPU cores. While one core of the Intel Xeon pro-

cessor is not enough to keep up with a 10GbE link, two cores

provide close to optimal compute resources, serving 9.76 Gbps

out of the 10 Gbps link. Using more cores can squeeze out the

remaining 2.4% of the link bandwidth, at the expense of spend-

ing more time on network I/O compared to actual key-value

(KV) processing. For example, using three cores instead of

two reduces the average RX batch size by a factor of 6 (from

32 to 5.29), meaning that cores do less KV processing per I/O

operation. Although the IPC does not drop significantly with

adding more cores, the newly added cores simply busy-wait

on network I/O without doing useful KV processing.

Holding the core to network port ratio as 2:1, we increase

the cores and 10GbE ports in lockstep to test the full-system

scalability. The maximum throughput achieved in this way is

0%

10%

20%

30%

40%

0

30

60

90

120

4 Core 8 Core 12 Core 16 Core 20 Core 24 Core C
ac

he
 m

is
s

ra
te

Tp
ut

 (M
R

PS
)

Tput L3 Miss% L1D Miss% L2 Miss%

Figure 4: Throughput scalability and cache2 miss rates
of MICA with our optimizations. The port count used is
half the core count. We use STANDARD workload and
EREW mode.

80 MRPS with 16 cores and 8 10 GbE ports. Going beyond

these values leads to a performance drop because of certain

inefficiencies that we identified in the original MICA system.

First, originally, each server core performed network I/O on

all NIC ports in its NUMA domain. Thus, the total number of

NIC queues in the system is NumCores×NumPorts, leading
to a rapid increase in the total network queues the processor

must maintain. Having more total queues forces the NICs to

inject more data into the LLC via Intel DDIO, but only up to

10% of the LLC capacity is allocated to Intel DDIO [8]. In

addition, with more cores and higher throughput, the cores

must fetch more data into the LLC for key-value processing.

The combination of these two effects causes LLC thrashing

and increases the L3 miss rate from less than 1% to more

than 28%. To reduce the number of queues in the system, we

changed the core-to-port mapping so that each core talks to

only one port. We also optimized MICA to reduce MMIO

induced overhead when collecting network statistics for flow

control. These optimizations make MICA scale linearly with

number-of-cores and number-of-ports in the system.

Figure 4 shows MICA’s throughput and scalability with our

optimizations. MICA achieves 120 MRPS when all 24 cores

in both sockets are used. With increasing numbers of cores and

ports, L1D and L2 cache misses remain stable, at ∼ 1.5% and

∼ 32%, respectively. The L1D miss rate stays low because of

1) MICA’s intensive software prefetching, which ensures that

data is ready when needed, and 2) MICA’s careful buffer reuse

such as zero-copy RX-TX packet processing. The high L2

cache miss rate is due to packet buffers that do not fit in L1D.

The LLC cache miss rate is also low because network packets

are placed in LLC directly by the NICs via Intel DDIO and

because MICA uses intensive software prefetching. While the

performance increases linearly, the LLC cache miss rate in-

creases when there are more than 16 active cores (8 per socket),

which indicates the importance of sufficient LLC capacity to

accommodate both CPU data and network injected data for

future manycore processors for high KVS performance even

with the mapping optimization. Hereafter, we refer to MICA

with our optimizations as MICA for simplicity.

2Unlike memcached with 20+% L1I$ miss rate due to the complex code

path in the Linux kernel and networking stack [27], MICA’s L1I$ miss rate is

below 0.02% due to the use of userspace networking and kernel bypass.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

���
��

���
��

�

��

��

���

�	�

*��+� *#%, *#%,+%� *��+� *#%, *#%,+%�

.�"5 �����

.!
��

&7
!:

&�
�;*

�
��

<

="�>������?�@E. ="�>������?�@E.
�J�K�����?�@E. �J�K�����?�@E.

Figure 5: Throughput of optimized MICA and stock mem-
cached (for comparison) with different datasets. MICA
and MICA-CB are for optimize MICA without and with
client-side batching, respectively. Key-value hit rates are
within 98%∼99.6%, and the 95th percentile of latency is
less than 100μs. MICA runs EREW mode.

We also performed an architectural characterization of

the system implications of simultaneous multithreading

(SMT) [41] on our KVS performance, using Intel Hyper-

threading Technology, an implementation of 2-way SMT on

Intel processors. Our characterization shows that 2-way SMT

causes a 24% throughput degradation with the full system

setup (24 cores and 12 10GbE ports). This degradation is

because the two hardware threads on the same physical core

compete on cache hierarchy from L1 to LLC and cause cache

thrashing, resulting in a 14%, 27%, and 3.6X increase on L1,

L2, and LLC MPKI, respectively. While SMT can improve

resource utilization for a wide variety of applications, MICA’s

relatively simple control structure means that it can incorpo-

rate application-specific prefetching and pipelining to achieve

the same goal, making single-threaded cores sufficient.

4.2. Throughput, Latency, and Energy Efficiency

Figure 5 shows the measured full-system performance of opti-

mized MICA with tiny and small datasets (Table 2) and dif-

ferent GET/PUT ratios. For tiny key-value pairs, MICA’s

throughput reaches 120.5∼116.3 MRPS with the uniform

workload and 84.6∼82.5 MRPS for the skewed workload,

with more than two orders of magnitude better performance

than that of stock memcached on the same hardware. Client-

side batching (MICA-CB in Figure 5) further improves per-

formance of MICA by 35% to 68% for different workloads3.

At 120.5 MRPS without client-side batching, MICA uses

110∼118 Gbps of network bandwidth under the uniform work-

load, almost saturating the network stack’s sustainable 118

Gbps bandwidth on the server (when processing packet I/O

only).

High throughput is only beneficial if latency SLAs (ser-

vice level agreement) are satisfied, and Figure 6 reveals more

latency-vs-throughput details. As throughput changes from

10M∼120M RPS, latency changes gracefully (e.g., mean:

3This paper focus on use cases without client-side batching, and all results

are without client-side batching unless otherwise specified. For more detailed

analysis of client-side batching, please see our journal paper [24].

�

��

��

���

���

����

�� �� �� �� �� 	�
� �� �� ��� ��� ���

V�
��

"�
5�

;W
Y<

.!��&7!:&��;*���<

*��"
952

���!Z*����"
���!

���!
�����!

276

Figure 6: Round trip latency (RTT) (including mean, 50th,
95th, 99th, and 99.9th percentile) for different throughputs.
STANDARD workload and MICA’s EREW mode are used.
Mean is always larger than median, because of the tailing
effect. Experiments repeat multiple times to eliminate run-
to-run variations.

MC

MC MC

D
D

R
4-

24
00

M
ai

n
M

em
or

y

3 Multi-Q 100GbE NICs with flow-director

3-issue
OOO Core

R
ou

te
r3-issue

OOO Core
Crossbar

LLC (1.5MB/Tile)
CC

MCI/O Agent

Direct Cache Access PCIe Gen4

32
 T

ile
s,

 6
4

C
or

es
,

su
pp

or
tin

g
fin

e
gr

ai
n

pe
r c

or
e

D
VF

S
&

 tu
rb

o
bo

os
t

Multi-Socket

Total 118 GB/s aggregated
MemBW across 6 MCs

Figure 7: Proposed platform architecture for high perfor-
mance KVS systems.

19∼81μs; 95th: 22∼96μs). Our optimized MICA achieves

high throughput with robust SLA guarantees. Figure 5 shows

that with the same 95th percentile latency (less than 100μs),

MICA (120 MRPS) achieves over two orders of magnitude
higher performance than stock memcached (0.3 MRPS). More-

over, even at the highest throughput (120 MRPS), the 95th

percentile latency of MICA is only 96μs,∼11X better than the

95th percentile latency of 1135μs reported by Facebook [32].

The power consumption of our KVS platform is 399.2 W

and 416.7 W for without and with client-side batching, respec-

tively.At 120.5 MRPS, our KVS platform achieves 302 kilo

RPS/watt (KRPS/W) energy efficiency. At 167.2 MRPS with

client-side batching is enabled, our KVS platform achieves

energy efficiency of 401 KRPS/W. These results show that

traditional processors with full potential exploited can pro-

vide much higher performance as well as much higher energy
efficiency than both FPGA- [5, 40] and GPU-based [16, 43]

KVS platforms. In particular, our system achieves at least

6X better performance and 1.7X better energy efficiency than

FPGA based systems and at least 1.39X better performance

and energy efficiency than GPU based systems4.

4Please see our journal paper [24] for detailed comparisons among differ-

ent KVS systems.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

CPU (w/ wauDCA similar to Intel DDIO [8])
Technology (nm) 14
Core Single-thread, 3-issue, OOO, 64 ROB
Clock rate (GHz) 2.5(N,0.7v)/1.5(LP, 0.6v)/

3.0(TB, 0.85v)
L1 Cache 32 KB, 8-way, 64 B
L2 (LLC) Cache / tile 1.5 MB (768KB/core), 16-way, 64 B
Cores(Tiles)/socket 60 (30), w/ 2 cores per tile
Integrated IO agent PCIe 4.0 (tot. 32 lanes);

Memory Subsystem
Memory Controllers 6, single-channel
Memory type DDR4-2400

Network (w/ flow-steering similar to Intel Ethernet FD [13])
Multi-queue NICs Three 100GbE, PCIe4.0 x8 per NIC

Table 3: Parameters of the target platform. All numbers
are for one socket, the target platform has two or four
sockets. The different frequency-voltage pairs (obtained
from McPAT [22]) are for normal (N), low power (LP), and
turbo boost (TB). wauDCA can use up to 10% of LLC [8].

5. Achieving a Billion Request-per-Second on a
Single KVS Server

Our optimized MICA design achieves record-setting perfor-

mance and energy efficiency, offering valuable insights about

how to design KVS software and its main architectural impli-

cations. This section focuses on our final grand challenge: de-

signing future KVS platforms to deliver a billion RPS (BRPS)

throughput using a single multi-socket server.

5.1. Architecting a Balanced Platform Holistically

Designing a BRPS-level (billion requests per second) KVS

platform requires the right system balance among compute,

memory, and network. As shown in Figure 7 and Table 3, the

proposed platform consists of multiple manycore processors.

Each processor is organized as multiple clusters of cores con-

nected by an on-chip 2D mesh network. Each cluster has two

out-of-order (OOO) cores, connected to a distributed shared

LLC (L2 cache in our case) via a crossbar. A two-level hier-

archical directory-based MOESI protocol is used for cache

coherence for L1 and L2 as well as for wauDCA for the NICs.

Multiple memory controllers provide sufficient memory band-

width. The target processor was estimated to have a 440mm2

die size and 125W TDP by using McPAT [22]. Each processor

is paired with three multi-queue 100GbE NICs with flow-

steering. The NICs communicate with the processor through

PCIe 4.0 and inject packets directly to the LLC via wauDCA.

The target server contains two or four such manycore proces-

sors.

Compute: Figure 3 shows that MICA’s IPC is up to 1.9 on

the CPU, which indicates that 4-issue OOO cores could be

an overkill. Thus, we perform a sensitivity study for core

weight through simulations. Figure 8 shows the platform’s

performance in normalized RPS as the reorder buffer (ROB)

size (number of entries) and issue width are varied for datasets

�
�
�
�
�
�

� � �	 	� �	 �����	 � � �	 	� �	 �����	
�[���"����Y �[���"����Y

;J�5��\��&�<�]�;����< ;J�5��\��&�<�]�;	�����	<

��

�
��

��
��

�.
!�

�&
7!

:&
� #YY&��K���!�]�

#YY&��K���!�]�
#YY&��K���!�]�
#YY&��K���!�]�

Figure 8: Relative performance for different item size
when varying the ROB size and issue width of cores.

with different key and value sizes. Supporting multiple issues

and out-of-order execution with a reasonably sized instruction

window substantially improves the performance, but further

increasing issue width or ROB size brings diminishing returns.

In particular, as shown in Figure 8, increasing the ROB size

from 1 (in-order issue) to 64 in the single-issue core doubles

performance, but increasing it further to 256 only provides an

additional 1% boost. With a ROB size of 64 entries, increasing

issue width from 1 to 3 almost doubles system performance.

Further increasing the issue width to 4, however, improves per-

formance by only 5%. Considering the super-linear increase

in complexity with larger window sizes and issue width, using

a core more powerful than 3-issue with 64 ROB entries is not

cost effective. Thus, we choose 3-issue OOO cores with 64

ROB entries in the target system.

Network and I/O subsystem: MICA (or any KVS) is a

network application. Because our optimized MICA achieves

near-perfect scaling (Section 4.1), we expect that the number

of cores required per 10Gbps network capacity will remain

unchanged, with appropriately sized (issue width, ROB size)

cores and other balanced components. Thus, each 60 core

processor can provide enough processing power for 300Gbps

bandwidth. We assume that our platform will use emerging

100Gbps Ethernet NICs. Each 100GbE NIC requires at least

100Gbps of I/O bandwidth—an 8 lane (upcoming) PCIe 4.0

slot will be enough with its 128Gbps bandwidth. On-chip

integrated NICs [25,33] will be an interesting design choice for

improving system total cost of ownership (TCO) and energy

efficiency, but we leave it for future exploration.

Cache hierarchy and memory subsystem: Our cache hi-

erarchy contains two levels with a 32KB L1D cache. Our

performance analysis and simulations reveal that a 32KB L1D

cache is sufficient and a small private L2 cache in the pres-

ence of large L3 does not provide noticeable benefits due

to high L2 miss rate. An LLC is critical not only to high

performance KV processing on CPUs but also to high speed

communication between CPUs and NICs. If the LLC cannot

hold all RX/TX queues and associated packet buffers, LLC

misses generated by NICs during directly injecting packets

to the LLC via wauDCA will cause undesired main memory

traffic leading to slow network and performance degradation.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

���
���
���
��	
���
���
���

E�E^ %�E^ E�E^+. %�E^+. E�E^ %�E^ E�E^+. %�E^+.
.K�����J��Y _�&�����J��Y

.!
��

&7
!:

&�
�;�

�
��

<

="�>������?�@E. ="�>������?�@E. �J�K�����?�@E. �J�K�����?�@E.

��?
�
?

Figure 9: End-to-end performance of dual- and quad-
socket servers. CREW and Turbo Boost (EREW-/CREW-
T) are only applicable to, and thus are only shown for,
skewed workloads. All 95th percentile latencies are less
than 100μs.

Moreover, contention between CPUs and NICs can cause LLC

thrashing. For example, NICs can evict previously injected

packets and even KV processing data structures (prefetched

by CPUs) out of the LLC before they are consumed by CPUs.

And even more cache conflicts will be generated when CPUs

fetch/prefetch those data back from main memory for process-

ing. Our detailed design space exploration sweeps shared LLC

capacity (per core) from 256KB to 2MB and identifies the

sweet spot to be 768KB. Therefore, we adopt the LLC design

with 768KB per core (45MB per processor) in our manycore

architecture

Like all KVS systems, MICA is memory intensive and

sensitive to memory latency. Fortunately, its intensive SW

prefetch mechanism is effective in trading memory bandwidth

for latency [23, 24], which is favored by modern memory sys-

tems whose latency lags bandwidth significantly [36]. Thus,

when designing the main memory subsystem, we provision

sufficient memory bandwidth without over-architecting it for

low memory latency. Should our optimized MICA reach 1

BRPS on the target 4-sockets platform, each socket will gen-

erate at least 1
4 ·4 billion cache line requests per second from

DRAM, for 64GB/s of DRAM bandwidth. We deploy six

memory controllers with single-channel DDR4-2400 for a

total of 118 GB/s aggregated memory bandwidth to ensure

enough headroom for the bandwidth overhead because of

MICA’s software prefetching and the random traffic in key-

value processing.

Discussions: Despite a carefully crafted system architecture,

our platform remains general purpose in terms of its core ar-

chitecture (3-issue with 64-entry ROB is midway in the design

spectrum of modern OOO cores), its processor architecture

(many cores with high speed I/O), and its system architecture

(upcoming commodity memory and network subsystem). This

generality should allow our proposed platform to perform well

for general workloads.

5.2. Performance Evaluation

Figure 9 shows the simulated performance of the target dual-

and quad-socket servers. Our simulation infrastructure is

based on McSimA+ [1] with extensions to support the modern

�?
��?
��?
	�?
��?

���?

� ��� ��� ��	 ��� �
V����:���������"��������������!��!����Y������

�����J��
�����J��

Figure 10: CDF of the partition load on different cores.

hardware features our proposal relies upon. Our optimized

MICA achieves linear scaling on both dual- and quad-socket

servers for uniform workloads, regardless of the GET ratio.

As a result, the performance on the quad-socket platform suc-

cessfully reaches ∼ 1.2 billion RPS (BRPS) in EREW mode

with uniform workloads. Skewed workloads pose a harder

problem on the target platform because of its large number of

cores—increasing the number of cores leads to more partitions,

which causes a larger load imbalance. In a Zipf-distributed

population of size 192×220 (192 million) with skewness 0.99
(as used by YCSB [7]), the most popular key is 9.3× 106

times more frequently accessed than the average. For a small

number of cores (thus partitions), the key-partitioning does

not lead to a significant load imbalance [26]. For example, for

24 cores (and partitions), as in our experimental platform (Sec-

tion 4), the most popular partition is only 97% more frequently

requested than the average.

However, in our proposed architecture, the load on hottest

partition is 10.6X (on the 240-core quad-socket server) and

5.8X (on the 120-core dual-socket server) of the average load

per core, respectively. Although the increased data locality

and decreased I/O processing overhead improves the perfor-

mance of the hottest cores by∼ 50% based on our simulations,

it is not enough to bridge the gap between hot and cold parti-

tions/cores. Thus, the hot cores become a serious bottleneck

and cause a drastic performance degradation for skewed work-

loads: The performance on dual- and quad-socket machines is

0.13 BRPS (21% of the system peak performance) and 0.14

BRPS (11% of peak), respectively. Using the CREW mode

can help GET-intensive skewed workloads, since in CREW

mode all GET requests are sent to all cores to share the load

(writes are still sent to only one core). However, for PUT-

intensive skewed workloads (Skewed, 50% GET), there is still

a large gap between the achieved performance and the peak

performance (Figure 9).

Using workload analysis, we found that the load on the par-

titions (cores) is very skewed. On both systems, there are only

two very hot cores (Figure 10). More than 90% of the cores

are lightly loaded—less than 20% of the hottest core. This ob-

servation leads to an architectural optimization using dynamic

frequency/voltage scaling (DVFS) and turbo boost (TB) tech-

nologies. We assume that our manycore processor is equipped

with recent high efficiency per-domain/core on-chip voltage

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

regulators [19]. Based on the supply voltage and frequency

pairs shown in Table 3, we reduce the frequency (and voltage)

on the 20 most lightly loaded cores (their load is less than 12%

of the load on the hottest core) from 2.5GHz to 1.5GHz and

increase the frequency of the 6 most loaded cores to 3.5GHz.

Results obtained from DVFS modeling in McPAT [22] show

that this configuration actually reduces total processor power

by 16%, which ensures enough thermal headroom for turbo

boost of the 6 hot cores. Our results in Figure 9 show that

with CREW-T, the combination of fine-grained DVFS/TB and

MICA’s CREW mode, the system throughput for the write-

intensive skewed workload (Skewed, 50% GET) improves by

32% to 0.42 BRPS and by 27% to 0.28 BRPS on the quad- and

dual-socket servers, respectively. Although datacenter KVS

workloads are read-heavy with GET ratio higher than 95% on

average [3], this architecture design is especially useful for

keys that are both hot and write-heavy (e.g., a counter that is

written on every page read or click).

Although distributing jobs across more nodes/servers (with

fewer cores/sockets per server) works well under uniform

workloads, as skew increases, shared-read (CREW, especially

our newly proposed CREW-T) access becomes more important.

Thus, a system built with individually faster partitions is more

robust to workload patterns, and imposes less communication

fan-out for clients to contact all of the KVS server nodes.

6. Conclusions
As an important building block for large-scale Internet ser-

vices, key-value stores affect both the service quality and

energy efficiency of datacenter-based services. Through a

cross-stack whole system characterization and optimization,

this paper achieves the record-setting 120 MRPS performance

(167 MRPS when with client-side batching) and 302 KRP-

S/watt (401 KRPS/watt when with client-side batching) energy

efficiency on commodity x86 servers. Our full stack study on

KVSs also provide insights on the design of high performance

KVS software and its main architectural implications. Base on

the insights, we propose a future manycore-based and whole-

system-optimized platform architecture to illuminate the path

to future high performance and energy efficient KVS plat-

forms. Through detailed simulations, we have demonstrated

that the proposed system can achieve a billion RPS perfor-

mance with QoS guarantees on a single four-socket key-value

store server platform. These results highlight the impressive

possibilities available through careful full-stack hardware/soft-

ware co-design for increasingly demanding network-intensive

and data-centric applications.

References
[1] J. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A manycore simu-

lator with application-level+ simulation and detailed microarchitecture
modeling,” in ISPASS, 2013.

[2] Amazon, “Amazon Elasticache,” http://aws.amazon.com/elasticache/,
2012.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny, “Work-
load analysis of a large-scale key-value store,” in SIGMETRICS, 2012.

[4] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A protected dataplane operating system for high
throughput and low latency,” in OSDI, 2014.

[5] M. Blott, K. Karras, L. Liu, K. Vissers, J. Bär, and Z. István, “Achieving
10Gbps line-rate key-value stores with FPGAs,” in HotCloud, 2013.

[6] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA Memcached appliance,” in FPGA, 2013.

[7] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SOCC, 2010.

[8] I. DDIO, “Intel® data direct i/o technology,” http://www.intel.com/
content/www/us/en/io/direct-data-i-o.html, 2014.

[9] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
parallelism to scale software routers,” in SOSP, 2009.

[10] I. DPDK, “Intel Data Plane Development Kit (Intel DPDK),” http://
www.intel.com/go/dpdk, 2014.

[11] A. Dragojević, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
remote memory,” in NSDI, 2014.

[12] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
NSDI, 2013.

[13] I. FlowDirector, “Intel® ethernet flow director,” http://www.intel.com/
content/www/us/en/ethernet-controllers/ethernet-flow-director-
video.html, 2014.

[14] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated software router,” in SIGCOMM, 2010.

[15] M. Herlihy, N. Shavit, and M. Tzafrir, “Hopscotch hashing,” in Dis-
tributed Computing. Springer, 2008, pp. 350–364.

[16] T. H. Hetherington, M. O’Connor, and T. M. Aamodt, “Mem-
cachedGPU: Scaling-up scale-out key-value stores,” in Proc. SOCC,
2015.

[17] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access for high
bandwidth network I/O,” in ISCA, 2005.

[18] I. IOAT, “Intel® i/o acceleration technology,” http://www.intel.com/
content/www/us/en/wireless-network/accel-technology.html, 2014.

[19] R. Jevtic, H. Le, M. Blagojevic, S. Bailey, K. Asanovic, E. Alon, and
B. Nikolic, “Per-core DVFS with switched-capacitor converters for
energy efficiency in manycore processors,” IEEE TVLSI, vol. 23, no. 4,
pp. 723–730, 2015.

[20] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in SIGCOMM, 2014.

[21] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in SOCC,
2012.

[22] S. Li, J. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in MICRO, 2009.

[23] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Architecting to achieve a
billion requests per second throughput on a single key-value store server
platform,” in ISCA ’15, 2015.

[24] S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky, D. G.
Andersen, O. Seongil, S. Lee, and P. Dubey, “Full stack architecting to
achieve a billion requests per second throughput on a single key-value
store server platform,” Transactions on Computer Systems. ACM, 2016.

[25] S. Li, K. Lim, P. Faraboschi, J. Chang, P. Ranganathan, and N. P. Jouppi,
“System-level integrated server architectures for scale-out datacenters,”
in MICRO, 2011.

[26] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “MICA: A holistic
approach to fast in-memory key-value storage,” in NSDI, 2014.

[27] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin Servers with Smart Pipes: Designing SoC accelerators for Mem-
cached,” in ISCA, 2013.

[28] Linkedin, “How Linkedin uses memcached,” http://www.oracle.com/
technetwork/server-storage/ts-4696-159286.pdf, 2014.

[29] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in EuroSys, 2012.

[30] memcached, “Memcached: A distributed memory object caching sys-
tem,” http://memcached.org/, 2003.

[31] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads to build
a fast, CPU-efficient key-value store,” in USENIX ATC, 2013.

[32] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in NSDI, 2013.

[33] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-out
NUMA,” in ASPLOS, 2014.

[34] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosen-
blum, “Fast crash recovery in RAMCloud,” in SOSP, 2011.

[35] R. Pagh and F. Rodler, “Cuckoo hashing,” Journal of Algorithms, vol. 51,
no. 2, pp. 122–144, May 2004.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

[36] D. A. Patterson, “Latency lags bandwith,” Commun. ACM, vol. 47,
no. 10, pp. 71–75, 2004.

[37] A. Pesterev, J. Strauss, N. Zeldovich, and R. T. Morris, “Improving
network connection locality on multicore systems,” in EuroSys, 2012.

[38] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” in OSDI, 2014.

[39] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in USENIX
ATC, 2012.

[40] S. Tanaka and C. Kozyrakis, “High performance hardware-accelerated
flash key-value store,” in NVM workshop, 2014.

[41] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor,” in ISCA, 1996.

[42] Twitter, “Twemcache: Twitter memcached,” https://github.com/twitter/
twemcache, 2012.

[43] K. Zhang, K. Wang, Y. Yuan, L. Guo, R. Lee, and X. Zhang, “Mega-KV:
A case for GPUs to maximize the throughput of in-memory key-value
stores,” Proc. VLDB Endow., vol. 8, no. 11, Jul. 2015.

Sheng Li is a staff research scientist and a technical lead on enterprise

big data at Intel’s Parallel Computing Lab, where his research focuses on

computer architecture and systems at scale for emerging and demanding

applications. He has published more than 30 technical papers and holds 34

patents (both awarded and pending). He was a senior research scientist at

HP Labs, where his work influenced the HP moonshot hyperscale server

architecture. He has a Ph.D. in Electrical Engineering from the University of

Notre Dame and is a senior member of IEEE.

Hyeontaek Lim is a postdoctoral researcher in the Computer Science

Department at Carnegie Mellon University. His research interests include

resource-efficient and flexible distributed systems, networking, and operat-

ing systems. He has a Ph.D. in Computer Science from Carnegie Mellon

University. He is a member of IEEE, ACM, SIAM, and USENIX.

Victor Lee is a principal engineer and research scientist at Intel’s Parallel

Computing Lab leading the research on the next generation processor for

HPC and Big Data. His research focuses on improving algorithm efficiency

as well as architecture efficiency. Victor joined Intel in 1997 where he worked

on the Intel Pentium Pro processor, the Intel Pentium 4 processor, the Intel

Itanium processor and the QPI interconnect. He joined Intel Labs in 2002

and spearheaded the many-core research which eventually lead to the Intel

Many Integrated Core architecture and the first Intel Xeon Phi coprocessor

product. Victor received a B.S. in Electrical Engineering from University of

Washington in 1994, S.M. in Electrical Engineering and Computer Science

from Massachusetts Institute of Technology in 1996. He is a senior member

of IEEE.

Jung Ho Ahn is an associate professor in the Graduate School of Conver-

gence Science and Technology at Seoul National University, where he leads

the Scalable Computer Architecture Laboratory. He is interested in bridging

the gap between the performance demand of emerging applications and the

performance potential of modern and future massively parallel systems. Ahn

has a PhD in electrical engineering from Stanford University, and is a senior

member of IEEE.

Anuj Kalia is a PhD student at Carnegie Mellon University. His research

interests include networked systems and distributed systems. He is part of the

Parallel Data Lab (PDL) at CMU, and also works closely with Intel Labs.

Michael Kaminsky is a Senior Research Scientist in Intel Labs and an

adjunct faculty member of the Computer Science Department at Carnegie

Mellon University. He is part of the Intel Science and Technology Center for

Cloud Computing (ISTC-CC), based in Pittsburgh, PA. His research interests

include distributed systems, operating systems, and networking.

David Andersen is an associate professor in the Computer Science depart-

ment at Carnegie Mellon University. He received his Ph.D. and M.S. degrees

from MIT, and and received B.S. degrees in Computer Science and Biology

from the University of Utah. Before joining MIT, he was a co-founder and

CTO of an Internet Service Provider in Salt Lake City. His research interests

center on computer systems in the networked environment.

Seongil O is a senior engineer at Samsung Electronics. His research

interests include memory system and DRAM microarchitecture. O has a PhD

in intelligent convergence system from Seoul National University, where he

completed the work for this article.

Sukhan Lee is a PhD student in department of transdisciplinary studies

at the Seoul National University. His research interests include computer

architectures for big data system, memory microarchitecture, and a system on

chip. Sukhan has a BS and MS in electrical and electronic engineering from

Yonsei University.

Pradeep Dubey is an Intel Fellow and Director of Parallel Computing Lab

(PCL), part of Intel Labs. His research focus is computer architectures to

efficiently handle new compute- and data-intensive application paradigms

for the future computing environment. Dubey previously worked at IBM’s

T.J. Watson Research Center, and Broadcom Corporation. He has made

contributions to the design, architecture, and application-performance of

various microprocessors, including IBM® Power PC, Intel® i386™, i486™,

Pentium® Xeon®, and the Xeon Phi™ line of processors. He holds over 36

patents, has published over 100 technical papers, won the Intel Achievement

Award in 2012 for Breakthrough Parallel Computing Research, and was

honored with Outstanding Electrical and Computer Engineer Award from

Purdue University in 2014. Dr. Dubey received a PhD in electrical engineering

from Purdue University. He is a Fellow of IEEE.

Digital Object Indentifier 10.1109/MM.2016.13 0272-1732/$26.00 2016 IEEE

This article has been accepted for publication in IEEE Micro but has not yet been fully edited.
Some content may change prior to final publication.

