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Abstract

New programming frameworks for scale-out parallel analysis, such as MapReduce and Hadoop, have become a cornerstone for
exploiting large datasets. However, there has been little analysis of how these systems perform relative to the capabilities of the
hardware on which they run. This paper describes a simple analytical model that predicts the optimal performance of a parallel
dataflow system. The model exposes the inefficiency of popular scale-out systems, which take 3–13× longer to complete jobs
than the hardware should allow, even in well-tuned systems used to achieve record-breaking benchmark results. To validate the
sanity of our model, we present small-scale experiments with Hadoop and a simplified dataflow processing tool called Parallel
DataSeries. Parallel DataSeries achieves performance close to the analytic optimal, showing that the model is realistic and that
large improvements in the efficiency of parallel analytics are possible.
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1 Introduction

“Data-intensive scalable computing” (DISC) refers to a rapidly growing style of computing characterized
by its reliance on huge and growing datasets [7]. Driven by the desire and capability to extract insight
from such datasets, data-intensive computing is quickly emerging as a major activity of many organizations.
With massive amounts of data arising from such diverse sources as telescope imagery, medical records,
online transaction records, and web pages, many researchers are discovering that statistical models extracted
from data collections promise major advances in science, health care, business efficiencies, and information
access. Indeed, statistical approaches are quickly bypassing expertise-based approaches in terms of efficacy
and robustness.

To assist programmers with data-intensive computing, new programming frameworks (e.g., MapRe-
duce [9], Hadoop [1] and Dryad [13]) have been developed. They provide abstractions for specifying data-
parallel computations, and they also provide environmentsfor automating the execution of data-parallel
programs on large clusters of commodity machines. The map-reduce programming model, in particular, has
received a great deal of attention, and several implementations are publicly available [1, 20].

These frameworks can scale jobs to thousands of computers, which is great. However, they currently
focus on scalability without concern for efficiency. Worse,anecdotal experiences indicate that they fall far
short of fully utilizing hardware resources, effectively wasting large fractions of the computers over which
jobs are scaled. If these inefficiencies are real, the same work could (theoretically) be completed at much
lower costs. An ideal approach would provide maximum scalability for a given computation without wasting
resources such as the CPU or disk. Given the widespread use and scale of data-intensive computing, it is
important that we move toward such an ideal.

An important first step is understanding the degree, characteristics, and causes of inefficiency. Unfor-
tunately, little help is currently available. This paper begins to fill the void with a simple model of “ideal”
map-reduce job runtimes and the evaluation of systems relative to it. The model’s input parameters describe
basic characteristics of the job (e.g., amount of input data, degree of filtering in the map and reduce phases),
of the hardware (e.g., per-node disk and network throughputs), and of the framework configuration (e.g.,
replication factor). The output is the ideal job runtime.

An ideal run is “hardware-efficient,” meaning that the realized throughput matches the maximum
throughput for the bottleneck hardware resource, given itsusage (i.e., amount of data moved over it). Our
model can expose how close (or far, currently) a given systemis from this ideal. Such throughput will not
occur, for example, if the framework does not provide sufficient parallelism to keep the bottleneck resource
fully utilized, or it makes poor use of a particular resource(e.g., inflating network traffic). In addition, our
model can be used to quantify resources wasted due to imbalance—in an unbalanced system, one resource
(e.g., network, disk, or CPU) is under-provisioned relative to others and acts as a bottleneck. The other
resources are wasted to the extent that they are over-provisioned and active.

To illustrate these issues, we applied the model to a number of benchmark results (e.g., for the TeraSort
and PetaSort benchmarks) touted in the industry. These presumably well-tuned systems achieve runtimes
that are 3–13× longer than the ideal model suggests should be possible. We also report on our own experi-
ments with Hadoop, confirming and partially explaining sources of inefficiency.

To confirm that the model’s ideal is achievable, we present results from an efficient parallel dataflow
system called Parallel DataSeries (PDS). PDS lacks many features of the other frameworks, but its careful
engineering and stripped-down feature-set demonstrate that near-ideal hardware-efficiency (within∼20%)
is possible. In addition to validating the model, PDS provides an interesting foundation for subsequent
analyses of the incremental costs associated with features, such as distributed file system functionality,
dynamic task distribution, fault tolerance, and task replication.

Data-parallel computation is here to stay, as is scale-out performance. However, we hope that the low
efficiency indicated by our model is not. By gaining a better understanding of computational bottlenecks,

1



!"#$%"& #"$'('()* +$('% ,%*& $%-%(.% ,)$' $%&/-% +$('%

!"#$%"& #"$'('()* +$('% ,%*& $%-%(.% ,)$' $%&/-% +$('%

!"#$%"& #"$'('()* +$('% ,%*& $%-%(.% ,)$' $%&/-% +$('%

0)&%12

0)&%13

0)&%14

56",%12 56",%13

!" !# !$

Figure 1:A map-reduce dataflow.

and understanding the limits of what is achievable, we hope that our work will lead to improvements in
commonly used DISC frameworks.

2 Dataflow parallelism and map-reduce computing

Today’s data-intensive computing derives much from earlier work on parallel databases. Broadly speaking,
data is read from input files, processed, and stored in outputfiles. The dataflow is organized as a pipeline in
which the output of one operator is the input of the followingoperator. DeWitt and Gray [10] describe two
forms of parallelism in such dataflow systems: partitioned parallelism and pipelined parallelism. Partitioned
parallelism is achieved by partitioning the data and splitting one operator into many running on different
processors. Pipelined parallelism is achieved by streaming the output of one operator into the input of
another, so that the two operators can work in series on different data at the same time.

Google’s MapReduce1 [9] offers a simple programming model that facilitates development of scalable
parallel applications that process a vast amount of data. Programmers specify amapfunction that generates
values and associated keys from each input data item and areducefunction that describes how all data
matching each key should be combined. The runtime system handles details of scheduling, load balancing,
and error recovery. Hadoop [1] is an open-source implementation of the map-reduce model.Figure 1
illustrates the pipeline of a map-reduce computation involving three nodes (computers). The computation is
divided into two phases, labeled Phase 1 and Phase 2.

Phase 1: Phase 1 begins with the reading of the input data from disk and ends with the sort operator.
It includes the map operators and the exchange of data over the network. The first write operator in Phase 1
stores the output of the map operator. This “backup write” operator is optional, but used by default in the
Google and Hadoop implementations of map-reduce, serving to increase the system’s ability to cope with
failures or other events that may occur later.

Phase 2: Phase 2 begins with the sort operator and ends with the writing of the output data to disk.
In systems that replicate data across multiple nodes, such as the GFS [11] and HDFS [3] distributed file
systems used with MapReduce and Hadoop, respectively, the output data must be sent to all other nodes that
will store the data on their local disks.

1We refer to the programming model as map-reduce and to Google’s implementation as MapReduce.
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Parallelism: In Figure1, partitioned parallelism takes place on the vertical axis;the input data is split
between three nodes, and each operator is, in fact, split into three sub-operators that each run on a different
node. Pipelined parallelism takes place on the horizontal axis; each operator within a phase processes data
units (e.g., records) as it receives them, rather than waiting for them all to arrive, and passes data units to
the next operator as appropriate. The only breaks in pipelined parallelism occur at the boundary between
phases. As shown, this boundary is the sort operator. The sort operator can only produce its first output
record after it has received all of its input records, since the last input record received might be the first in
sorted order.

Quantity of data flow: Figure1 also illustrates how the amount of data “flowing” through thesystem
changes throughout the computation. The amount of input data per node isdi , and the amount of output data
per node isdo. The amount of data per node produced by the map operator and consumed by the reduce
operator isdm. In most applications, the amount of data flowing through thesystem either remains the same
or decreases (i.e.,di ≥ dm ≥ do). In general, the mapper will implement some form of select,filtering out
rows, and the reducer will perform aggregation. This reduction in data across the stages can play a key role
in the overall performance of the computation. Indeed, Google’s MapReduce includes “combiner” functions
to move some of the aggregation work to the map operators and,hence, reduce the amount of data involved
in the network exchange [9]. Many map-reduce workloads resemble a “grep”-like computation, in which
the map operator decreases the amount of data (di ≫ dm anddm = do). In others, such as in a sort, neither
the map nor the reduce function decrease the amount of data (di = dm = do).

2.1 Related work

Concerns about the performance of map-reduce style systemsemerged from the parallel databases commu-
nity, where similar data processing tasks have been tackledby commercially available systems. In particular,
Stonebraker et al. compare Hadoop to a variety of DBMSs and find that Hadoop can be up to 36x slower
than a commercial parallel DBMS [25]. In previous work [5], two of the authors of our paper pointed out
that many parallel systems (especially map-reduce systems, but also other parallel systems) have focused
almost exclusively on absolute throughput and high-end scalability. This focus, as the authors quantify by
back-of-the-envelope comparisons, has been at the detriment of other worthwhile metrics.

In perhaps the most relevant prior work, Wang et al. use simulation to evaluate how certain design deci-
sions (e.g., network layout and data locality) will effect the performance of Hadoop jobs [27]. Specifically,
their MRPerf simulator instantiates fake jobs, which impose fixed times (e.g., job startup) and input-size
dependent times (cycles/byte of compute) for the Hadoop parameters under study. The fake jobs generate
network traffic (simulated with ns-2) and disk I/O (also simulated). Using execution characteristics accu-
rately measured from small instances of Hadoop jobs, MRPerfaccurately predicts (to within 5-12%) the
performance of larger clusters. Although simulation techniques like MRPerf are useful for exploring dif-
ferent designs, by relying on measurements of actual behavior (e.g., of Hadoop) such simulations will also
emulate any inefficiencies particular to the specific implementation simulated.

3 Performance model

This section presents a model for the runtime of a map-reducejob on a hardware-efficient system. It includes
the model’s assumptions, parameters, and equations, alongwith a description of common workloads.

Assumptions: For a large class of data-intensive workloads, which we assume for our model, compu-
tation time is negligible in comparison to I/O speeds. Amongothers, this assumption holds for grep- and
sort-like jobs, such as those described by Dean and Ghemawat[9] as being representative of most MapRe-
duce jobs at Google, but may not hold in other settings. For workloads fitting the assumption, pipelined
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dm < memory (in-memory sort) dm ≫ memory (external sort)

Phase 1 Disk read (input):di Disk read (input):di

Disk write (backup):dm Disk write (backup):dm

Network: n−1
n dm Network: n−1

n dm

Disk write (sort):dm

Phase 2 Network: (r −1)do Disk read (sort):dm

Network: (r −1)do

Disk write (output):rdo Disk write (output):rdo

Table 1: I/O operations in a map-reduce job. The first disk write in Phase 1 is an optional backup to protect
against failures.

parallelism can allow non-I/O operations to execute entirely in parallel with I/O operations, such that over-
all throughput for each phase will be determined by the I/O resource (network or storage) with the lowest
effective throughput.

For modeling purposes, we also do not consider specific network topologies or technologies, and we
assume that the network core is over-provisioned enough that the internal network topology does not impact
the speeds of inter-node data transfers. From our experience, unlimited backplane bandwidth without any
performance degradation is probably impractical, although it was not an issue for our experiments and we
currently have no evidence for it causing issues on the otherlarge clusters which we analyze in Section8.

The model assumes that input data is evenly distributed across all participating nodes in the cluster, that
nodes are homogeneous, and that each node retrieves its initial input from local storage. Most map-reduce
systems are designed to fit these assumptions. The model alsoaccounts for output data replication, assuming
the common strategy of storing the first replica on the local disks and sending the others over the network to
other nodes. Finally, another important assumption is thata single job has full access to the cluster at a time,
with no competing jobs or other activities. Production map-reduce clusters may be shared by more than one
simultaneous job, but understanding a single job’s performance is a useful starting point.

Deriving the model from I/O operations: Table1 identifies the I/O operations in each map-reduce
phase for two variants of the sort operator. When the data fitsin memory, a fastin-memory sortcan be used.
When it does not fit, anexternal sortis used, which involves sorting each batch of data in memory,writing it
out to disk, and then reading and merging the sorted batches into one sorted stream. Then−1

n dm term appears
in the equation, wheren is the number of nodes, because in a well-balanced system each node partitions and
transfers that fraction of its mapped data over the network,keeping1

n of the data for itself.
Table2 lists the I/O speed and workload property parameters of the model. They include amounts of

data flowing through the system, which can be expressed either in absolute terms (di , dm, anddo) or in terms
of the ratios of the map and reduce operators’ output and input (eM andeR, respectively).

Table3 gives the model equations for the execution time of a map-reduce job in each of four scenarios,
representing the cross-product of the Phase 1 backup write option (yesor no) and the sort type (in-memoryor
external). In each case, the per-byte time to complete each phase (mapand reduce) is determined, summed,
and multiplied by the number of input bytes per node

(

i
n

)

. The per-byte value for each phase is the larger
(max) of that phase’s per-byte disk time and per-byte network time. Using the last row (external sort, with
backup write) as an example, the map phase includes three disk transfers and one network transfer: reading

each input byte
(

1
Dr

)

, writing theeM map output bytes to disk (the backup write;eM
Dw

), writing eM bytes as

part of the external sort
(

eM
Dw

)

, and sendingn−1
n of the eM map output bytes over the network

( n−1
n eM

N

)

to

other reduce nodes. The corresponding reduce phase includes two disk transfers and one network transfer:
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Symbol Definition

n The number of nodes in the cluster.

Dw The aggregate diskwrite throughput of a single node. A node with four disks, where
each disk provides 65 MB/s writes, would haveD = 260 MB/s.

Dr The aggregate diskread throughput of a single node.

N The network throughput of a single node.

r The replication factor used for the job’s output data. If no replication is used,r = 1.

i The total amount of input data for a given computation.

di
(

= i
n

)

The amount of input data per node, for a given computation.

dm
(

= i·eM
n

)

The amount of data per node after the map operator, for a givencomputation.

do
(

= i·eM ·eR
n

)

The amount of output data per node, for a given computation.

eM

(

= dm
di

)

The ratio between the map operator’s output and its input.

eR

(

= do
dm

)

The ratio between the reduce operator’s output and its input.

Table 2: Modeling parameters that include I/O speeds and workload properties.

dm < memory(in-memory sort)

Without backup write i
n

(

max
{

1
Dr

,
n−1

n eM

N

}

+max
{

reMeR
Dw

, eMeR(r−1)
N

})

With backup write i
n

(

max
{

1
Dr

+ eM
Dw

,
n−1

n eM

N

}

+max
{

reMeR
Dw

, eMeR(r−1)
N

})

dm ≫ memory(external sort)

Without backup write i
n

(

max
{

1
Dr

+ eM
Dw

,
n−1

n eM

N

}

+max
{

eM
Dr

+ reMeR
Dw

, eMeR(r−1)
N

})

With backup write i
n

(

max
{

1
Dr

+ 2eM
Dw

,
n−1

n eM

N

}

+max
{

eM
Dr

+ reMeR
Dw

, eMeR(r−1)
N

})

Table 3: Model equations for the execution time of a map-reduce computation on a parallel dataflow system.

reading sorted batches
(

eM
Dr

)

, writing eMeR reduce output bytes produced locally
(

eMeR
Dw

)

and(r −1)eMeR

bytes replicated from other nodes
(

(r−1)eMeR
Dw

)

, and sendingeMeR bytes produced locally to(r − 1) other

nodes
(

eMeR(r−1)
N

)

. Putting all of this together produces the equation shown.

Applying the model to common workloads: Many workloads benefit from a parallel dataflow system
because they run on massive datasets, either extracting andprocessing a small amount of interesting data or
shuffling data from one representation to another. We focus on parallel sort and grep in analyzing systems
and validating our model, which Dean and Ghemawat [9] indicate are representative of most programs
written by users of Google’s MapReduce.

For a grep-like job that selects a very small fraction of the input data,eM ≈ 0 andeR = 1, meaning
that only a negligible amount of data is (optionally) written to the backup files, sent over the network, and
written to the output files. Thus, the best-case runtime is determined by the initial input disk reads:

tgrep=
i

nDr
(1)

A sort workload maintains the same amount of data in both the map and reduce phases, soeM = eR = 1.
If the amount of data per node is small enough to accommodate an in-memory sort and not warrant a Phase 1
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backup, the top equation of Table3 is used, simplifying to:

tsort =
i
n

(

max

{

1
Dr

,
n−1
nN

}

+max

{

r
Dw

,
r −1

N

})

(2)

Determining input parameters for the model: Appropriate parameter values are a crucial aspect
of model accuracy, whether using the model to evaluate how well a production system is performing or
to determine what should be expected from a hypothetical system. Then and r parameters are system
configuration choices that can be applied directly in the model for both production and hypothetical systems.

The amount of data flowing through various operators (di , dm, or do) depend upon the characteristics
of the map and reduce operators and of the data itself. For a production system, they can be measured and
then plugged into a model that evaluates the performance of agiven workload run on that system. For a
hypothetical system, or if actual system measurements are not available, some estimates must be used, such
asdi = dm = do for sort ordm = do = 0 for grep.

The determination of which equation to use, based on the backup write option and sort type choices,
is also largely dependent on the workload characteristics,but in combination with system characteristics.
Specifically, the sort type choice depends on the relationship betweendm and the amount of main memory
available for the sort operator. The backup write option is asofter choice, worthy of further study, involving

the time to do a backup write
(

dm
Dw

)

, the total execution time of the job, and the likelihood of a node failure

during the job’s execution. Both Hadoop and Google’s MapReduce always do the backup write, at least to
the local file system cache.

The appropriate values for I/O speed depend on what is being evaluated. For both production and hy-
pothetical systems, specification values for the hardware can be used—for example, 1 Gbps for the network
and the maximum streaming bandwidth specified for the given disk(s). This approach is appropriate for
evaluating the efficiency of the entire software stack, fromthe operating system up. However, if the focus
is on the programming framework, using raw hardware specifications can indicate greater inefficiency than
is actually present. In particular, some efficiency is generally lost in the underlying operating system’s con-
version of raw disk and network resources into higher level abstractions, such as file systems and network
sockets. To focus attention on programming framework inefficiencies, one should use measurements of the
disk and network bandwidths available to applications using the abstractions. As shown in our experiments,
such measured values are lower than specified values and often have non-trivial characteristics, such as
dependence on file system age or network communication patterns.

4 Existing data-intensive computing systems are far from optimal

Our model indicates that, though they may scale beautifully, popular data-intensive computing systems leave
a lot to be desired in terms of efficiency. Figure2 compares optimal times, as predicted by the model, to
reported measurements of a few benchmark landmarks touted in the literature, presumably on well-tuned
instances of the programming frameworks utilized. These results indicate that far more machines and disks
are often employed than would be needed if the systems were hardware-efficient. The remainder of this
section describes the systems and benchmarks represented in Figure2.

Hadoop – TeraSort: In April 2009, Hadoop set a new record [18] for sorting 1 TB of data in the
Sort Benchmark [17] format. The setup had the following parameters:i = 1 TB, r = 1, n = 1460,D =
4 disks·65 MB/s/disk= 260 MB/s,N = 110 MB/s,dm = i/n = 685 MB. With only 685 MB per node, the
data can be sorted by the individual nodes in memory. A phase 1backup write is not needed, given the short
runtime. Equation2 gives a best-case runtime of 8.86 seconds. After fine-tuningthe system for this specific
benchmark, Yahoo! achieved 62 seconds—7× slower. An optimal system using the same hardware would
achieve better throughput with 209 nodes (instead of 1460).
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Figure 2:Published benchmarks of popular parallel dataflow systems.Each bar represents the reported
throughput relative to the ideal throughput indicated by our performance model, parameterized according to
a cluster’s hardware.

MapReduce – TeraSort: In November 2008, Google reported TeraSort results for 1000 nodes with 12
disks per node [8]. The following parameters were used:i = 1 TB, r = 1, n= 1000,D = 12·65= 780 MB/s,
N = 110 MB/s,dm = i/n= 1000 MB. Equation2gives a best-case runtime of 10.4 seconds. Google achieved
68 seconds—over 6× slower. An optimal system using the same hardware would achieve better throughput
with 153 nodes (instead of 1000).

MapReduce – PetaSort: Google’s PetaSort experiment [8] is similar to TeraSort, with three differ-
ences: (1) an external sort is required with a larger amount of data per node (dm = 250 GB), (2) output
was stored on GFS with three-way replication, (3) a Phase 1 backup write is justified by the longer run-
times. In fact, Google ran the experiment multiple times, and at least one disk failed during each execution.
The setup is described as follows:i = 1 PB, r = 3, n = 4000,D = 12· 65 = 780 MB/s,N = 110 MB/s,
dm = i/n= 250 GB. The bottom cell of Table3 gives a best-case runtime of 6818 seconds. Google achieved
21,720 seconds—approximately 3.2× slower. An optimal system using the same hardware would achieve
better throughput with 1256 nodes (instead of 4000). Also, according to our model, for the purpose of
sort-like computations, Google’s nodes are over-provisioned with disks. In an optimal system, the network
would be the bottleneck even if each node had only 6 disks instead of 12.

Hadoop – PetaSort: Yahoo!’s PetaSort experiment [18] is similar to Google’s, with one difference:
The output was stored on HDFS with two-way replication. The setup is described as follows:i = 1 PB,
r = 2, n = 3658,D = 4 ·65= 260 MB/s,N = 110 MB/s,dm = i/n = 273 GB. The bottom cell of Table3
gives a best-case runtime of 6308 seconds. Yahoo! achieved 58,500 seconds—about 9.3× slower. An
optimal system using the same hardware would achieve betterthroughput with 400 nodes (instead of 3658).

MapReduce – Grep: The original MapReduce paper [9] described a distributed grep computation that
was executed on MapReduce. The setup is described as follows: i = 1 TB, n = 1800,D = 2·40= 80 MB/s,
N = 110 MB/s,dm = 9.2 MB, eM = 9.2/1000000≈ 0, eR = 1. The paper does not specify the throughput of
the disks, so we used 40 MB/s, conservatively estimated based on disks of the timeframe (2004). Equation
1 gives a best-case runtime of 6.94 seconds. Google achieved 150 seconds including startup overhead, or
90 seconds without that overhead—still about 13× slower. An optimal system using the same hardware
would achieve better throughput with 139 nodes (instead of 1800). The 60-second startup time experienced
by MapReduce on a cluster of 1800 nodes would also have been much shorter on a cluster of 139 nodes.
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5 Exploring the efficiency of data-intensive computing

The model indicates that there is substantial inefficiency in popular data-intensive computing systems. The
remainder of the paper reports and analyzes results of experiments exploring such inefficiency. This section
describes our cluster and quantifies efficiency lost to OS functionality. Section6 confirms the Hadoop
inefficiency indicated in the benchmark analyses, and Section 7 uses a stripped-down framework to validate
that the model’s optimal runtimes can be approached. Section 8 discusses these results and ties together our
observations of the sources of inefficiency with opportunities for future work in this area.

Experimental cluster: Our experiments used 1–25 nodes of a cluster. Each node is configured with
two quad-core Intel Xeon E5430 processors, four 1 TB SeagateBarracuda ES.2 SATA drives, 16 GB of
RAM, and a Gigabit Ethernet link to a Force10 switch. The I/O speeds indicated by the hardware specifica-
tions areN = 1 Gbps andDr = Dw = 108 MB/s (for the outer-most disk zone). All machines run theLinux
2.6.24 Xen kernel, but none of our experiments were run in virtual machines—they were all run directly on
domain zero. The kernel’s default TCP implementation (TCP NewReno using up to 1500 byte packets) was
used. Except where otherwise noted, the XFS file system was used to manage a single one of the disks for
every node in our experiments.

Disk bandwidth for applications: For sufficiently large or sequential disk transfers, seek times have
a negligible effect on performance; raw disk bandwidth approaches the maximum transfer rate to/from the
disk media, which is dictated by the disk’s rotation speed and data-per-track values [21]. For modern disks,
“sufficiently large” is on the order of 8 MB [26]. Most applications do not access the raw disk, instead
accessing the disk indirectly via a file system. Using the rawdisk, we observe 108 MB/s, which is in line
with the specifications for our disks. Nearly the same bandwidth (within 1%) can be achieved for large
sequential file reads onext3 and XFS file systems. For writes, our measurements indicate more interesting
behavior. Using thedd utility with the sync option, a 64 MB block size, and input from the/dev/zero
pseudo-device, we observe steady-state write bandwidths of 84 MB/s and 102 MB/s, respectively. When
writing an amount of data less than or close to the file system cache size, the reported bandwidth is up to
another 10% lower, since the file system does not start writing the data to disk immediately; that is, disk
writing is not occurring during the early portion of the utility runtime.

This difference between read and write bandwidths causes usto use two values (Dr andDw) in the
model; our original model used one value for both. The difference is not due to the underlying disks, which
have the same media transfer rate for both reads and writes. Rather, it is caused by file system decisions
regarding coalescing and ordering of write-backs, including the need to update metadata. XFS andext3

both maintain a write-ahead log for data consistency, whichalso induces some overhead on new data writes.
ext3’s relatively higher write penalty is likely caused by its block allocator, which allocates one 4 KB block
at a time, in contrast to XFS’s variable-length extent-based allocator.2

The 108 MB/s value, and thedd measurements discussed above, are for the first disk zone. Modern
disks have multiple zones, each with a different data-per-track value and, thus, media transfer rate [22].
When measuring an XFS filesystem on a partition covering the entire disk, read speeds remained consistent
at 108 MB/s, but write speeds fluctuated across a range of 92-102 MB/s with an average of 97 MB/s over 10
runs. In reporting “optimal” values for experiments with our cluster, we use 108 MB/s and 97 MB/s for the
disk read and write speeds, respectively.

Network bandwidth for applications : Although a full-duplex 1 Gbps Ethernet link could theoreti-
cally transfer 125 MB/s in each direction, maximum achievable data transfer bandwidths are lower due to
unavoidable protocol overheads. Using theiperf tool with the maximum kernel-allowed 256 KB TCP win-
dow size, we measured sustained bandwidths between two machines of approximately 112.5 MB/s, which is

2To address some of these shortcomings, theext4 file system improves the design and performance ofext3 by adding, among
other things, multi-block allocations [16].
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in line with expected best-case data bandwidth. However, weobserved lower bandwidths with more nodes
in the all-to-all pattern used in map-reduce jobs. For example, in a 5–16 node all-to-all network transfer,
we observed 102–106 MB/s aggregate node-to-node bandwidths over any one link. These lower values are
caused by NewReno’s known slow convergence on using full link bandwidths on high-speed networks [14].
Such bandwidth reductions under some communication patterns may make the use of a single network band-
width (N) inappropriate for some environments. For evaluating data-intensive computing on our cluster, we
use a conservative value ofN = 110 MB/s.

We also ran experiments using the newer CUBIC [12] congestion control algorithm, which is the default
on Linux 2.6.26 and is tuned to support high-bandwidth links. It achieved higher throughput (up to 115 MB/s
per node with 10 nodes), but exhibited significant unfairness between flows, yielding skews in completion
times of up to 86% of the total time. CUBIC’s unfairness and stability issues are known and are prompting
continuing research toward better algorithms [14].

6 Experiences with Hadoop

We experimented with Hadoop on our cluster to confirm and better understand the inefficiency exposed by
our analysis of reported benchmark results.

Tuning Hadoop’s settings: Default Hadoop settings fail to use most nodes in a cluster,using only two
(total) map tasks and one reduce task. Even increasing thosevalues to use four map and reduce tasks per
node, a better number for our cluster, with no replication, still results in lower-than-expected performance.
We improved the Hadoop sort performance by an additional 2× by adjusting a number of configuration
settings as suggested by Hadoop cluster setup documentation and other sources [2, 24, 19]. Table4 describes
our changes, which include reducing the replication level,increasing block sizes, increasing the numbers of
map and reduce tasks per node, and increasing heap and buffersizes.

Interestingly, we found that speculative execution did notimprove performance for our cluster. Oc-
casional map task failures and lagging nodes can and do occur, especially when running over more nodes.
However, they are less common for our smaller cluster size (one NameNode and 1–25 slave nodes), and
surprisingly they had little effect on the overall performance when they did occur. When using speculative
execution, it is generally advised to set the number of totalreduce tasks to 95—99% of the cluster’s reduce
capacity to allow for a node to fail and still finish executionin a single wave. Since failures are less of an
issue for our experiments, we optimized for the failure-free case and chose enough Map and Reduce tasks
for each job to fill every machine at 100% capacity.

Sort measurements and comparison to the model: Figure3 shows sort results for different numbers
of nodes using our tuned Hadoop configuration. Each measurement sorts 4 GB of data per node (up to
100 GB total over 25 nodes). Random 100 byte input records were generated with theTeraGenprogram,
spread across active nodes via HDFS, and sorted with the standardTeraSortHadoop program. Before every
sort, the buffer cache was flushed (withsync) to prevent previously cached writes from interfering withthe
measurement. Additionally, the buffer cache was dropped from the kernel to force disk read operations for
the input data. The sorted output is written to the file system, but not synced to disk before completion is
reported; thus, the reported results are a conservative reflection of actual Hadoop sort execution times.

The results confirm that Hadoop scales well, since the average runtime only increases 6% (14 seconds)
from 1 node up to 25 nodes (as the workload increases in proportion). For comparison, we also include
the optimal sort times in Figure3, calculated from our performance model. The model’s optimal values
reveal a large constant inefficiency for the tuned Hadoop setup—each sort requires 3× the optimal runtime
to complete, even without syncing the output data to disk.

The 6% higher total runtime at 25 nodes is due to skew in the completion times of the nodes—this
is the source of the∼9% additional inefficiency at 25 nodes. The inefficiency due to OS abstractions is
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Hadoop Setting Default Tuned Effect

Replication level 3 1 The replication level was set to 1 to avoid extra disk writes.

HDFS block size 64 MB 128 MB Larger block sizes in HDFS make large file reads and writes
faster, amortizing the overhead for starting each map task.

Speculative exec. true f alse Failures are uncommon on small clusters, avoid extra work.

Maximum map
tasks per node

2 4 Our nodes can handle more map tasks in parallel.

Maximum reduce
tasks per node

1 4 Our nodes can handle more reduce tasks in parallel.

Map tasks 2 4n For a cluster ofn nodes, maximize the map tasks per node.

Reduce tasks 1 4n For a cluster ofn nodes, maximize the reduce tasks per node.

Java VM heap size 200 MB 1 GB Increase the Java VM heap size for each child task.

Daemon heap size 1 GB 2 GB Increase the heap size for Hadoop daemons.

Sort buffer memory 100 MB 600 MB Use more buffer memory when sorting files.

Sort streams factor 10 30 Merge more streams at once when sorting files.

Table 4: Hadoop configuration settings used in our experiments.

already accounted for, as discussed in Section5. One potential explanation for part of the inefficiency is
that Hadoop uses a backup write for the map output, even though the runtimes are short enough to make it
of questionable merit. As shown by the dotted line in Figure3a, using the model equation with a backup
write would yield an optimal runtime that is 39 seconds longer. This would explain approximately 25% of
the inefficiency. However, as with the sort output, the backup write is sent to the file system but not synced
to disk—with 4 GB of map output per node and 16 GB of memory per node, most of the backup write data
may not actually be written to disk during the map phase. It isunclear what fraction of the potential 25% is
actually explained by Hadoop’s use of a backup write.

Another possible source of inefficiency could be unbalanceddistribution of the input data or the reduce
data. However, we found that the input data is spread almost evenly across the cluster. Also, the difference
between the ideal split of data and what is actually sent to each reduce node is less than 3%. Therefore,
the random input generation along with TeraSort’s samplingand splitting algorithms is partitioning work
evenly, and the workload distribution is not to blame for theloss of efficiency.

Another potential source of inefficiency could be poor scheduling and task assignment by Hadoop.
However, Hadoop actually did a good job at scheduling map tasks to run on the nodes that store the data,
allowing local disk access (rather than network transfers)for over 95% of the input data. The fact that this
value was below 100% is due to skew of completion times where some nodes finish processing their local
tasks a little faster than others, and take over some of the load from the slower nodes.

We do not yet have a full explanation for Hadoop’s inefficiency. Although we have not been able to
verify in the complex Hadoop code, some of the inefficiency appears to be caused by insufficiently pipelined
parallelism between operators, causing serialization of activities (e.g., input read, CPU processing, and
network write) that should ideally proceed in parallel. Part of the inefficiency is commonly attributed to
CPU overhead induced by Hadoop’s Java-based implementation. Of course, Hadoop may also not be using
I/O resources at full efficiency. More diagnosing of Hadoop’s inefficiency is a topic for continuing research.
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(a) Scaling a Hadoop sort benchmark up to 25 nodes.
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(b) Time breakdown into phases.

Figure 3: Measured and optimal sort runtimes for a tuned Hadoop cluster. Performance is about
3 times slower than optimal, and 2 times slower than an optimal sort that includes an extra backup
write for the map output, which is currently Hadoop’s behavior. Hadoop scales well with 4 GB per node
up to 25 nodes, but it is inefficient. The measured runtime, optimal calculation, and optimal with backup
write calculation are shown in(a). The breakdown of runtime into map and reduce phases is shownin (b).

7 Verifying the model with Parallel DataSeries

The Hadoop results above clearly diverge from the predictedoptimal. The large extent to which they di-
verge, however, brings the accuracy of the model into question. To validate our model, we present Parallel
DataSeries (PDS), a data analysis tool that attempts to closely approach the maximum possible throughput.

PDS Design: Parallel DataSeries builds on DataSeries, an efficient andflexible data format and runtime
library optimized for analyzing structured data [4]. DataSeries files are stored as a sequence ofextents, where
each extent is a series of records. The records themselves are typed, following a schema defined for each
extent. Data is analyzed at the record level, but I/O is performed at the much larger extent level. DataSeries
supports passing records in a pipeline fashion through a series of modules. PDS extends DataSeries with
modules that support parallelism over multiple cores (intra-node parallelism) and multiple nodes (inter-node
parallelism), to support parallel flows across modules as depicted in Figure4.

Sort evaluation: We built a parallel sort module in PDS that implements a dataflow pattern similar to
map-reduce. In Phase 1, data is partitioned and shuffled across the network. As soon as a node receives
all data from the shuffle, it exits Phase 1 and begins Phase 2 with a local sort. To generate input data
for experiments, we usedGensort, which is the sort benchmark [17] input generator on whichTeraGenis
based. The Gensort input set is separated into partitions, one for each node. PDS doesn’t currently utilize
a distributed filesystem, so we manually partition the input, with 40 million records (∼4 GB) at each node.
We converted the GenSort data to DataSeries format without compression, which expands the input by 4%.

We measured PDS to see how closely it performed to the optimalpredicted performance on the same
cluster used for the Hadoop experiments. Figure5 presents the equivalent sort task as run for Hadoop. We
repeated all experiments 10 times, starting from a cold cache and syncing all data to disk before terminating
the measurement. As with the earlier Hadoop measurements, time is broken down into each phase. Further-
more, average per-node times are included for the actual sort, as well as astragglerscategory that represents
the average wait time of a node from the time it completes all its work until the the last node involved in the
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Figure 4:Parallel DataSeries is a carefully-tuned parallel runtimelibrary for structured data analysis.
Incoming data is queued and passed in a pipeline through a number of modules in parallel.

parallel sort also finishes.
PDS performed well at 12-24% of optimal. About 4% of that is the aforementioned input expansion.

The sort time takes a little over 2 seconds, which accounts for another 3% of the overhead. Much of this CPU
could be overlapped with IO (PDS doesn’t currently), and it is sufficiently small to justify excluding CPU
time from the model. These two factors explain most of the 12%overhead of the single node case, leaving a
small amount of natural coordination and runtime overhead in the framework. As the parallel sort is scaled
to 25 nodes, besides the additional coordination overhead from code structures that enable partitioning and
parallelism, the remaining divergence can be mostly explained by two factors: (1) straggler nodes, and (2)
network slowdown effects from many competing transfers. Stragglers (broken out in Figure5b) can be the
result of generally slow (i.e., “bad”) nodes, skew in network transfers, or variance in disk write times. The up
to 5% observed straggler overhead is reasonable. The network slowdown effects were identified in Section5
usingiperf measurements, and are mostly responsible for the slight time increase starting around 4 nodes.
However, even if the effective network goodput speeds were 100 MB/s instead of the 110 MB/s used with
the model, that would eliminate only 4% of the additional overhead for our PDS results compared to the
predicted optimal time. As more nodes are added at scale, thestraggler effects and network slowdowns
become more pronounced.

When we originally ran these experiments and inspected the results of the 25 node case, we noticed that
6 of the nodes consistently finished later and were processing about 10% more work than the other 19. It
turned out that our data partitioner was using only the first byte of the key to split up the space into 256 bins,
so it partitioned the data unevenly for clusters that were not a power of 2. After designing a fairer partitioner
that used more bytes of the key, and applying it to the 25 node parallel sort, we were able to bring down the
overhead from 30% to 24%.

To see how both the model and PDS react to the network as a bottleneck, we configured our network
switches to negotiate 100 Mbps Ethernet. Just as then−1

n N term in the model predicts increasingly longer
sort times which converge in scale as more nodes participate, Figure6 demonstrates that our actual results
with PDS match up very well to that pattern. The PDS sort results vary between 12-27% slower than optimal.
For clusters of size 16 and 25, 5% of the time is spent waiting for stragglers. The slow speed of the network
amplifies the effects of skew; we observed a few nodes finishing their second phase before the most delayed
nodes had received all of their data from the first phase.

8 Discussion

The experiments with PDS demonstrate that our model is not wildly optimistic—it is possible to get close to
the optimal runtime. Thus, the inefficiencies indicated forour Hadoop cluster and the published benchmark
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(a) Scaling a PDS sort benchmark up to 25 nodes.
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Figure 5:Using Parallel DataSeries to sort up to 100 GB, it is possibleto approach within 12-24% of
the optimal sort times as predicted by our performance model. PDS scales well for an in-memory sort
with 4 GB per node up to 25 nodes in(a), although there is a small time increase starting around 4 nodes due
to network effects. Also shown for the 25 node case is the performance of our older, unbalanced partitioner,
which had an additional 6% performance overhead from optimal. A breakdown of time in(b) shows that the
time increases at scale are mostly in the first phase of a map-reduce dataflow, which includes the network
data shuffle, and in the time nodes spend waiting for stragglers due to effects of skew.

results are real. We do not have complete explanations for the 3–13× longer runtimes for current data-
intensive computing frameworks, but we have identified a number of contributors.

One class of inefficiencies comes from duplication of work orunnecessary use of a bottleneck resource.
For example, Hadoop and Google’s MapReduce always write phase 1 map output to the file system, whether
or not a backup write is warranted, and then read it from the file system when sending it to the reducer node.
This file system activity, which may translate into disk I/O,is unnecessary for completing the job and
inappropriate for shorter jobs.

One significant effect faced by map-reduce systems is that a job only completes when the last node
finishes its work. For our cluster, we analyzed the penalty induced by such stragglers, finding that it grows
to 4% of the runtime for Hadoop over 25 nodes. Thus, it is not the source of most of the inefficiency at
that scale. For much larger scale systems, such as the 1000+ node systems used for the benchmark results,
this straggler effect is expected to be much more significant—it is possible that this effect explains much of
the difference between our measured 3× higher-than-optimal runtimes and the published 6× higher-than-
optimal runtime of the Hadoop record-setting TeraSort benchmark.

The straggler effect is also why Google’s MapReduce and Hadoop dynamically distribute map and
reduce tasks among nodes. Support for speculative execution also can help mitigate this effect, although
fault tolerance is its primary value. If the straggler effect really is the cause of poor end-to-end performance
at scale, then it motivates changes to these new data-parallel systems to examine and adapt the load balancing
techniques used in works like River [6] or Flux [23].

It is tempting to blame lack of sufficient bisection bandwidth in the network topology for much of the
inefficiency at scale. This would exhibit itself as over-estimation of each node’s true network bandwidth, as-
suming uniform communication patterns, since the model does not account for such a bottleneck. However,
this is not an issue for the measured Hadoop results on our small-scale cluster because all nodes are attached
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(a) Scaling a PDS sort benchmark up to 25 nodes.
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Figure 6:With 100 Mbps Ethernet as the bottleneck resource, a 100 GB sort benchmark on Parallel
DataSeries matches up well with the model’s prediction and stays within 12-27% of optimal. As
more data is sent over the network with larger cluster sizes in (a), both the model and PDS predict longer
sort times that eventually converge. A breakdown of time in(b) shows that the predicted and actual time
increases occur during the first map-reduce phase, which includes the network data shuffle.

across two switches with sufficient backplane bandwidth. The network topology was not disclosed for most
of the published benchmarks, but for many we don’t believe bisection bandwidth was an issue. For example,
MapReduce grep involves minimal data exchange becauseeM ≈ 0. Also, for Hadoop PetaSort, Yahoo! used
91 racks, each with 40 nodes, one switch, and an 8 Gbps connection to a core switch (via 8 trunked 1 Gbps
Ethernet links). For this experiment, the average bandwidth per node was 4.7 MB/s. Thus, the average band-
width per uplink was only 1.48 Gb/s in each direction, well below 8 Gbps. Other benchmarks may have
involved a bisection bandwidth limitation, but such an imbalance would have meant that far more machines
were used per rack (and overall) than were appropriate for the job, resulting in significant wasted resources.

Naturally, deep instrumentation and analysis of Hadoop will provide more insight into its inefficiency.
Also, PDS in particular provides a promising starting pointfor understanding the sources of inefficiency.
For example, replacing the current manual data distribution with a distributed file system is necessary for
any useful system. Adding that feature to PDS, which is knownto be efficient, would allow one to quantify
its incremental cost. The same approach can be taken with other features, such as dynamic task distribution
and fault tolerance.

9 Conclusion

Data-intensive computing is an increasingly popular styleof computing that is being served by scalable,
but inefficient, systems. A simple model of optimal map-reduce job runtimes shows that popular map-
reduce systems take 3–13× longer to execute jobs than their hardware resources shouldallow. With Parallel
DataSeries, our simplified dataflow processing tool, we demonstrated that the model’s runtimes can be
approached, validating the model and confirming the inefficiency of Hadoop and Google’s MapReduce.
Our model and results highlight and begin to explain the inefficiency of existing systems, providing insight
into areas for continued improvements.
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