
Active Disk Meets Flash: A Case for Intelligent SSDs

Sangyeun Cho (University of Pittsburgh), Chanik Park (Samsung Electronics Co., Ltd.),
Hyunok Oh (Hanyang Univesity), Sungchan Kim (Chonbuk National University),

Youngmin Yi (University of Seoul) and Gregory R. Ganger (Carnegie Mellon University)

CMU-PDL-11-115

November 2011

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

Intelligent solid-state drives (iSSDs) allow execution of limited application functions (e.g., data filtering or aggregation) on their
internal hardware resources, exploiting SSD characteristics and trends to provide large and growing performance and energy
efficiency benefits. Most notably, internal flash media bandwidth can be significantly (2–4× or more) higher than the external
bandwidth with which the SSD is connected to a host system, and the higher internal bandwidth can be exploited within an iSSD.
Also, SSD bandwidth is quite high and projected to increase rapidly over time, creating a substantial energy cost for streaming
of data to an external CPU for processing, which can be avoided via iSSD processing. This paper makes a case for iSSDs by
detailing these trends, quantifying the potential benefits across a range of application activities, describing how SSD architectures
could be extended cost-effectively, and demonstrating the concept with measurements of a prototype iSSD running simple data scan
functions. Our analyses indicate that, with less than a 4% increase in hardware cost over a traditional SSD, an iSSD can provide
2–4× performance increases and 5–27× energy efficiency gains for a range of data-intensive computations.

Acknowledgements: This collaborative work was done while Sangyeun Cho and Chanik Park were visiting PDL in 2011. We also thank
the members and companies of the PDL Consortium (including APC, EMC, Facebook, Fusion-IO, Google, Hewlett-Packard, Hitachi, IBM, Intel,
Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Symantec, and VMware) for their interest, insights, feedback, and
support.

Keywords: Active Storage, Data-Intensive Computing, Energy-Efficient Data Processing, Reconfig-
urable Processor.

1 Introduction

A large and growing class of applications process large quantities of data to extract items of interest, identify
trends, and produce models of and insights about the data’s sources [7, 14]. Increasingly, such applications
filter large quantities (e.g., TBs) of semi-structured data and then analyze the remainder in more detail.
One popular programming model is Google’s MapReduce [12] (as embodied in the open source Hadoop
system [34]), in which a data-parallel map function is generally used to filter data in a grep-like fashion.
Another builds on more traditional database systems and makes extensive use of select and project functions
in filtering structured records. A common characteristic is streaming through data, discarding or summariz-
ing most of it after a small amount of processing.

Over a decade ago, research efforts proposed and explored embedding of data-processing functionality
within storage or memory components as a way of improving performance for such applications. For exam-
ple, there were several proposals for so-called “active disks” [1, 18, 29, 27, 28], in which limited application
functions could be executed on a disk drive’s embedded CPU to increase parallelism and reduce reliance on
host bandwidth at marginal cost. Also, there were proposals for executing functions on processing elements
coupled with memory banks [26, 24], with similar goals. In developing these ideas, researchers developed
prototypes, programming models, and example application demonstrations. Although interesting, few real
systems adopted these proposals, for various technical reasons including manufacturing complexity (espe-
cially for active RAM proposals) and independent advances that marginalized the benefits (e.g., distributed
storage over commodity multi-function servers [4, 23, 10], which end up having conceptual similarities to
the active disk concept).

The active disk concepts are poised for a comeback, in the context of flash-based SSDs, which are
emerging as a viable technology for large-scale use in systems supporting data-intensive computing. Mod-
ern and projected future SSDs have characteristics that make them compelling points for embedded data
processing that filters/aggregates. In particular, their internal bandwidths often exceed their external band-
widths by factors of 2–4×, and the bandwidth growth over time is expected to grow rapidly due to increased
internal parallelism. Even without the internal-to-external bandwidth multiplier, the rates themselves are
sufficiently high that delivering them all the way to a main CPU requires substantial energy; filtering most
of it near the flash channels would avoid that energy usage.

This paper develops the case for and an architecture for the result, which we refer to as “intelligent
SSDs” (iSSDs). We detail the relevant SSD technology characteristics and trends that create the opportunity
and discuss their architectural consequences. Combined with analyses of ten data-intensive application
kernels, the internal parallelism (via multiple flash memory channels) and bandwidths of modern and future
SSDs push for optimized compute elements associated with each flash memory channel. We focus on use
of low-power reconfigurable stream processors for this role.

The performance and energy efficiency benefits of iSSDs are substantial. We quantify these benefits
and explore the design space via analytical performance and energy models, as well as some demonstration
experiments with a prototype iSSD. Compared to the traditional approach of executing the entire applica-
tion on a primary server CPU, the iSSD approach offers 2–4× higher throughput and 5–27× more energy
efficiency. We show that the iSSD approach provides much of this benefit even when compared to alternate
approaches to improving efficiency of data-intensive computing, including heterogeneous elements (e.g.,
GPUs or the same reconfigurable stream processors we envision for iSSDs) in the server CPU [33], re-
liance on so-called “wimpy” nodes [2], or embedding the processing in the RAM subsystem as in proposals
discussed above. All of the bandwidth benefits and half of the energy efficiency can only be achieved by
exploiting the SSD-internal bandwidth and avoiding the need to move the data to other components.

1

2 Background and Related Work

2.1 Active devices for data-intensive computing

The concept of “active devices”, in which limited application functionality is executed inside a memory or
storage component, has been well-developed over the years. Active disk designs, especially, were motivated
and studied extensively. The early proposals laid out the case for exploiting the excess computing cycles
of the hard disk drive (HDD) controller’s embedded processor for useful data processing, especially filter
and aggregation functions. For example, Riedel et al. [28] showed that, by aggregating the bandwidth and
computing capabilities of ten (emulated) HDDs, measured performance improves more than 2.2×, 2.2× and
2.8× for workloads like nearest-neighbor search, frequent set mining and image registration, respectively.
Substantial benefits have also been demonstrated for a range of other data-intensive workloads, including
database scan, select, and aggregation operations, satellite data processing, image processing, and search of
complex non-indexed data [1, 27, 17, 18]. Active memory system designs (sometimes called “intelligent
RAM”) have also been proposed and studied [26, 24], allowing simple functions to transform and filter
ranges of memory within the memory system without having to move it to the main CPU.

Programming models for active disks were developed and shown to fit such data-parallel processing
tasks, addressing both the data delivery and software safety issues; these same models should be suitable for
iSSDs. As a representative example, Acharya et al. [1] proposed a stream-based programming framework
and the notion of sandboxed “disklets” (disk-resident codes) for processing data ranges as they are made
available by the underlying device firmware.

Active devices have not become the norm, for various reasons. In the case of active memories, complex
manufacturing issues and memory technology changes arose. In the case of active disks, the demonstrated
benefits were primarily from parallelized data-local execution; for many data-intensive computing activities,
those benefits have instead been realized by spreading stored data across collections of commodity servers
(each with a few disks) and partitioning data processing across those same servers [4, 23, 10]. The same
approach has been more efficiently implemented with so-called wimpy nodes and low-power CPUs [2],
as well. But, we believe that flash-based SSDs have characteristics (e.g., parallel channels and very high
internal bandwidths) that make “active-ness” compelling, where it wasn’t for these other devices.

2.2 Architecture and evolution of SSDs

Figure 1 illustrates the general architecture of an SSD and how SSDs have evolved with the introduction
of new higher bandwidth host interfaces [31]. Key hardware components in an SSD are the host interface
controller, embedded CPU(s), on-chip SRAM, DRAM and flash memory controllers connected to the flash
chips. On top of the hardware substrate runs the SSD firmware commonly referred to as flash translation
layer (or FTL).

The host interface controller supports a specific bus interface protocol such as SATA, SAS and PCI
Express (PCI-e). The host interface bandwidth has steadily increased, from PATA (1.5 Gbps max) to SATA
(3 to 6 Gbps) in desktop systems and from SCSI (maxed out at about 5 Gbps) to SAS (about 5 Gbps max)
in enterprise applications. PCI-e has a high bandwidth of 2 to 8 Gbps per lane and shorter latency than other
interfaces.

The CPU(s) and SRAM provide the processing engine for running FTL. SRAM stores time-critical
data and codes. Typically, the CPU is a 32-bit RISC processor clocked at 200 to 400 MHz. Depending
on the application requirements, multiple CPUs are provided to handle host requests and flash management
tasks concurrently. DRAM stores user data and FTL metadata, and is operated at a clock rate of 667 MHz
or higher.

Flash memory controllers (FMCs) are responsible for data transfer between flash memory and DRAM

2

…

…

Flash Channel #0

Flash Channel #(nch–1)

NAND Flash Array

…
H

os
t I

nt
er

fa
ce

 C
on

tr
ol

le
r

CPU
(s) CPUs

DRAM
Controller

DRAM

H
os

t

On-Chip
SRAM

On-Chip
SRAM

…

Flash
Memory

Controller EC
C

Flash
Memory

Controller EC
C

Time frame Characteristics

2007–2008 4-way, 4 channels, 30–80 MB/s R/W perfor-
mance; mostly SLC flash based;

2008–2009 8–10 channels, 150–200+ MB/s performance
(SATA, consumer); 16+ channels, 600+ MB/s
performance (PCI-e, enterprise); use of MLC
flash in consumer products;

2009–2010 16+ channels, 200–300+ MB/s performance
(SATA 6 Gbps); 20+ channels, 1+ GB/s per-
formance (PCI-e); adoption of MLC in enter-
prise products;

2010– 16+ channels; wider acceptance of PCI-e;

Table 2: SSD evolution with new host interface standards.

NAND Flash Memory. An array of NAND flash memory is used as the permanent storage medium for user

data. A flash memory is typically comprised of multiple “blocks”, each of which has multiple “pages”. A block

is a unit of “erase” operation while a page is associated with “read” and “write” operations. Each flash memory

cell can store a single bit (“single-level cell” or SLC), two bits (“multi-level cell” or MLC) or even three bits

(“three-level cell” or TLC). To aggressively improve capacity per dollar, increasingly more SSDs are built with

MLC or TLC chips. Unfortunately, with more advanced technologies and with more bits per cell, the number

of writes (erases) we can apply to flash memory decreases substantially. Today, write endurance of SLC, MLC

and TLC chips are only about 105, 104, and 103. The NAND flash interface has evolved from 40 Mbps single

data rate to 400 Mbps double data rate; as increasingly higher performance is desired, the bandwidth will be

raised even further [15] (Figure 1).

NAND Flash Management Software. FTL parses incoming host commands and maps a logical block address

to a physical address on NAND flash memory for performance and reliability reasons. At a high level, FTL

has evolved from relatively simple HDD emulation to a vertically optimized complex software. In the most

common form of SSD deployment in today’s systems, SSDs are accessed via the traditional block interface

such as ATA and SCSI. This allows the existing storage software stack (e.g., file systems) developed for HDDs

to be reused without modification.

The simple block interface is evolving to incorporate support to address SSD-specific issues. The most

notable example is the “TRIM” command, which is included in the ATA standard [16]. Adopting the notion of

“objects” and the object storage device (OSD) interface [17] can further enhance the storage interface. With the

OSD interface, objects abstract physical storage management and attributes to convey and interpret application-

level semantics. The OSD interface can help SSDs manage resources and serve applications better in spite of

changing flash parameters.

7

Figure 1: General architecture of an SSD (left): The dashed box is the boundary of the controller chip. SSD evolution
with new host interface standards (right).

(or host interface). They also guarantee data integrity based on an error correction code (ECC). As NAND
flash memory is continuously scaled down and adopt two-bits- or three-bits-per-cell schemes, the error rate
grows and a stronger ECC capability is required. As a result, the ECC logic has become a dominant part of
an SSD controller chip [35]. For high performance, FMCs utilize multi-way interleaving over multiple flash
chips on a shared I/O channel as well as multi-channel interleaving. FMCs are implemented with dedicated
hardware for efficiency or an application-specific instruction-set processor (ASIP) to support diverse flash
commands.

1

10

100

10

100

1,000

10,000

100,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CPU

B
a

n
d

w
id

th
 (

M
B

/s
)

C
P

U
 t

h
ro

u
g

h
p

u
t

(G
H

z
 ×

 c
o

re
s

)

HDD

SSD

NAND flash

Host i/f

24 ch.

16 ch.

8 ch.

4 ch.

Year

Figure 2: Bandwidth trends of key hardware components.

The NAND flash memory interface has
evolved from 40 Mbps single data rate to 400 Mbps
double data rate; as higher performance is desired,
the bandwidth will be raised even further [31].
Figure 2 plots the bandwidth trends of the HDD,
NAND flash memory, SSD, host interface and CPU.
The bandwidth improvement in NAND flash, espe-
cially resulting from increased use of multiple inde-
pendent memory channels (with 8–16 being com-
mon today) for parallel data retrieval, results in
much higher raw internal and external bandwidth
than HDDs.

SSD bandwidth characteristics are what lead
us to explore the iSSD concept. The very high band-

widths mean that substantial bandwidth capability and energy is required to deliver all data to an external
processing unit, both of which could be reduced by filtering and/or aggregating within the SSD. Indeed, mod-
ern external SSD bandwidths lag raw internal bandwidths significantly—differences of 2–4× are common.
So, an iSSD could process data 2–4× faster just by being able to exploit the internal data rate. Moreover,
the natural parallelism inherent in SSD’s use of multiple channels couples well with parallelized data stream
processing.

2.3 iSSD-relevant workload characteristics

iSSDs would be expected to provide benefits for data-intensive applications that explore, query, analyze,
visualize, and, in general, process very large data sets [7, 14, 8]. In addition to simple data filtering and
aggregation, some emerging data mining applications are characterized by substantial computation. This
subsection examines a number of common data-intensive application kernels to gain insight into their rele-

3

NAME [SOURCE] DESCRIPTION INPUT SIZE CPB∗ IPB† CPI‡

word count [36] Counts the number of unique word occurrences 105MB 90.0 87.1 1.0
linear regression [36] Applies linear regression best-fit over data points 542MB 31.5 40.2 0.8

histogram [36] Computes the RGB histogram of an image 1,406MB 62.4 37.4 1.7
string match [36] Pattern matches a set of strings against data streams 542MB 46.4 54.0 0.9

ScalParC [22] Decision tree classification 1,161MB 83.1 133.7 0.6
k-means [22] Mean-based data partitioning method 240MB 117.0 117.1 1.0

HOP [22] Density-based grouping method 60MB 48.6 41.2 1.2
Naı̈ve Bayesian [22] Statistical classifier based on class conditional indepen-

dence
126MB 49.3 83.6 0.6

grep (v2.6.3) Searches for a pattern in a file 1,500MB 5.7 4.6 1.2
scan (PostgreSQL) Finds records meeting given conditions from a database

table
1,280MB 3.1 3.9 0.8

Table 1: Example data-intensive kernels. Measurements were made on a Linux box with a Nehalem-class processor
using Intel’s VTune. Programs were compiled using icc (Intel’s C/C++ compiler) with the -O3 flag. Measurement
results in the table do not include the time to handle file I/O. ∗Cycles Per Byte. †Instructions Per Byte. ‡Cycles Per
Instruction.

vant characteristics.
Table 1 lists the kernels.1 We show three metrics in the table to characterize and highlight the data

processing complexity and the architectural efficiency. Among the three metrics, IPB captures the data
processing complexity of a kernel. If IPB is high (e.g., k-means), implying that much work is needed to
process a given input data, the workload is compute-intensive. In another example, grep and scan execute
well less than ten instructions on average to process a byte. IPB is determined primarily by the specific data
processing algorithm, the expressiveness of the instruction set, and the compiler’s ability to produce efficient
codes.

By comparison, CPI reveals, and is determined by, the hardware architecture efficiency. On the testbed
we used, the ideal CPI is 0.20 to 0.25 because the processor is capable of issuing four to five instructions
per cycle. The measured CPI values range from 0.60 (ScalParC and Naı̈ve Bayesian) to 1.7 (histogram).
Compared with the ideal CPI, the values represent at least 2× and up to 8.5× efficiency degradation. There
are three main reasons for the inefficiency: high clock frequency (i.e., relatively long memory latency), poor
cache performance, and frequent branch mispredictions. According to Ozisikyilmaz et al. [25] the L2 cache
miss rates of the classification kernels in Table 1 are as high as 10% to 68%. Moreover, HOP has a branch
misprediction rate of 10%, considerably higher than other workloads in the same benchmark suite.

Another interesting observation is that kernels with a low IPB tend to have a high CPI. Kernels with an
IPB smaller than 50 have the average CPI of 1.14 while the the average CPI of kernels with an IPB above
50 is only 0.82. We reason that high-IPB kernels are compute-intensive and utilize the available functional
units and reuse the data in the cache memory relatively well. On the other hand, low-IPB kernels spend
few instructions per unit data and the utilization of the hardware resources may slide (e.g., cache performs
poorly on streams).

Lastly, CPB combines IPB and CPI (CPB = IPB × CPI), and is the data processing rate of a platform.
Hence, it is our goal to minimize CPB with the proposed ISSD. For the kernels we examined, CPB ranges
from less than ten (scan and grep) to over a hundred (k-means).

1A few kernels have been adapted to run on both an x86 platform and our ARM-based simulator platform described in Sec-
tion 4.3.

4

…

R0,0

RN-1,1

…

R0,0

…

ALU0

ALUN-1

R0,1

zero0 zeroN-1

zero

result
ALU0

enable

…

…

ALU0

ALUN-1

…

R0,0

RN-1,1
RN-1,0

…

ALU0

ALUN-1

RN-1,1

zero

result
ALUN-1 …

ALU0

ALUN-1

enable

Main

Controller

Config.

Memory

Scratchpad SRAM Interface

On-Chip

SRAM
CPUs …

H
o
s
t
In

te
rf

a
c
e
 C

tr
l

CPUs

DRAM

Controller

On-Chip

SRAM

nssd_cpu cores

…

…
nch channels

Flash

Memory

Controller

E
C

C

Flash

Memory

Controller

E
C

C

Bus

Bridge

DMA

Flash

Interface

Stream

Processor

Embedded

Processor

Scratchpad

SRAM

Figure 3: The organization of an iSSD’s FMC (in red box) and the reconfigurable stream processor (right).

3 Intelligent SSDs

iSSDs offer the earliest opportunity to process data after they are retrieved from the physical storage medium.
This section describes the iSSD—its hardware architecture and software architecture. Feasible data process-
ing strategies as well as challenges to exploit iSSDs are also discussed.

3.1 Hardware architecture
The main difference in hardware between a regular SSD and an iSSD is their compute capabilities; iSSDs
must provide substantially higher compute power to translate the raw flash memory bandwidth into high
data processing rates. In conventional HDDs and SSDs, in-storage compute power is provisioned to meet
the firmware performance requirements (e.g., host command processing, block mapping, error handling).
The active disk work [1, 18, 27] optimistically predicted that future storage controller chips (in HDDs)
will have increasingly more excess compute capabilities. However, that didn’t happen because there is no
immediate merit for a storage vendor to add higher horsepower to a device than needed at cost. We argue
that the iSSD internal architecture must be designed specially and offer both high raw performance and
flexible programmability.

There are at least two ways to add compute resources in the SSD datapath: by integrating more (pow-
erful) embedded CPUs and by augmenting each FMC with a processing element. While we consider both in
this work, we note that SSD designers have kept adding more flash memory channels to continue the SSD
bandwidth growth. Hence, it is necessary to scale the amount of compute power in the iSSD according to the
number of flash memory channels, justifying the second approach. This approach has an added benefit of not
increasing the bandwidth requirements on the shared DRAM. This work proposes to employ a customized
ASIP and a reconfigurable stream processor as the FMC processing element, as shown in Figure 3.

The diagram in the bottom shows the components inside an FMC—flash interface, scratchpad SRAM,
DMA, embedded processor, reconfigurable stream processor and bus bridge. Raw data from the flash mem-
ory are first stored in the scratchpad SRAM before data processing begins. Data are then processed by the
per-FMC embedded processor (and the stream processor). The embedded processor has a custom instruc-
tion set for efficient data processing and small area cost. However, as Table 1 suggests, certain algorithms
may still require many cycles for each input byte and may render the FMC stage a serious bottleneck. For
example, word count has an IPB of 87. If the flash memory transfers data at 400 MB/s and the embedded
processor is clocked at 400 MHz, the actual achievable data processing rate would be slowed down by the
factor of 87, compared to the full raw data bandwidth (assuming a CPI of 1)!

In order to effectively increase the FMC’s data processing rate, we propose to incorporate a reconfig-
urable stream processor, highlighted in the right diagram. Once configured, the stream processor performs

5

for each stream input a

 //Compute SX, SY, SYY, SXX, SXY

 SX += a.x; SXX += a.x * a.x;

 SY += a.y; SYY += a.y * a.y;

 SXY += a.x * a.y;

add

mul add

add

mul add

mul add

a.x

a.x
a.x

a.y

a.y
a.y

a.x
a.y

for each stream input a

 for each cluster centroid k

 if (a.x-xk)^2 + (a.y-yk)^2 < min

 min = (a.x-xk)^2 + (a.y-yk)^2;

sub mul
a.x

sub mul

add

min

add

add 0

0

zero

x1,…,xk

a.y y1,…,yk

x1,…,xk

y1,…,yk

enable

enable

for each position a and b of

 two strings A and B

 if a == b then match_count ++;

if match_count == strlen(A) then

 return true;

else return false;

cmp
a

b

add

add
0

cmp

enable
zero

0

Figure 4: Reconfigurable stream processor instances for linear regression, k-means and string match from left.

like dedicated hardware, achieving very high data processing rates and low power [11]. At the heart of the
stream processor are an array of ALUs, configurable connections and the main controller. An ALU’s output
is either stored to the SRAM or forwarded to another ALU. How processed data flow within the processor
is configurable (by programming the “configuration memory”). The main controller is responsible for the
configuration and sequencing of operations. Figure 4 presents three example instances of the stream pro-
cessor. For these examples, the CPB improvement rate is 3.4× (linear regression), 4.9× (k-means) and
1.4× (string match).

Data processing with the proposed FMC is expected to be efficient. First, the stream processor exploits
high fine-grained parallelism with multiple ALUs. Second, the embedded processor and the stream pro-
cessor feed their data from a scratchpad memory, not cache. Third, the embedded processor has a shallow
pipeline and does not suffer from a high branch misprediction penalty like the host CPU. Hence, the effec-
tive average CPB achieved with the FMCs is expected to be very competitive. This observation is revisited
in Section 4.

Beyond FMCs, further data processing can be done by the embedded CPUs. The performance of the
CPUs can be scaled with the core type (e.g., ARM7 vs. Cortex-A8), core count, and clock frequency.
Because the CPUs see data from all flash memory channels, they can perform “wide-scope” tasks like the
Reduce stage of a MapReduce job. The performance of the embedded CPUs is limited by the shared DRAM
bandwidth, however.

3.2 Software architecture

This section considers programming frameworks to utilize the proposed iSSD architecture efficiently. Since
an iSSD platform includes multiple heterogeneous processor cores, its programming framework should
be able to express parallelism for heterogeneous processors. Among many frameworks, for example,
OpenCL [19] meets the requirements. It not only supports data parallel executions on each parallel device
but also provides a unified programming framework to coordinate heterogeneous devices and host CPUs to
collaborate. Another framework that is particularly interesting to us is MapReduce [12]. It was developed
primarily for distributed systems and assumes that individual processing units (computers) read data from a
storage device.

The MapReduce framework provides two basic primitives: Map and Reduce. They are user specified
and easy to be parallelize and distribute on the computing elements (FMC processors and embedded CPUs in
the context of iSSD) with the assistance of the run-time system. In addition, the MapReduce model matches
well with the hardware organization of iSSD as shown in Figure 5(a). Input data are saved in flash memory
prior to being transferred to FMCs. They execute the Map phase and the intermediate results are stored in
DRAM or flash memory temporarily. The output data are produced and transferred to the host system or

6

MapReduce Runtime

(Initiator/Agent)

1

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Input

data

Map

Phase

Interme-

diate data
Reduce

Phase

Output

data

DRAM

Flash

Host I/F

Embedded

CPU

DRAM

Flash
FMC Flash

MapReduce

iSSD

1

File A

File B

File C

(a)

FTL

MapReduce Runtime (Agent)

Device driver

MapReduce Runtime (Initiator)

Applications

(Database, Mining, Search)

File System

Host interface

1. Application initializes the parameters

 (i.e., registering Map/Reduce functions

 and reconfiguring stream processors)

2. Application writes data into iSSD

3. Application sends metadata to iSSD

 (i.e., data layout information)

4. Application is executed

 (i.e., the Map and Reduce phases)

5. Application obtains the result

(b)

Figure 5: Mapping the MapReduce framework to iSSD. (a) Associating MapReduce phases to iSSD hardware orga-
nization. (b) Software structure and execution flow of iSSD.

flash memory after the Reduce phase that is run on the embedded CPUs. The Map and Reduce functions are
assigned to the iSSD or the host system depending on the cost and benefit projection. The job partitioning
and resource assignment are managed by the MapReduce run-time system that is split to run on the host
system and the iSSD. We call the run-time system “Initiator” (on the host) and “Agent” (on the iSSD)
(Figure 5(b)). Initiator, essentially a run-time library, provides programmers with a programming interface
to iSSDs. Initiator hides some iSSD details such as the number of embedded CPUs and FMCs, the capability
of stream processors, and flash memory parameters. Agent is responsible for allocating and scheduling Map
and Reduce tasks inside the iSSD. It communicates with Initiator through a tunneling mechanism available
in storage protocols like SATA, SAS and PCI-e or via an object storage interface [20].2 An iSSD based job
execution scenario using the suggested framework is given in Figure 5(b).

iSSDs face an issue that was thoroughly explored in previous active disk work [27, 1, 18]: enabling
applications to target data even though legacy file systems are not aware of underlying active-ness and
underlying devices are not aware of file system organization details. One approach is to use a separate
partition and direct I/O for the data, which worked for modified databases and work for our MapReduce
framework. In our iSSD prototype on a real SSD (Section 4.3), this approach is taken. Another is to modify
legacy file systems to allow applications (e.g., Initiator) to obtain block lists associated with files, and request
that they do not change for a period of time, which can then be provided to the iSSD (e.g., Agent).

An issue for iSSDs that was not present for active disks relates to how data is partitioned across the flash
memory channels. Striping across channels is used to provide high streaming bandwidth, which could create
difficulties for processing of data on individual per-channel processing elements; with striped data, no single
processing element would have it all. Fortunately, the stripe unit size is fairly large (e.g., 8KB or 16KB) and
consistent with common file system block sizes and database page sizes [27, 1, 18]. For applications that can
process individual blocks/pages, one by one, channel striping should present no issue for our proposed iSSD
architecture. Fortunately, almost all active disk work found this to hold for applications of interst, which
was important because of files being partitioned into independently allocated blocks. Many more recent
data mining activities can also be arranged to fit this requirement, given exposure of the internal block
(stripe unit) size. When it is not possible, the embedded processor can still process data (more slowly), as it
sees the unstriped data.

2There are interesting trade-offs between using a commodity legacy interface like SATA (large installed base) and the object
storage interface (rich information within storage). Exploring the trade-offs in detail is beyond the scope of this paper.

7

3.3 Data processing strategies with iSSDs

Allocation of Map and Reduce functions to different processing elements affects the system performance
significantly. Therefore, one must carefully map tasks onto heterogeneous hardware resources in an iSSD
platform. This work proposes two data processing strategies: pipelining and partitioning.

Pipelining. The pipelining strategy assigns tasks to a set of computing resources in a hierarchical manner.
For instance, Map functions could be mapped onto processors inside FMCs and Reduce functions onto the
iSSD’s embedded CPUs. As such, a set of homogeneous processors execute their mapped tasks in parallel
and send the computed results to the next layer of processors in a pipeline fashion. For example, FMCs
can perform pattern search in parallel. They can then pass the matched values to the shared DRAM buffer.
Next, the iSSD’s embedded CPUs can accomplish complex operations that require global information, such
as Reduce tasks, join in database, and sort over filtered data sets (preprocessed by FMCs). Intermediate data
are stored in temporary memory (SRAM and DRAM) and computation results are passed to the higher level
computing stages.

Because the available physical processing resources are organized in a hierarchical manner in an iSSD
platform—from FMCs to embedded processors (inside the iSSD) to host CPUs—, this data processing strat-
egy fits nicely with the available hardware infrastructure. However, certain applications may not naturally
and efficiently exploit this strategy (e.g., lack of low-level parallelism needed to utilize FMCs).

Partitioning. In general, host CPUs are higher performance than any single computing resource in the
iSSD. If we map a given data-intensive computing job entirely to an iSSD we may end up under-utilizing
the host CPUs. To fully utilize the computing resources in both the host platform and the iSSD, we could
assign Map functions to both entities by “partitioning” the job into properly sized sub-jobs. For example, if
the input data set is composed of 1,000 files, 400 files could be delegated to the iSSD and the remaining 600
files could be processed by the host CPUs.

For best results, we need to balance the amount of data (computation) the host CPUs and the iSSD take
based on their performance. This decision can be made at run time (“dynamic load-balancing”) or before the
job is launched (“static load-balancing”). For stream oriented applications, the simple, static load-balancing
would work well (the actual balancing decisions are reached based on accurate performance models like the
ones in Section 4). This is because the execution time of each function varies little in stream applications.
Still, if the execution time of a function varies or it is hard to predict the execution time a priori, a dynamic
load-balancing strategy will be effective.

Finally, the pipelining and the partitioning strategies can be used in combination. In fact, combining
both strategies will likely lead to better system performance with higher overall resource utilization. We will
come back to this point when we discuss evaluation results in Section 5.2.

4 Modeling iSSD Benefits

This section develops models to evaluate the benefits of the proposed iSSD approach. We take a data-centric
perspective and express performance and energy as a function of input data size. In essence, the overall
performance (or inversely, total time) and energy are determined by the average time and energy to process
a single input byte. We will separately discuss models for pipelining and partitioning.

4.1 Models for pipelining

Performance. A data-intensive workload may involve multiple execution phases. For example, a typical
MapReduce workload would go through three phases, namely, map, sort and reduce. Hence, once we

8

compute the times of individual phases, we can combine them to obtain the overall execution time.3 The
execution time of a given phase is, simply put, D/B, where D is the input data size and B the overall
processing bandwidth for the phase. Our performance modeling effort accordingly focuses on computing B.

We assume that D is sufficiently large for each phase. Moreover, B is determined primarily by the
underlying hardware architecture and the workload characteristics. Then, each phase’s execution time is
determined by D and the steady data processing bandwidth (=B) of the system during the phase. Note that
Riedel [27] makes the same assumptions in his active disk performance models.

With the pipelining workload mapping strategy, data being processed go through multiple steps in a
pipelined manner. Each step can be thought of as a pipeline stage and the step that takes the longest amount
of time determines the overall data processing bandwidth at the system level. The steps are: (a) Data transfer
from NAND flash chips to an FMC on each channel; (b) Data processing at the FMC; (c) Data transfer from
the FMC to the DRAM; (d) Data processing with the SSD embedded CPU(s) on the data stored in the
DRAM; (e) Data transfer from the SSD (DRAM) to the host via the host interface; and (f) Data processing
with the host CPU(s). If the time needed for each of the above steps is tnand2 f mc, t f mc, t f mc2dram, tssd cpu,
tssd2host and thost cpu, respectively, the bandwidth is the inverse of the total time (Ttotal). Hence, we have:

Ttotal = (1− p) · tconv +max(t∗), B =
D

Ttotal
(1)

where t∗ is the list of the time components defined above (for steps (a)–(f)) and (1− p) is the portion of the
execution that is not pipelinable [27] using the iSSD scheme, and tconv is the time that would be consumed
with the conventional scheme. Let us now tackle each term in t∗.
(a) Data transfer from NAND flash chips to an FMC on each channel. Given nch flash channels and the
per-channel effective data rate of rnand , tnand2 f mc = D/nch · rnand . We assume that data have been split onto
the NAND flash chips evenly and all data channels are utilized equally.
(b) Data processing at the FMC. Once data are retrieved from NAND flash chips, they are processed in
parallel using nch FMCs. Each ASIP processor at an FMC is assumed to run at the clock frequency of f f mc.
Furthermore, to process a single byte, the processor would require CPB f mc cycles on average. Hence,

t f mc =
D ·CPB f mc

nch · f f mc
=

D · IPB f mc ·CPI f mc

nch · f f mc
. (2)

In the above formulation, IPB f mc exposes the efficiency of the instruction set chosen (and the compiler),
CPI f mc the microarchitecture, and f f mc the microarchitecture and the circuit-level processor implementation.
(c) Data transfer from the FMC to the DRAM. We introduce a key parameter α to express the amount
of residual data for further processing after FMCs finish processing a batch of data. α can be referred to as
reduction factor or selectivity depending on the workload semantics and has a value between 0 and 1. The
time needed to push the residual data from the FMCs to the DRAM is, then: t f mc2dram = α ·D/rdram. We
assumed that the aggregate data rate of the nch NAND flash channels is at least rdram, the DRAM bandwidth.
(d) Data processing with the embedded CPU(s). Our formulation here is similar to that for Equation (2).

tssd cpu =
α ·D ·CPBssd cpu

nssd cpu · fssd cpu
=

α ·D · IPBssd cpu ·CPIssd cpu

nssd cpu · fssd cpu
.

CPBssd cpu, fssd cpu, IPBssd cpu and CPIssd cpu are defined similarly. nssd cpu is the number of embedded
CPUs.
(e) Data transfer from the SSD to the host. If there remains further processing after step (d), data transfer
occurs from the iSSD to the host. With a data reduction factor β, the time to transfer data is expressed as:
tssd2host = α ·β ·D/rhost , where rhost is the host interface data transfer rate.

3Tasks of different phases may overlap in time depending on how the “master” coordinates task allocations [12].

9

(f) Data processing with the host CPU(s). In the last step, data processing with the host CPU takes:

thost cpu =
α ·β ·D ·CPBhost cpu

nhost cpu · fhost cpu
=

α ·β ·D · IPBhost cpu ·CPIhost cpu

nhost cpu · fhost cpu
,

where nhost cpu is the number of host CPUs. CPBhost cpu, fhost cpu, IPBhost cpu and CPIhost cpu are CPB, clock
frequency, IPB and CPI for the host CPUs.

The above time components ((a) through (f)) are plugged into Equation (1) to obtain the data processing
bandwidth of a particular phase in a workload. Note that the effect of parallel processing with multiple
computing resources (nch, nssd cpu and nhost cpu) is exposed.

Finally, let us derive the bandwidth of the conventional data processing scheme by adapting the above
formulation. Because there is no data processing within the SSD, α = β = 1 (all data will be transferred to
the host). Furthermore, step (b) and (d) are skipped, i.e., t f mc = tssd cpu = 0. With these changes, Equation (1)
remains valid for the conventional data processing scheme.

Energy. The main idea of our energy models is: The overall energy is a function of input data size and
energy to process a single byte. Energy consumption of a system is the sum of two components, dynamic
energy and static energy (Etotal = Edyn +Estatic). We assume that Estatic is simply Pstatic ·Ttotal where Pstatic

is a constant (static power); accordingly, we focus in this section on deriving Edyn.
Dynamic energy consumption is split into energy due to computation and energy for data transfer.

That is, Edyn = Ecomp + Ex f er = D · (EPBcomp + EPBx f er), where EPBcomp is the average energy spent
on processing a single byte of input and EPBx f er is the average energy spent on data transfer per sin-
gle byte. EPBcomp can be further decomposed into terms that represent the contributions of different
hardware components: EPBcomp = EPB f mc + α · EPBssd cpu + α · β · EPBhost cpu. Similarly, EPBx f er =
EPBnand2 f mc +α ·EPB f mc2dram +α · β ·EPBssd2host , where EPBA2B is the energy needed to move a byte
from A to B.

To expose the processor design choices and their impact, we can further decompose the terms of
EPBcomp: EPB f mc = EPI f mc · IPB f mc, EPBssd cpu = EPIssd cpu · IPBssd cpu, and EPBhost cpu = EPIhost cpu ·
IPBhost cpu, where EPI∗ is the average energy per instruction, an architectural and circuit design parameter.

4.2 Models for partitioning

Performance. With the partitioning strategy, data are split between the iSSD and the host for processing.
Hence, D=Dissd+Dhost . Then, based on the partition, the execution time Ttotal =max(Dissd/Bissd ,Dhost/Bhost),
where Bissd and Bhost stand for the data processing bandwidth of the iSSD and the host. Clearly, the above
formulation captures the importance of partitioning, because Ttotal is minimized when the execution times of
the iSSD and the host are equal. Bissd and Bhost can be easily obtained with our formulation of Section 4.1.
For example, Bhost can be expressed as nhost cpu · fhost cpu/CPBhost cpu.

Energy. Like before, we assume that Estatic is Pstatic · Ttotal and focus on deriving the dynamic energy,
Edyn = Ecomp + Ex f er = Dissd · EPBissd comp +Dhost · EPBhost cpu +Dhost · EPBssd2host . EPBissd comp is the
average energy spent on processing a single byte of input within the iSSD and can be computed using our
formulation for the pipelining case with β = 0. EPBhost cpu and EPBssd2host were previously defined.

4.3 Validation

The basic performance modeling framework of this work was previously validated by Riedel [27]. They
compare the performance of a single server with fast, directly attached SCSI disks against the same machine
with network-attached (emulated) active disks. Because the iSSD architecture stresses high data access
parallelism inside a single device, the emulation approach is too limiting in our case. Instead, we develop

10

1 2 4 8 16

model

sim

sim (XL)

model (XL)

k-means

1 2 4 8 16

model (XL)

sim

model

sim (XL)

linear_regression

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

 5,000,000

0

1 2 4 8 16

sim

model

model (XL)

sim (XL)

string_match
C

y
c
le

s

flash channels

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

0 0

Figure 6: Comparison of cycle counts of three benchmarks obtained with our models and SoC Designer simulation.
Dotted lines and solid lines are for iSSD processing with and without stream processor acceleration (XL), respectively.

and use two iSSD prototypes to validate our models and evaluate the iSSD approach. Our first prototype is
a detailed execution-driven iSSD simulator that runs on SoC Designer [9]. Our second prototype is built on
a real SSD product platform provided by Samsung [30]. Let us discuss each in the following.

Model validation through simulation of iSSD hardware. Our simulation is both functional and timing.
We describe the hardware components in Figure 3 using SystemC and realistic timings. We use an existing
cycle-accurate ARM9 model to simulate embedded CPUs and FMC processors. Additionally, we build a
timing-only wrapper simulation component for reconfigurable stream processors to avoid designing a full-
fledged stream processor at the RTL level. This component reads program execution traces and generates
necessary events (e.g., bus transactions) at specified time points.

We have ported a MapReduce framework similar to Stanford Phoenix [36] to natively run on our
simulator. An embedded CPU in the iSSD becomes a “master” and triggers FMCs to execute Map tasks
(more experimental settings in Section 5.1). It also manages buffers in DRAM to collect intermediate data.
If the output buffer in DRAM gets full, the embedded CPU flushes the data and triggers the FMCs for further
data processing.

Figure 6 plots how well the results obtained from our model and the simulator agree. Overall, the model
is shown to predict the performance trends very well as we change the number of flash memory channels.
The maximum error between the two results was 17.9% and the average error was 5.1%.

Scan experiments with prototype iSSD. We also separately studied how database scan is accelerated and
system-level energy consumption is saved with the iSSD approach by porting PostgreSQL’s scan algorithm
to the Samsung SSD platform, having sixteen 40 MB/s FMCs (i.e., internal bandwidth is 640 MB/s) and
a SATA 3 Gbps interface (∼250 MB/s on the quad-core system used). The SSD has two ARM processors
and 256 MB DRAM. As for software implementation, simple Initiator and Agent were implemented in the
host system and the SSD. They communicate with each other through a system call, ioctl() with the
ATA PASS THROUGH parameter. A SATA reserved command was used for parameter and metadata passing.
The scan algorithm is implemented into a Map function and loaded into the code memory of an embedded
CPU.

For input data, a 1 GB TPC-H Lineitem table [32] was written into flash memory with striping. Se-
lectivity was 1% and projectivity was 4 bytes (out of 150 bytes). After input data was stored, the data
layout information such as table schema and projected column was delivered to the SSD. As soon as the
host system invoked the scan function through Initiator, the input data were read into the internal buffer
memory (DRAM) of the SSD and compared with the key value for scan operation. Matched data items are
transferred to the host periodically by Initiator until there is no more data to be scanned.

The measured performance improvement with the iSSD over the host system was 2.3×. Because
database scan is not compute-intensive, this performance improvement came closely by the ratio between the

11

SSD-internal NAND flash bandwidth and the host interface bandwidth (640 MB/250 MB=2.56). Through
careful mapping of the scan algorithm, we were able to achieve a near-maximum performance gain with
only a single embedded CPU. In particular, scan operation and FTL execution time (tens of microseconds)
are effectively hidden by data transfer time between flash memory and the internal buffer memory. Our
analytical models are capable of capturing this effect, and the performance predictions in Figure 7 agree
with our measurement result. We also measured dynamic energy improvement (difference of current flowing
from the wall outlet to the system) of 5.2× using a multimeter.

5 Quantitative Evaluation

To complement the prototype measurements above, this section uses the analytical models to study the
performance and energy benefits of the iSSD approach across a broader range of configurations. Our main
focus is to prove the concept of the iSSD and identify conditions when the iSSD obtains the most and least
benefit.

5.1 Evaluation setup

iSSD parameters
rnand 400 MB/s
rdram 3.2GB/s (@800 MHz, 32-bit bus)
nch 8–64 with the step of 8
f f mc 400 MHz, 800 MHz

nssd_cpu, fssd_cpu 4, 400 MHz

System parameters
rhost 600 MB/s (SATA), 4 or 8 GB/s

nhost_cpu 4, 8, 16
fhost_cpu 3.2 GHz

Workload parameters—linear_regression, string_match,
k-means, scan

p 1
α 0.05 for scan; <0.05 for others;

CPB f mc 33.6, 38.8, 157.6, 4.0
CPB f mc (w/ accel.) 10.1, 28.3, 32.4, 1.0

CPBhost_cpu 31.5, 46.4, 117.0, 3.1

Table 2: Parameter values used during evaluation.

0

500

1,000

1,500

2,000

2,500

3,000

8 16 24 32 40 48 56 64

0

100

200

300

400

500

600

700

800

900

8 16 24 32 40 48 56 64

0

4,000

8,000

12,000

16,000

20,000

8 16 24 32 40 48 56 64

D
a

ta
 p

ro
c

e
s

s
in

g
 r

a
te

 (
M

B
/s

)

Number of FMCs

ISSD-XL

ISSD-400.

ISSD-800

HOST-SATA

HOST-4/8G

HOST-8G

HOST-SATA

HOST-4G

linear regression k-means string_match scan

Number of FMCs Number of FMCs Number of FMCs

ISSD-XL

ISSD-XL ISSD-XL ISSD-800

ISSD-400

ISSD-800

ISSD-400.

ISSD-800
ISSD-400.

HOST-*
HOST-*

0

200

400

600

800

1,000

1,200

1,400

8 16 24 32 40 48 56 64

Figure 7: Performance of selected kernels on five system configurations: HOST-SATA, HOST-4G, HOST-8G, iSSD-400,
iSSD-800, and iSSD-XL. HOST-“speed” represents a conventional, host CPU based processing scheme with the storage
interface speed of “speed” (“SATA”=600 MB/s, “4G”=4 GB/s, “8G”=8 GB/s). iSSD-400 and iSSD-800 employ FMCs
running at 400 MHz and 800 MHz for data processing. iSSD-XL uses reconfigurable stream processors for processing.
iSSD-400 uses the SATA interface, iSSD-800 the PCI-e 4 GB/s interface, and iSSD-XL the PCI-e 8 GB/s interface.

example, with k-means and string_match (our “compute-intensive” kernels), the host interface speed mattered

little. With linear_regression, the 4 GB/s and 8 GB/s host interface speeds made no difference. iSSD configura-

tions show scalable performance in the whole FMC count range, except with scan. In this case, the performance

of iSSD-XL was saturated due to the internal DRAM bandwidth wall (not the host interface bandwidth) when

the number of FMCs exceeded 48. By comparison, all conventional machine configurations suffered the host

interface bandwidth limitation, making scan the only truly storage bandwidth bound workload among the ker-

nels examined. Still, iSSD configurations scale the scan throughput for the most part because the iSSD does

not transfer filtered data to the host, reducing the required data traffic substantially. Our results clearly highlight

the importance of efficient data handling with optimized hardware, parallel data processing and data filtering.

Among the examined kernels, string_match and k-means have an IPB larger than 50 and are compute-

17

The right table lists the values of the parameters to
plug into our models. Hardware parameters (for the
iSSD and the host platform) are based on the tech-
nology trends summarized in Section 2.2. For intu-
itive discussions, we focus on four selected kernels
that have different characteristics: linear regression,
string match, k-means, and scan. In terms of com-
putation complexity (expressed in IPB), scan is the
simplest and k-means is the most complex. Except
scan, which we implement its kernel to directly run
on FMCs, we ported the Map stage of the remaining
kernels to FMCs. We focus on the Map stage of the
kernels only because there are many options for run-
ning the Reduce stage (e.g., in iSSD or host? Over-
lapped or not?) and the Map stage is often the time-
dominant phase (76–99% in our examples). We use hardware acceleration to speed up the kernels using the
stream processor instances in Figure 4. For scan, we estimate CPBs for iSSD to be 4 and 1 (with hardware
support for fast matching) based on our experiments on a real SSD platform (Section 4.3).

Throughout this section, we fix rnand to 400 MB/s to keep the design space to explore reasonably
bounded. This way, we focus on nch, the only parameter to control the internal raw data bandwidth of
the storage. In the case of iSSD, nch also determines the raw data processing throughput. Lastly, we set
p = 1 [27].

5.2 Results

Performance improvement potential. Figure 7 compares the data processing rate of different iSSD and
conventional machine configurations, as we change the number of FMCs. We assume that the host machine
has eight CPUs. iSSD configurations are shown to effectively increase the data processing bandwidth as we
add more FMCs while conventional machine configurations (having equivalently fast SSDs) gain little.

Interestingly, the performance of the conventional configurations were compute-bound except for scan.
For example, with k-means and string match (our “compute-intensive” kernels), the host interface speed

12

0

500

1,000

1,500

2,000

2,500

3,000

8 16 24 32 40 48 56 64

0

100

200

300

400

500

600

700

800

900

8 16 24 32 40 48 56 64

0

4,000

8,000

12,000

16,000

20,000

8 16 24 32 40 48 56 64

D
a

ta
 p

ro
c

e
s

s
in

g
 r

a
te

 (
M

B
/s

)

Number of FMCs

ISSD-XL

ISSD-400.

ISSD-800

HOST-SATA

HOST-4/8G

HOST-8G

HOST-SATA

HOST-4G

linear regression k-means string_match scan

Number of FMCs Number of FMCs Number of FMCs

ISSD-XL ISSD-XL ISSD-800

ISSD-400

ISSD-800

ISSD-400.

ISSD-800
ISSD-400.

HOST-*
HOST-*

0

200

400

600

800

1,000

1,200

1,400

8 16 24 32 40 48 56 64

ISSD-XL

Figure 7: Performance of selected kernels on five system configurations: HOST-SATA, HOST-4G, HOST-8G, iSSD-
400, iSSD-800, and iSSD-XL. HOST-“speed” represents a conventional, host CPU based processing scheme with
the storage interface speed of “speed” (“SATA”=600 MB/s, “4G”=4 GB/s, “8G”=8 GB/s). iSSD-400 and iSSD-800
employ FMCs running at 400 MHz and 800 MHz for data processing. iSSD-XL uses reconfigurable stream processors
for processing. iSSD-400 uses the SATA interface, iSSD-800 the PCI-e 4 GB/s interface, and iSSD-XL the PCI-e
8 GB/s interface.

mattered little. With linear regression, the 4 GB/s and 8 GB/s host interface speeds made no difference.
iSSD configurations show scalable performance in the whole FMC count range, except with scan. In this
case, the performance of iSSD-XL was saturated due to the internal DRAM bandwidth wall (not the host
interface bandwidth) when the number of FMCs exceeded 48. By comparison, all conventional machine
configurations suffered the host interface bandwidth limitation, making scan the only truly storage band-
width bound workload among the kernels examined. Still, iSSD configurations scale the scan throughput
for the most part because the iSSD does not transfer filtered data to the host, reducing the required data
traffic substantially. Our results clearly highlight the importance of efficient data handling with optimized
hardware, parallel data processing and data filtering.

Among the examined kernels, string match and k-means have an IPB larger than 50 and are compute-
intensive (see Table 1). In both cases, the data processing rate on the host CPUs is not bounded by the host
interface bandwidth at all. Interestingly, their performance behavior on the iSSD is quite different. k-means
was successfully accelerated and performs substantially better on the iSSD than host CPUs with 24 or more
FMCs. In contrast, string match required as many as 40 FMCs to outperform host CPUs. The main reason
is that the stream processor is not as effective for this kernel as other kernels and produced a small gain of
only 37% compared with the 400 MHz FMC processor (also indirectly evidenced by the large improvement
with the 800 MHz FMCs). If the iSSD does not have sufficient resources available, one would execute
workloads like string match on host CPUs [27]. Still, the particular example of string match motivates
us to investigate (in the future) a broader array of workload acceleration opportunities, especially to handle
unstructured data streams efficiently.

In a conventional system, parallelism is exploited by involving more CPUs in computation. To gain
further insight about the effectiveness of parallel processing inside the iSSD (with FMCs) as opposed to on
the host platform (with multiple CPUs), Figure 8 identifies iso-performance configurations of the iSSD and
conventional systems in two plots, each assuming a different host interface speed (600 MB/s vs. 8 GB/s).

Both plots show that hardware acceleration makes iSSD data processing much more efficient by in-
creasing the effective per-channel throughput. Consider linear regression for example: When rhost is
600 MB/s, the iSSD obtains the performance of the 16-CPU host configuration with 52 FMCs (without
acceleration) and 15 FMCs (with acceleration). Note that there is a large difference between the maximum
raw instruction throughput between the iSSD and the host configurations; the 4-CPU host configuration
(4×3.2 GHz×4 instructions/cycle) corresponds to twice the computing capacity of the 64-FMC iSSD con-

13

0

8

16

24

32

40

48

56

64

4 8 12 16

Number of host CPUs

N
u

m
b

e
r

o
f

F
M

C
s

rhost = 600 MB/s

linear_regression

scan

k-means string_match

linear_regression-XL

scan-XL

k-means-XL

string_match-XL

0

8

16

24

32

40

48

56

64

4 8 12 16

Number of host CPUs

rhost = 8 GB/s

linear_regression

scan

k-means

string_match

linear_regression-XL

scan-XL

k-means-XL

string_match-XL

Figure 8: Iso-performance iSSD (Y axis) and host (X) configurations.

figuration (64×400 MHz×1 instruction/cycle). The fact that we find iso-performance points in each column
reveals the strength of the iSSD approach. Simple kernels like scan and linear regression perform much
more efficiently on the iSSD. Moreover, relatively complex kernels like k-means will also be quite suitable
for running on the iSSD, given adequate hardware acceleration support.

With a high-bandwidth host interface, the host CPU configurations gain on performance, and hence, the
curves are pushed toward the upper-left corner. Still, the iSSD provides robust performance with acceleration
for scan, k-means and linear regression. With fewer than 41 FMCs, the iSSD performed as well as 16
CPUs for these kernels.

We also gain from above results an insight that having more powerful embedded CPUs in an iSSD
(e.g., Cortex-A8s at 1.2 GHz) will not produce equivalent cost-effective performance benefits because they
are subject to the same architecture inefficiency issues that plague host CPUs. Moreover, with significantly
more compute power in the embedded CPUs, the shared DRAM bandwidth will become a new bottleneck.
Attacking data at FMCs—the front line of computing resources—appears essential for scalable data pro-
cessing in iSSDs.

0

500

1,000

1,500

2,000

2,500

3,000

li
n
e
a
r_
re
g
.

s
tr
in
g
_
m
a
tc
h

k
-
m
e
a
n
s

s
c
a
n

li
n
e
a
r_
re
g
.

s
tr
in
g
_
m
a
tc
h

k
-
m
e
a
n
s

s
c
a
n

nch=32, nhost_cpu=4, rhost=600 MB/s nch=32, nhost_cpu=16, rhost=8 GB/s

host only

ISSD only

partitioning

12.8 GB/s

12.8 GB/s

8 GB/s

D
a

ta
 p

ro
c

e
s

s
in

g
 r

a
te

 (
M

B
/s

)

Figure 9: Performance of host only, iSSD only, and parti-
tioning based combined configuration.

Lastly, we explore the potential of applying
both partitioning and pipelining strategies in the
iSSD architecture. We employ all computing re-
sources, including FMCs and host CPUs, to maxi-
mize data processing throughput. Figure 9 presents
the result, assuming optimal work partitioning be-
tween the iSSD and host CPUs. It is shown that
higher data processing throughput is achievable
with partitioning, compared with either the host
only or the iSSD only configuration. Except for
scan, the maximum achievable throughput is the
sum of the throughputs of the host CPUs and the
iSSD. This is because the ample internal flash mem-
ory bandwidth (nch = 32) can feed the host CPUs
and the FMCs simultaneously. This is why data

14

0

4

8

12

0

4

8

12

0

10

20

30

40
E

n
e
rg

y
 P

e
r

B
y
te

 (
n

J
/B

)

0

50

100

150

200

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

linear_reg. string_match k-means scan Legend

host

CPU

main

memory

I/O

SSD

chipset

NAND

DRAM

0

4

8

12

processor

I/O

SP

CATEGORY ENERGY PARAMETERS

Host system ECPU = 0.82 nJ/inst. [13]
PDRAM = 420 mW [21]
Pchipset = 5.49 W [5]

PI/O = 9.61 W [5]
SSD & ISSD ENAND,8kB read = 3.31 µJ

ENAND,8kB write = 64.94 µJ
PDRAM = 154 mW [21]

Ehost i/ f = 1.05 nJ/B [23]
Eproc. = 192 pJ/inst. [3]

Estream ALU = 2.11 pJ/op. [11]
Estream MUL = 67.6 pJ/op [11]

Estream Reg. = 4.23 pJ/access [11]
Eproc. SRAM = 89.3 pJ/read [16]
Estream SRAM = 21.1 pJ/read [16]

24

Figure 10: Breakdown of energy into key system components (left) and input parameters to the energy model (right).

processing throughput of nearly 1,700 MB/s is achieved with linear regression when the host interface
bandwidth is merely 600 MB/s. In case of scan, pipelining with the iSSD already achieves the highest
possible data throughput (12.8 GB/s) that matches the raw flash memory bandwidth and partitioning brings
no additional benefit. In this case, the host CPUs may perform other useful computation or enter into a low
power mode.

The partitioning strategy brings practical benefits because partitioning is relatively straightforward
when the input data is large and the partitioning overhead becomes relatively small. We are encouraged
by our result, and specific research issues of static and dynamic partitioning (and load balancing) are left for
future work.

Energy reduction potential. To investigate potential energy savings of the iSSD approach, we compute
EPB for three configurations: conventional host processing, iSSD without acceleration, and iSSD with
acceleration. The examined configurations follow the setup of Section 5.1 and nch = 8. We break down
energy into key system components. In case of host processing, they are: CPUs, main memory, chipset, I/O
bus and SSD. For iSSD, we consider: FMC processor, stream processor, DRAM, NAND flash and I/O.

We use the widely practiced event-based energy estimation method (e.g., [6, 5]). We determine our
energy parameters based on publicly available information. For example, energy of the host CPU and the in-
iSSD processors are derived from [13, 3, 11]. SRAM scratchpad memory and DRAM energy are estimated
using [16] and [21]. Flash memory energy is obtained from data books and in-house measurement. For fair
comparison, we assume that the host CPU is built with a 22-nm technology while the SSD/iSSD controllers
are built with a 45-nm technology (i.e., two technology generations apart). Figure 10 is the result and the
parameters used.

It is shown that overall, the iSSD configurations see large energy reduction in all examined ker-
nels by at least 5× (k-means) and the average reduction was over 9×. Furthermore, energy is sig-
nificantly smaller when the stream processor was used—the maximum reduction was over 27× for lin-
ear regression (9× without the stream processor). The stream processor was very energy-efficient, con-
suming only 0.123 nJ/byte in the worst case (string match), compared with 63.0 nJ/byte of the host CPU
for the same kernel. Clearly, hardware acceleration proves to be effective for both performance improvement
and energy saving in iSSDs.

In host processing, typically more than half of all energy is consumed for data transfer (I/O, chipset
and main memory). iSSD addresses this inefficiency by migrating computation and eliminating unnecessary
data transfer. In this sense, the iSSD approach is in stark contrast with other approaches toward efficient
data processing, such as intelligent memory [26], on-CPU specialization [33], GPGPUs [15] and low-power
CPUs [2]; they offer more efficient computing than powerful CPUs but do not eliminate the overheads of

15

data transfer. For example, even if these approaches employ the same energy-efficient reconfigurable stream
processors, their energy improvement would be limited to 1.04× to 1.60× (when iSSD achieves 17× to
27× with acceleration).

0

4

8

12

0

4

8

12

0

10

20

30

40

E
n

e
rg

y
 P

e
r

B
y
te

 (
n

J
/B

)

0

50

100

150

200

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

linear_reg. string_match k-means scan Legend

host

CPU

main

memory

I/O

SSD

chipset

NAND

DRAM

0

4

8

12

processor

I/O

SP

CATEGORY ENERGY PARAMETERS

Host system ECPU = 0.82 nJ/inst. [11]
PDRAM = 420 mW [20]
Pchipset = 5.49 W [4]

PI/O = 9.61 W [4]
SSD & ISSD ENAND,8kB read = 3.31 µJ

ENAND,8kB write = 64.94 µJ
PDRAM = 154 mW [20]

Ehost i/ f = 1.05 nJ/B [23]
Eproc. = 192 pJ/inst. [2]

Estream ALU = 2.11 pJ/op. [9]
Estream MUL = 67.6 pJ/op [9]

Estream Reg. = 4.23 pJ/access [9]
Eproc. SRAM = 89.3 pJ/read [14]
Estream SRAM = 21.1 pJ/read [14]

24

Figure 10: Breakdown of energy into key system components (left) and input parameters to the energy model (right).

CHIP COMPONENT SSD iSSD

CPUs 700K 2,200K
(int core×2) ((int+fp)×4)

SRAM (256 KB) 1,500K 1,500K
FMC (incl. ECC, 7,200K 11,200K

16 channels) (450K×16) (700K×16)
PCI-e (mac only) 500K 500K
DRAM controller 50K 50K

Peripherals 60K 60K
Misc. (glue, pads, ...) 2,000K 2,000K

TOTAL 12,010K 17,510K

Table 2: Gate count estimation of a conventional SSD controller and an iSSD controller chip.

In host processing, typically more than half of all energy is consumed for data transfer (I/O, chipset and main

memory). iSSD addresses this inefficiency by migrating computation and eliminating unnecessary data transfer.

In this sense, the iSSD approach is in stark contrast with other approaches toward efficient data processing,

such as intelligent memory [27], on-CPU specialization [34], GPGPUs [15] and low-power CPUs [2]; they

offer more efficient computing than powerful CPUs but do not eliminate the overheads of data transfer. For

example, even if these approaches employ the same energy-efficient reconfigurable stream processors, their

energy improvement would be limited to 1.04× to 1.60× (when iSSD achieves 17× to 27× with acceleration).

0

4

8

12

0

4

8

12

0

10

20

30

40

E
n

e
rg

y
 P

e
r

B
y
te

 (
n

J
/B

)

0

50

100

150

200

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

linear_reg. string_match k-means scan Legend

host

CPU

main

memory

I/O

SSD

chipset

NAND

DRAM

0

4

8

12

processor

I/O

SP

CATEGORY ENERGY PARAMETERS

Host system ECPU = 0.82 nJ/inst. [11]
PDRAM = 420 mW [20]
Pchipset = 5.49 W [4]

PI/O = 9.61 W [4]
SSD & ISSD ENAND,8kB read = 3.31 µJ

ENAND,8kB write = 64.94 µJ
PDRAM = 154 mW [20]

Ehost i/ f = 1.05 nJ/B [23]
Eproc. = 192 pJ/inst. [2]

Estream ALU = 2.11 pJ/op. [9]
Estream MUL = 67.6 pJ/op [9]

Estream Reg. = 4.23 pJ/access [9]
Eproc. SRAM = 89.3 pJ/read [14]
Estream SRAM = 21.1 pJ/read [14]

24

Figure 10: Breakdown of energy into key system components (left) and input parameters to the energy model (right).

CHIP COMPONENT SSD iSSD

CPUs 700K 2,200K
(int core×2) ((int+fp)×4)

SRAM (256 KB) 1,500K 1,500K
FMC (incl. ECC, 7,200K 11,200K

16 channels) (450K×16) (700K×16)
PCI-e (mac only) 500K 500K
DRAM controller 50K 50K

Peripherals 60K 60K
Misc. (glue, pads, ...) 2,000K 2,000K

TOTAL 12,010K 17,510K

Table 2: Gate count estimation of a conventional SSD controller and an iSSD controller chip.

In host processing, typically more than half of all energy is consumed for data transfer (I/O, chipset and main

memory). iSSD addresses this inefficiency by migrating computation and eliminating unnecessary data transfer.

In this sense, the iSSD approach is in stark contrast with other approaches toward efficient data processing,

such as intelligent memory [27], on-CPU specialization [34], GPGPUs [15] and low-power CPUs [2]; they

offer more efficient computing than powerful CPUs but do not eliminate the overheads of data transfer. For

example, even if these approaches employ the same energy-efficient reconfigurable stream processors, their

energy improvement would be limited to 1.04× to 1.60× (when iSSD achieves 17× to 27× with acceleration).

0

4

8

12

16

0

10

20

30

40

0

10

20

30

40

0

4

8

12

E
n

e
rg

y
 P

e
r

B
y
te

 (
n

J
/B

)

0

50

100

150

200

250

300

host ISSD
w/o SP

ISSD
w/ SP

host ISSD
w/o SP

ISSD
w/ SP

host ISSD
w/o SP

ISSD
w/ SP

host ISSD
w/o SP

ISSD
w/ SP

linear_reg. string_match k-means scan Legend

host CPU

main

memory

I/O

SSD

chipset

processor

SP

NAND

DRAM

Figure 9: Breakdown of energy consumption into key system components.

CHIP COMPONENT SSD ISSD

CPUs 700K 2,200K
(int core×2) ((int+fp)×4)

SRAM (256 KB) 1,500K 1,500K
FMC (16 ch.) 7,200K 11,200K

(450K×16) (700K×16)
PCI-e (mac only) 500K 500K
DRAM controller 50K 50K

Peripherals 60K 60K
Misc. (glue, pads, ...) 2,000K 2,000K

TOTAL 12,010K 17,510K

Table 4: Gate count estimation of a conventional SSD controller and an ISSD controller chip.

(string_match), compared with 16.8 nJ/byte of the host CPU. Hardware acceleration proves to be an effective

way for further energy savings in ISSDs.

In host processing, more than half of all energy consumption is for data transfer (in I/O, chipset, and

main memory). In contrast, the dominant energy consumer in ISSD is FMC processors. This implies that a

platform’s energy inefficiency caused by lots of data transfer on the I/O path is mitigated successfully in the

ISSD approach.

Figure 10: Bandwidth trends of key hardware components.

Cost analysis. As the final step of evaluation, we

compare the hardware cost of an SSD and an ISSD

based on estimation. We assume standard components like flash and DRAM chips are identical in both designs.

With that the main cost difference comes from the controller chip and we break down the chip cost into the

chip’s components in Table 4. We estimate the die cost difference to be 40%.

The SSD bill of materials is dominated by the NAND flash chips. For example, commodity 256 GB SSDs

22

Cost analysis. Finally, we estimate and compare the hard-

ware cost of an SSD and an iSSD. Standard components like

flash and DRAM chips are identical in both designs. With

that the main cost difference comes from the controller chip.

We break down the chip cost in the right table and estimate

the die cost difference to be 40%.

The SSD bill of material (BOM) is dominated by the

20

Cost analysis. Finally, we estimate and compare the hard-

ware cost of an SSD and an iSSD. Standard components like

flash and DRAM chips are identical in both designs. With

that the main cost difference comes from the controller chip.

We break down the chip cost in the right table and estimate

the die cost difference to be 40%.

The SSD bill of material (BOM) is dominated by the

20

Cost analysis. Finally, we estimate and compare the hard-
ware cost of an SSD and an iSSD. Standard components
like flash and DRAM chips are identical in both designs.
With that the main cost difference comes from the con-
troller chip. We break down the chip cost in the right table
and estimate the die cost difference to be 40%.

The SSD bill of material (BOM) is dominated by
the NAND flash chips. For example, commodity 256 GB
SSDs are priced at as low as $370 in on-line stores as of
July 2011, whereas 64 Gbit MLC NAND flash chips are
sold at $9.92 (obtained at www.dramexchange.com on July 13, 2011). According to this price, the cost for
the flash memory chips is $317, accounting for over 86% of the SSD end user’s price. With a larger capacity
SSD, it won’t be surprising that the flash cost exceeds 90% of the drive’s BOM. Hence, even if the dominant
portion of the remaining cost—around 10% of the drive’s BOM—is attributed to the controller chip, the
additional cost of iSSD will not exceed 4%. We believe that this cost is substantially smaller than upgrading
the host system (e.g., CPUs with more cores) to get the same performance improvement the iSSD can bring
and is well exceeded by the expected energy savings.

6 Conclusions

Intelligent solid-state drives (iSSDs) offer compelling performance and energy efficiency benefits, arising
from modern and projected SSD characteristics. Based on analytic models and limited experimentation
with a prototype iSSD, we show that iSSDs could provide 2–4× higher data scanning throughput and 5–
27× better energy efficiency relative to today’s use of commodity servers. Based on analysis of ten data-
intensive application kernels, we describe an architecture based on reconfigurable stream processors (one
per internal flash memory channel) that could provide these benefits at marginal hardware cost increases
(<4%) to traditional SSDs. Most of these benefits would also be realized over non-iSSD approaches based
on efficient processing outside of SSDs, because they do not exploit SSD-internal bandwidth or avoid costly
high-bandwidth transfers of all processed data.

References

[1] ACHARYA, A., UYSAL, M., AND SALTZ, J. Active disks: programming model, algorithms and
evaluation. ASPLOS-VIII, pp. 81–91.

[2] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY, M., PHANISHAYEE, A., TAN, L., AND VASUDE-
VAN, V. Fawn: a fast array of wimpy nodes. In Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles (New York, NY, USA, 2009), SOSP ’09, ACM, pp. 1–14.

[3] ARM LTD. Cortex a9 processor. http://www.arm.com/products/processors/cortex-a/

cortex-a9.php.

[4] BARROSO, L., DEAN, J., AND HOLZLE, U. Web search for a planet: The google cluster architecture.
IEEE Micro 23, 2 (March-April 2003), 22–28.

16

www.dramexchange.com
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php

[5] BIRCHER, W., AND JOHN, L. Complete system power estimation: A trickle-down approach based on
performance events. ISPASS, pp. 158–168.

[6] BROOKS, D., TIWARI, V., AND MARTONOSI, M. Wattch: a framework for architectural-level power
analysis and optimizations. ISCA ’00, pp. 83–94.

[7] BRYANT, R. E. Data-intensive supercomputing: The case for disc. Tech. Rep. CMU-CS-07-128,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, May 2007.

[8] CANNATARO, M., TALIA, D., AND SRIMANI, P. K. Parallel data intensive computing in scientific
and commercial applications. Parallel Comput. 28 (May 2002), 673–704.

[9] CARBON SOC DESIGNER PLUS. http://carbondesignsystems.com/SocDesignerPlus.aspx.

[10] COOPER, B. F., BALDESCHWIELER, E., FONSECA, R., KISTLER, J. J., NARAYAN, P. P. S., NEER-
DAELS, C., NEGRIN, T., RAMAKRISHNAN, R., SILBERSTEIN, A., SRIVASTAVA, U., AND STATA,
R. Building a cloud for yahoo! IEEE Data Eng. Bull. 32, 1 (2009), 36–43.

[11] DALLY, W. J., KAPASI, U. J., KHAILANY, B., AHN, J. H., AND DAS, A. Stream processors:
Progammability and efficiency. Queue 2 (March 2004), 52–62.

[12] DEAN, J., AND GHEMAWAT, S. Mapreduce: Simplified data processing on large clusters. In OSDI
(2004), pp. 137–150.

[13] GROCHOWSKI, E., AND ANNAVARAM, M. Energy per instruction trends in intel microprocessors.
Tech.@Intel Magazine, March 2006.

[14] HALEVY, A., NORVIG, P., AND PEREIRA, F. The unreasonable effectiveness of data. IEEE Intelligent
Systems 24 (March 2009), 8–12.

[15] HE, B., FANG, W., LUO, Q., GOVINDARAJU, N. K., AND WANG, T. Mars: a mapreduce framework
on graphics processors. PACT ’08, pp. 260–269.

[16] HP LABS. Cacti 5.3. http://quid.hpl.hp.com:9081/cacti/.

[17] HUSTON, L., SUKTHANKAR, R., WICKREMESINGHE, R., SATYANARAYANAN, M., GANGER,
G. R., RIEDEL, E., AND AILAMAKI, A. Diamond: A storage architecture for early discard in in-
teractive search. FAST, pp. 73–86.

[18] KEETON, K., PATTERSON, D. A., AND HELLERSTEIN, J. M. A case for intelligent disks (idisks).
SIGMOD Record 27, 3 (1998), 42–52.

[19] KHRONOS GROUP. Opencl. http://www.khronos.org/opencl/.

[20] MESNIER, M., GANGER, G. R., AND RIEDEL, E. Object-based storage. IEEE Communication
Magazine 41 (August 2003), 84–90.

[21] MICRON TECHNOLOGY, INC. Sdram power calculator. http://download.micron.com/

downloads/misc/SDRAM_Power_Calc_10.xls.

[22] NARAYANAN, R., OZISIKYILMAZ, B., ZAMBRENO, J., MEMIK, G., AND CHOUDHARY, A.
Minebench: A benchmark suite for data mining workloads. IISWC, pp. 182–188.

[23] OPEN COMPUTE PROJECT. http://opencompute.org.

17

http://carbondesignsystems.com/SocDesignerPlus.aspx
http://quid.hpl.hp.com:9081/cacti/
http://www.khronos.org/opencl/
http://download.micron.com/downloads/misc/SDRAM_Power_Calc_10.xls
http://download.micron.com/downloads/misc/SDRAM_Power_Calc_10.xls
http://opencompute.org

[24] OSKIN, M., CHONG, F., AND SHERWOOD, T. Active pages: a computation model for intelligent
memory. In Computer Architecture, 1998. Proceedings. The 25th Annual International Symposium on
(June 1998), pp. 192–203.

[25] OZISIKYILMAZ, B., NARAYANAN, R., ZAMBRENO, J., MEMIK, G., AND CHOUDHARY, A. An
architectural characterization study of data mining and bioinformatics workloads. IISWC, pp. 61–70.

[26] PATTERSON, D., ANDERSON, T., CARDWELL, N., FROMM, R., KEETON, K., KOZYRAKIS, C.,
THOMAS, R., AND YELICK, K. A case for intelligent ram. Micro, IEEE 17, 2 (March/April 1997),
34–44.

[27] RIEDEL, E. Active Disks–Remote Execution for Network-Attached Storage. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, 1999.

[28] RIEDEL, E., FALOUTSOS, C., GIBSON, G., AND NAGLE, D. Active disks for large-scale data pro-
cessing. Computer 34, 6 (June 2001), 68–74.

[29] RIEDEL, E., GIBSON, G. A., AND FALOUTSOS, C. Active storage for large-scale data mining and
multimedia. VLDB ’98, pp. 62–73.

[30] SAMSUNG ELECTRONICS CO., L. http://www.samsung.com/global/business/

semiconductor/Greenmemory/Products/SSD/SSD_Lineup.html.

[31] SCHUETZ, R., AND JEONG, S. Looking ahead to higher performance ssds with hlnand. In Flash
Memory Summit (2010).

[32] TPC. Tpc-h. http://www.tpc.org/tpch/default.asp.

[33] VENKATESH, G., SAMPSON, J., GOULDING, N., GARCIA, S., BRYKSIN, V., LUGO-MARTINEZ,
J., SWANSON, S., AND TAYLOR, M. B. Conservation cores: reducing the energy of mature compu-
tations. In Proceedings of the fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems (New York, NY, USA, 2010), ASPLOS ’10, ACM, pp. 205–218.

[34] WHITE, T. Hadoop: The Definitive Guide (Chapter 6: How MapReduce Works). O’Reilly, 2009.

[35] WONG, W. A chat about micron’s clearnand technology. electronic design (December 2010).

[36] YOO, R. M., ROMANO, A., AND KOZYRAKIS, C. Phoenix rebirth: Scalable mapreduce on a large-
scale shared-memory system. IISWC, pp. 198–207.

18

http://www.samsung.com/global/business/semiconductor/Greenmemory/Products/SSD/SSD_Lineup.html
http://www.samsung.com/global/business/semiconductor/Greenmemory/Products/SSD/SSD_Lineup.html
http://www.tpc.org/tpch/default.asp

	Introduction
	Background and Related Work
	Active devices for data-intensive computing
	Architecture and evolution of SSDs
	iSSD-relevant workload characteristics

	Intelligent SSDs
	Hardware architecture
	Software architecture
	Data processing strategies with iSSDs

	Modeling iSSD Benefits
	Models for pipelining
	Models for partitioning
	Validation

	Quantitative Evaluation
	Evaluation setup
	Results

	Conclusions

