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Abstract

New programming frameworks for scale-out parallel anaysiuch as MapReduce and Hadoop, have become a cornerstone fo
exploiting large datasets. However, there has been littialgsis of how these systems perform relative to the capebibf the
hardware on which they run. This paper describes a simpldysinal model that predicts the optimal performance of agiki
dataflow system. The model exposes the inefficiency of poprdée-out systems, which take 3-18nger to complete jobs
than the hardware should allow, even in well-tuned systesesl to achieve record-breaking benchmark results. To atdithe
sanity of our model, we present small-scale experiments Métdoop and a simplified dataflow processing tool called Fakra
DataSeries. Parallel DataSeries achieves performancsecto the analytic optimal, showing that the model is reigliahd that
large improvements in the efficiency of parallel analytics possible.
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1 Introduction

“Data-intensive scalable computing” (DISC) refers to aidppgrowing style of computing characterized
by its reliance on huge and growing dataséfs [Driven by the desire and capability to extract insight
from such datasets, data-intensive computing is quicklgrging as a major activity of many organizations.
With massive amounts of data arising from such diverse ssuas telescope imagery, medical records,
online transaction records, and web pages, many reseam@tgediscovering that statistical models extracted
from data collections promise major advances in sciencditheare, business efficiencies, and information
access. Indeed, statistical approaches are quickly hingasspertise-based approaches in terms of efficacy
and robustness.

To assist programmers with data-intensive computing, negramming frameworks (e.g., MapRe-
duce PJ], Hadoop L] and Dryad [L3]) have been developed. They provide abstractions for §pegidata-
parallel computations, and they also provide environmémtsautomating the execution of data-parallel
programs on large clusters of commodity machines. The radpee programming model, in particular, has
received a great deal of attention, and several implemengaare publicly availablel] 2Q].

These frameworks can scale jobs to thousands of computhish v great. However, they currently
focus on scalability without concern for efficiency. Woraagcdotal experiences indicate that they fall far
short of fully utilizing hardware resources, effectivelasting large fractions of the computers over which
jobs are scaled. If these inefficiencies are real, the sank eguld (theoretically) be completed at much
lower costs. An ideal approach would provide maximum séithalor a given computation without wasting
resources such as the CPU or disk. Given the widespread ds&cale of data-intensive computing, it is
important that we move toward such an ideal.

An important first step is understanding the degree, cheniatits, and causes of inefficiency. Unfor-
tunately, little help is currently available. This papegivs to fill the void with a simple model of “ideal”
map-reduce job runtimes and the evaluation of systemsuelatit. The model’s input parameters describe
basic characteristics of the job (e.g., amount of input,diggree of filtering in the map and reduce phases),
of the hardware (e.g., per-node disk and network throughpand of the framework configuration (e.g.,
replication factor). The output is the ideal job runtime.

An ideal run is “hardware-efficient,” meaning that the readl throughput matches the maximum
throughput for the bottleneck hardware resource, givenstgge (i.e., amount of data moved over it). Our
model can expose how close (or far, currently) a given syssenom this ideal. Such throughput will not
occur, for example, if the framework does not provide sudfitiparallelism to keep the bottleneck resource
fully utilized, or it makes poor use of a particular resoufeqy., inflating network traffic). In addition, our
model can be used to quantify resources wasted due to indestain an unbalanced system, one resource
(e.g., network, disk, or CPU) is under-provisioned rektig others and acts as a bottleneck. The other
resources are wasted to the extent that they are over-fmogisand active.

To illustrate these issues, we applied the model to a nunflirehmark results (e.g., for the TeraSort
and PetaSort benchmarks) touted in the industry. Theserpeddy well-tuned systems achieve runtimes
that are 3—13 longer than the ideal model suggests should be possible |3&eeport on our own experi-
ments with Hadoop, confirming and partially explaining sesrof inefficiency.

To confirm that the model’s ideal is achievable, we presesulte from an efficient parallel dataflow
system called Parallel DataSeries (PDS). PDS lacks matyrésaof the other frameworks, but its careful
engineering and stripped-down feature-set demonstratengar-ideal hardware-efficiency (withirn20%)
is possible. In addition to validating the model, PDS presgichn interesting foundation for subsequent
analyses of the incremental costs associated with featateh as distributed file system functionality,
dynamic task distribution, fault tolerance, and task tlon.

Data-parallel computation is here to stay, as is scale-edbpnance. However, we hope that the low
efficiency indicated by our model is not. By gaining a bettederstanding of computational bottlenecks,
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Figure 1:A map-reduce dataflow.

and understanding the limits of what is achievable, we hbpé dur work will lead to improvements in
commonly used DISC frameworks.

2 Dataflow parallelism and map-reduce computing

Today'’s data-intensive computing derives much from eawierk on parallel databases. Broadly speaking,
data is read from input files, processed, and stored in ofitpsit The dataflow is organized as a pipeline in
which the output of one operator is the input of the followoygrator. DeWitt and Graylp] describe two
forms of parallelism in such dataflow systems: partitionachffelism and pipelined parallelism. Partitioned
parallelism is achieved by partitioning the data and spfjtbne operator into many running on different
processors. Pipelined parallelism is achieved by stregutiia output of one operator into the input of
another, so that the two operators can work in series orréeliffalata at the same time.

Google’s MapRedudd 9] offers a simple programming model that facilitates depeient of scalable
parallel applications that process a vast amount of datagrBmmers specify mapfunction that generates
values and associated keys from each input data item aedugefunction that describes how all data
matching each key should be combined. The runtime systenlidsmdetails of scheduling, load balancing,
and error recovery. Hadoof][is an open-source implementation of the map-reduce moBgure 1
illustrates the pipeline of a map-reduce computation wingl three nodes (computers). The computation is
divided into two phases, labeled Phase 1 and Phase 2.

Phase 1 Phase 1 begins with the reading of the input data from diskeams with the sort operator.
It includes the map operators and the exchange of data cveetivork. The first write operator in Phase 1
stores the output of the map operator. This “backup writeSrator is optional, but used by default in the
Google and Hadoop implementations of map-reduce, seraimgctease the system’s ability to cope with
failures or other events that may occur later.

Phase 2 Phase 2 begins with the sort operator and ends with thengrdf the output data to disk.
In systems that replicate data across multiple nodes, ssitheaGFS 11] and HDFS B] distributed file
systems used with MapReduce and Hadoop, respectivelyuthatadata must be sent to all other nodes that
will store the data on their local disks.

1We refer to the programming model as map-reduce and to Gedgiplementation as MapReduce.



Parallelism: In Figurel, partitioned parallelism takes place on the vertical axis;input data is split
between three nodes, and each operator is, in fact, sglithinée sub-operators that each run on a different
node. Pipelined parallelism takes place on the horizonial @ach operator within a phase processes data
units (e.g., records) as it receives them, rather than mgaftr them all to arrive, and passes data units to
the next operator as appropriate. The only breaks in pipelparallelism occur at the boundary between
phases. As shown, this boundary is the sort operator. Thieperator can only produce its first output
record after it has received all of its input records, sifelast input record received might be the first in
sorted order.

Quantity of data flow: Figurel also illustrates how the amount of data “flowing” through $lystem
changes throughout the computation. The amount of inpatptnode isl, and the amount of output data
per node isd,. The amount of data per node produced by the map operatorcansdimed by the reduce
operator igdy. In most applications, the amount of data flowing throughsiystem either remains the same
or decreases (i.ed; > dy, > dg). In general, the mapper will implement some form of seléitering out
rows, and the reducer will perform aggregation. This redadh data across the stages can play a key role
in the overall performance of the computation. Indeed, GasdlapReduce includes “combiner” functions
to move some of the aggregation work to the map operatorshemde, reduce the amount of data involved
in the network exchang®]. Many map-reduce workloads resemble a “grep”-like corapan, in which
the map operator decreases the amount of @ita-(dy, anddy, = d,). In others, such as in a sort, neither
the map nor the reduce function decrease the amount ofdjatad,, = do).

2.1 Related work

Concerns about the performance of map-reduce style syserasged from the parallel databases commu-
nity, where similar data processing tasks have been tabiledmmercially available systems. In particular,
Stonebraker et al. compare Hadoop to a variety of DBMSs amtditifiat Hadoop can be up to 36x slower
than a commercial parallel DBM2%]. In previous work ], two of the authors of our paper pointed out
that many parallel systems (especially map-reduce systemslso other parallel systems) have focused
almost exclusively on absolute throughput and high-enthbiiy. This focus, as the authors quantify by
back-of-the-envelope comparisons, has been at the datrmhether worthwhile metrics.

In perhaps the most relevant prior work, Wang et al. use sitioul to evaluate how certain design deci-
sions (e.g., network layout and data locality) will effeloe tperformance of Hadoop job&7. Specifically,
their MRPerf simulator instantiates fake jobs, which impdised times (e.g., job startup) and input-size
dependent times (cycles/byte of compute) for the Hadooarpaters under study. The fake jobs generate
network traffic (simulated with ns-2) and disk 1/O (also slatad). Using execution characteristics accu-
rately measured from small instances of Hadoop jobs, MR&artirately predicts (to within 5-12%) the
performance of larger clusters. Although simulation teghes like MRPerf are useful for exploring dif-
ferent designs, by relying on measurements of actual behéig., of Hadoop) such simulations will also
emulate any inefficiencies particular to the specific immatation simulated.

3 Performance model

This section presents a model for the runtime of a map-rejioen a hardware-efficient system. Itincludes
the model’'s assumptions, parameters, and equations, aiting description of common workloads.
Assumptions For a large class of data-intensive workloads, which warassfor our model, compu-
tation time is negligible in comparison to 1/0 speeds. Ameotiters, this assumption holds for grep- and
sort-like jobs, such as those described by Dean and Ghenj@last being representative of most MapRe-
duce jobs at Google, but may not hold in other settings. Faklads fitting the assumption, pipelined



dm < memory (in-memory sort) dy, > memory (external sort
Phase 1) Disk read (input)d; Disk read (input)d;
Disk write (backup):dm Disk write (backup):dm
Network: *=Ld, Network: “=Ld,
Disk write (sort):dm,
Phase 2 Network: (r —1)d, Disk read (sort)dn
Network: (r —1)d,
Disk write (output):rd, Disk write (output):rdy

Table 1: 1/0O operations in a map-reduce job. The first diskeain Phase 1 is an optional backup to protect
against failures.

parallelism can allow non-1/O operations to execute elytireparallel with 1/0 operations, such that over-
all throughput for each phase will be determined by the I/€buece (network or storage) with the lowest
effective throughput.

For modeling purposes, we also do not consider specific mktt@pologies or technologies, and we
assume that the network core is over-provisioned enoudlhtbanternal network topology does not impact
the speeds of inter-node data transfers. From our experiemtimited backplane bandwidth without any
performance degradation is probably impractical, althoiigvas not an issue for our experiments and we
currently have no evidence for it causing issues on the ddinge clusters which we analyze in Sectin

The model assumes that input data is evenly distributedsa@ibparticipating nodes in the cluster, that
nodes are homogeneous, and that each node retrievesigkimput from local storage. Most map-reduce
systems are designed to fit these assumptions. The modelcgisonts for output data replication, assuming
the common strategy of storing the first replica on the loggigland sending the others over the network to
other nodes. Finally, another important assumption isafsatgle job has full access to the cluster at a time,
with no competing jobs or other activities. Production nmaguce clusters may be shared by more than one
simultaneous job, but understanding a single job’s perémue is a useful starting point.

Deriving the model from I/O operations: Table 1 identifies the 1/O operations in each map-reduce
phase for two variants of the sort operator. When the datafitemory, a fasin-memory sortan be used.
When it does not fit, aexternal sortis used, which involves sorting each batch of data in menvanijing it
out to disk, and then reading and merging the sorted batotesme sorted stream. Tﬁﬁldm term appears
in the equation, whereis the number of nodes, because in a well-balanced systdmmede partitions and
transfers that fraction of its mapped data over the netvxkﬁrkping% of the data for itself.

Table?2 lists the 1/0 speed and workload property parameters of théein They include amounts of
data flowing through the system, which can be expressed @ithésolute terms, dy,,, andd,) or in terms
of the ratios of the map and reduce operators’ output and if@uander, respectively).

Table3 gives the model equations for the execution time of a mapaegbb in each of four scenarios,
representing the cross-product of the Phase 1 backup vptienayesor no) and the sort typearf-memoryor
externa). In each case, the per-byte time to complete each phasegnaaduce) is determined, summed,
and multiplied by the number of input bytes per nqqié The per-byte value for each phase is the larger
(max) of that phase’s per-byte disk time and per-byte ndtwiore. Using the last row (external sort, with
backup write) as an example, the map phase includes thie&aisfers and one network transfer: reading

each input byte(Dir>, writing theey map output bytes to disk (the backup Wl’i%), writing ey bytes as

n-1
part of the external sorégﬂw), and sending”;—1 of the eyy map output bytes over the netwo k“TeM) to
other reduce nodes. The corresponding reduce phase iedludedisk transfers and one network transfer:



Symbol Definition

n The number of nodes in the cluster.

Dw The aggregate diskrite throughput of a single node. A node with four disks, where
each disk provides 65 MB/s writes, would hdve= 260 MB/s.

D, The aggregate dislead throughput of a single node.

N The network throughput of a single node.

r The replication factor used for the job’s output data. If aplication is used; = 1.

i The total amount of input data for a given computation.

di (: 'ﬁ) The amount of input data per node, for a given computation.

dm (= ") | The amount of data per node after the map operator, for a giverputation.

do (= 2=} | The amount of output data per node, for a given computation.

em (: %“j) The ratio between the map operator’s output and its input.

er (: d—r‘;) The ratio between the reduce operator’s output and its.input

Table 2: Modeling parameters that include 1/0 speeds andéloaxt properties.

dm < memory(in-memory sort)

Without backup write| © (max{ 5 "%;em } + max{ e, W})

With backup write | L (max{ o+, n%,i,e’“ } + max{ fues, WeR,g’_l) })

dm > memory(external sort)

Without backup write| © (max{ Dir +8e "%;GM } + max{lgmr + fouer. eMeRIEIY—l) })

: n-1
With backup write | 1 (max{ 5+ 2D;qu7 o } + max{gﬂr + B, SuSell=L) })

Table 3: Model equations for the execution time of a map-ceditomputation on a parallel dataflow system.

reading sorted batche(%), writing ey er reduce output bytes produced IocaQ%—;’R) and(r —1)eyer
bytes replicated from other nod é“g%), and sendingyer bytes produced locally tor — 1) other

nodes W). Putting all of this together produces the equation shown.

Applying the model to common workloads Many workloads benefit from a parallel dataflow system
because they run on massive datasets, either extractingraceissing a small amount of interesting data or
shuffling data from one representation to another. We foousavallel sort and grep in analyzing systems
and validating our model, which Dean and Ghemavétiridicate are representative of most programs
written by users of Google’s MapReduce.

For a grep-like job that selects a very small fraction of thigui data,ey ~ 0 andegr = 1, meaning
that only a negligible amount of data is (optionally) writteo the backup files, sent over the network, and
written to the output files. Thus, the best-case runtime tisrdgned by the initial input disk reads:

t _ 1
grep= 5 1)

A sort workload maintains the same amount of data in both tye amd reduce phases,&p=er = 1.
If the amount of data per node is small enough to accommoddtermemory sort and not warrant a Phase 1



backup, the top equation of Tal8as used, simplifying to:

t —l max i E + max L E (2)
Sort_n Dr’ nN DW’ N

Determining input parameters for the model. Appropriate parameter values are a crucial aspect
of model accuracy, whether using the model to evaluate holvamgroduction system is performing or
to determine what should be expected from a hypotheticaesys Then andr parameters are system
configuration choices that can be applied directly in the ehfm both production and hypothetical systems.

The amount of data flowing through various operataksd,, or d,) depend upon the characteristics
of the map and reduce operators and of the data itself. Favduption system, they can be measured and
then plugged into a model that evaluates the performancegofem workload run on that system. For a
hypothetical system, or if actual system measurementscr@vailable, some estimates must be used, such
asd, = dy, = d, for sort ordy, = dy, = 0 for grep.

The determination of which equation to use, based on theupaekite option and sort type choices,
is also largely dependent on the workload characterisbiosjn combination with system characteristics.
Specifically, the sort type choice depends on the relatipnsétweend,, and the amount of main memory
available for the sort operator. The backup write optionssfter choice, worthy of further study, involving

the time to do a backup Writég—"v“v), the total execution time of the job, and the likelihood ofoala failure

during the job’s execution. Both Hadoop and Google’'s MapRedlways do the backup write, at least to
the local file system cache.

The appropriate values for 1/O speed depend on what is be@lgated. For both production and hy-
pothetical systems, specification values for the hardwamnebe used—for example, 1 Gbps for the network
and the maximum streaming bandwidth specified for the givsk(s). This approach is appropriate for
evaluating the efficiency of the entire software stack, ftbe operating system up. However, if the focus
is on the programming framework, using raw hardware spetifics can indicate greater inefficiency than
is actually present. In particular, some efficiency is galtgtost in the underlying operating system’s con-
version of raw disk and network resources into higher letstractions, such as file systems and network
sockets. To focus attention on programming framework iciefficies, one should use measurements of the
disk and network bandwidths available to applications gislire abstractions. As shown in our experiments,
such measured values are lower than specified values amd ladt@ non-trivial characteristics, such as
dependence on file system age or network communicationrpgatte

4 Existing data-intensive computing systems are far from oppmal

Our model indicates that, though they may scale beautifptipular data-intensive computing systems leave
a lot to be desired in terms of efficiency. Fig@eompares optimal times, as predicted by the model, to
reported measurements of a few benchmark landmarks toutda iliterature, presumably on well-tuned
instances of the programming frameworks utilized. Thesaltg indicate that far more machines and disks
are often employed than would be needed if the systems wedsvaee-efficient. The remainder of this
section describes the systems and benchmarks represeriigmiie2.

Hadoop — TeraSort In April 2009, Hadoop set a new recortl§ for sorting 1 TB of data in the
Sort Benchmark17] format. The setup had the following parameters: 1 TB,r = 1, n= 1460,D =
4 disks-65 MB/s/disk= 260 MB/s,N = 110 MB/s,dy, = i/n = 685 MB. With only 685 MB per node, the
data can be sorted by the individual nodes in memory. A phéseRlup write is not needed, given the short
runtime. Equatior2 gives a best-case runtime of 8.86 seconds. After fine-tuhiegystem for this specific
benchmark, Yahoo! achieved 62 seconds<sfower. An optimal system using the same hardware would
achieve better throughput with 209 nodes (instead of 1460).
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Figure 2:Published benchmarks of popular parallel dataflow systemsEach bar represents the reported
throughput relative to the ideal throughput indicated bymerformance model, parameterized according to
a cluster’s hardware.

MapReduce — TeraSort In November 2008, Google reported TeraSort results foDI@@les with 12
disks per noded]. The following parameters were usad= 1 TB,r = 1,n=1000,D = 12-65= 780 MB/s,

N =110 MB/s,d,, =i/n= 1000 MB. Equatior? gives a best-case runtime of 10.4 seconds. Google achieved
68 seconds—over6 slower. An optimal system using the same hardware wouldegehetter throughput
with 153 nodes (instead of 1000).

MapReduce — PetaSort Google’'s PetaSort experimerd][is similar to TeraSort, with three differ-
ences: (1) an external sort is required with a larger amotidata per noded;,, = 250 GB), (2) output
was stored on GFS with three-way replication, (3) a Phaseckupawrite is justified by the longer run-
times. In fact, Google ran the experiment multiple timesl anleast one disk failed during each execution.
The setup is described as follows= 1 PB,r = 3, n=4000,D = 12-65= 780 MB/s,N = 110 MB/s,
dm=i/n= 250 GB. The bottom cell of Tablggives a best-case runtime of 6818 seconds. Google achieved
21,720 seconds—approximately23 slower. An optimal system using the same hardware wouldegehi
better throughput with 1256 nodes (instead of 4000). Alscoeling to our model, for the purpose of
sort-like computations, Google’s nodes are over-promisibwith disks. In an optimal system, the network
would be the bottleneck even if each node had only 6 diskeaalsbf 12.

Hadoop — PetaSort Yahoo!'s PetaSort experiment] is similar to Google’s, with one difference:
The output was stored on HDFS with two-way replication. Tewig is described as follows:= 1 PB,
r=2,n=3658,D =4-65= 260 MB/s,N = 110 MB/s,dy, = i/n = 273 GB. The bottom cell of Tablg
gives a best-case runtime of 6308 seconds. Yahoo! achie¥&dD® seconds—about3x slower. An
optimal system using the same hardware would achieve liettarghput with 400 nodes (instead of 3658).

MapReduce — Grep The original MapReduce papédd][described a distributed grep computation that
was executed on MapReduce. The setup is described as follews TB, n = 1800,D = 2-40= 80 MB/s,

N =110 MB/s,dn, = 9.2 MB, ey = 9.2/1000000~ 0, egr = 1. The paper does not specify the throughput of
the disks, so we used 40 MB/s, conservatively estimateddbaselisks of the timeframe (2004). Equation
1 gives a best-case runtime of 6.94 seconds. Google achi&@detonds including startup overhead, or
90 seconds without that overhead—still abou18ower. An optimal system using the same hardware
would achieve better throughput with 139 nodes (insteadd00). The 60-second startup time experienced
by MapReduce on a cluster of 1800 nodes would also have beein shiorter on a cluster of 139 nodes.



5 Exploring the efficiency of data-intensive computing

The model indicates that there is substantial inefficiengydpular data-intensive computing systems. The
remainder of the paper reports and analyzes results ofiexg@ets exploring such inefficiency. This section
describes our cluster and quantifies efficiency lost to OStionality. Section6 confirms the Hadoop
inefficiency indicated in the benchmark analyses, and @etuses a stripped-down framework to validate
that the model's optimal runtimes can be approached. SeBtiiscusses these results and ties together our
observations of the sources of inefficiency with opporiasifor future work in this area.

Experimental cluster. Our experiments used 1-25 nodes of a cluster. Each nodafigaeed with
two quad-core Intel Xeon E5430 processors, four 1 TB SedBatecuda ES.2 SATA drives, 16 GB of
RAM, and a Gigabit Ethernet link to a Forcel0 switch. The Iff@eds indicated by the hardware specifica-
tions areN = 1 Gbps and, = D, = 108 MB/s (for the outer-most disk zone). All machines runlthmux
2.6.24 Xen kernel, but none of our experiments were run iti&imachines—they were all run directly on
domain zero. The kernel's default TCP implementation (T@WReno using up to 1500 byte packets) was
used. Except where otherwise noted, the XFS file system veastosnanage a single one of the disks for
every node in our experiments.

Disk bandwidth for applications: For sufficiently large or sequential disk transfers, segle$ have
a negligible effect on performance; raw disk bandwidth apphes the maximum transfer rate to/from the
disk media, which is dictated by the disk’s rotation speedl @daita-per-track value2]]. For modern disks,
“sufficiently large” is on the order of 8 MB26]. Most applications do not access the raw disk, instead
accessing the disk indirectly via a file system. Using the d&sk, we observe 108 MB/s, which is in line
with the specifications for our disks. Nearly the same badtdw{within 1%) can be achieved for large
sequential file reads osxt3 and XFS file systems. For writes, our measurements indicate mteresting
behavior. Using thed utility with the sync option, a 64 MB block size, and inputtnahe /dev/zero
pseudo-device, we observe steady-state write bandwidtB4 MB/s and 102 MB/s, respectively. When
writing an amount of data less than or close to the file systache size, the reported bandwidth is up to
another 10% lower, since the file system does not start \gritie data to disk immediately; that is, disk
writing is not occurring during the early portion of the ugilruntime.

This difference between read and write bandwidths causés use two valuesly{; andD,,) in the
model; our original model used one value for both. The dififee is not due to the underlying disks, which
have the same media transfer rate for both reads and writgtheR it is caused by file system decisions
regarding coalescing and ordering of write-backs, inclgdhe need to update metadata. XFS ard3
both maintain a write-ahead log for data consistency, whisb induces some overhead on new data writes.
ext3’s relatively higher write penalty is likely caused by it®bk allocator, which allocates one 4 KB block
at a time, in contrast to XFS’s variable-length extent-basiéocator.?

The 108 MB/s value, and thé&d measurements discussed above, are for the first disk zonderilo
disks have multiple zones, each with a different data-gkt value and, thus, media transfer ra2@][
When measuring an XFS filesystem on a partition covering titieeedisk, read speeds remained consistent
at 108 MB/s, but write speeds fluctuated across a range 0022/B/s with an average of 97 MB/s over 10
runs. In reporting “optimal” values for experiments withraluster, we use 108 MB/s and 97 MB/s for the
disk read and write speeds, respectively.

Network bandwidth for applications: Although a full-duplex 1 Gbps Ethernet link could theoreti
cally transfer 125 MB/s in each direction, maximum achiévatata transfer bandwidths are lower due to
unavoidable protocol overheads. Using ilperf tool with the maximum kernel-allowed 256 KB TCP win-
dow size, we measured sustained bandwidths between twameaat approximately 112.5 MB/s, which is

2To address some of these shortcomings ettt file system improves the design and performancexeB by adding, among
other things, multi-block allocation4.§].



in line with expected best-case data bandwidth. Howeveglgerved lower bandwidths with more nodes
in the all-to-all pattern used in map-reduce jobs. For eXanmip a 5-16 node all-to-all network transfer,
we observed 102-106 MB/s aggregate node-to-node bandnestdr any one link. These lower values are
caused by NewReno’s known slow convergence on using fildldandwidths on high-speed networl<l].
Such bandwidth reductions under some communication patteay make the use of a single network band-
width (N) inappropriate for some environments. For evaluating-gdensive computing on our cluster, we
use a conservative value Nf= 110 MB/s.

We also ran experiments using the newer CUBIZ] fongestion control algorithm, which is the default
on Linux 2.6.26 and is tuned to support high-bandwidth linkachieved higher throughput (up to 115 MB/s
per node with 10 nodes), but exhibited significant unfaisnestween flows, yielding skews in completion
times of up to 86% of the total time. CUBIC’s unfairness arabsity issues are known and are prompting
continuing research toward better algorithrg]|

6 Experiences with Hadoop

We experimented with Hadoop on our cluster to confirm ancebettderstand the inefficiency exposed by
our analysis of reported benchmark results.

Tuning Hadoop’s settings Default Hadoop settings fail to use most nodes in a clugsang only two
(total) map tasks and one reduce task. Even increasing ttabses to use four map and reduce tasks per
node, a better number for our cluster, with no replicatiaifl, results in lower-than-expected performance.
We improved the Hadoop sort performance by an additionab® adjusting a number of configuration
settings as suggested by Hadoop cluster setup documeraaticother source®[24, 19]. Table4 describes
our changes, which include reducing the replication lanekeasing block sizes, increasing the numbers of
map and reduce tasks per node, and increasing heap anddizéfer

Interestingly, we found that speculative execution did inggrove performance for our cluster. Oc-
casional map task failures and lagging nodes can and do,@specially when running over more nodes.
However, they are less common for our smaller cluster sine (dameNode and 1-25 slave nodes), and
surprisingly they had little effect on the overall performea when they did occur. When using speculative
execution, it is generally advised to set the number of taetdilice tasks to 95—99% of the cluster’s reduce
capacity to allow for a node to fail and still finish executiona single wave. Since failures are less of an
issue for our experiments, we optimized for the failureefoase and chose enough Map and Reduce tasks
for each job to fill every machine at 100% capacity.

Sort measurements and comparison to the modeFigure3 shows sort results for different numbers
of nodes using our tuned Hadoop configuration. Each measumtesorts 4 GB of data per node (up to
100 GB total over 25 nodes). Random 100 byte input recorde wenerated with th@eraGenprogram,
spread across active nodes via HDFS, and sorted with theésstiifreraSortHadoop program. Before every
sort, the buffer cache was flushed (witinc) to prevent previously cached writes from interfering witie
measurement. Additionally, the buffer cache was droppewh fihe kernel to force disk read operations for
the input data. The sorted output is written to the file systiemt not synced to disk before completion is
reported; thus, the reported results are a conservatiectieth of actual Hadoop sort execution times.

The results confirm that Hadoop scales well, since the agetagime only increases 6% (14 seconds)
from 1 node up to 25 nodes (as the workload increases in pgifoppr For comparison, we also include
the optimal sort times in Figurg, calculated from our performance model. The model’s ogdtivaiies
reveal a large constant inefficiency for the tuned Hadoogpsetach sort requires3the optimal runtime
to complete, even without syncing the output data to disk.

The 6% higher total runtime at 25 nodes is due to skew in theptetion times of the nodes—this
is the source of the-9% additional inefficiency at 25 nodes. The inefficiency do€iS abstractions is



Hadoop Setting Default | Tuned | Effect

Replication level 3 1 The replication level was set to 1 to avoid extra disk writes.

HDFS block size 64 MB | 128 MB | Larger block sizes in HDFS make large file reads and wrjtes
faster, amortizing the overhead for starting each map task.

Speculative exec. true false | Failures are uncommon on small clusters, avoid extra work.

Maximum map 2 4 Our nodes can handle more map tasks in parallel.

tasks per node

Maximum reduce 1 4 Our nodes can handle more reduce tasks in parallel.

tasks per node

Map tasks 2 an For a cluster oh nodes, maximize the map tasks per nodg.

Reduce tasks 1 4an For a cluster oh nodes, maximize the reduce tasks per nqgde.

Java VM heap size| 200 MB | 1 GB | Increase the Java VM heap size for each child task.

Daemon heap size| 1 GB 2 GB | Increase the heap size for Hadoop daemons.

Sort buffer memory] 100 MB | 600 MB | Use more buffer memory when sorting files.

Sort streams factor; 10 30 Merge more streams at once when sorting files.

Table 4: Hadoop configuration settings used in our experignen

already accounted for, as discussed in Sechio®ne potential explanation for part of the inefficiency is
that Hadoop uses a backup write for the map output, even thtineggruntimes are short enough to make it
of questionable merit. As shown by the dotted line in FigBae using the model equation with a backup
write would yield an optimal runtime that is 39 seconds landéis would explain approximately 25% of
the inefficiency. However, as with the sort output, the backuite is sent to the file system but not synced
to disk—with 4 GB of map output per node and 16 GB of memory pelen most of the backup write data
may not actually be written to disk during the map phase. unislear what fraction of the potential 25% is
actually explained by Hadoop’s use of a backup write.

Another possible source of inefficiency could be unbalamtstlibution of the input data or the reduce
data. However, we found that the input data is spread alnvesiyeacross the cluster. Also, the difference
between the ideal split of data and what is actually sent ¢t @@duce node is less than 3%. Therefore,
the random input generation along with TeraSort’s sampding splitting algorithms is partitioning work
evenly, and the workload distribution is not to blame for libgs of efficiency.

Another potential source of inefficiency could be poor sciied and task assignment by Hadoop.
However, Hadoop actually did a good job at scheduling magstss run on the nodes that store the data,
allowing local disk access (rather than network transfenspver 95% of the input data. The fact that this
value was below 100% is due to skew of completion times whemngesnodes finish processing their local
tasks a little faster than others, and take over some of #eflom the slower nodes.

We do not yet have a full explanation for Hadoop’s inefficienélthough we have not been able to
verify in the complex Hadoop code, some of the inefficiengyeaps to be caused by insufficiently pipelined
parallelism between operators, causing serializationctiides (e.g., input read, CPU processing, and
network write) that should ideally proceed in parallel. tR&rthe inefficiency is commonly attributed to
CPU overhead induced by Hadoop’s Java-based implemeamntadibcourse, Hadoop may also not be using
I/0 resources at full efficiency. More diagnosing of Hadedpefficiency is a topic for continuing research.
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Figure 3: Measured and optimal sort runtimes for a tuned Hadoop cluste Performance is about

3 times slower than optimal, and 2 times slower than an optimlasort that includes an extra backup
write for the map output, which is currently Hadoop’s behavior. Hadoop scales well with 4 GB per node
up to 25 nodes, but it is inefficient. The measured runtiméyreg calculation, and optimal with backup
write calculation are shown ifa). The breakdown of runtime into map and reduce phases is s

7 Verifying the model with Parallel DataSeries

The Hadoop results above clearly diverge from the prediofinal. The large extent to which they di-
verge, however, brings the accuracy of the model into quesfio validate our model, we present Parallel
DataSeries (PDS), a data analysis tool that attempts telglapproach the maximum possible throughput.

PDS Design Parallel DataSeries builds on DataSeries, an efficienflerihle data format and runtime
library optimized for analyzing structured datj.[DataSeries files are stored as a sequenegtehtswhere
each extent is a series of records. The records themseldgpad, following a schema defined for each
extent. Data is analyzed at the record level, but I/O is perédl at the much larger extent level. DataSeries
supports passing records in a pipeline fashion throughiaessef modules. PDS extends DataSeries with
modules that support parallelism over multiple cores gimode parallelism) and multiple nodes (inter-node
parallelism), to support parallel flows across modules asctkd in Figured.

Sort evaluation: We built a parallel sort module in PDS that implements afttatapattern similar to
map-reduce. In Phase 1, data is partitioned and shuffledsathe network. As soon as a node receives
all data from the shuffle, it exits Phase 1 and begins Phasaianiocal sort. To generate input data
for experiments, we use@ensort which is the sort benchmarld 7] input generator on whicfieraGenis
based. The Gensort input set is separated into partitiovesfar each node. PDS doesn't currently utilize
a distributed filesystem, so we manually partition the inputh 40 million records £4 GB) at each node.
We converted the GenSort data to DataSeries format wittmupoession, which expands the input by 4%.

We measured PDS to see how closely it performed to the oppredglicted performance on the same
cluster used for the Hadoop experiments. Figupresents the equivalent sort task as run for Hadoop. We
repeated all experiments 10 times, starting from a coldeacll syncing all data to disk before terminating
the measurement. As with the earlier Hadoop measuremantsig broken down into each phase. Further-
more, average per-node times are included for the actualesowell as atragglerscategory that represents
the average wait time of a node from the time it completedsailork until the the last node involved in the
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Figure 4:Parallel DataSeries is a carefully-tuned parallel runtimelibrary for structured data analysis.
Incoming data is queued and passed in a pipeline through aemwof modules in parallel.

parallel sort also finishes.

PDS performed well at 12-24% of optimal. About 4% of that is #forementioned input expansion.
The sort time takes a little over 2 seconds, which accountrfother 3% of the overhead. Much of this CPU
could be overlapped with 10 (PDS doesn't currently), and isufficiently small to justify excluding CPU
time from the model. These two factors explain most of the b2&head of the single node case, leaving a
small amount of natural coordination and runtime overheatié framework. As the parallel sort is scaled
to 25 nodes, besides the additional coordination overheewl €¢ode structures that enable partitioning and
parallelism, the remaining divergence can be mostly erptaby two factors: (1) straggler nodes, and (2)
network slowdown effects from many competing transfersaggjlers (broken out in Figurgb) can be the
result of generally slow (i.e., “bad”) nodes, skew in netivivansfers, or variance in disk write times. The up
to 5% observed straggler overhead is reasonable. The restlesvdown effects were identified in Sectibn
usingiperf measurements, and are mostly responsible for the sligbtitinotease starting around 4 nodes.
However, even if the effective network goodput speeds weeMB/s instead of the 110 MB/s used with
the model, that would eliminate only 4% of the additional inad for our PDS results compared to the
predicted optimal time. As more nodes are added at scalestthggler effects and network slowdowns
become more pronounced.

When we originally ran these experiments and inspectecethdts of the 25 node case, we noticed that
6 of the nodes consistently finished later and were proagsgiout 10% more work than the other 19. It
turned out that our data partitioner was using only the fiyg lof the key to split up the space into 256 bins,
so it partitioned the data unevenly for clusters that wetermower of 2. After designing a fairer partitioner
that used more bytes of the key, and applying it to the 25 nadallpl sort, we were able to bring down the
overhead from 30% to 24%.

To see how both the model and PDS react to the network as aretk, we configured our network
switches to negotiate 100 Mbps Ethernet. Just aé;ﬁﬁel term in the model predicts increasingly longer
sort times which converge in scale as more nodes participadare6 demonstrates that our actual results
with PDS match up very well to that pattern. The PDS sort tesalry between 12-27% slower than optimal.
For clusters of size 16 and 25, 5% of the time is spent waitingtragglers. The slow speed of the network
amplifies the effects of skew; we observed a few nodes firgsthiair second phase before the most delayed
nodes had received all of their data from the first phase.

8 Discussion

The experiments with PDS demonstrate that our model is ndtyaptimistic—it is possible to get close to
the optimal runtime. Thus, the inefficiencies indicateddor Hadoop cluster and the published benchmark
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Figure 5:Using Parallel DataSeries to sort up to 100 GB, it is possibl@ approach within 12-24% of
the optimal sort times as predicted by our performance model PDS scales well for an in-memory sort
with 4 GB per node up to 25 nodes(ia), although there is a small time increase starting aroundiésidue
to network effects. Also shown for the 25 node case is theopmidnce of our older, unbalanced partitioner,
which had an additional 6% performance overhead from optifnhreakdown of time ir(b) shows that the
time increases at scale are mostly in the first phase of a sthe dataflow, which includes the network
data shuffle, and in the time nodes spend waiting for stragjglee to effects of skew.

results are real. We do not have complete explanations &B8#13x longer runtimes for current data-
intensive computing frameworks, but we have identified almemof contributors.

One class of inefficiencies comes from duplication of workienecessary use of a bottleneck resource.
For example, Hadoop and Google's MapReduce always writegphanap output to the file system, whether
or not a backup write is warranted, and then read it from teesfistem when sending it to the reducer node.
This file system activity, which may translate into disk 1/®,unnecessary for completing the job and
inappropriate for shorter jobs.

One significant effect faced by map-reduce systems is thalh @fjly completes when the last node
finishes its work. For our cluster, we analyzed the penaliyaed by such stragglers, finding that it grows
to 4% of the runtime for Hadoop over 25 nodes. Thus, it is netdburce of most of the inefficiency at
that scale. For much larger scale systems, such as the 1@@@tsystems used for the benchmark results,
this straggler effect is expected to be much more signifiedinis possible that this effect explains much of
the difference between our measured Bigher-than-optimal runtimes and the published ltigher-than-
optimal runtime of the Hadoop record-setting TeraSort herark.

The straggler effect is also why Google’s MapReduce and bladtynamically distribute map and
reduce tasks among nodes. Support for speculative exaciso can help mitigate this effect, although
fault tolerance is its primary value. If the straggler effexally is the cause of poor end-to-end performance
at scale, then it motivates changes to these new datagiagdtems to examine and adapt the load balancing
techniques used in works like Rived][or Flux [23].

It is tempting to blame lack of sufficient bisection bandwidt the network topology for much of the
inefficiency at scale. This would exhibit itself as overimsition of each node’s true network bandwidth, as-
suming uniform communication patterns, since the mode$ aa¢ account for such a bottleneck. However,
this is not an issue for the measured Hadoop results on oul-soade cluster because all nodes are attached
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Figure 6:With 100 Mbps Ethernet as the bottleneck resource, a 100 GB sbbenchmark on Parallel
DataSeries matches up well with the model's prediction andtays within 12-27% of optimal. As
more data is sent over the network with larger cluster siz€a)i both the model and PDS predict longer
sort times that eventually converge. A breakdown of timébihshows that the predicted and actual time
increases occur during the first map-reduce phase, whitidies the network data shulffle.

across two switches with sufficient backplane bandwidthe iAétwork topology was not disclosed for most
of the published benchmarks, but for many we don't beliegedtion bandwidth was an issue. For example,
MapReduce grep involves minimal data exchange beoawse0. Also, for Hadoop PetaSort, Yahoo! used
91 racks, each with 40 nodes, one switch, and an 8 Gbps coamméata core switch (via 8 trunked 1 Gbps
Ethernet links). For this experiment, the average bandwidt node was 4.7 MB/s. Thus, the average band-
width per uplink was only 1.48 Gb/s in each direction, welldee8 Gbps. Other benchmarks may have
involved a bisection bandwidth limitation, but such an ihalpae would have meant that far more machines
were used per rack (and overall) than were appropriate &joth resulting in significant wasted resources.

Naturally, deep instrumentation and analysis of Hadooppravide more insight into its inefficiency.
Also, PDS in particular provides a promising starting pdort understanding the sources of inefficiency.
For example, replacing the current manual data distributvth a distributed file system is necessary for
any useful system. Adding that feature to PDS, which is kntwime efficient, would allow one to quantify
its incremental cost. The same approach can be taken wigh fathtures, such as dynamic task distribution
and fault tolerance.

9 Conclusion

Data-intensive computing is an increasingly popular sbfleomputing that is being served by scalable,
but inefficient, systems. A simple model of optimal map-m@&ljob runtimes shows that popular map-
reduce systems take 3—=t3onger to execute jobs than their hardware resources sladlald With Parallel
DataSeries, our simplified dataflow processing tool, we detnated that the model’s runtimes can be
approached, validating the model and confirming the inefficy of Hadoop and Google’s MapReduce.
Our model and results highlight and begin to explain theficiehcy of existing systems, providing insight
into areas for continued improvements.
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