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Abstract

Provisioning a storage system requires balancing the costs of the solution with the benefits that the solution will provide. Previous provisioning

approaches have started with a fixed set of requirements and the goal of automatically finding minimum cost solutions to meet them. Those

approaches neglect the cost-benefit analysis of the purchasing decision.

Purchasing a storage system involves an extensive set of trade-offs between metrics such as purchase cost, performance, reliability, availability,

power, etc. Increases in one metric have consequences for others, and failing to account for these trade-offs can lead to a poor return on the storage

investment. Using a collection of storage acquisition and provisioning scenarios, we show that utility functions enable this cost-benefit structure

to be conveyed to an automated provisioning tool, enabling the tool to make appropriate trade-offs between different system metrics including

performance, data protection, and purchase cost.
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1 Introduction

Whether buying a new car or deciding what to eat for

lunch, nearly every decision involves trade-offs. Pur-

chasing and configuring a storage system is no differ-

ent; IT departments want solutions that meet their stor-

age needs in a cost-effective manner. Currently, system

administrators must rely on human “expertise” regarding

the type and quantity of hardware to purchase as well

as how it should be configured. These recommenda-

tions often take the form of standard configurations or

“rules of thumb” that can easily lead to an expensive,

over-provisioned system or one that fails to meet the cus-

tomer’s expectations. Because every organization and in-

stallation is unique, a configuration that works well for

one customer may provide inadequate service or be too

expensive for another. Proper storage solutions account

not only for the needs of the customer’s applications but

also the customer’s budget and cost structure.

Previous approaches to provisioning [5–7] have

worked to create minimum cost solutions that meet some

predefined requirements. Purchasing the cheapest stor-

age system that meets a set of fixed requirements neglects

the potential trade-offs available to the customer because

it separates the analysis of the benefits from that of the

costs. In this scenario, system administrators are forced

to determine their storage requirements (based on their

anticipated benefits) prior to the costs becoming appar-

ent — those “5 nines” are not free. Our goal is to com-

bine these two, currently separate, analyses to produce

more cost-effective storage solutions.

While some requirements may be non-negotiable,

most are flexible based on the costs required to im-

plement them. Few organizations would say, “I need

5000 IO/s, and I don’t care what it costs.” Performance
objectives are related to employees’ productivity and po-

tential revenue. Data protection objectives are related

to the cost, inconvenience, and publicity that come from

down-time and repair. These underlying costs and bene-

fits determine the ROI an organization can achieve, and

a provisioning tool needs to consider both.

We propose using utility functions, instead of fixed

requirements, as a way for the system administrator to

communicate these underlying costs and benefits to an

automated provisioning tool. Figure 1 shows a spectrum

of storage configuration methods from setting low-level

mechanisms to communicating costs and benefits using

utility. Utility functions provide a way to specify storage

requirements in terms of the organization’s cost/benefit

structure, allowing an automated tool to provide the level

of service that produces the most cost-effective storage

solution for that environment. A utility function ex-

presses the desirability of a given configuration — the

Figure 1: Utility provides value beyond mechanism-based

and goal-based specification – Moving from mechanism-

based specification to goal-based specification allowed the cre-

ation of tools for provisioning storage systems to meet fixed

requirements. Moving from goal-based to utility-based specifi-

cation allows tools to design storage systems that balance their

capabilities against the costs of providing the service. This al-

lows the systems to better match the cost and benefit structure

of an organization.

benefits of the provided service less the associated costs.

The objective of the tool then becomes maximizing util-

ity in the same way previous work has sought to mini-

mize system cost.

This paper describes utility, utility functions, and the

design of a utility-based provisioning tool, highlight-

ing the main components that allow it to take high-

level objectives from the administrator and produce cost-

effective storage solutions. Next, we describe the im-

plementation and provide a brief evaluation of a proto-

type utility-based provisioning tool. The purpose of this

tool is to show the feasibility of using utility to guide

storage system provisioning. After this provisioning tool

is shown to efficiently find storage solutions with high

utility, it is used in three hypothetical case studies that

highlight several important benefits of using utility for

storage provisioning. First, when both costs and bene-

fits are considered, the optimal configuration may defy

the traditional intuition about the relative importance of

system metrics (e.g., performance vs. data protection).

Second, utility can be used to provision systems in the

presence of external constraints, such as a limited bud-

get, making appropriate trade-offs to maximize benefits

while limiting the system’s purchase cost. The third case

study provides an example of how changes in the cost of

storage hardware can affect the optimal storage design by

changing the relevant cost/benefit trade-off — something

not handled by minimum cost provisioning.

2 Background

A goal of many IT departments is to support and add

value to the main activities of an organization in a cost-

effective manner. This involves balancing the benefits



and quality of services against the costs required to pro-

vide them. In provisioning a storage system, the adminis-

trator attempts to balance numerous objectives including,

performance (e.g., bandwidth and latency), data protec-

tion (e.g., reliability and availability), resource consump-

tion (e.g., capacity utilization and power consumption),

configuration manageability (e.g., configuration stability

and design simplicity), and system cost. The current best

practices for this problem are based on simple “rules of

thumb” that create classes of storage to implement dif-

ferent points in this rich design space [27]. For exam-

ple, an administrator may define storage classes, such as

“business critical” or “archival,” to denote particular data

encodings (e.g., RAID level) and pools of disks to use

for storing the data. The “business critical” class may

require both high performance and a high level of reli-

ability, while “archival” data could be placed on lower

performance, lower cost, yet still reliable storage.

The task of the administrator is made more difficult

with the emergence of cluster-based storage that provides

the opportunity for a wider range of data placement and

encoding options. For instance, both FAB [25] and Ursa

Minor [1] allow the use of arbitrary m-of-n erasure codes

for data protection.1 Further, the PASIS protocol [14]

used by Ursa Minor provides the ability not only to use

erasure coding to store data, but it allows the encoded

data fragments to be stored onto an arbitrary subset, l,

of the system’s storage nodes. For example, with a 2-

of-3 declustered across 4 encoding, data could be stored

using a 2-of-3 scheme with the data spread across storage

nodes one, four, five, and six.

It is difficult to determine which data encodings cost-

effectively produce the proper mix of storage objectives

for a particular class of data. A vendor’s support orga-

nization may provide some guidance based on other in-

stallations, but the decision is ultimately up to the ad-

ministrator. Unfortunately, the system administrator is

ill-equipped to make this decision. He may understand

that increasing the difference between m and n will pro-

vide higher reliability and potentially lower performance,

but quantifying these metrics is difficult even for ex-

perts in the field. Table 1 illustrates the general effects

that changes to the data encoding parameters cause. A

change to any encoding parameter affects nearly all of

the system metrics — some for the better and some for

the worse.

Gelb [13], Borowsky et al. [9], and Wilkes [31] have

argued that administrators should be concerned with

high-level system metrics, not the underlying mecha-

nisms (e.g., the levels of performance and data protec-

tion, not the values of m, n, and l) and that a man-

1With m-of-n erasure codes, a data block is divided into n frag-

ments, any m of which can be used to reconstruct the original data.

Metric m⇑ n⇑ l ⇑

Availability ⇓ ⇑ ⇓

Reliability ⇓ ⇑ ⇓

Capacity consumed ⇓ ⇑ –

Read bandwidth ⇓ ⇑ ⇑

Read latency ⇑ – ⇓

Write bandwidth ⇑ ⇓ ⇑

Write latency – ⇑ ⇓

Table 1: General effects of encoding parameters on system

metrics – This table shows the general effects on various sys-

temmetrics caused by increasing the data encoding parameters,

m, n, or l. The magnitude of these effects vary considerably

and are difficult to quantify without detailed models. Making

the proper encoding choice manually is very difficult because

changing a single parameter affects nearly all the metrics. A

system that is able to choose these parameters automatically

must be able to make trade-offs across metrics.

agement system should automatically choose the mecha-

nisms that produce the desired level of each metric. Un-

fortunately, the settings that maximize one metric are

likely to severely impair others. For example, configu-

rations that maximize reliability tend to consume a large

amount of capacity, raising the hardware cost, and sac-

rificing some performance. This brings the need to ar-

bitrate between, or trade off, one metric (e.g., power)

against another (e.g., request latency). We show that util-

ity functions provide a good method for administrators to

provide automation tools with the necessary information

to make these choices.

2.1 Utility

Utility is a value that represents the desirability of a par-

ticular state or outcome. This concept is common in

both economics (to explain consumer preferences) and

in decision theory [17] (as a method for weighing alter-

natives). The main feature we use in this paper is its

ability to collapse multiple objectives (e.g., performance

and reliability) into a single axis that can be used to com-

pare alternatives. When presented with a suitable utility

function, an automated tool can use the utility values to

compare storage designs in a manner consistent with the

desires of the system administrator.

To use utility to guide storage provisioning, it is nec-

essary to have a utility function that is able to evalu-

ate a potential storage configuration and produce a sin-

gle value (its utility) that can be compared numerically

against other candidate configurations. The optimal con-

figuration is the one with the highest utility value. The

utility value for a configuration should be influenced by

the system metrics that are important to the administra-
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tor. For example, configurations with high performance

would have higher utility values than those with low per-

formance; likewise for availability and reliability.

Examining system metrics in isolation, one could use

the actual metric as the utility value. For example, set-

ting Utility = Bandwidth would cause the provisioning
system to prefer systems with high bandwidth over those

with low bandwidth. The goal of utility, however, is to

combine all relevant system metrics into a single frame-

work. The various metrics cannot simply be summed;

they must be combined in a manner that captures their

relative importance. The different metrics must be nor-

malized or scaled relative to each other. Experience sug-

gests that the easiest method for normalizing these dif-

ferent metrics is via a common scale that has meaning

for each metric. One such scale is currency (e.g., dol-

lars). Since each storage metric has an effect on the

service provided, it impacts an organization’s business.

This business impact can be expressed in dollars. For

example, performance (throughput) affects the number

of orders per second that an e-commerce site can han-

dle, and loss of availability causes lost business and de-

creased productivity. By expressing each source of util-

ity (e.g., performance, data protection, and system cost)

in dollars, they can be easily combined.

System administrators can create utility functions by

assessing the objectives of the storage system from a

business perspective. This type of analysis tends to yield

a set of functions related to different aspects of the stor-

age service. For example, one function may express

e-commerce revenue as a function of performance and

availability. Another could describe the costs associated

with a data-loss event. Other, more direct costs can be in-

corporated as well, such as the cost of power and cooling

for the storage system or its purchase cost. These sepa-

rate functions, expressed in the same “units” of currency

can be summed to produce a single utility function for

use in automated provisioning.

2.2 Related work

Storage provisioning and configuration tools, including

Minerva [2], Ergastulum [5], and the Disk Array De-

signer [7], have largely been targeted at creating mini-

mum cost designs that satisfy some fixed level of per-

formance and data protection. Our work builds on this

by removing the fixed requirements, and, instead, using

utility as the objective function. This allows automatic

trade-offs across the various storage metrics, including

performance, data protection, and the system’s purchase

cost.

In the push toward automation, the notion of us-

ing utility to guide self-tuning and autonomic systems

is becoming more popular. Kephart and Walsh [20]

provide a comparison of event-condition-action (ECA)

rules, goals, and utility functions for guiding autonomic

systems. They note that both goals and utility are above

the level of the individual system mechanisms, and util-

ity provides a level of detail over goal-based specification

that allows conflicting objectives to be reconciled auto-

matically.

Utility has been applied to schedule batch compute

jobs to maximize usefulness for the end user in the face

of deadlines [16] or where the results of many depen-

dent jobs are needed [8]. For web-based workloads,

Walsh et al. [30] describe a system that allocates server

resources to control the response time between two dif-

ferent service classes.

There has also been work on designing cost-effective

disaster recovery solutions, trading off solution costs

with expected penalties for data loss and downtime [11,

18, 19]. This work has effectively used utility to trade

off the costs of data protection mechanisms against the

penalties when data is lost, creating minimum (overall)

cost solutions for disaster recovery. This result lends sup-

port to the notion of using business costs as the basis for

evaluating storage solutions.

3 Provisioning with utility

Provisioning a storage system to provide the most value

for its owner requires the ability to make appropriate

trade-offs among competing objectives. A provisioning

tool begins with an initial system description, that de-

scribes the system components, and needs three main

components to automatically create cost-effective stor-

age systems using utility. The system models analyze a

candidate configuration, annotating it with one or more

metrics. The utility function uses these metrics to eval-

uate the configuration, assigning it a single utility value

that indicates the desirability of the configuration. The

solver generates new candidate configurations based on

the feedback provided by these utility values. Figure 2

shows the interaction between these three main compo-

nents.

3.1 System description

The system description provides the baseline compo-

nents, such as the clients, workloads, datasets, and stor-

age nodes, that are available to the provisioning sys-

tem. These components are the building-blocks that

the provisioning tool uses when creating solutions. The
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Figure 2: Overview of a utility-based provisioning tool –

The solver produces candidate system configurations. The sys-

tem models annotate the configurations with system, workload,

and dataset metrics. The utility function uses the administra-

tor’s preferences to rank the annotated configurations by as-

signing a utility value to each.

workloads describe the demands placed on stored data

by applications. Workloads are statically assigned to

clients, and their I/O requests are directed at specific

datasets. The main task of the provisioning tool is to

assign datasets to storage nodes, choosing the data distri-

bution that maximizes utility. A candidate configuration

describes the mapping of each dataset onto the storage

nodes. This configuration information, combined with

the system description defines a provisioned storage sys-

tem that can be evaluated by the system models.

3.2 System models

System models examine a configuration and annotate it

with metrics that describe the system. These models

translate from the low-level mechanism-centric config-

uration into a description that contains high-level sys-

tem metrics, such as the performance or data protec-

tion characteristics that the design is expected to pro-

duce. For example, the configuration presented to the

system models may indicate that a dataset is encoded as

“2-of-3 spread across storage nodes one, four, six, and

seven.” An availability model may translate this into a

metric that states “the dataset has a fractional availabil-

ity of 0.9997.” Numerous projects have produced stor-

age system models for performance [4, 21, 28, 29], data

protection [3, 10, 12], and power [32] which could po-

tentially be used as modules.

3.3 Utility function

Using a utility function, administrators can communi-

cate the cost and benefit structure of their environment

to the provisioning tool. This allows the tool to make

design trade-offs that increase the value of the system in

their specific environment, “solving for” the most cost-

effective level of each metric. The utility function is a

mathematical expression that uses one or more of the sys-

tem metrics to rank potential configurations. The func-

tion serves to collapse the many axes of interest to an ad-

ministrator (the system metrics) into a single utility value

that can be used by the provisioning tool.

While the function can be any arbitrary expression

based on the system metrics, the purpose is to generate

configurations that match well with the environment in

which the system will be deployed. This argues for an

approach that uses business costs and benefits as the ba-

sis for the utility function. Typically, it takes the form of

a number of sub-expressions that are summed to form the

final utility value. For example, an online retailer may

derive a large fraction of their income from their trans-

action processing workload. Based on the average order

amount, the fraction of transactions that are for new or-

ders, and the average number of IOs per transaction, they

may determine that, on average, their OLTP workload

generates 0.1¢ per IO. This would lead to an expression

for the annualized revenue such as:

Revenue= .001 · IOPS(WL) ·Avail(DS) ·

(

3.2x107 s

1 yr

)

Here, the revenue is tied to the throughput of the work-

load (in IOs per second). It is also scaled by the frac-

tional availability of the dataset because revenue is not

generated when the dataset is unavailable. Finally, it is

converted to an annualized amount.

The administrator would also want to add expressions

for the annualized cost of repair during downtime (e.g.,

$10000 per hour):

Costdowntime =
$10000

hr
· (1−Avail(DS)) ·

(

8766 hr

1 yr

)

The cost of losing the dataset (e.g., $100 M) would be

scaled by the annual failure rate:

Costdataloss = $100 M ·AFR(DS)

These individual expressions of annual revenue and

costs would be combined to form the utility function:

Utility= Revenue−Costdowntime−Costdataloss

The choice to use annualized amounts is arbitrary (e.g.,

hourly or monthly rates could be used as well), but all
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utility expressions need to share the same time frame to

ensure they are scaled accurately relative to each other.

The benefit of this approach is that the utility function

can be derived from an analysis of the business’ needs

and objectives, reducing the need to invent a set of arbi-

trary requirements. While it still requires a thorough un-

derstanding of the application (to produce an estimate of

the revenue per I/O), there is potential for the application,

or its management tool, to assist. Future “utility-aware”

applications could translate between their own high-level

metrics (e.g., transactions per second for databases) and

those of the storage system, again moving the level of

specification closer to the administrator.

3.4 Solver

The purpose of the solver is to generate improved storage

system configurations based on the feedback provided

by the utility function. The solver is attempting to op-

timize a bin-packing problem wherein it must assign the

datasets to storage nodes while attempting to maximize

the administrator-provided utility function.

Developing an efficient solver can be difficult because

the value (utility) of the storage system is only indirectly

connected to the raw configuration settings the solver

manipulates. The effect of the configuration on the utility

value passes through both the system models and the ad-

ministrator’s utility function. While information about

the structure of the models could be embedded in the

solver, there are few constraints on the utility function

and the interactions that it causes between system met-

rics.

4 A utility-based provisioning tool

We have implemented a utility-based provisioning tool

that is targeted toward a cluster-based storage architec-

ture in which each client communicates directly to indi-

vidual storage nodes. Datasets are spread across storage

nodes using m-of-n data encodings, and the n data frag-

ments may be declustered across an arbitrary set of l stor-

age nodes. Workloads are statically assigned to a client,

and they target a single dataset. However, clients may

run multiple workloads, and datasets may be accessed

by multiple workloads.

The system is described by the set of clients, work-

loads, datasets, and storage nodes that are used by the

tool. Each component is described by a set of attributes

specific to that component type. For example, storage

nodes have attributes that describe their raw capacity,

disk positioning time, streaming bandwidth, as well as

– Component Attributes –

Client

CPU delay CPU time for data encode/decode

Net bandwidth Network streaming bandwidth

Net latency Network delay

Dataset

Size Size of the dataset

Storage node

AFR Annual failure rate

Availability Fractional availability of the node

Capacity Disk capacity

Cost Purchase cost

Disk bandwidth Max streaming bandwidth

Disk latency Initial positioning time

Net bandwidth Network streaming bandwidth

Net latency Network delay

Power Power consumption

Workload

I/O size Avg. request size

MP level Multi-programming level for

closed workload

Think time Think time for closed workload

Random frac Fraction of non-sequential I/Os

Read frac Fraction of I/Os that are reads

Table 2: Main components and their attributes – This table

lists each of the main component types used in the system de-

scription for the provisioning tool. With each of the component

types is the set of attributes that define their properties. Each

instance of a component (e.g., each storage node) may have dif-

ferent values for these attributes, allowing the tool to evaluate

heterogeneous configurations.

network latency and bandwidth. Table 2 lists each com-

ponent type and the attributes that are used to describe it.

A candidate configuration describes the mapping of

each dataset onto the available storage nodes. The map-

ping is a tuple, <dataset, m, n, list<storage nodes> >,
for each dataset in the system description.

Our prototype tool is implemented in approximately

5000 lines of Perl. Text configuration files are used to

define the characteristics of the system components and

the utility function. The tool is designed to work with

heterogeneous components, allowing each client, work-

load, storage node, and dataset to be unique.

The remainder of this section describes the tool’s mod-

els and metrics, how utility is specified, and the imple-

mentation of the solver. It concludes with an evaluation

of the efficiency of the tool.
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4.1 Models and metrics

The system models are plug-in modules that examine a

configuration and annotate it with metrics that describe

the storage system. Additional models can be easily

added to the existing list, expanding the menu of met-

rics that can be used to rank candidate configurations.

The discussion below describes the existing set of mod-

els that are part of the system and the metrics that they

provide. These models cover a wide range in their com-

plexity and analysis techniques, highlighting the versa-

tility of this architecture. While there exist potentially

more accurate models for each of these metrics, the exist-

ing models provide sufficient detail to evaluate the value

of utility for storage provisioning.

Performance: The performance model is the most

intricate of the current models. It provides utiliza-

tion estimates for disk and network resources as well

as throughput and latency estimates for the workloads.

This information is derived from a closed-loop queue-

ing model that is constructed and solved based on the

system description and dataset assignments in the can-

didate configuration. The model is similar to that de-

scribed by Thereska et al. [28], with queueing centers

for the clients’ CPU and network as well as the storage

nodes’ network and disk. The service demand placed on

each queueing center is based on the encoding param-

eters for each dataset as well as the read/write ratio, I/O

size, and sequentiality of the workloads. The open source

PDQ [15] queueing model solver is used to analyze the

model via Mean Value Analysis.

Availability: The availability model estimates the

fractional availability of each dataset based on the avail-

ability of the storage nodes that the dataset is spread

across and the encoding parameters used. The module

calculates the dataset’s availability as:

AV =
n−m

∑
f=0

(

l

l− f

)

A
l− f
SN (1−ASN)

f

where n and m are the encoding parameters for the

dataset, l is the number of storage nodes that the data is

spread across, and ASN is the minimum individual avail-

ability of the set of l storage nodes. The dataset is consid-

ered to be available as long as no more than n−m of the

l storage nodes are down.2 The formula above sums the

probability for each “available” state ( f = 0 . . .(n−m)).

This model makes some simplifications, such as using

a single availability value for all nodes. It also assumes

independent failures of storage nodes, an assumption that

has been called into question [24, 26]. While more ac-

2We focus on a synchronous timing model and a crash failure model

for the storage nodes.

Figure 3: Markov chain for a 1-of-3 data encoding – A 1-

of-3 data encoding is able to withstand up to 2 failures without

losing data; the third failure ( f = 3) results in a data loss. The
transition rates between states are, in the case of failure tran-

sitions, related to the number of storage nodes that hold data

for this dataset, l, and the annual failure rate of the nodes. The

repair rate is calculated as a fixed fraction of the individual stor-

age nodes streaming bandwidth (e.g., 5% of the slowest node)

and the size of the dataset. A single repair operation is able to

fix multiple failures simultaneously.

curate models are possible, the availability estimate pro-

vided by this implementation is sufficient to investigate

utility-based provisioning.

Reliability: The reliability model uses aMarkov chain

to estimate the annual failure rate for a dataset. The

chain has n−m+ 2 states, representing the number of
device failures. The final state of the chain is an absorb-

ing state, representing a data loss event. The transition

rates (for device failures) are calculated as the number of

storage nodes that contain fragments for the dataset (l)

times the failure rate of the individual nodes. In the case

where nodes have differing failure rates, the maximum

is used. Repair operations are handled by re-encoding

the dataset. The re-encode operation repairs all failures

in the same operation, causing all repair transitions to

lead to the failure-free state. The repair rate is based on

the size of the dataset and a fixed fraction of the stream-

ing bandwidth from the slowest storage node in the data

distribution. The chain is solved for the expected time

until the absorbing state is reached using the technique

described by Pâris et al. [23]. Figure 3 shows an exam-

ple chain for a 1-of-3 encoding. This reliability model

represents only the likelihood of losing data from the pri-

mary storage system (i.e., it does not account for remote

mirroring or external backup). More detailed models in-

corporating backup and remote replication, such as those

by Keeton et al. [18], could be used, but this model is

sufficient for evaluating utility-based provisioning.

Capacity: The capacity model calculates the storage

blowup of each dataset due to the redundancy of the en-

coding scheme. The storage blowup is calculated as: n
m
.

It also calculates the capacity usage of each storage node

based on the datasets they store.

Cost and Power: The cost and power models are very
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– System Metrics –

Client

CPUUtil CPU utilization (%)

NetUtil Network utilization (%)

Dataset

AFR Annual failure rate (%)

Avail Fractional availability (%)

Blowup Capacity blowup from encoding

MTTF Mean time to failure (hr)

Nines “Nines” of availability

Storage node

CapUsed Raw capacity consumed (MB)

CapUtil Capacity utilization (%)

DiskUtil Disk utilization (%)

NetUtil Network utilization (%)

Power Power consumed (W)

System-wide

CapUsed Total capacity consumed (MB)

CapUtil Capacity utilization (%)

Power System power consumed (W)

Cost Total system cost ($)

Workload

BW Bandwidth (MB/s)

IOPS Throughput (IO/s)

RL Request latency (s)

Table 3: Storage metrics provided by system models – This

table lists the metrics that are added to candidate configurations

by the current set of system models. The table is organized by

the component to which the metric refers.

similar, producing system-wide metrics based on which

(and how many) storage nodes are used. For all stor-

age nodes, their cost and power attributes are summed

to produce system-wide metrics for cost and power con-

sumption.

Table 3 lists the set of metrics provided by the cur-

rent system models. This list provides the framework

for creating utility functions to evaluate configurations.

Additional models can be added to expand the menu of

metrics available for the administrator to express his ob-

jectives.

4.2 Specifying utility

The provisioning tool’s interface for specifying utility al-

lows the use of an arbitrary function that assesses the

metrics that have been attached to the current system

configuration. The function returns a single floating

point number that is the utility value for the configura-

tion. The utility function is specified in the text config-

uration file as a block of Perl syntax that is eval()-ed

when the configuration is loaded. This code has the abil-

ity to access any of the metrics listed in Table 3 when

computing utility. Maintaining such a flexible interface

to specify utility has proven valuable for experimenta-

tion. It allows not only utility functions based on busi-

ness costs (as discussed in Section 3.3) but also utility

functions that implement strict priorities (e.g., first ob-

tain 4 “nines” of availability, next achieve 300 IO/s, then

minimize capacity utilization).

4.3 Solver

While many optimization techniques could be employed

to generate candidate configurations, we have chosen to

use a solver based on a genetic algorithm [22]. It con-

structs a population of candidate solutions (each genera-

tion contains a population of 200 candidates) which are

evaluated by the models and utility function. The utility

value is used to generate fitness values for each candi-

date. Based on the fitness values, a new population of

candidates is created, and the process repeats. The cre-

ation of a new population based on the existing popu-

lation occurs via selection, crossover, and mutation op-

erations. These operations each introduce randomness

into the search, attempting to avoid local minima and

maintain diversity within the population. The solver pro-

gresses through a number of generations, producing con-

figurations with higher utility until some stopping condi-

tion is reached. As the solver progresses through a num-

ber of generations, the observed gains in utility diminish.

The solver terminates if there has been no improvement

upon the best configuration for twenty generations.

Fitness: The fitness value determines how likely a

candidate is to be selected for reproduction into the next

generation. The fitness value accounts for both the util-

ity of the candidate as well as the feasibility of the solu-

tion. Due to capacity constraints, not all configurations

are feasible. To bias the solution toward feasible, high-

utility solutions, the fitness value is:

f itness=







utility if(utility≥ 1 & OCC = 0)
1

1+OCC if(OCC > 0)
1

2−utility otherwise

where OCC is the sum of the over-committed capacity

from the individual storage nodes (in MB). When the so-

lution is feasible, OCC = 0 (no storage nodes are over-
committed). For infeasible solutions, the fitness value

will be between zero and one. Utility values less than 1

are also compressed into the range of zero and one, elimi-

nating negative utility to be compatible with the Roulette

selection function.

Selection function: Using the fitness value for guid-

ance, a selection function probabilistically chooses can-
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didates to use as a basis for the next generation of solu-

tions. The solver can use either Tournament or Roulette

selection algorithms [22], but it defaults to Tournament.

Empirically, the solver performs better using Tournament

selection for utility functions that are ordinal (where the

utility value specifies only an ordering of candidates,

not “how much” better a given solution is). With Tour-

nament selection, two candidates are chosen at random

(uniformly) from the current population. From these two

candidates, the one with the larger fitness value is output

as the selected candidate. The result of this process is

that the selection algorithm chooses candidates weighted

by their rank within the current population. Other meth-

ods such as Roulette selection weight candidates based

on the relative magnitude of the fitness value. For ex-

ample, a candidate with a fitness value of 100 would be

twice as likely to be selected as one with a value of 50.

Candidate representation: For use in the genetic al-

gorithm, the storage configuration space is encoded as a

matrix. This matrix has one row for each dataset and one

column for each storage node. Each location in the ma-

trix may take on integer values between zero and three,

inclusive. A non-zero value at a particular location is

used to indicate that the dataset (represented by the row)

is stored on the storage node (represented by the col-

umn). The values of the m and n encoding parameters

for a dataset are the number of entries in that dataset’s

row with values greater than two and one, respectively.

For example, a row of [0 3 2 2 1] denotes an encoding of
1-of-3, with fragments stored on nodes two, three, four,

and five (l = 4). This matrix representation was chosen
because of the relative ease of maintaining the invariant:

1 ≤ m ≤ n ≤ l. This representation ensures the relation-

ship of m, n, and l. The only condition that must be veri-

fied and corrected is that m must be at least one. That is,

there must be at least one “3” in each row of the matrix

for the encoding to be valid.

Crossover operator: The crossover operation com-

bines two candidates from the current generation to pro-

duce two new candidates for the next generation. The

intuition behind this step is to create new solutions that

have properties from both of the original candidates (po-

tentially achieving the best of both). The solver uses

uniform crossover to achieve this. In uniform crossover,

each “gene” has an independent 50% probability of com-

ing from either original candidate. The algorithm used

here differs slightly from the traditional implementation.

Crossover is performed at the “dataset” level — an entire

row of the configuration matrix is selected as a single

unit. This approach was chosen because the individual

values within a row have little meaning when taken in-

dependently, and combining at the dataset level is more

likely to form a new set of candidates with properties of

the two original.

Mutation operator: The mutation operator is used to

add randomness to the search. It operates on a single

candidate at a time by changing a random location in the

configuration matrix to a new value. Before a particular

value is changed, it is verified that the new value will not

cause the configuration to be invalid — a location with

a current value of “3” can only be changed if there is at

least one other “3” in that row. If a conflict is found, a

different location is chosen for mutation.

4.4 Tool effectiveness

For utility to be useful at guiding the provisioning of stor-

age, it must be possible to reliably find configurations

that have high (near optimal) utility. In the following

experiments, we show that the solver approaches opti-

mal, and it is able to quickly find good solutions for dif-

ficult problems. Although better algorithms likely exist,

this demonstrates that it is possible to create an effective

utility-based provisioning tool.

4.4.1 Convergence toward optimal

This experiment compares the solutions produced by the

genetic solver with the optimal solution produced by an

exhaustive search of the configuration space. To con-

strain the problem so that it can be solved by exhaustive

search, configurations may use a maximum of eight stor-

age nodes.

The utility function used for this scenario is identical

to the example presented in Section 3.3:

Utility=Urevenue+Udataloss+Udowntime

Urevenue = $.001 ·Avail(DS) · IOPS(WL) ·

(

3.2x107 s

1 yr

)

Udataloss = −$100 M ·AFR(DS)

Udowntime =
−$10000

hr
· (1−Avail(DS)) ·

(

8766 hr

1 yr

)

For this experiment, there are two identical clients, each

with one workload, issuing I/O requests to separate

datasets. The total utility is the sum across both of the

workloads and datasets. The simulated storage nodes

have 5.5 ms average latency and 70 MB/s max stream-
ing bandwidth from their disk. They are assumed to have

an individual availability of .95 and an annual failure rate
of 1.5%.

Figure 4 shows the results for this configuration. The

exhaustive solution produces a utility of 69.5x106, us-
ing an encoding of 1-of-2 declustered across 4 storage
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Figure 4: Convergence of the genetic solver – This graph

shows how quickly the solver converges toward the optimal

storage configuration. The line is the median over 100 trials,

and the error bars indicate the 5th and 95th percentiles.

nodes, and the two datasets are segregated onto their own

set of 4 storage nodes. This optimal utility is shown as

the dashed line near the top of the graph. The solver

approaches this value quickly. Within four generations

(800 total configurations evaluated), the median of 100

trials is within 10% of optimal, and the bottom 5%

achieves this after just seven generations (1400 total eval-

uations). Allowing for equivalent configurations, there

are 3336 out of 7.9x106 total configurations within 10%
of optimal.

4.4.2 Finding rare solutions

The previous experiment provided an example showing

that the solver quickly approaches the optimal solution.

This experiment will explore how well the solver is able

to find rare solutions. This is an important property be-

cause some combinations of workloads, hardware, and

utility functions have the characteristic that there are very

few configurations within a small percentage of the opti-

mal solution.

For this experiment, the same storage nodes are used,

but the number of clients, datasets, and workloads are

scaled together with a 1:1:1 ratio to control the prob-

lem’s difficulty. The utility function is constructed so

that it is possible to predict the number of “desirable”

configurations as a fraction of the total number of possi-

ble storage configurations. The definition of “desirable”

is that a dataset should have at least 4 “nines” of avail-

ability. Availability is used for this experiment because

the data distribution is the sole determinant of its value,

and one dataset’s distribution does not affect another’s

availability. Performing an exhaustive search with a sin-
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Figure 5: Scalability of genetic solver – This graph shows

how the solution time changes as a function of how difficult the

problem is to solve. The x-axis is the inverse probability that a

random configuration is a valid solution ( 1
Pr[valid solution]

). The

graph shows the mean number (across 100 trials) of configu-

rations that are evaluated before finding a valid solution. The

error bars indicate the 5th and 95th percentiles.

gle dataset, 464 of 2816 or 16.5% of the possible distri-
butions meet the 4 nines criteria. By scaling the number

of datasets in the scenario, solutions where all datasets

have 4 nines of availability can be made an arbitrarily

small fraction of the possible configurations. For exam-

ple, with three datasets,
(

464
2816

)3
= .4% of the possible

configurations have 4 nines for all three workloads.

The utility function for this scenario is:

U =
1

S
·
S

∑
i=1

min(NINES(DSi) ,4)

S is the scale factor, corresponding to the number of

datasets. This utility function will achieve its maximum

value, four, when all datasets achieve at least 4 nines of

availability. To ensure all possible data distributions are

valid as the number of datasets are scaled, the size of the

datasets relative to storage nodes are chosen to ensure the

system is not capacity constrained.

Figure 5 shows how the solver performs as the num-

ber of datasets is scaled (to 5, 10, 20, and 30). The graph

plots the difficulty (the reciprocal of the fraction of con-

figurations with 4 nines) of finding a 4 nines solution

versus the number of configurations the solver evaluates

before finding the first. It can be seen that exponential

increases in the rarity of “good” solutions result in an

approximately linear growth in the number of configura-

tions that must be evaluated by the solver.
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4.4.3 Solution speed

Our provisioning tool, implemented in Perl, solves the

above “4 nines” scenarios in a few minutes. Measure-

ments were taken on a 3.0 Ghz Pentium D with 3.5 GB
of main memory. The tool utilizes only one of the two

CPU cores, and has a virtual memory footprint of less

than 100 MB.

The speed at which it evaluates configurations is

highly dependent on the size of the problem because

the majority of the runtime is consumed by the sys-

tem models as opposed to the utility evaluation or

the genetic solver. For the smallest problem, which

used five workloads and datasets, the tool evaluated

184 configurations/s with 72% of the runtime consumed
in the models. For the largest problem, which used 30

workloads and datasets, it slowed to 14 configurations/s
and the models consumed 92% of the total time.

5 Case studies

The benefits of using utility as the basis for storage pro-

visioning can be seen by examining several case stud-

ies. This section uses our utility-based provisioning tool

to explore three different scenarios, highlighting several

important benefits of using utility to evaluate designs.

The simulated system components used for the case

studies are described in Table 4. The same workload de-

scription is used for the first two case studies, however

the third uses a workload description more appropriate

to the described application (trace processing).

5.1 Value of performance

Provisioning and configuration decisions affect multiple

system metrics simultaneously; nearly every choice in-

volves a trade-off. By using utility, it is possible to take

a holistic view of the problem and make cost-effective

choices.

Conventional wisdom suggests that “more important”

datasets and workloads should be more available and re-

liable and that the associated storage system is likely to

cost more to purchase and run. To evaluate this hypothe-

sis, two scenarios are compared. Each scenario contains

two identical workloads with corresponding datasets.

The utility functions used for the two scenarios are

similar to the previous examples, having a penalty of

$10000 per hour of downtime and $100 M penalty for

data loss. In this example, the cost to power the system

is also added at a cost of $.12 per kWh, and the purchase

Client

CPU 0.2 ms Net latency 125 µs

Net bw 119 MB/s

Dataset

Size 100 GB

Storage node

AFR 0.015 Avail 0.95

Capacity 500 GB Cost $5000

Disk bw 70 MB/s Disk latency 5.5 ms

Net bw 119 MB/s Net latency 125 µs

Power 50 W

Workload (§5.1, §5.2)

I/O size 8 kB MP level 5

Think time 1 ms Rand frac 0.5

Read frac 0.5

Workload (§5.3)

I/O size 32 kB MP level 10

Think time 1 ms Rand frac 0.0

Read frac 1.0

Table 4: Components used for case studies – This table lists

the main attributes of the components that are used as a basis for

the case study examples. The client is based on measurements

from a 2.66 GHz Pentium 4. The storage node data is based on
the data sheet specifications for a single disk drive, combined

with a 1 Gb/s network connection, processing and cache.

cost of the system (storage nodes) is amortized over a

three year expected lifetime:

Utility=Uper f +Uavail+Urel+Upower+Ucost

Uper f = (see below)

Uavail =
−$10000

hr
·Avail(DS) ·

(

8766 hr

1 yr

)

Urel = −$100 M ·AFR(DS)

Upower =
−$.12

kW ·hr
·Power() ·

(

8766 hr

1 yr

)

·

(

1 kW

1000 W

)

Ucost =
−Cost()

3 yr

The two scenarios differ in the revenue they generate.

The first generates .1¢ per I/O while the second only gen-

erates .01¢:

Uper f .1 = $.001 ·Avail(DS) · IOPS(WL) ·

(

3.2x107 s

1 yr

)

Uper f .01 = $.0001 ·Avail(DS) · IOPS(WL) ·

(

3.2x107 s

1 yr

)

Based on this revenue difference, it would be easy to

assume that the workload generating more revenue is
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“more important” than the other, requiring a higher (or

at least the same) level of data protection. This assump-

tion fails to account for the compromises necessary to

achieve a particular level of availability.

Table 5 shows the results of provisioning these two

systems. It shows both the metrics and costs for each

part of the utility function. The table shows the optimal

configuration for each scenario: 1 of 2 declustered across

6 (1/2/6) for the .1¢ scenario and 1 of 3 across 7 (1/3/7)

for the .01¢ scenario. As a point of comparison, it also

shows the results of using the other scenario’s optimal

configuration for each.

Examining the various contributions to the total utility,

it can be seen that the main trade-off between these two

scenarios is in performance versus availability. For the

scenario with the higher revenue per I/O, it is advanta-

geous to choose the data distribution with higher perfor-

mance at the cost of lower availability (1/2/6) because the

revenue generated by the extra 209 I/Os per second per

workload more than offsets the cost incurred by the ex-

tra downtime of this configuration. For the lower revenue

scenario, the extra throughput cannot offset the availabil-

ity difference, causing the lower performing, more avail-

able data distribution (1/3/7) to be preferred.

It is important to remember that these configurations

are a balance of competing factors (mainly performance

and availability in this case). Taking this trade-off to an

extreme, such as choosing a very high performance data

distribution with no regard to availability and reliability,

results in poor utility. Using a 1/1/6 distribution for the

.1¢ scenario provides only $33.7 M in utility because the
reliability and availability costs now dominate.

Sacrificing availability for performance in a business

scenario goes against the conventional wisdom of stor-

age provisioning. By using utility to analyze potential

configurations, the multiple competing objectives can be

examined analytically, providing evidence to explain and

justify a particular storage solution.

5.2 Storage on a budget

Even with the ability to quantify the costs and benefits of

a particular storage solution, it is not always possible for

a system administrator to acquire the optimal system due

to external constraints. For example, the “optimal” stor-

age system for a particular scenario may be too expensive

for the system administrator to purchase with his limited

budget. Presenting the administrator with this solution

does him no good if he cannot afford it. Using utility, he

has the ability to scale down this solution to find one that

fits within his budget.

Using the .01¢ scenario from above as an example,

the optimal solution uses fourteen storage nodes (seven

for each dataset) and costs $70 k. For an administrator

whose budget cannot accommodate this purchase, this

solution is unworkable. Table 6 compares this optimal

solution to two alternatives that have constraints on the

total cost of the storage hardware. The first alternative

has a limit on the purchase cost of $30 k, and the second

further reduces the budget to $20 k. Notice that these

two alternatives use six and four storage nodes respec-

tively (at $5000 each) to stay within their budget. The

“purchase cost” in the table reflects this cost spread over

the system’s expected three year lifetime.

With each reduction in budget, the total system util-

ity decreases as expected, but the chosen configuration

at each level still balances the relevant system metrics

to maximize utility as much as possible. The reduction

from optimal ($70 k) to $30 k results in choosing a con-

figuration that sacrifices some availability to gain perfor-

mance, resulting in only a 2% loss of overall utility. The

reduction to $20 k from optimal leads to a 10% loss of

utility as performance is significantly impacted.

As this example illustrates, utility presents the oppor-

tunity to make trade-offs even among non-optimal or in

less than ideal situations. This ability to account for ex-

ternal constraints makes utility-based tools more helpful

than those that perform only minimum cost provision-

ing by allowing solutions to be identified that conform to

real-world constraints.

5.3 Price sensitivity

Even without budgetary constraints, the price of the stor-

age hardware can impact the proper solution. Consider

the case of an academic research group whose students

process file system traces as a part of their daily work.

The trace processing application reads a trace (27 GB on

average in this scenario) sequentially and generates a set

of summary statistics. Assuming that the students cost

$35 per hour3, that they wait for the results of a run, and

that there are 250 runs per year (approximately one for

each regular workday), the total cost incurred is:

Uper f =

(

−$35

hr

)(

27 GB

run

)

1

BW(DS)

(

1024 MB

GB

)

(

hr

3600 s

)(

250 runs

yr

)

=
67200

BW(WL)

3This is the cost to the research program, not what they are paid,

unfortunately.
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Metric values .1¢ per I/O .01¢ per I/O

Distribution 1/2/6 1/3/7 1/2/6 (opt) 1/3/7 1/2/6 1/3/7 (opt)

Performance 1250 IO/s 1041 IO/s $76.3 M $65.4 M $7.6 M $6.5 M
Availability 1.5 nines 2.4 nines −$2.8 M −$329 k −$2.8 M −$329 k

Reliability 2.0x10−6 afr 1.1x10−10 afr −$407 −$0.02 −$407 −$0.02
Power 600 W 700 W −$631 −$756 −$631 −$756

Purchase cost $60000 $70000 −$20 k −$23 k −$20 k −$23 k

Total utility $73.4 M $65.1 M $4.7 M $6.2 M

Table 5: Effect of workload importance (revenue tied to throughput) on provisioning decisions – A workload that generates

more revenue per I/O should not necessarily have a higher level of data protection. This table compares two scenarios that differ

only in the average revenue generated per completed I/O. The “more valuable” dataset’s optimal data distribution is less available

than that of the “less valuable” dataset because the cost of the additional downtime is more than offset by the additional performance

of a less available data distribution. The data distributions in the table are written as: m/n/l.

Budget $70 k $30 k $20 k

Distribution 1/3/7 1/2/3 1/2/2

Performance $6.5 M $6.7 M $5.8 M
Availability −$329 k −$636 k −$219 k

Reliability −$0.02 −$163 −$81

Power −$736 −$316 −$210

Purchase cost −$23 k −$10 k −$6.6 k
Total utility $6.2 M $6.1 M $5.6 M

Table 6: Utility can be used to design for limited storage

budgets – The optimal system configuration costs a total of

$70 k, but the utility function can be used to choose the best

configuration that fits within other (arbitrary) budgets as well.

Limiting the budget constrains the total hardware available, and

the utility function guides the solution to make cost effective

trade-offs as the system capabilities are scaled down to meet

the limited budget.

If the traces are lost from primary storage, it is projected

to require 15 hours of administrator time (at $35 per

hour) to re-acquire and restore the traces:

Urel =

(

−$35

hr

)

(15 hr)AFR(DS)

If the traces are unavailable, the administrator and one

student will be occupied troubleshooting and fixing the

problem:

Uavail =

(

−$70

hr

)(

8766 hr

1 yr

)

Avail(DS)

The storage system must be powered, and the purchase

cost will be spread across a three year lifetime:

Upower =
−$.12

kW ·hr
·Power() ·

(

8766 hr

1 yr

)

·

(

1 kW

1000 W

)

Ucost =
−Cost()

3 yr

Expensive

(opt)

Cheap

(same)

Cheap

(opt)

Distribution 1/2/2 1/2/2 1/3/3

Performance −$874 −$874 −$862

Availability −$1534 −$1534 −$77

Reliability −$0 −$0 −$0

Power −$105 −$105 −$158

Purchase cost −$6667 −$1333 −$2000

Total utility −$9180/yr −$3846/yr −$3097/yr

Table 7: The price of the storage hardware affects the opti-

mal storage configuration – The optimal configuration using

“expensive” ($10 k each) storage nodes is two-way mirroring,

but if the cost of the storage nodes is reduced to $2000, it is

now advantageous to maintain an additional replica of the data

to increase availability. This additional storage node results in

an almost 20% decrease in expected yearly costs for the storage

system.

Provisioning this system using storage nodes as de-

scribed in Table 4 but using a cost of $10 k per node leads

to a solution using two storage nodes and 2-way mirror-

ing. Table 7 shows a breakdown of the costs using these

“expensive” storage nodes. If the cost of a storage node

is reduced to $2 k each, the total costs obviously decrease

due to the lower acquisition cost (second column of Ta-

ble 7). More interestingly, the optimal configuration for

the system also changes because it is now cost effective

to purchase an additional storage node. By comparing

the last two columns in the table, the additional annual-

ized cost of the third storage node ($667) is more than

offset by the increase in availability that it can contribute

($1457). In fact, this new configuration provides almost

a 20% reduction in annual costs.
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6 Conclusion

Producing cost-effective storage solutions requires bal-

ancing the costs of providing storage with the benefits

that the system will provide. Choosing a proper storage

configuration requires balancing many competing sys-

tem metrics in the context where the system will be de-

ployed. Using utility, it is possible to bring these costs

and benefits into the same framework, allowing an auto-

mated tool to identify cost-effective solutions that meet

identified constraints.

This paper demonstrated the value of utility-based pro-

visioning with three case studies illustrating its bene-

fits. The first case study shows an example where real

trade-offs exist between metrics, such as performance

and availability, and utility provides a method to navigate

these decisions. The second shows that utility functions

are flexible enough to be used in the presence of exter-

nal constraints such as a limited budget. The third shows

that provisioning a storage system is not just limited to

finding the “minimum cost” solution that meets a set of

requirements because the system cost can have a impact

on the solution.

This paper shows the potential for using utility to

guide static storage provisioning. By analyzing utility

over time, there is also the potential to provide guidance

for automated tuning as well. For example, a modified

version of our provisioning tool could be used to gen-

erate new candidate configurations, evaluate long-term

expected utility, and decide whether the change is advan-

tageous and how fast to migrate or re-encode the data.

Exploring such on-line use of utility is an interesting area

for continuing work.
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