
UsingMEMS-basedstoragedevicesin
computersystems

STEVENW. SCHLOSSER
May 2004

cmu-pdl -04-104

Dept. of Electrical and Computer Engineering
CarnegieMellon University

Pittsburgh, PA 15213

A dissertation submitted to the graduate school
in partial ful�l lment of the requirements for the degree of

Doctor of Philosophy in Electrical and Computer Engineering.

Thesiscommittee

Gregory R. Ganger, Chair
L. Richard Carley

JamesC. Hoe
Charles C. Morehouse,Hewlett-Packard Laboratories

c
 2004Steven W. Schlosser

i

Keyw ords: MEMS-basedstorage,storagesystemsperformance,databasesys-
tems, disk arrays

To my family: my parents, Phil and Kathy; my sister, Jennifer; and my wife, Rachel.

Abstract

MEMS-basedstorageis an interesting new technology that promisesto bring fast,

non-volatile, mass data storage to computer systems. MEMS-based storage de-

vices (MEMStores) themselves consist of several thousand read/write tips, anal-

ogous to the read/write heads of a disk drive, which read and write data in a

recording medium. This medium is coatedon a moving rectangular surfacethat is

positioned by a set of MEMS actuators. Accesstimes are expected to be lessthan

a millisecond with energyconsumption 10{100� lessthan a low-power disk drive,

while streaming bandwidth and volumetric density are expectedto be around that

of disk drives.

This dissertation explores the use of MEMStores in computer systems,with

a focus on whether systemscan useexisting abstractions and interfacesto incor-

porate MEMStores e�ectiv ely, or if they will have to change the way they access

storage to bene�t from MEMStores. If systemscan use MEMStores in the same

way that they use disk drives, it will be more likely that MEMStores will be

adopted when they do becomeavailable.

Since real MEMStores do not yet exist, I present a detailed software model

that allows their use to be explored under a variety of workloads. To answer the

question of whether a new type of device requires changesto systems,I present a

methodology that includestwo objective tests for determining whether the bene�t

from a device is due to a speci�c di�erence in how that device accessesdata or

is just due to the fact that that device is faster, smaller, or useslessenergy than

iv

current devices. I present a range of potential usesof MEMStores in computer

systems,examining each under a number of userworkloads,using the two objective

tests to evaluate their e�cacy .

Using the evidencepresented and the two objective tests, I show that systems

can incorporate MEMStoreseasilyand employ the samestandard abstractionsand

interfacesusedwith disk systems.At a high level, the intuition is that MEMStores

are mechanical storage devices,just like disk drives, only faster, smaller, and re-

quiring lessenergy to operate. Accessingdata requires an initial seektime that

is distance-dependent, and, once accesshas begun, sequential accessis the most

e�cien t. This intuition is described in more detail, and the result is shown to hold

for the range of usespresented.

Acknowledgements

Not one word of this dissertation could have been written without a great deal

of help and support from many people. Being a graduate student in the Parallel

Data Laboratory has been the most rewarding experience of my life, and I am

grateful for having had the opportunit y to work with such a fantastic group.

The most important thanks go to my collaborator and friend, John Linwood

Gri�n. We started working on this project in 1999,built the model and simulator

together, and producedmany of the results presented here.I will always begrateful

for his help, insight, and friendship. I also owe special thanks to Jiri Schindler,

Minglong Shao, and Natassa Ailamaki, who have helped me a great deal in the

last two years to apply somethe insights of this dissertation to disk drives and

databasesystems.

I have been fortunate to have the support of the members of my thesis com-

mittee, who have beencrucial to developing this work. Greg Ganger, my advisor,

has taught me more than I ever thought I could know about computer systems,

storagedevices,and navigating the world of research. In addition to taking on the

responsibilities of at least four full-time jobs simultaneously, he is always available

to his students, which is truly amazing. Rick Carley provided the initial impetus

for this work by starting the MEMS-basedstorageresearch project in the MEMS

Laboratory at CarnegieMellon. He had the great foresight of involving computer

systemsresearchers in the e�ort, which led to this work. JamesHoe was invalu-

able in �lling the role of the outsider, making sure that I wascovering all the right

vi

bases.I'v e alsobeenfortunate to have the support and input of Chuck Morehouse,

who leads the probe storage e�ort at Hewlett-Packard Laboratories. I also want

to thank David Nagle, who not only helped start this research, but also made it

possiblefor me to attend graduate school.

The students and sta� of the Parallel Data Laboratory have beenvery helpful

and supportiv e over the years.Craig Soules,Brandon Salmon,Eno Thereska, Mike

Abd-El-Malek, Garth Goodson, Jay Wylie, Andy Klosterman, Shuheng Zhou,

John Strunk, Ted Wong, David Petrou, and John Bucy, have all helped over the

years in ways too numerous to mention. Linda Whipkey and Karen Lindenfelser

keep our o�ce and lab running smoothly and I can't thank them enough for

their help. Thanks also to Joan Digney who enduresour constant latenesswhen

preparing posters, but still �nds it in her heart to help a student proofread his

dissertation.

Contents

1 Intro duction 1

1.1 Thesis statement . 3

1.2 Overview . 3

1.2.1 Rolesand policies . 5

1.2.2 Objective tests . 6

1.3 Contributions . 6

1.4 Organization . 7

2 Background and related work 8

2.1 Basic devicedescription . 8

2.1.1 CarnegieMellon University 9

2.1.2 IBM Millip ede . 11

2.1.3 Hewlett-Packard Labs Atomic-Resolution Storage(ARS) . . 12

2.2 Low-level data layout . 12

2.3 Media accesscharacteristics . 16

2.4 Logical data layout . 17

2.5 Comparison to disks . 19

2.6 Other alternativ e technologies . 24

2.6.1 Battery-backed DRAM . 24

2.6.2 Miniature disk drives. 24

2.6.3 FLASH . 25

Contents viii

2.6.4 MRAM . 26

2.6.5 Ovonic Uni�ed Memory . 27

2.6.6 FERAM . 27

2.7 Related work . 27

2.7.1 Devices . 27

2.7.2 Parameter sensitivity . 28

2.7.3 Roles . 29

2.7.4 Policies . 30

3 Performancemodeling of MEMStores 32

3.1 Piecewise-linearseekmodel . 32

3.2 Baselinedeviceparameters . 37

3.3 Basic seekperformance. 38

3.4 Spring-mass-damper seekmodel . 40

3.5 DiskSim . 42

3.6 Parameter sensitivity . 42

3.7 Summary . 46

4 Storageabstractions 47

4.1 Disks and standard abstractions 48

4.1.1 Holes in the abstraction boundary 49

4.2 MEMStores and standard abstractions 50

4.2.1 Accessmethod . 51

4.2.2 Unwritten contract . 52

4.3 Summary . 54

5 Rolesof MEMStores in systems 55

5.1 Devicesfor comparison. 55

5.1.1 G2 MEMStore . 55

5.1.2 IBM Microdrive . 55

Contents ix

5.1.3 SeagateCheetah 36ES . 56

5.1.4 Quantum Atlas 10K . 56

5.1.5 •Uberdisk . 56

5.2 Simple disk replacement . 58

5.2.1 Synthetic workloads . 58

5.2.2 Trace replay . 59

5.3 MEMStores as cachesfor disks . 60

5.4 Disk array augmentation . 61

5.5 Summary . 65

6 Policies for accessingMEMStores 66

6.1 Requestscheduling . 66

6.1.1 Evaluating scheduling algorithms 67

6.1.2 Existing disk-basedalgorithms 68

6.1.3 SPTF and settling time . 71

6.1.4 MEMStore-speci�c algorithms 72

6.1.5 Eliminating settling constraints 75

6.2 Data layout . 76

6.2.1 Small, skewed accesses. 76

6.2.2 Large, sequential transfers 77

6.2.3 Bipartite layout . 78

6.3 Exploiting tip-subset parallelism 80

6.3.1 Background . 81

6.3.2 Exposing tip-subset parallelism 85

6.3.3 Expressingparallel requests 87

6.3.4 Application interface . 88

6.3.5 Experimental setup . 89

6.3.6 Accessingblocks for free . 90

6.3.7 E�cien t 2D table access. 92

Contents x

6.3.8 Summary . 101

6.4 Energy conservation . 102

6.5 Summary . 105

7 Conclusionsand future work 106

7.1 Future work . 108

7.1.1 Reliabilit y and fault tolerance 108

7.1.2 Other roles and policies . 109

7.1.3 New features of MEMStores 110

7.1.4 Integration of MEMStores and computation 112

Bibliography 113

Figures

2.1 Components of a MEMS-basedstoragedevice. 9

2.2 The movable media sled. 10

2.3 Data organization on MEMS-basedstoragedevices. 13

2.4 Cylinders, tracks, sectors,and logical blocks. 14

2.5 Mapping LB N s to optimize sequential access.. 18

3.1 Piecewise-constant approximation of accelerationand velocity dur-

ing a Y-dimension seek. 33

3.2 Seektime pro�le from corner of media. 39

3.3 Seektime pro�le from center of media. 39

3.4 Seektime pro�le of G2 MEMStore from corner of media for Hong's

model. 41

3.5 Seektime pro�le of G2 MEMStore from center of media for Hong's

model. 41

3.6 Sensitivity of MEMS-basedstoragedeviceperformanceto the access

velocity. 43

3.7 Delta in seektimes from < -1000,1000> given a spring factor of 75%

(compared to 0%) using a G2 MEMStore. 44

3.8 Seektimes for the G2 MEMStore when no settling time is required

for X-dimension seeks. 44

3.9 The e�ect of springs on turnaround time for a G1 MEMStore. . . . 46

Figures xii

5.1 Random workload performance. 58

5.2 Performance comparison of G2 MEMStore, •Uberdisk, and Chee-

tah36ES with one weekof the HP Cello trace from 1999. 59

5.3 Using MEMStores in a disk array. 62

5.4 Using Simpledisksin a disk array. 64

6.1 Comparison of scheduling algorithms for the Random workload on

the Quantum Atlas 10K disk. 69

6.2 Comparison of scheduling algorithms for the Random workload on

the G2 MEMStore. 70

6.3 Comparisonof scheduling algorithms for the Cello and TPC-C work-

loads on the G2 MEMStore. 71

6.4 Comparison of average performance of the Random workload for

zero and double constant settling time on the G2 MEMStore. . . . 72

6.5 Performanceof shortest-distance-�rst scheduler. 73

6.6 Performanceof shortest-distance-�rst scheduler without settle time. 75

6.7 Di�erence in request servicetime for subregionaccesses.. 77

6.8 Large (256 KB) request service time vs. X seekdistance for a G2

MEMStore. 78

6.9 Comparison of layout schemesfor the G2 MEMStore. 79

6.10 Data layout with an equivalenceclassof LB N s highlighted. 81

6.11 Micropositioning. 84

6.12 Reading the entire device for free. 91

6.13 Data allocation with capsules.. 94

6.14 Capsuleallocation for the G2 MEMStore. 97

6.15 Table scanwith di�eren t number of attributes. 100

Tables

3.1 Three generationsof MEMStore parameters. 37

3.2 Basic G2 MEMStore performancecharacteristics. 40

5.1 •Uberdisk parameters.. 57

6.1 Device parameters. 85

6.2 Device parameters for the G2 MEMStore. 89

6.3 Reading the entire device for free. 92

6.4 Databaseaccessresults. 99

6.5 Comparisonof energyrequired to executethree di�eren t workloads

using disks and MEMS-basedstoragedevices. 104

1 Introduction

MEMS-based storage devices (MEMStores) are radically di�eren t from today's

bulk storage devices of choice: disk drives and semiconductor memory devices.

MEMStores are fabricated from wafers of silicon, in much the same manner as

microprocessorsand memories,but they are mechanical in nature, much like disk

drives.Their physical size is very small, lessthan one cubic centimeter, but their

capacity is large, on the order of two to ten gigabytes. Most importantly , their

small size and inherently parallel data accesslead to a number of compelling

advantages over current technologies: low accesslatency, high accessbandwidth,

and low energyutilization. Theseadvantagesmake them an interesting technology

to consider in computer systems.

Random accessesto a MEMStore are anticipated to be faster than today's

disk drives by, approximately, a factor of ten and their density is expected to be

much greater than that predicted of semiconductor memory deviceslike FLASH

and MRAM for the foreseeablefuture. Their speedand capacity placeMEMStores

into the memory hierarchy most comfortably somewherebetweendisk drivesand

semiconductormemory devices.This dissertation exploreshow MEMStores could

be usedin computer systems,including examining speci�c examplesand address-

ing the general issueof whether new interfacesand abstractions will be required.

It is important to re-evaluate systemswhenever new technologiesarrive. The

researcher's role is vital in this regard becausehe or shehas the freedomto think

outside the box and consider radical changesto systems.However, this thinking

Ch. 1. Intro duction 2

must be temperedwith the reality that new technologiescan be most successfulif

they require few changesto existing systems.As the researcher identi�es usesof

new technologies,he or sheshould not only considerpotential improvements, but

also the cost of making making those improvements possible.One of the central

contributions of this dissertation is a methodology for considering such trade-

o�s when investigating new technologies. In studying the use of MEMStores in

systemsand their potential impact on storageabstractions and interfaces,I have

developed this methodology and codi�ed it into two simple objective tests, which

are described below.

Systemsuseabstract, simpli�ed interfaceslike SCSIand ATA to accessstorage

devices.Through these interfaces(or abstractions), systemsview storagedevices

as a linear array of �xed-sized logical blocks, most commonly 512 bytes each,

which are referred to with logical block numbers (LB N s). These interfaces are

useful becausethey hide the complexitiesof underlying storagedevices,they allow

storagedevicesto be interchangeable,and they eliminate the needfor the systemto

directly managethe details of the devices.Beforethe abstraction wasstandardized,

di�eren t types of disk drives, and even di�eren t models of disks from a single

vendor, required proprietary interface hardware, interconnects, and software to

be used,greatly complicating systems.While such simpli�cation is clearly useful,

usingany high-level abstraction runs the risk of hiding potentially bene�cial details

of the device that a system could exploit to improve performance.Thus, there is

a tension betweenthe easeof integration that standard abstractions provide and

the extra performancethat more information could give.

Despite its simplicit y, and the detailed information it hides, the standard ab-

straction of SCSI and ATA have served the storage industry for many years and

all signs point to their continued use in most systems. As new storage devices

are intro duced, it is important to re-examinethe standard abstractions and their

usefor thosenew technologies.Industry acceptancestrongly encouragesnew tech-

nologiesto useexisting interfaces,for good reason,as interoperabilit y and easeof

Ch. 1. Intro duction 3

useare crucial to the acceptanceof new technologies.However, it is important to

consider whether anything is lost in using abstractions developed for old devices

with new technologies.

An instructiv e example is the intro duction of disk arrays in the early 1990s.

Somehave argued that the standard linear abstraction hides the inherent parallel

accessto data stored in a disk array, and that extendedinterfacescould allow im-

provements in performance.However, such extendedinterfaceshave never reached

the marketplacebecausefew real-world workloads take advantage of them. Hence,

adding the complexity of a new interface is not justi�ed for the majorit y of cus-

tomers.

1.1 Thesisstatement

MEMS-based storage o�ers signi�cant performanceand energy consumption ad-

vantages over today's mass storage devices (i.e., disk drives). Despite this fact,

the linear logical block abstraction used in the interface for other storagedevices

is appropriate for MEMS-based storage devicesbecauseof their particular data

accesscharacteristics.

1.2 Overview

The main questionthat this dissertation seeksto answer is whether MEMStoresare

su�cien tly di�eren t from existing devices,speci�cally disk drives, to require new

interfacesor abstractions, or whether those that are already in useare su�cien t.

In order to answer this question, the right comparison to make is not between

MEMStores and disk drives of today. Rather, the comparison should be made

between MEMStores and hypothetical disk drives of equal averageperformance,

even though such disk drivesdo not, and may never, exist. If the bene�t of using

a faster disk drive is the sameas that when using a MEMStore, then the bene�t

simply stems from the fact that both devicesare faster. If the bene�t of using a

Ch. 1. Intro duction 4

MEMStore is greater than that of using a fast disk drive, then the workload must

be exploiting somethingspeci�c about the MEMStore that the disk drive doesnot

have, or doesnot do. It is thesespeci�c di�erences that will motivate the useof a

new interface and abstraction. If the bene�t is the same,then the abstraction can

remain unchanged. It is this methodology that I use to support the thesis of this

dissertation.

This dissertation considersthe useof MEMStores in computer systemsin three

basicways. First, it describesbene�ts that systemscan gain by using MEMStores

for bulk storage. Second, it usessome of these insights to in
uence their basic

design. Third, it shows that systems can employ well-known abstractions and

interfacesdevelopedfor disk drivesto accessMEMStores, and canreap the bene�ts

of MEMStores using such interfaces. Neither of the �rst two points draw any

conclusionsother than the fact that MEMStores are faster than today's disk drives,

and that systemscan bene�t from faster devices.While it is interesting to note

the technical reasonsbehind such advantages,the third point addressesthe larger,

meta-questionof whether MEMStores are fundamentally di�eren t from disk drives

(from the rest of the computer system's perspective) in useful ways, or if they

are basically the same, only faster. Therefore, the argument of the dissertation

is formed largely around the third point. If a MEMStore is fundamentally the

same as a disk drive (only faster), then systems can use the same abstraction

and interface for both. If the two devicesare fundamentally di�eren t, and systems

utilize di�eren t characteristics of each device, then the abstraction and interface

will have to change.

Put simply, the question that this dissertation seeksto answer is whether

MEMStores should be treated by computer systemsas anything other than fast,

small, low-power disk drives.Thesequalities are certainly desirableand can lead

to bene�ts for systems.In fact, it is thought that the performanceof MEMStores

will exceedthat of disk drives for many years to come, both in terms of access

speed and energy consumption. None would disagreethat faster devices,if used

Ch. 1. Intro duction 5

properly in systems,will lead to faster systems.However, in this dissertation I seek

to �nd advantagesof MEMStores beyond the simple improvements in accesstime

and energy consumption. If there are truly MEMStore-speci�c mechanisms that

a system can take advantage of, then, most likely, there must be a fundamental

changein the abstraction and interface that is usedto accessthem.

A changeto the storageabstraction could be as simple as the systemknowing

the type of devicebehind the abstraction, or could it be ascomplex as the system

keepinga detailed model of the device.If the systemis to exploit a speci�c feature

of MEMStores, then the abstraction must at least change so that the system is

aware that the device is a MEMStore and will probably require more device-

speci�c information. Somewould argue that the fact that MEMStores are faster

and require less energy than disk drives is compelling in and of itself. This is

certainly true, but simple speed improvements do not require a change in the

abstract view of storageusedby systems.

This dissertation answers the question using two complementary approaches.

First, it examines the reasonswhy the current abstraction works well for disk

drivesand shows that those reasonshold for MEMStores as well. Second,it uses

two simple tests to decidewhether new abstractions are justi�ed.

1.2.1 Rolesand policies

This dissertation divides the aspects of MEMStore use in systemsinto two cate-

gories: roles and policies. MEMStores can take on various roles in a system, such

as disk replacement, cache for hot blocks, metadata-only storage,etc. For the de-

bate at hand, the associated sub-questionis whether a systemusing a MEMStore

is exploiting something MEMStore-speci�c (e.g., becauseof a particularly well-

matched accesspattern) or just bene�tting from its generalproperties (e.g., that

they are faster than current disks). In any given role, external software usesvari-

ous policies, such as data layout and requestscheduling, for managing underlying

storage.The sub-questionhere is whether MEMStore-speci�c policies are needed,

Ch. 1. Intro duction 6

or are those usedfor disk systemssu�cien t.

1.2.2 Objectivetests

To help answer the top-level question, I use two simple objective tests. The �rst

test, called the speci�city test, asks:Is the potential role or policy truly MEMStore-

speci�c? To test this, I evaluate the potential role or policy for both a MEMStore

and a (hypothetical) disk drive of equivalent performance. If the bene�t is the

same,then the potential role or policy (however e�ectiv e) is not truly MEMStore-

speci�c and could be just as bene�cial to disk drives.

The secondtest, called the merit test, asks:Given that a potential role or policy

passesthe speci�cit y test, doesit make enoughof an impact in performance(e.g.,

accessspeedor energyconsumption) to justify a new abstraction? The test here is

a simple improvement comparison,e.g., if the systemis lessthan 10%faster when

using the new abstraction, then it's not worth the cost.

Thesetwo tests codify a generalrule in engineering:that the costsof incorpo-

rating new technologiesshould be consideredwhen suggestingchangesto systems.

While this dissertation usesthe methodology speci�cally to evaluate the use of

MEMStores in systems,it is genericand can be usedfor any new device.

1.3 Contributions

This dissertation makesfour primary contributions:

{ It describesthe various instancesof MEMStores under development. It also

describesthe model of MEMStores developed for this dissertation and com-

pares it to others in the literature.

{ It examinesthe current abstraction used for disk drives and why it works,

and shows why the abstraction works for MEMStores.

Ch. 1. Intro duction 7

{ It presents two objective tests that can be used to evaluate the use of new

technologiesin systemsand whether any changesthat are required to those

systemsjustify the bene�ts that may be gained.This methodology is generic

and can be usedto evaluate the useof any new technology in systems.

{ It intro duces several potential roles and policies and applies the objective

tests to evaluate the e�cacy of the standard disk abstraction for accessing

MEMStores.

1.4 Organization

This dissertation is organizedas follows. Chapter 2 givesa detailed description of

MEMStores and presents related work. Chapter 3 provides details on the model

used in this dissertation. Chapter 4 describes the abstraction used by current

storage systems, why that abstraction works well for disks, and why it should

work well for MEMStores. Chapter 5 exploresseveral potential roles MEMStores

may take in computer systems.Chapter 6 describes several potential policies for

tailoring system accessto MEMStores. Chapter 7 concludesthe dissertation and

presents future work.

2 Backgroundandrelatedwork

The MEMStores that havebeendescribed in the literature sharemany similarities,

both in design and performance.This chapter describes in somedetail the three

most widely publicized incarnations, with an emphasison the design being built

at CarnegieMellon, on which much of my work is based.As well, it describesthe

�eld of research to date studying the useof MEMStores in systems.

Building practical MEMStores hasbeenthe goalof several major research labs,

universities,and startup companiesaround the world for over a decade.The three

most widely publicized e�orts are from CarnegieMellon University, IBM Research

in Zurich, and Hewlett-Packard Laboratories. The three designsdi�er largely in

the type of actuators which are usedto position the media and the method usedto

record data in the medium. Despite thesedi�erences, however, each designshares

the samebasicarchitecture shown in Figure 2.1 utilizing a moving media sledand

a large array of read/write tips. It would also be possible to put the read/write

tips onto the moving sled while the media remains �xed, although no published

designsdo so.

2.1 Basicdevicedescription

Published MEMStore designsutilize moving media, much like the media in disk

drives,and an array of read/write probe tips to accessdata stored in the media.

Unlike a disk, however, the media doesnot rotate becauseit is di�cult to build ro-

tating components using MEMS processes.Instead, current designsusea movable

Ch. 2. Background and related work 9

������� �	��
 ���

����������������

�����������

��� ��� ���

 ����!�����������

"#�
�

�������%$

Fig. 2.1: Comp onen ts of a MEMS-based storage device. The media sled is suspended
above an array of probe tips. The sled moves small distances along the X and Y axes, allowing
the stationary tips to addressthe media.

media sled, which is coated with the media material. This sled is spring-mounted

and can be pulled in the X and Y dimensionsby actuators on each edgebelow

a two-dimensional array of �xed read/write headsor probe tips. To accessdata,

the media sled is �rst pulled to a speci�c location (x,y displacement). When this

seekis complete, the sled moves in the Y dimension at a constant velocity while

the probe tips accessthe media. With the exception of minute movements in the

X and Z dimensionsto adjust for surfacevariation and skewed tracks, the probe

tips remain stationary while the media sled moves. In contrast, rotating platters

and actuated read/write headsshare the task of positioning in disks. Figures 2.1

and 2.2 illustrate this MEMStore design.

2.1.1 CarnegieMellon University

The deviceunder development at CarnegieMellon usesmagnetic recording to store

data, similar to today's disk drives.This choice was made for two reasons.First,

magnetic recording in disk drivesis a very well-understood process.Second,it does

not require contact betweenthe media and the read/write tips, avoiding questions

of physical wear. Using magnetic recording in a MEMStore, however, doespresent

Ch. 2. Background and related work 10

���������	�	��

�

�����
��������� �	�

���������	����
��

���� �� �

�������

���������	�	��

�

���������	����
��

����
� �!�
�	��"#
��

Fig. 2.2: The mo vable media sled. The actuators, spring suspension, and the media sled are
shown. Anchored regions are solid and the movable structure is shaded grey.

challenges.First, the tip/media spacing must be very carefully controlled, which

requiresa complexactive servo systemthat must be replicated for each read/write

tip adding complexity and requiring more power for each tip. Second,depositing

magnetic materials can be incompatible with manufacturing MEMS components.

The research group at Carnegie Mellon has explored several design points,

varying parameterssuch asthe media footprin t, the number and typeof read/write

tips, and the sizeof bits stored in the media. I have chosenone such designpoint

to highlight throughout the dissertation, and explored someothers to understand

the sensitivity of the models to varying parameters.Theseare described in more

detail in Chapter 3. Much of the discussionthat follows is basedon one of these

design points, which is called the G2 or \second generation" model. This model

has a media footprin t of 196 mm2, with 64 mm2 of usable media area and 6400

probe tips [Carley et al. 2000].Dividing the media into bit cellsof 40� 40 nm, and

accounting for an ECC and encoding overheadof 2 bits per byte, this designhas

a formatted capacity of 3.2 GB/device.

Ch. 2. Background and related work 11

In the CMU design,each bit cell hasa squareaspect ratio, which is not the case

in conventional disk drives.Bits stored in disk driveshave a relatively high aspect

ratio to increasesignal to noise ratio in the face of oscillations of the seekarm.

The media sled in a MEMStore can be positioned much more accurately than the

headsin a disk drive, making squarebits possible.This positioning accuracyand

the smaller aspect ratio it enablesresults in higher areal densities in MEMStores

than in disks. However, the smaller media area results in a smaller per-device

capacity of MEMStores relative to disks.

2.1.2 IBM Millipede

IBM's Millip ededesignsharesmany similarities to the CMU designbut is di�eren t

in sometechnical details. First, data is recordedusing a novel thermomechanical

recording technique in which the probe tips are placed in physical contact with a

plastic media. To write a bit, a probe tip is heated, melting a depressioninto the

media. To read back data, the probe tips are dragged acrossthe media surface.

When a probe tip falls into a depression,its displacement is detected, indicating

a bit. Data is erasedeither in bulk by heating the media, allowing the plastic to

re-
o w into the pits, or by point overwrites of data.

This recording technique simpli�es some aspects of the device signi�cantly .

Since the probes are held in contact with the media, there is no need for indi-

vidual control over the tip/media spacing. This, along with the simplicit y of the

read/write mechanism, could reducethe energyrequirements of each tip, increas-

ing the number of tips that can be usedconcurrently . Constant contact, however,

leads to questions of wear both of the media and of the tips. While initial re-

sults [Terris et al. 1998] suggestthat the media is resilient enough to withstand

contact, anecdotalevidencesuggeststhat possiblere-write and even re-read limits

continue to be a concernfor this technology.

The Millip ede protot ype uses electromagnetic actuators, in contrast to the

electrostatic actuators of the CMU design.Theseactuators provide much greater

Ch. 2. Background and related work 12

force, potentially increasing performance or, at least, providing the same force

using less energy. However, the energy consumption is likely to have a di�eren t

dynamic. Electromagnetic actuators draw more current, and henceconsumemore

energy, as the media sled is pulled further from its rest position [Rothuizen et al.

2000; Vettiger et al. 2002]. Electrostatic actuators require higher voltages as the

sled is displacedfurther, but require little current so energyconsumption is lower

overall and has less dependenceon displacement. This di�erence could lead to

interesting trade-o�s between positioning distance and energy consumption for

MEMStores with electromagneticactuators.

2.1.3 Hewlett-Packard LabsAtomic-ResolutionStorage(ARS)

The device being designedin the Atomic Resolution Storageproject at Hewlett-

Packard Laboratories is similar in structure to the CMU and IBM devices,but it,

again, usesa di�eren t media actuator and recording scheme. Its media actuator

useselectrostatic stepper motors and the recording schemeuseselectron beamsto

make marks in phase-changemedia [Hewlett-Packard 2002].The electrostatic mo-

tor is mechanically di�eren t from the electrostatic comb �ngers in the CMU design

but is likely to have similar performanceand energyconsumption characteristics.

Using electron beamrecording eliminates the needfor constant tip/media spacing,

which further simpli�es tip designand reducesenergy requirements.

2.2 Low-leveldata layout

All MEMStore designsthat appear in the literature store data in a linear fash-

ion, i.e., in columns, as illustrated in Figure 2.3. The storage media on the sled

is divided into rectangular regions as shown in Figure 2.3. Each region contains

M� N bits (e.g., 2500� 2500) and is accessibleby exactly one probe tip; the num-

ber of regions on the media equals the number of probe tips. Each term in the

nomenclature below is de�ned both in the text and visually in Figure 2.4.

Ch. 2. Background and related work 13

Sweep area of one probe tipM bits

N bits

0 1 M-12

0

1

2

N-1

Bit

Bit
Sweep area of one probe tip

Servo Info

Encoded Data

Servo Info

Encoded Data

Servo Info

X

Y

Fig. 2.3: Data organization on MEMS-based storage devices. The illustration depicts a
small portion of the magnetic media sled. Each small rectangle outlines the media area accessible
by a single probe tip, with a total of 16 tip regions shown. A full device contains thousands of
tips and tip regions. Each region stores M� N bits, organized into M vertical columns of N bits,
alternating between servo/trac king information (10 bits) and data (80 bits = 8 encoded data
bytes). To read or write data, the media sled passesover the tips in the � Y directions while the
tips accessthe media.

Cylinders. Drawing on the analogy to disk terminology, a cylinder is the set of

all bits with identical x o�set within a region (i.e., at identical sled displacement

in X). In other words, a cylinder consists of all bits accessibleby all tips when

the sled movesonly in the Y dimension, remaining immobile in the X dimension.

Cylinder 1 is highlighted in Figure 2.4 as the four circled columns of bits. This

de�nition parallels that of disk cylinders, which consist of all bits accessibleby

all headswhile the arm remains immobile. There are M cylinders per sled. In the

G2 model described in detail below, each sled has 2500 cylinders that each hold

1350KB of data.

Tracks. A MEMStore might use6400read/write tips to accessits media;however,

due to power and heat considerationsit is unlikely that all 6400tips can be active

(accessingdata) concurrently . Device designersexpect to be able to activate 200{

2000 tips at a time. To account for this limitation, cylinders are divided into

tracks. A track consistsof all bits within a cylinder that can be read by a group of

concurrently active tips. The sledin Figure 2.4hassixteentips (oneper region;not

all tips are shown), of which up to four can be concurrently active|eac h cylinder

Ch. 2. Background and related work 14

Cylinder 1

Track 0 of Cylinder 1

Sector 2,

Track 0,

Cylinder 1

Denotes an active probe tip

Logical block 0 striped across sectors 0 and 1

X

Y

0

74

11

38

1

65

10

29

2

56

9

110

3

7

11

8

4

0

Logical block 1 striped across sectors 2 and 3

Fig. 2.4: Cylinders, trac ks, sectors, and logical blo cks. This example shows a MEMS-
based storage device with 16 tips and M� N = 3� 280. A cylinder is de�ned as all data at the
samex o�set within all regions; cylinder 1 is indicated by the four circled columns of bits. Each
cylinder is divided into 4 tracks of 1080 bits, where each track is composedof four tips accessing
280 bits each. Each track is divided into 12 sectors of 80 bits each, with 10 bits of servo/trac king
information between adjacent sectors and at the top and bottom of each track. (There are nine
sectors in each tip region in this example.) Finally , sectors are grouped together in pairs to form
logical blocks of 16 bytes each. Sequential sector and logical block numbering are shown on the
right. These de�nitions are discussedin detail in Section 2.2.

Ch. 2. Background and related work 15

therefore has four tracks. Track 0 of cylinder 1 is highlighted in the �gure as the

leftmost circled column of bits. Note again the parallel with disks, where a track

consistsof all bits within a cylinder accessibleby a single active head. Again, in

the G2 model, each sled has 6400 tips and 640 concurrently active tips, so each

cylinder contains 10 tracks that each hold 135 KB of data. Excluding positioning

time, accessingan entire track takes3.64 ms.

Ph ysical sectors. Continuing the disk analogy, tracks are divided into sectors.

Instead of having each active tip read or write an entire vertical column of N bits,

each tip accessesonly 90 bits at a time|10 bits of servo/trac king information and

80data bits (8 encodeddata bytes). Each 80-data-bit group forms an 8-byte sector,

which is the smallestunit of data that canbeaccessedby a singletip. Each track in

Figure 2.4 contains 12 sectors(3 per tip). Thesesectorsparallel the partitioning of

disk tracks into physical sectors.As describedbelow, physical sectorsarecombined

together to form larger logical blocks. Physical sectorscan be read in either the

+Y or � Y direction, allowing MEMStores to support bidirectional access. In the

G2 model, each track is composedof 34,560sectorsof 8 bytes each, of which up

to 640 sectorscan be accessedconcurrently . Excluding positioning time, each 640

sector (5 KB) accesstakes0.129ms.

Logical blo cks. The low data rate of individual tips and the desire to usepow-

erful error-correcting codes over large blocks of data provide the motivation for

combining multiple physical sectors into larger logical blocks. In the G2 model,

64 physical sectorsare combined together to form 512 byte logical blocks. Each

logical block is, in essence,strip ed across64 tips. Given that the power budget

allows 640tips to be active together, 10 logical blocks can be accessedconcurrently

(640 � 64 = 10). Becausethe error correcting codes require logical blocks to be

read in their entiret y, the set of tips required for each logical block must be static.

The remaining logical blocks (e.g., 9 out of 10) can be dynamically chosenfrom

the set that are addressedby the tips.

Ch. 2. Background and related work 16

2.3 Mediaaccesscharacteristics

Media accessrequiresconstant sled velocity in the Y dimension and zero velocity

in the X dimension. The Y dimension accessspeed is a design parameter and is

determined by the per-tip read and write rates, the bit cell width, and the sled

actuator force. Although read and write data rates could di�er, tractable control

logic is expected to dictate a single accessvelocity in early MEMStores. In the

default model, the accessspeed is 28 mm/s and the corresponding per-tip data

rate is 0.7 Mbit/s.

Positioning the sled for read or write involvesseveral mechanical and electrical

actions.To seekto a sector,the appropriate probe tips must beactivated (to access

the servo information and then the data), the sledmust bepositionedat the correct

x,y displacement, and the sled must be moving at the correct velocity for access.

Whenever the sled seeksin the X dimension|i.e., when the destination cylinder

di�ers from the starting cylinder|extra settling time must be taken into account

becausethe spring-sledsystemoscillatesin X after each cylinder-to-cylinder seek.

Becausethis oscillation is large enough to causeo�-trac k interference, a closed

loop settling phaseis used to damp the oscillation. To the �rst order, this active

damping is expectedto require a constant amount of time. Although slightly longer

settling times may ultimately be neededfor writes, as is the casewith disks, the

model assumesthat the settling time is the samefor both read and write requests.

Settling time is not a factor in Y dimensionseeksbecausethe oscillations in Y are

subsumedby the large Y dimension accessvelocity and can be tolerated by the

read/write channel.

As the sled movesaway from zero displacement, the springs apply a restoring

force toward the sled's rest position. These spring forces can either improve or

degrade positioning time (by a�ecting the e�ectiv e actuator force), depending

on the sled displacement and direction of motion. This force is parameterized in

the model by the spring factor|the ratio of the maximum spring force to the

Ch. 2. Background and related work 17

maximum actuator force. A spring factor of 75% means that the springs pull

toward the center with 75% of the maximum actuator force when the sled is at

full displacement. The spring force decreaseslinearly to 0% as sled displacement

approaches zero. The spring restoring force makes the acceleration of the sled

a function of instantaneous sled position. In general, the spring forces tend to

degradethe seektime of short seeksand improve the seektime of long seeks[Gri�n

et al. 2000].

Large transfers may require that data from multiple tracks or cylinders be

accessed.To switch tracks during large transfers, the sled switches which tips

are active and performs a turnaround, using the actuators to reverse the sled's

velocity (e.g., from +28 mm/s to � 28 mm/s). The turnaround time is expected

to dominate any additional activit y, such as the time to activate the next set of

active tips, during both track and cylinder switches.One or two turnarounds are

necessaryfor any seekin which the sled is moving in the wrong direction|a way

from the sector to be accessed|b eforeor after the seek.

Lastly, a singlechip may contain more than onemedia sled.Adding more sleds

increasesthe per-devicecapacity and the number of independent actuators avail-

able to accessdata, possibly increasingperformancefor well-matched workloads.

2.4 Logicaldata layout

Sequential accessis the most e�cien t accesspattern in most mechanical storage

devices, including MEMStores, becauseonce the media is in motion the most

e�cien t thing to do is to keepit in motion. The mapping of logical blocks (LB N s)

onto physical sectorsof a MEMStore will takeadvantageof this property. Data will

be accessedin linear tracks (in columnsalong the Y axis), as shown in Figure 2.3,

so successive logical blocks within these tracks will be numbered such that they

are sequential.

Once the end of a track is reached, sequential LB N s will be mapped to the

Ch. 2. Background and related work 18

4

8

0

18

22

26

31

44

53

40

49

36

45

54

63

67

58

71

56

62

72

76

80

9

13

17

5

27

10 11

12 14

15 16

6

3

7

1 2

19 20

21 23

24 25

28 29

30 32

37 38

39 41

42 43

46 47

48 50

51 52

55

57 59

60 61

64 65

66 68

69 70

73 74

75 77

78 79

33 34 35

Fig. 2.5: Mapping LB N s to optimize sequen tial access.

next track within the samecylinder. This meansthat accessingsequential tracks

will require only that the device turn the media sled around and switch the set

of read/write tips. No motion in the X dimension is required until the last track

in the cylinder has beenaccessed.After that, the devicewill move the media sled

to the next cylinder (requiring a single-cylinder seekin the X direction) and start

again. MEMStores also use many read/write tips concurrently to accessdata in

parallel. It is most natural to map sequential LB N s acrossthese parallel tips in

order to optimize sequential access.

Figure 2.5 shows how LB N s will be mapped to sequential locations on a sim-

ple MEMStore. This device has nine total read/write tips, of which three can be

concurrently active due to the power budget. Each read/write tip addressesnine

LB N s.Starting in the top left corner,LB N s0, 1, and 2 aresimultaneously accessi-

ble by three parallel read/write tips. As the media moves,LB N s 3{8 are accessed,

Ch. 2. Background and related work 19

completing the �rst track of data. The secondtrack (LB N s 9{17) are accessedby

reversing the sled's motion and by activating the secondrow of read/write tips.

Note that successive tracks are reversed with respect to each other | the �rst

track is numbered \down" and the secondis numbered \up." These track rever-

sals are necessaryso that the media is immediately positioned after a turnaround

to accesssequential data.

Lastly, each LB N will be strip ed over a number of individual read/write tips

to improve bandwidth and fault tolerance.For example,in the default model used

throughout this dissertation, each 512 byte sector is split into 64 physical sectors,

which are spread over 64 concurrently-op erating read/write tips. These physical

sectorswill be read in parallel and transparently combined in the device'sbu�ers

for delivery to the host. Once this striping is assumed,it is useful to considerthat

the number of read/write tips hasbeenreducedand that each \virtual" read/write

tip accessesa complete LB N at a time. For example, the default MEMStore

described below has6400read/write tips and each LB N is spreadover 64 tips. In

this way, the MEMStore has a \virtual geometry" with only 100 read/write tips,

each of which accessesa full block at a time. In this design,640physical read/write

tips can be used concurrently , as determined by the power budget of the device,

meaning that 10 \virtual" read/write tips can be used concurrently . In order to

spreadthe heat load of the deviceand avoid \hot spots," physical read/write tips

that are usedtogether to accesswhole LB N s will be physically spreadaround the

device.

2.5 Comparisonto disks

Although MEMStores involvesomeradically di�eren t technologiesfrom disks,they

shareenoughfundamental similarit y for a disk-like model to be a sensiblestarting

point. This section comparesMEMStores and disks from this standpoint, and the

rest of the dissertation shows that little is lost by taking this view.

Ch. 2. Background and related work 20

Like disks, MEMStores stream data at a high rate and su�er a substantial

distance-dependent positioning time delay before each nonsequential access.In

fact, although MEMStores are much faster, they have ratios of requestthroughput

to data bandwidth similar to those of disks from the early 1990s.Somevaluesof

the ratio,
 , of request servicerate (requests/s) to streaming bandwidth (MB/s)

for some recent disks include
 = 26 (1989) for the CDC Wren-IV [Patterson

et al. 1989],
 = 17 (1993) [Hennessyand Patterson 1995], and
 = 5:2 (1999)

for the Quantum Atlas 10K [Quantum 1999].
 for disks continue to drop over

time as bandwidth improvesat a greater rate than mechanical positioning times.

In comparison, the MEMStore described below yields
 = 25 (1111 requests/s

� 44.8 MB/s), comparable to disks within the last decade.Also, although many

probe tips accessthe media in parallel, they are all limited to accessingthe same

relative x,y o�set within a region at any given point in time|recall that the media

sled movesfreely while the probe tips remain relatively �xed. Thus, the probe tip

parallelism provides greater data rates but not concurrent, independent accesses.

There are alternativ e physical device designsthat would support greater access

concurrencyand lower positioning times, but at substantial cost in capacity [Gri�n

et al. 2000].

The remainder of this sectionenumeratesa number of relevant similarities and

di�erences betweenMEMStores and conventional disk drives.

Mec hanical positioning. Both disks and MEMStores have two main compo-

nents of positioning time for each request: seekand rotation for disks, X and Y

dimensionseeksfor MEMStores. The major di�erence is that the disk components

are independent (i.e., desiredsectorsrotate past the read/write headperiodically,

independent of when seekscomplete), whereas the two components are explic-

itly handled in parallel for MEMStores. As a result, total positioning time for

MEMStores equalsthe greater of the X and Y seektimes, making the lessertime

irrelevant. This overlap most strongly a�ects requestscheduling, which is discussed

in Section 6.1.

Ch. 2. Background and related work 21

Settling time. For both disks and MEMStores, it is necessaryfor read/write

heads to settle over the desired track after a seek. Settling time for disks is a

relatively small component of most seektimes (0.5 ms of 1{15 ms seeks).However,

settling time for MEMStores is expected to be a relatively substantial component

of seektime (0.2 ms of 0.2{0.8 ms seeks).Becausethe settling time is generally

constant, this has the e�ect of making seektimes more constant, which in turn

could reduce(but not eliminate) the bene�t of both request scheduling and data

placement.

Logical-to-ph ysical mappings. As with disks, the lowest-level mapping of logi-

cal block numbers (LB N s) to physical locations will be straightforward and opti-

mized for sequential access;this will be best for legacysystemsthat usethesenew

devicesas disk replacements. Such a sequentially optimized mapping scheme �ts

disk terminology and has somesimilar characteristics. Nonetheless,the physical

di�erences will make data placement decisions(mapping of �le or databaseblocks

to LB N s) an interesting topic. Sections6.2 and 6.3 discussthis issue.

Seek time vs. seek distance. For disks, seektimes are relatively constant func-

tions of the seekdistance, independent of the start cylinder and direction of seek.

Becauseof the spring restoring forces,this is not true of MEMStores. Short seeks

near the edgestake longer than they do near the center (as discussedin Sec-

tion 6.2). Also, turnarounds near the edgestake either lesstime or more, depend-

ing on the direction of sled motion. As a result, seek-reducingrequest scheduling

algorithms [Worthington et al. 1994a]may not achieve their best performance if

they look only at distancesbetweenLB N s as they do with disks.

Recording densit y. Some MEMStores use the same basic magnetic recording

technologiesas disks [Carley et al. 2000].Thus, the sametypesof fabrication and

grown media defects can be expected. However, becauseof the much higher bit

densitiesof MEMStores, each such media defect will a�ect a much larger number

of bits.

Num bers of mechanical comp onents. MEMStores have many more distinct

Ch. 2. Background and related work 22

mechanical parts than disks. Although their very small movements make them

more robust than the large disk mechanics, the sheernumber of parts makes it

much more likely that somenumber of them will break. In fact, manufacturing

yields may dictate that the devicesoperate with somenumber of broken mechan-

ical components.

Concurren t read/write heads. Becauseit is di�cult and expensive for drive

manufacturers to enable parallel activit y, most modern disk drives use only one

read/write head at a time for data access.Even drives that do support parallel

activit y are limited to only 2{20 heads. On the other hand, MEMStores (with

their per-tip actuation and control components) could theoretically useall of their

probe tips concurrently . Even after power and heat considerations, hundreds or

thousandsof concurrently active probe tips is a realistic expectation. This paral-

lelism increasesmedia bandwidth and o�ers opportunities for improved reliabilit y.

Further,
exibilit y in the choice of which tips are used to accessdata allows for

novel data accessschemes,such as e�cien t accessto two-dimensionaldata struc-

tures.

Con trol over mechanical movements. Unlike disks, which rotate at a con-

stant velocity independent of ongoing accesses,the mechanical movements of

MEMStores can be explicitly controlled. As a result, accesspatterns that su�er

signi�cantly from independent rotation can be better served. The best exampleof

this is repeatedaccessto the sameblock, asoften occursfor synchronousmetadata

updates or read-modify-write sequences.

Startup activities. Likedisks,MEMStores will require sometime to ready them-

selves for media accesseswhen powered up. However, becauseof the sizeof their

mechanical structures and their lack of rotation, the time and power required for

startup will be much lessthan for disks. How this a�ects both energyconservation

(Section 6.4) and availabilit y (Section 7) is discussedbelow.

Driv e-side managemen t. As with disks, management functionalit y will be split

between host operating systemsand device �rm ware. Over the years, increasing

Ch. 2. Background and related work 23

amounts of functionalit y have shifted into disk �rm ware, enabling a variety of

portabilit y, reliabilit y, mobilit y, performance,and scalability enhancements. Sim-

ilar trends are likely with MEMStores, whose silicon implementations o�er the

possibility of direct integration of storagewith computational logic.

Speed-matc hing bu�ers. As with disks, MEMStores accessthe media as the

sled moves past the probe tips at a �xed rate. Since this rate rarely matches

that of the external interface, speed-matching bu�ers are important. Further, be-

causesequential requeststreamsare important aspectsof many real systems,these

speed-matching bu�ers will play an important role in prefetching and then caching

of sequential LB N s.Also, most block reusewill becaptured by larger host memory

caches instead of in the devicecache.

Sectors per trac k. Disk media is organizedas a seriesof concentric circles, with

outer circles having larger circumferencesthan inner circles. This fact led disk

manufacturers to use banded (zoned) recording in place of a constant bits-per-

track scheme in order to increasestorage density and bandwidth. For example,

banded recording results in a 3:2 ratio between the number of sectors on the

outermost (334 sectors)and innermost (229 sectors)tracks on the Quantum Atlas

10K drive [Gangerand Schindler 2004].BecauseMEMStores organizetheir media

in �xed-size columns instead, there is no length di�erence between tracks and

banded recording is not relevant. Therefore, block layout techniques that try to

exploit banded recording will not provide bene�t for these devices.On the other

hand, for block layouts that try to consider track boundaries and block o�sets

within tracks, this uniformit y (which was common in disks 10 or more yearsago)

will simplify or enablecorrect implementations. The subregionedlayout described

in Section 6.2 is an exampleof such a layout.

Ch. 2. Background and related work 24

2.6 Other alternativetechnologies

2.6.1 Battery-backed DRAM

One of the simplest methods of making memory \non-v olatile" is to make sure

it can be powered with batteries in casemain power is removed. This strategy

is widely used in today's disk arrays which back up power to their large (several

gigabyte) DRAM-based cacheswith large batteries. The main concern,of course,

is that there is enoughbattery power in the system to allow all of the dirt y data

to be de-stagedto truly non-volatile storage (i.e., the back-end disk drives) in

the event of power loss. The power requirements of the system are signi�cant,

and the batteries must be large enoughto supply both the DRAM itself and the

back-end storageto which the data is to be retired. The main bene�t of battery-

backed DRAM, of course,is its superior performance.However, its lower density

compared to disk drives makes it prohibitiv ely expensive as a true massstorage

device,except for very high-performancesystemslike high-end disk arrays.

In somesense,the DRAM in someportable devices,such as PDAs, is \non-

volatile" since the device is almost always powered by batteries. Often PDAs use

this DRAM to store at least someof their �les, with the rest being stored in other

truly non-volatile storagelike FLASH memory.

2.6.2 Miniature disk drives

In just the last few years,portable music playerssuch as the Apple iPod have cre-

ated a large demandfor high-density portable storage.To meet this demand,hard

drive companieshave intro duceda plethora of new, miniature disk drives,trading

o� performancefor very small form factors. IBM �rst intro duced its 1.0 inch Mi-

crodrive in the late 1990swith a capacity of 340MB. The Microdrive wasfollowed

by 1.8, 1.5, and 0.85inch drivesfrom Toshiba,Hitachi, Cornice, and others. These

drivesare, essentially , scaled-down versionsof desktop and notebook drives.They

contain only a single platter and often useonly a single head to accessdata. Be-

Ch. 2. Background and related work 25

causethey are scaleddown so signi�cantly , their performanceis much worsethan

their desktop counterparts. Rotation speed is usually no faster than 3600 RPM,

their average seek time is generally more than 10 ms, and their bandwidth is

around 5 MB/s.

While thesedisks may seemvery limited, they �t their market well. Customers

who use portable music players demand the largest possible capacities because

there is always more music to carry around. Performanceis not too critical, since

the workload is very simple and consistsonly of streaming large music �les to and

from the disk through a RAM bu�er. Once a playlist is read into the memory

bu�er, the disk is idled to save power.

Miniature disk drivesare a recent addition to the storagelandscape, and they

present a strong challenger to MEMStores in that their per-device capacity is

signi�cantly greater. MEMStores are envisioned to store at most 5-10 GB per

chip, and today's miniature disk drivesstore 40 GB. Assuming that in �v e years

when MEMStores are available the capacity of a miniature disk drive will be

100GB, �tting 10MEMStore chips into a Compact FLASH form factor to equalize

capacities may be a challenge. However, the higher performance of MEMStores

in seek latency, bandwidth, and energy consumption alone could give them an

advantage over miniature disk drives.

2.6.3 FLASH

Along with miniature disk drives, FLASH memory is the current non-volatile

storagemedia of choice for mobile devicessuch as digital cameras,PDAs, cellular

telephones,and portable musicplayers.FLASH is a semiconductormemory, and so

has a much lower density and faster performancethan disk drivesor MEMStores.

Its performance for reads is slightly slower than that of DRAM, but its write

performanceis much slower. Internally, the FLASH memory can only write data

in large (e.g., 128KB) pagessofor small writes, the entire pagemust be read into a

bu�er, modi�ed, the pagein the FLASH must erased,and then the modi�ed data

Ch. 2. Background and related work 26

is programmed from the bu�er. This cycle can take on the order of a secondfor

an entire page,making writes very expensive. Also, FLASH memoriescan only be

written a �xed, relatively small, number of times (e.g., 100,000),after which they

becomeinoperable. Newer FLASH memoriesmitigate this problem by internally

remapping data pagesfrom cells that are approaching their re-write limit.

Becauseof its poor write performance, FLASH is not well-suited for general

�lesystem workloads, in which small write performanceis crucial for maintaining

metadata. However, FLASH memory is well-suited for simple �le storage in dig-

ital camerasand portable music players. In theseapplications, though, the lower

density of FLASH comparedto disks will keepits capacity below several gigabytes

at reasonablecostsand sizes.In responseto the growing popularit y of miniature

disk drives, FLASH has shown sometremendous growth recently by incorporat-

ing somenew innovations such asstoring multiple memory states per cell. For the

foreseeablefuture, FLASH will probably dominate the market for low- to medium-

capacity devices(128 MB to 2 GB) and miniature disk drives will provide high

capacities(10 GB to 100 GB).

2.6.4 MRAM

Magnetic RAM (MRAM) is another emergingnon-volatile storagetechnology that

seeksto supplant FLASH. It employs GMR elements into semiconductor mem-

ory cells to store data. MRAM will, most likely, have DRAM-lik e accesstimes,

both for read and write, and will not su�er from the re-write limits of FLASH

memory. SomeMRAM components are available at very high costsand low den-

sities, and many researchers and companiesare working to make it a commod-

it y product. The non-volatilit y and performance properties of MRAM make it

very interesting as a FLASH and even main memory replacement. However, like

other semiconductormemories,its architecture makesit inherently lessdensethan

mechanically-addressedstorage deviceslike disks and MEMStores, making it an

unlikely alternativ e for applications that require high capacities.

Ch. 2. Background and related work 27

2.6.5 OvonicUni�ed Memory

Ovonic memory is a new technology being developed by Ovonyx, Inc. [Ovonyx

2004] that incorporates phase change media into semiconductor memories. It

achievesa similar density to FLASH memory, but doesnot shareseveral of FLASH's

limitations, notably its poor write performanceand re-write limitations. Again, be-

causeit is a semiconductor memory, Ovonic Uni�ed Memory will not approach

the density of mechanical storagebecauseits density is determined by lithographic

feature sizes.

2.6.6 FERAM

Ferroelectric RAM (FERAM) is another alternativ e semiconductormemory tech-

nology that usesferroelectric capacitors as the memory elements [Sheikholeslami

and Gulak 2000]. Its density is limited by lithography, like any semiconductor

memory, and it avoids the poor write performance and re-write limitations of

FLASH memory. However, somedesignsmay su�er from destructive reads,which

would require cells to be refreshedimmediately after reads.

2.7 Relatedwork

2.7.1 Devices

Fortunately, the design of MEMStores has not all taken place behind the closed

doors of corporations and research labs|some of the deviceshave beendescribed

in the literature.

The MEMStore designbeing developed at CarnegieMellon University was�rst

described in [Carley et al. 2000]. That paper described the basic architecture of

the deviceand comparedit to several other devicesbeing developed concurrently .

Several other papers from that group describe the servo system for tip/media

spacing [Carley et al. 2001], the media actuator [Alfaro and Fedder 2002], and a

potential magnetic recording scheme[El-Sayed and Carley 2002;2003].

Ch. 2. Background and related work 28

The IBM Millip edeproject hasproducedseveral paperswhich describe several

of the components of that device.Two papersdescribe the overall device[Vettiger

et al. 2000;Vettiger et al. 2002]and its basic architecture. The thermomechanical

writing processwas �rst described in [Mamin and Rugar 1992], and was further

studied in [Mamin et al. 1995;Mamin et al. 1999].One of the concernsof thermo-

mechanical writing and reading of data has always been wear of both the media

and the read/write tips, which was�rst addressedin [Terris et al. 1998].Other pa-

pers describe methods to manufacture probe tips [Ried et al. 1997]and the media

actuator [Lut wyche et al. 1999;Lut wyche et al. 1999;Rothuizen et al. 2000].

The electrostatic stepper motor used by the device under development at

Hewlett-Packard was described in [Hoen et al. 1997],but little elsehas beenpub-

lished about the device.

2.7.2 Parametersensitivity

SinceMEMStores are still being developed, systemsresearcherswith knowledgeof

how they may be usedcan in
uence their design.This was the focusof someearly

of our early modeling work and also of a group at the University of California at

Santa Cruz.

Madhyastha and Yang [Madhyastha and Yang 2001] developed a software

model similar to the one that is used in this dissertation and in [Gri�n et al.

2000; Schlosser et al. 2000]. Its seekmodel is basedon an open-loop controller,

rather than the closed-loop controller that I assume.An open-loop systemusesthe

natural damping of the system to eliminate oscillations, while a closed-loop sys-

tem actively damps oscillations, leading to faster seektimes. Their model is more

accurate in that it models second-ordere�ects that I only approximate, but it is

more likely that real MEMStores will use closed-loop controllers. They describe

two alternativ e seekmodels: the spring model and the optimal control model. In

the spring model, the actuators apply a singleconstant force that drivesthe media

sled to equilibrium at the destination point, waiting for the natural damping of

Ch. 2. Background and related work 29

the system to eliminate oscillations. The optimal control model is similar to the

model that I use in that the actuators apply a force to move the sled toward the

destination, and then a counterforce to stop it. However, with an accuratemodel of

the systemdynamics, they are able to choosethe optimal point at which to switch

actuator direction. The spring model provides an upper bound on seektime, and

the optimal control model provides a lower bound. The model that I useapprox-

imates the optimal control model, but doesnot precisely model the second-order

e�ects. I comparethesemodels below in Section 3.4, and �nd that they di�er by,

at most, 55 � s.

Sivan-Zimet used a simpli�cation of Madhyastha and Yang's model to study

the sensitivity of servicetime to the many con�gurable parametersof a MEMStore

[Sivan-Zimet and Madhyastha 2002].The goal was to �nd an optimal devicecon-

�guration for a number of traced �lesystem workloads, minimizing service time.

Their simpli�ed model doesnot include any settle time and sothey did not observe

the settle time sensitivity issuesthat I describe in Chapter 3. They do observe,

however, that longer rangesof motion in the Y dimension lead to better perfor-

mancebecausemore data can be accessedbefore the sled must changedirection.

Dramaliev usedanother analytic approximation of Yang's model to re�ne the

conclusionsreachedby Sivan-Zimet [Dramaliev and Madhyastha2003].This model

doesinclude settle time for X and closelyapproximates Yang's results. However, it

makes the simplifying assumption that requestsare uniformly distributed across

the device. The result is a predictive model of averageperformance based on a

given devicecon�guration, allowing quick evaluations of the con�guration space.

2.7.3 Roles

Several researchers have studied various roles that MEMStores may take in com-

puter systems in addition to the roles presented in this dissertation. We pre-

sented the �rst work in studying roles for MEMStores in 2000[Gri�n et al. 2000;

Schlosseret al. 2000], showing the performanceof various application workloads

Ch. 2. Background and related work 30

using MEMStores as a simple disk replacement and as a cache for disks.

Hong evaluated the useof MEMStoresasa metadata cache, improving response

time by 28{46% for user workloads [Hong 2002]. He also used the MEMStore

as a write cache for the disk, leading to further improvements in performance.

Hong [Hong and Brandt 2002]also developed yet another analytic model of seek

time for this work and to study MEMStore-speci�c scheduling policies. I compare

this analytic seekmodel to the model that I use in Section 3.4.

Rangaswami et al. proposedusing MEMStores in streaming media servers as

bu�ers between the disks and DRAM [Rangaswami et al. 2003]. They adapted

caching and scheduling policies for streaming media servers using disk arrays to

include the faster MEMStore.

Uysal et al. evaluated the use of MEMStores as intermediate storage in disk

arrays [Uysal et al. 2003]under synthetic workloads and �le systemtraces of var-

ious systems.They evaluated several architectures, including replacing all disks

with MEMStores, using MEMStores as mirrors of disks, and several hybrid archi-

tectures. They also varied the relative cost of the MEMStores and disks used in

the system, sincecost remains an unknown until MEMStores are available.

None of thesestudiesclaimed to useany feature of the MEMStores other than

the fact that they are faster than disk drives. Indeed, system performance was

increasedby using faster devices,but was not necessarilydependent on the fact

that those faster devices were MEMStores. These roles fail the speci�cit y test

intro duced in Section 1, since they could be �lled as well by a hypothetical disk

drive that is as fast as a MEMStore.

2.7.4 Policies

Various policies for tailoring accessto MEMStores beyond those described in this

dissertation have been suggestedin the literature, including MEMStore-speci�c

request scheduling algorithms, energy conservation strategies, and data layouts.

We comparedexisting disk-basedrequestschedulers,MEMStore-speci�c data lay-

Ch. 2. Background and related work 31

outs, and energy conservation policies in [Gri�n et al. 2000]. These policies are

described in more detail in Chapter 6.

A new scheduling algorithm, zone-basedshortest-positioning time-�rst, was

suggestedfor scheduling requeststo a MEMStore [Hong et al. 2003].ZSPTF is a

combination of SPTF and circular scan(C-SCAN) scheduling intended to reduce

the starvation characteristics of SPTF. Yu et al. suggestedanother scheduling

policy based on servicing requests in minimum-spanning-tree order, with their

results showing performancesimilar to SPTF scheduling [Yu et al. 2002].However,

it is not clear that either of thesescheduling policiesusesany device-speci�c aspects

of MEMStores. Both algorithms could be applied to disk drivesjust as e�ectiv ely.

Lin et al. studied three methods of reducing MEMStore power consump-

tion [Lin et al. 2002].First, they useda MEMStore's abilit y to transition quickly

betweenactiveand inactivemodes,saving power when idle. Second,they coalesced

sequential requeststhat could be servicedin parallel. And third, they allowed re-

questssmaller than the standard logical block size of 512 bytes, only turning on

those read/write tips that were necessaryto transfer the data. In addition to the

energy savings that these techniques a�orded, they quanti�ed their performance

impact and showed that it wasminimal. This extendedour initial work which used

only the �rst of the three methods [Schlosseret al. 2000]. It is not clear that the

third of thesemethods is actually possiblebecauseerror-correcting codes require

that entire logical blocks be read in their entiret y.

Yu et al. also described storing tabular data such as databaseson MEMStores

and accessingthat data in both row- and column-major orders [Yu et al. 2003].

While this concurrent work is similar to that which I describe in Section 6.3 (and

in [Schlosseret al. 2003]), it doesnot account for device-level issues(e.g., striping

and ECC), and it lacks a general method to describe available parallelism to

applications. The same researchers also described a more general technique for

declustering two-dimensionaldata structures on MEMStores [Yu et al. 2004],and

showed that it achievesan optimal result that is impossiblewith a disk drive.

3 Performancemodelingof MEMStores

Sincecomplete MEMStores are not currently available, we must depend on mod-

eling to study them. Engineers working on the MEMS components themselves

do their own modeling at very low levels; i.e., micromagnetic modeling of the

read/write processor �nite element analysisof the mechanical components. These

models are much more detailed than are neededat the system level. This chapter

describesthe simpli�ed modelsusedin this work, and how they are usedin various

simulation systems.

3.1 Piecewise-linear seekmodel

When developing a performance model for MEMStores, it is useful to �rst look

at a common disk performancemodel. The servicetimes for a disk accessis often

computed as:

time service = time seek + latencyr otate + time tr ansf er

The seektime, time seek, is a function of the distance in cylinders that the disk

arm must travel. This includes an acceleration/deceleration component, a linear

component (representing the maximum velocity of the seekarm) for long seeks,

and a signi�cant disk arm settling delay (approximately 1 ms) for all non-zero

length seeks.The rotational latency, latencyr otate , can be computed by dividing

the angular distance betweenthe current and destination sector by the rotational

Ch. 3. Performancemodeling of MEMStores 33

��������� �	�	�
��

�

�
������� �	�	�
��

��������������� ��� ����� ���

� � "!

#�$

#&%

#�'

(

'

(

%

() (* (+ (,(

$

#

)

#

*

�&-

.0/ 132

4 5 4 6 4 7 4 8 4 9 4 :4 ;

<

5

<

;

<

6

<

7

<

8

<

9

<

:

=

2?> @BA�/ . C

(a) Sled accelerationversustime (b) Sled velocity versustime

Fig. 3.1: Piecewise-constan t appro ximation of acceleration and velo cit y during a Y-
dimension seek. The graph in (a) is the derivativ e of (b) with respect to time. aactuator is
the sled acceleration causedby the actuator force; the net accelerations during each \c hunk" are
di�eren t becauseof the e�ects of the spring restoring force. vo = v6 = vaccess ; in other words, at
the end of a seekthe sled is traveling at the correct accessvelocity. In the caseof an X seek(not
shown), vo = 0. In this example, each phase of the seek is divided into 3 chunks per phase; our
model divides each seekinto 8 chunks per phase.

velocity. Since disks rotate continuously, detailed simulation requires accounting

for all advancesin time, including the seektime for the accessbeing serviced.The

media transfer time, time tr ansf er , can be computed as the product of the number

of sectors accesseddivided by the number of sectors per track (in the relevant

zone) and the time for a full revolution. Detailed models must also account for all

track and cylinder boundaries crossedby the range of desired sectors,since each

crossedboundary adds a repositioning delay equal to the corresponding skews in

the logical-to-physical mapping.

Servicetimes for MEMStores can be modeled with a similar equation:

time service = time seek + time tr ansf er (3.1)

The obvious di�erence is the absenceof rotational latency. Lessobvious from the

equation is the more complicated nature of the time seek term. Recall that the

movable media sledmust seekto the correct < x,y> position and attain the proper

media accessvelocity in the proper Y direction. The actuation mechanisms and

control loopsfor X and Y positioning are independent, allowing the two to proceed

Ch. 3. Performancemodeling of MEMStores 34

in parallel. Thus,

time seek = max(time seek x ; time seek y)

Computing time seek x and time seek y . Sincethe sled is a massmoving under a

constant force from the actuators, equations from classical �rst-order mechanics

(e.g., � x = v0t + 1
2at2) can be usedto compute both time seek x and time seek y . A

seekis broken into two phases: accelerationand deceleration. In the acceleration

phase,the actuators pull the sledtoward the destination. In the decelerationphase,

the actuators reversepolarit y and deceleratethe sled to its �nal destination and

velocity. In addition to the actuator force, the sledspringsconstantly pull the sled

towards its centermost position. The spring force in each dimension is linear with

respect to the sled's displacement (from center) in that dimension, which means

that spring force varies as the sled moves.

A piecewise-constant approximation determinesthe spring force'scontribution

to net acceleration.Each phaseof the seekis broken into a set of smaller chunks,

with the net acceleration in each chunk being the sum of the accelerationdue to

the actuators and the averageaccelerationdue to the springs. As an example, the

accelerationcurve for a sledseekingfrom the outermost position to the centermost

position is shown in Figure 3.1(a). This acceleration curve leads to the velocity

curve shown in Figure 3.1(b). In this example,the springshelp during the acceler-

ation phase(t0:::t3), but hurt during the decelerationphase(t3:::t6). Also, because

this example seekmoves toward the centermost position, the spring's impact de-

creasesin each chunk as the sled approaches its rest position.

To parameterize the model, the spring force at full displacement is set to a

percentage (called spring f actor) of the actuator force. Generally speaking, the

spring factor should be a large percentage of the actuator forcessince for manu-

facturabilit y reasonsthe springs should be assti� aspossible.So,when the sled is

at its full displacement, the springs should push back against the actuators with

Ch. 3. Performancemodeling of MEMStores 35

an almost equal force, yielding a high spring f actor.

An expressionfor the net accelerationat any point x is:

a(x) = aactuator �
�
(aactuator � spring f actor) �

of f set(x)
max of f set

�

When the actuator is pulling against the springs, the second term will be

negative. For each chunk, the constant net accelerationis taken to be the average

of the net accelerationsat its endpoints:

ai =
a(x i) + a(x i +1)

2
:

Given theseconstant accelerations,we can compute the velocity of the sled at

the end of each chunk:

vi = vi � 1 + ai � 1(t i � t i � 1): (3.2)

Sincethe initial position x0, the initial velocity v0, and the accelerationduring

each chunk are all known, the times at the end of each chunk can be computed.

To do this, we integrate the velocity curve vi to �nd an expressionfor position x i :

x i = x i � 1 + vi � 1(t i � t i � 1) +
1
2

(vi � vi � 1)(t i � t i � 1): (3.3)

Plugging Equation 3.2 into Equation 3.3 yields a quadratic that can be solved

for t i , the time that the sled arrivesat the end of chunk i :

t i =
� (vi � 1 � ai t i � 1) +

q
v2

i � 1 + 2ai (x i � x i � 1)

ai
(3.4)

Extra settling time for time seek x . Equation 3.4 describes the baseseektime

for both the X and Y dimensions.In the X dimension,the sledstarts and endseach

seekat rest (v0 = 0). Extra settling time, tsettl e, must be addedonto X-dimension

seeksto model the time required for the oscillations of the sled-spring system to

Ch. 3. Performancemodeling of MEMStores 36

damp out. tsettl e is dependent on the resonant frequency of the system, f , which

dependson the construction of the sled and the sti�ness of the springs.

time settl e =
1

2� f
� numbertimeconstants (3.5)

where numbertimeconstants is a measureof how much damping is neededbefore

the probe tips can begin to robustly accessthe media. This oscillation could be

damped by the sled-spring system itself or by the atmosphere. More likely, the

systemwill have a closed-loop control systemthat actively damps the oscillations

using the actuators. Activ e damping hasthe e�ect of reducing numbertimeconstants

and therefore time settl e.

Extra turnaround times for time seek y . Y-dimension seeks,for which the �nal

velocity is the accessvelocity rather than zero, are not expected to require extra

settling time. However, sincethe media sledmay be moving in the wrong direction

before the seekand/or after the seek, it may be necessaryto reverse the sled's

direction onceor twice. For each such turnaround:

time tur nar ound = 2 �
vaccess

a(x)
(3.6)

Computing time tr ansf er . The time tr ansf er component of the MEMStore service

time di�ers from that of conventional disks in two ways. First, the time to transfer

a single sector is the product of the number of tips over which each sector is

strip ed, the rate at which bits are read (vaccess � width bit), and the percentage

of bits read that are actual data (e.g., rather than servo and ECC). Second,the

time to transfer a range of sectorsmust take into account the fact that multiple

sectorscan be accessedin parallel; the number of sectorsaccessedin parallel is the

number of concurrently active tips divided by the number of tips per sector. As

with conventional disks, when a range of sectorsto be transfered crossesa track

or cylinder boundary, a track or cylinder switch is required. The sequential track

switch time is equal to the minimum turnaround time, sinceswitching the active

Ch. 3. Performancemodeling of MEMStores 37

G1 G2 G3
bit width (nm) 50 40 30
sled acceleration(g) 70 82 105
accessspeed(kbit/s) 400 700 1000
X settling time (ms) 0.431 0.215 0.144
total tips 6400 6400 6400
active tips 640 640 1280
max throughput (MB/s) 25.6 44.8 128
number of sleds 1 1 1
per-sledcapacity (GB) 2.56 4.00 7.11
bidirectional access no yes yes

Table 3.1: Three generations of MEMStore parameters. The G2 design point is used
for most of the results in this dissertation.

tips is expected to take less than this time. The sequential cylinder switch time

can be computed as a single cylinder seek,but optimizations of the control loop

can be expected to reduce this time to the minimum turnaround time by taking

advantage of the tips' abilit y to de
ect small distancesin the X dimension.

3.2 Baselinedeviceparameters

Giventhe wide rangeof parameters,exploring the entire designspaceof MEMStores

is not feasible.Instead, I usethree MEMStore designpoints, basedon anticipated

technology advancesover the �rst three generations(Table 3.1).

The \1st generation (G1)" mo del represents a conservative initial MEMStore,

which could be fabricated within the next few years[Carley et al. 2000].The sled

has a full range of motion of 100 � m along the X and Y axes,and the actuators

acceleratethe sled at 70g. To accessdata, the device usesa relatively primitiv e

recording scheme, leading to a per-tip data rate of 400 Kbit/s. This design only

supports unidirectional accesses,where readsand writes only occur when the sled

moves in the positive Y direction.

G1's media, tip resolution, and sled positioning system provide a square bit

cell of 50 nm such that each tip addressesa 2000� 2000 array of bits. The sled

Ch. 3. Performancemodeling of MEMStores 38

footprin t is 0.64 cm2 allowing 6400 tips for each sled. This yields a raw capacity

of 2.56GB per sled. However, media error management requiresa 10-bit-per-byte

encoding. Also, sledtracking and synchronization information requires10 tracking

bits for every 80 data bits. During media access,the sled is restricted to a �xed

accessvelocity. However, the sled speedis not limited during seeks.

The \2nd Generation (G2)" mo del. Several fundamental improvements

enhanceG2 over G1. First, media accessoccursin both the +Y and � Y directions.

Second,per-tip data rate increasesto 700Kbit/s basedon trends in probe tip tech-

nology. A decreasein the sled massand an increasein the actuator voltage leads

to an increasein sled accelerationto 82g. Also, improvement in the servo system

reducesthe settling time for each X seek.Finally, media material improvements

increaseG2's bit density by 20%.

The \3rd Generation (G3)" mo del. G3 approachesthe high-end of many

MEMStore parameters and characteristics. Here the bit density scalesdown to

30 nm per bit, and a decreasein the sled massleads to higher sled acceleration.

In this casea changein the suspensionand sled designleadsto a higher resonant

frequency, resulting in a shorter X settling time. Throughput is increased,largely

becauseof the addition of more active tips.

3.3 Basicseekperformance

Figures 3.2 and 3.3 show the seektime asa function of both X and Y displacement

from the corner and the center of a media square,respectively. Both show results

for the G2 designpoint described above. The e�ect of X dimension settling time

is very clearly shown in Figure 3.3. The overall seektime, which is the greater of

the two seektimes in X and Y, is strongly correlated to the X displacement only,

with almost no dependenceon Y displacement.

Table 3.2 shows the performance of the G2 MEMStore under a workload of

10,000random requests.The requestswere distributed uniformly acrossthe ca-

Ch. 3. Performancemodeling of MEMStores 39

�

�����

�

�����

�
�����

���
	���
 ��
 	��

�����

�

�

�����

�

� �����

���
	���
 ��
 	��

�

��� �

��� �

��� �

��� �

� � �

������

��
"!

�$#

!%�'&

Fig. 3.2: Seek time pro�le from corner of media. This graph shows the seektime for a
G2 MEMStore from a corner of a media square as a function of both X and Y displacement. It
was generated directly from the seektime equations.

(*)�+,+

+

)�+,+ -

+,+�+

.0/'132
4 564 187

)�+,+

+

(*),+�+

-

+,+�+

90/
132
4 564 187

+

+;: <

+�: =

+;: >

+;: ?

-

: +

@BA3A8C

564 D

AFE

DG2
H

Fig. 3.3: Seek time pro�le from center of media. The seektime of a MEMStore is largely
uncorrelated with the displacement in the Y dimension due to a large settling time required for
the X dimension seekthat is not required for the Y dimension seek.The overall seektime is the
maximum of the two independent seektimes. This graph shows the seektime for a G2 MEMStore .

Ch. 3. Performancemodeling of MEMStores 40

Averageservicetime 0.91 ms (0.20)
Maximum servicetime 2.15 ms
Averageseektime 0.57 ms (0.11)
Maximum seektime 0.78 ms
AverageX seektime 0.57 ms (0.11)
Maximum X seektime 0.78 ms
AverageY seektime 0.36 ms (0.13)
Maximum Y seektime 0.75 ms
Settling time 0.22 ms
Averageper-requestturnaround time 0.07 ms (0.06)
Maximum per-requestturnaround time 0.50 ms

Table 3.2: Basic G2 MEMStore performance characteristics. These numbers are based
on a random workload of 10,000 requests. Standard deviations are provided in parentheses.

pacity of the device, with the inter-arriv al time chosenfrom an exponential dis-

tribution with a mean of 50 ms. The sizeof the requestswas also drawn from an

exponential distribution, with a mean of 4 KB. Two thirds of the requestswere

reads and one third were writes. Again, the signi�cance of the X dimension set-

tling time is evident in that the averageseektime (0.57 ms) is equal to the average

X seektime (0.57 ms), which is greater than the averageY seektime (0.36 ms).

Averageper-requestturnaround time is determined both by the number of times

the sled must turn around before a request is serviced,and the number of times

it must turn around during a transfer becausethe request spansmore than one

track.

3.4 Spring-mass-damper seekmodel

The mediasledis, in reality, a dampedoscillator, the positioning time for which can

be found using a generalexpression.The piecewise-linearmodel is a simpli�cation

of that solution, which wasmore tractable to usein practice. This sectioncompares

the results of the piecewise-linearmodel to those of a more generalsolution used

by Hong [Hong et al. 2003].

Ch. 3. Performancemodeling of MEMStores 41

�

�����

�

�����

�
�����

���
	���
 ��
 	��

�����

�

�

�����

�

� �����

����	���
 ��
 	��

�

��� �

��� �

��� �

��� �

� � �

�! � �"

��
$#

 &%

#'�)(

Fig. 3.4: Seek time pro�le of G2 MEMStore from corner of media for Hong's mo del.
This graph is equivalent to that in Figure 3.2.

*,+�-�-

-

+�-�- .

-�-�-

/�0
1�2)3 4�3 1�5

+�-�-

-

*,+�-�-

*

.

-�-�-

6�0�1�2�3 4�3 1�5

-

-87 9

-�7 :

-�7 ;

-�7 <

.

7 -

=!>�>�?
4�3$@

>BA
@'2)C

Fig. 3.5: Seek time pro�le of G2 MEMStore from center of media for Hong's mo del.
This graph is equivalent to that in Figure 3.3.

Ch. 3. Performancemodeling of MEMStores 42

As seenin Figures 3.4 and 3.5, the seekpro�les of the G2 MEMStore using

Hong's model are virtually identical to those of the piecewise-linearmodel, shown

in Figures 3.2 and 3.3. Again using the G2 design point, seektimes in the two

models di�er, on average,by 29 � s for the seeksshown in Figure 3.4, and only

7 � s for the seeksshown in Figure 3.5. The maximum di�erence for both sets of

seekswas 55 � s. As a percentage, the largest di�erence in seektime was 9.6%, on

average.Therefore,using the piecewise-linearsimpli�cation to the generalsolution

doesnot a�ect model accuracyappreciably.

3.5 DiskSim

The model described above has beenincorporated into a completestoragesystem

simulator called DiskSim [DiskSim 2004]. Both the piecewise-linearand spring-

mass-damper seekmodelshave beenimplemented, along with caching, scheduling,

and data transfer functionalities. DiskSim was originally written to accurately

model disk drives. Adding the MEMStore functionalit y allows easy comparisons

to disk drives to be made. DiskSim can be exercisedwith various workloads such

as disk accesstraces and synthetic workloads. It can also be driven externally by

system simulators such as SimOS [Rosenblum et al. 1995].Most of the results in

this dissertation were generatedusing DiskSim con�gured as a MEMStore.

3.6 Parametersensitivity

To understand which device characteristics are important to performance, I ex-

plored the model's performancesensitivity to several di�eren t model parameters.

This section describesthe most interesting results.

Sensitivit y to per-tip data rate. Overall bandwidth to and from the media is

determined by the number of simultaneously active tips and the per-tip data rate.

Like conventional disks, MEMStores must switch tracks (or cylinders) when me-

dia transfers crosstrack boundaries.Unlike conventional disks, for which rotation

Ch. 3. Performancemodeling of MEMStores 43

��� ���

��� ���

��� ���

��� ���

��� ���

�	� ��� �
� ��� ��� ��� ��� ���
	� ��� ��� ���

���������������������������� "!$#�% ���'&��	(

) *

+

, -

. /0

1

1

-

, -

2

-

,

0

3 4

5

.

,

+

6

+

7 8�9 8;: 8$<

Fig. 3.6: Sensitivit y of MEMS-based storage device performance to the access ve-
lo cit y. The three MEMStore design points (G1, G2, and G3) are shown, with each having a
di�eren t value for actuator acceleration. The maximum point for each acceleration value repre-
sents a balance between the bene�t of higher data rates and the increasedtime required to turn
around for track and cylinder switches.

speed is independent of seekarm positioning, the time required for MEMStores

to switch tracks dependsdirectly upon the accessvelocity (Equation 3.6). Specif-

ically, becauseof their Cartesian nature, MEMStores turn around each time a

media transfer crossesa track boundary. Reversing direction requires decelerat-

ing, changing direction, and re-acceleratingto the accessvelocity. As the access

velocity increases,this turnaround time increases.Therefore,oneshould expect di-

minishing returns from increasingper-tip data rate while keepingother parameters

constant. Figure 3.6 shows the sustainedbandwidth of a singletip given increasing

per-tip data rates. The result changesbasedon the MEMStore model usedbecause

each generation has improved actuator force, leading to higher acceleration. For

each design point, there is a maximum data rate after which turnaround times

dominate transfer rates. This is an important result becauseit indicates that the

recording head and channel neednot handle ever-higher data rates, making them

simpler to manufacture and lesspower-hungry. Further, this result suggeststhat

e�orts may be better spent on improvement of other designcharacteristics.

Ch. 3. Performancemodeling of MEMStores 44

�

�����

�

�����

� �����

���	��

� ��� ���

�����

�

�

�����

� �����

������
�� ��� ���

�

��� �

�

��� �

��� �

� � �

�������

���!

�#"$��%

�'&)(* +
	,

Fig. 3.7: Delta in seek times from < -1000,1000 > giv en a spring factor of 75% (com-
pared to 0%) using a G2 MEMStore . Short seeksare made slightly longer and long seeks
are shorter.

-/.1010

0

.�010 2

0�010

35476�8
9 :�9 6�;

.1010

0

-/.�010

-

2

01010

<5476�8
9 :�9 6�;

0

0>= ?

0>= @

ACB�B$D

:�9FE

BHG

EI8�J

Fig. 3.8: Seek times for the G2 MEMStore when no settling time is required for X-
dimension seeks. Without settling time delays, Y-dimension seeksbecomea more signi�can t
component of overall seektimes.

Sensitivit y to settling time. Whenever the sled moves in the X-dimension,

some time is required to damp the sled's oscillations, as described above. This

settling time is basedon the system's resonant frequency and the abilit y of the

control system to damp out the motion. I model this by computing a settling

time constant (Equation 3.5) and adding this to the X seektime. The number of

settling time constants addedcan be varied to allow for improved control systems.

The G2 MEMStore described in Table 3.2 adds one time constant of 0.22 ms.

Figure 3.8 shows the e�ect of eliminating this settling time. It shows the result

of the same experiment as shown in Figure 3.3 without the settling time in X.

Ch. 3. Performancemodeling of MEMStores 45

Rather than uniformly decreasingseektimes by 0.22 ms, overall seektimes are

much more dependent on Y-dimension seeks,making the seekpro�le match better

with expectations for a two-dimensionalmovement.

Sensitivit y to spring forces. The e�ect of springs on seek time is shown in

Figure 3.7. This graph shows the same set of seeksas Figure 3.2, but in this

casewe only seethe di�erences (delta) in seektimes causedby the spring forces.

The net e�ect of adding the spring forces is to lengthen the time for short seeks

and to shorten the time for long seeks.The intuition behind this result is fairly

straightforward. Considera spring f actor value of 50%,meaning that the springs

push back with 50% of the actuator force when the sled is at full displacement.

If the actuators are pulling the sled towards the center, then the net force on the

sled is 150%of the actuator force. If the actuators are pulling against the springs,

then the net force is only 50%of the actuator force.Thus, at a given displacement,

the impact of the springs is greater when they hurt than when they help. During

a short seek, the displacement remains relatively constant throughout the seek,

and so the springs will hurt one phaseof the seekmore than it helps the other.

During long seeks,the displacement changessigni�cantly . As a result, the springs

tend to help noticeably in one of the two phasesand be either lesssigni�cant or

alsohelpful in the other. Therefore, long seeksare generally helped by the springs.

The springs' e�ect on turnaround times are similar to those for short seeks.

Figure 3.9showsturnaround times with and without springsfor each displacement,

assuming that the sled is moving at the constant accessvelocity in the positive

direction. Superimposedon the graph is the constant turnaround time that results

from a spring factor of 0%. In the left half of the graph, the springsact against the

actuators during the turnaround. In the right half, they help. As with short seeks,

the impact of the springs is more signi�cant when they hurt than when they help.

Ch. 3. Performancemodeling of MEMStores 46

�

�����

��� �

�����

�����

	

	
���

	
� �

�

	��
�
�

���

�
� �

�

��� 	����
�

� �

��

�

��

�

�

� �

� �

�

�

�

�

�

 "!$# %'&
()+*�,.-/,.021�3�4�# 15%
6

187
980:);9=<;7
0:>?18#�-@,A3=%'&
98#�0:B/C=)�*D15<;9FE �F�HG

�

6

187�980I)�95<;7�0I>?18#�-/,J3K%
&
9�#�0IB/C=)+*L15<�9�E ����� 6

Fig. 3.9: The e�ect of springs on turnaround time for a G1 MEMStore . This �gure
shows the turnaround time at each displacement from center given that the sled is moving at the
accessvelocity in the positive direction. Therefore, the springs hurt the turnaround time for the
negative displacements and help in the positive.

3.7 Summary

Without complete MEMStores to test and characterize, we must rely on software

models to understand their behavior. This chapter has described the model that

I developed to study MEMStores. It described the theoretical background for the

model, its implementation, the parameters I have used to compare MEMStores

to other storage devicesthroughout the dissertation, and the model's sensitivity

to changesof those parameters. It also comparedthe capabilities of this model to

those of an alternativ e model basedon the dynamics of the spring/mass/damper

system that is a MEMStore and showed that my simpli�cation gives nearly the

sameresults.

The next chapter examinesthe use of standard storage abstractions for disk

drivesand discusseshow theseabstractions will work for MEMStores as well.

4 Storageabstractions

High-level storage interfaces (e.g., SCSI and ATA) hide the complexities of me-

chanical storagedevicesfrom the systemsthat usethem, allowing them to be used

in a standard, straightforward fashion. Di�eren t deviceswith the sameinterface

can be usedwithout the systemneedingto change.Also, the systemdoesnot need

to managethe low-level details of the storagedevice.Such interfacesare common

acrossa wide variety of storage devices, including disk drives, disk arrays, and

FLASH- and RAM-based devices.

Today's storage interface abstracts a storagedevice as a linear array of �xed-

sized logical blocks (usually 512 bytes). Details of the mapping of logical blocks

to physical media locations are hidden. The interface allows systemsto read and

write rangesof blocks by providing a starting logical block number (LB N) and

a block count.

Un written contract : Although no performance speci�cations of particular

accesstypes are given, an unwritten contract exists between host systems and

storagedevicessupporting thesestandard interfaces(e.g., disks). This unwritten

contract has three terms:

{ Sequential accessesare best, much better than non-sequential.

{ An accessto a block near the previous accessin LB N spaceis usually con-

siderably more e�cien t than an accessto a block farther away.

{ Rangesof the LB N spaceare interchangeable,such that bandwidth and

Ch. 4. Storageabstractions 48

positioning delays are a�ected by relative LB N addressesbut not absolute

LB N addresses.

Application writers and systemdesignersassumethe terms of this contract in

trying to improve performance.

4.1 Disksandstandard abstractions

Disk drives are multi-dimensional machines, with data laid out in concentric cir-

cleson one or more media platters that rotate continuously. Data is divided into

�xed-sized units, called sectors(usually 512 bytes to match the LB N size). The

sector (and, thereby, LB N) sizewasoriginally driven by a desireto amortize both

positioning costs and the overhead of the powerful error-correcting codes (ECC)

required for robust magnetic data storage. The densities and speedsof today's

disk driveswould be impossiblewithout thesecodes,and many disk technologists

would like the sectorsize(and, thus, the LB N size) to grow by an order of magni-

tude to support more powerful codes.Each sectoris addressedby a tuple, denoting

its cylinder, surface,and rotational position.

LB N s are mapped onto the physical sectorsof the disk to take advantage of

the disk's characteristics. Sequential LB N s are mapped to sequential rotational

positions within a single track, which leads to the �rst point of the unwritten

contract. Since the disk is continuously rotating, once the headsare positioned,

sequential accessis very e�cien t. Non-sequential accessincurs large re-positioning

delays. Successive tracks of LB N s are traditionally mapped to surfaceswithin

cylinders, and then to successive cylinders. This leads to the secondpoint of the

unwritten contract: that distant LB N s map to distant cylinders, leading to longer

seektimes.

The linear abstraction works for disk drives,despitetheir clear three-dimensional

nature, becausetwo of the dimensionsare largely uncorrelated with LB N address-

ing. Accesstime is the sum of the time to position the read/write heads to the

Ch. 4. Storageabstractions 49

destination cylinder (seek time), the time for the platters to reach the appropri-

ate rotational o�set (rotational latency), and the time to transfer the data to or

from the media (transfer time). Seektime and rotational latency usually dominate

transfer time. The headsare positioned asa unit by the seekarm, meaningthat it

usually doesn't matter which surfaceis being addressed.Unlessthe abstraction is

stripp ed away, rotational latency is nearly impossibleto predict becausethe plat-

ters are continuously rotating and so the starting position is essentially random.

The only dimension that remains is that acrossthe cylinders, which determines

the seektime.

Seektime is almost entirely dependent on the distance traversed,not on the

absolute starting and ending points of the seek. This leads to the third point

of the unwritten contract. Ten years ago, all disk tracks had the same number

of sectors, meaning that streaming bandwidths (and, thus, transfer times) were

uniform acrossthe LB N space.Today's zoned disk geometries,however, violate

the third term sincestreaming bandwidth varies betweenzones.

4.1.1 Holesin the abstractionboundary

Over its �fteen year lifespan, several shortcomingsof the interface and the unwrit-

ten contract have beenidenti�ed. Perhapsthe most obvious violation hasbeenthe

emergenceof multi-zone disks, in which the streaming bandwidth varies by over

50% from one part of the disk to another. Someapplication writers exploit this

di�erence by explicitly using the low-numberedLB N s, which are usually mapped

to the outer tracks. Over time, this may becomea fourth term in the unwritten

contract.

Some have argued [Denehy et al. 2002; Schindler et al. 2004] that the stor-

ageinterface should be extendedfor disk arrays. Disk arrays contain several disks

which are combined to form one or more logical volumes. Each volume can span

multiple disks, and each disk may contain parts of multiple volumes. Hiding the

boundaries, parallelism, and redundancy schemesprevents applications from ex-

Ch. 4. Storageabstractions 50

ploiting them. Others have argued [Ganger 2001]that, even for disks, the current

interface is not su�cien t. For example, knowing track boundaries can improve

performancefor someapplications [Schindler et al. 2002].

The interface persists, however, becauseit greatly simpli�es most aspects of

incorporating storagecomponents into systems.Before this interfacebecamestan-

dard, systemsuseda variety of per-deviceinterfaces.Thesewere replacedbecause

they complicated systemsgreatly and madecomponents lessinterchangeable.This

suggeststhat the bar should be quite high for a new storagecomponent to induce

the intro duction of a new interface or abstraction.

It is worth noting that some systemsusefully throw out abstraction bound-

aries entirely , and this is as true in storage as elsewhere.In particular, storage

researchers have built tools [Schindler and Ganger 1999;Talagala et al. 2000] for

extracting detailed characteristics of storage devices. Such characteristics have

been used for many ends: writing blocks near the disk head [Zhang et al. 2002],

reading a replica near the disk head [Yu et al. 2000], inserting background re-

questsinto foreground rotational latencies[Lumb et al. 2002],and achieving semi-

preemptible disk I/O [Dimitrijevi �c et al. 2003].Given their success,adding support

for such ends into component implementations or even extending interfacesmay

be appropriate. But, they do not represent a casefor removing the abstractions

in general.

4.2 MEMStores andstandard abstractions

Using a standard storageabstraction for MEMStores hasthe advantage of making

them immediately usable by existing systems. Interoperabilit y is important for

getting MEMStores into the marketplace, but if the abstractions that are used

make performancesu�er, then there is reasonto considersomething di�eren t.

This sectionexplainshow the details of MEMStore operation make them natu-

rally conform to the storageabstraction usedfor disks.Also, the unwritten contract

Ch. 4. Storageabstractions 51

that applications expect will remain largely intact.

4.2.1 Accessmethod

The standard storage interface allows accesses(read s and write s) to rangesof

sizeable �xed-sized blocks. The question to ask �rst is whether such an access

method is appropriate for a MEMStore.

Is a 512-byte block appropriate, or should the abstraction usesomething else?

It is true that MEMStores can dynamically choosesubsetsof read/write tips to

engagewhen accessingdata, and that thesesubsetscan, in theory, be arbitrarily-

sized. However, enough data must be read or written for error-correcting codes

(ECC) to be e�ectiv e. The use of ECC enableshigh storage density by relaxing

error-rate constraints. Since the density of a MEMStore is expected to equal or

exceedthat of disk drives,the ECC protections neededwill be comparable.There-

fore, block sizesof the sameorder of magnitude as disks have should be expected.

Also, any block's size must be �xed, since it must be read or written in its en-

tiret y, along with the associated ECC. Accessingless than a full block, e.g., to

save energy [Lin et al. 2002], would not be possible.The
exibilit y of being able

to engagearbitrary sets of read/write tips can still be used to selectively choose

setsof these�xed-sized blocks.

Large block sizesarealsomotivated by embeddedservo mechanisms,coding for

signal processing,and the relatively low per-tip data rate of around 1 Mbit/s. The

latter means that data will have to be spread acrossmultiple parallel-operating

read/write tips to achieve an aggregatebandwidth that is on-par with that of

disk drives. Spreading data acrossmultiple read/write tips also intro ducesphys-

ical redundancy that will improve tolerance of tip failures. MEMStores will use

embedded servo [Terris et al. 1998], requiring that several bits containing posi-

tion information be read beforeany accessin order to ensurethat the media sled

is positioned correctly. Magnetic recording techniques commonly use transitions

between bits rather than the bits themselves to represent data, meaning that a

Ch. 4. Storageabstractions 52

sequenceof bits must be accessedtogether. Further, signal encodings usemulti-bit

codewords that map a sequenceof bits to valueswith interpretable patterns (e.g.,

not all onesor all zeros).The result is that, in order to accessany data after a seek,

someamount of data (10 bits in my model) must be read for servo information,

and then bits must be accessedsequentially with somecoding overhead (10 bits

per byte in my model). Given these overheads,a large block size should be used

to amortize the costs.This block will be spreadacrossmultiple read/write tips to

improve data rates and fault tolerance.

Using current storage interfaces, applications can only request ranges of se-

quential blocks. Such accessis reasonablefor MEMStores, since blocks are laid

out sequentially , and their abstraction should support the same style of access.

There may be utilit y in extending the abstraction to allow applications to request

batchesof non-contiguous LB N s that can be accessedby parallel read/write tips.

An extension like this is discussedin Section 6.3.

4.2.2 Unwritten contract

Assumingthat MEMStore accessusesthe standard storageinterface, the next step

is to seeif the unwritten contract for disks still holds. If it does,then MEMStores

can be usede�ectiv ely by systemssimply as fast disks.

The �rst term of the unwritten contract is that sequential accessis more e�-

cient than random access.This will continue to be the casefor MEMStores because

data must still be accessedin a linear fashion. The signal processingtechniques

that are commonly usedin magnetic storageare basedon transitions betweenbits,

rather than the state of the bits in isolation. Moreover, they only work properly

when state transitions comefrequently enoughto ensureclock synchronization so

they encode multi-bit data sequencesinto alternate codewords. Thesecharacteris-

tics dictate that the bits must be accessedsequentially . Designsbasedon recording

techniques other than magnetic will, most likely, encode data similarly. Once the

media sled is in motion, it is most e�cien t for it to stay in motion, so the most

Ch. 4. Storageabstractions 53

e�cien t thing to accessis the next unit of sequential data, just as it is for disks.

The secondterm of the unwritten contract is that the di�erence betweentwo

LB N numbers should map well to the physical distance between them. This is

dependent on how LB N s are mapped to the physical media, and this mapping can

easily be constructed in a MEMStore to make the secondpoint of the unwritten

contract true. A MEMStore is a multi-dimensional machine, just like a disk, but

the dimensions are correlated di�eren tly . Each media position is identi�ed by a

tuple of the X position, the Y position, and the set of read/write tips that are

enabled, much like the cylinder/head/rotational position tuples in disks. There

are thousands of read/write tips in a MEMStore, and each one accessesits own

small portion of the media.Just asthe headsin a disk drivearepositionedasa unit

to the samecylinder, the read/write tips in a MEMStore are always positioned

to the same o�set within their own portion of the media. The choice of which

read/write tips to activate has no correlation with accesstime, sinceany set can

be chosenfor the samecost oncethe media is positioned.

As with disks, seektime for a MEMStore is a function of seekdistance. Since

the actuators on each axis are independent, the overall seektime is the maximum of

the individual seektimes in each dimension,X and Y. But, the X seektime almost

always dominates the Y seektime becauseextra settle time must be included for

X seeks,but not for Y seeks.The reasonfor this is that post-seekoscillations in

the X dimension lead to o�-trac k interference,while the sameoscillations in the

Y dimension a�ect only the bit rate of the data transfer. Since the overall seek

time is the maximum of the two individual seek times, and the X seek time is

almost always greater than the Y seektime, the overall seekdistance is (almost)

uncorrelated with the Y position, as seenin Figure 3.3. In the end, despite the

fact that a MEMStore has multiple dimensionsover which to position, the overall

accesstime is (almost) only correlated with just a single dimension, which makes

a linear abstraction su�cien t.

The last term of the unwritten contract states that the LB N spaceis uniform,

Ch. 4. Storageabstractions 54

and that accesstime does not vary acrossthe range of the LB N s. The springs

that attach the media sled to the chip do a�ect seektimes by applying a greater

restoring force the further they are displaced.However, the e�ect is minimal, with

seektimes varying by at most 10{15%, meaning that overall accesstimes at the

application level would vary by far less. Also, MEMStores do not need zoned

recording. It is safeto say that the last point of the unwritten contract still holds:

rangesof the LB N spaceof a MEMStore are interchangeable.

4.3 Summary

Like MEMStores, disk drives are multi-dimensional mechanical machines. Using

a linear logical block abstraction for disk drives hides details of the device that

could be usefully exploited by systems.However, the linear logical block abstrac-

tion works well for disk drives becauseof their accesscharacteristics. This chap-

ter has explored this �t, and discussedhow the sameabstraction works well for

MEMStores for many of the samereasons.

The next two chapters examinepotential MEMStore-speci�c rolesand policies,

using the two objective tests from Chapter 1. The two tests answer the question

of whether a new device is su�cien tly di�eren t from a disk drive to warrant using

a di�eren t abstraction. The �rst test, the speci�cit y test, askswhether a potential

role or policy can apply to a disk drive as well as a MEMStore. Given that a

potential role or policy passesthe speci�cit y test, the secondtest, the merit test

decideswhether it makesenoughof an impact on performanceto justify changing

the abstraction.

5 Rolesof MEMStoresin systems

MEMStores can takeon various rolesin a system,the simplest of which is to be the

main bulk storageinstead of a disk drive. There are someapplications for which a

disk drive cannot �ll this role, perhapsbecauseof energy, cost, or sizeconstraints.

For example, cellular telephoneswill probably not be able to use disk drives for

some or all of these reasons.In these applications, MEMStores clearly have an

advantage and can �ll this role. Further, other applications may useMEMStores

simply becausethey demand the fastest performancepossible.

This chapter examinesthe useof MEMStores in three di�eren t roles.The �rst

is asa simple disk replacement, the secondis asa nonvolatile cache for disk drives,

and the third is asan augmentation of the existing disk drivesin a large disk array.

5.1 Devicesfor comparison

5.1.1 G2 MEMStore

The MEMStore used for comparisonsin this chapter is the G2 design point de-

scribed in Table 3.1.

5.1.2 IBM Microdrive

The IBM Microdrive (described in Section 2.6.2) is a miniature hard disk drive

that wasintro ducedin the late 1990'sfor usein mobile applications such asdigital

cameras,music players, and PDAs. It is highly optimized for small size and low

energyrequirements rather than accessperformance.The model usedfor compar-

Ch. 5. Rolesof MEMStores in systems 56

ison in this chapter is of the 1 GB device (model DSCM-11000).DiskSim models

of this drive were provided by the members of the Dempsey project [Zedlewski

et al. 2003]at Princeton University.

5.1.3 SeagateCheetah36ES

The Cheetah is Seagate'scurrent enterprise-market drive, meant for servers and

disk arrays. It is designedfor high performance and reliabilit y, rather than for

capacity and low cost. The speci�c drive evaluated here is the Cheetah 36ES

(ST336706LC),a 36GB disk. Clearly the Cheetahis not targeting the samemarket

as a MEMStore, but it is included here as a point of comparison to the fastest

modern disks.

5.1.4 Quantum Atlas 10K

The Atlas 10K was Quantum's (now Maxtor) high-end enterprise SCSI drive in

1999[Quantum 1999].The speci�c drive usedin someof the experiments below is

the 9 GB versionof the drivewhich rotates at 10,000RPM and hasan averageseek

time of 5.7 ms for readsand 6.19 ms for writes. The experiments usea validated

DiskSim model of this drive [Ganger and Schindler 2004].

5.1.5 •Uberdisk

The •Uberdisk is a hypothetical disk drive that approximates the performanceof

a G2 MEMStore. Its parameters given in Table 5.1 are based on extrapolating

from today's disk characteristics. The •Uberdisk is also modeled using DiskSim.

In order to do a capacity-to-capacity comparison, I use only the �rst 3.46 GB

of the •Uberdisk to match the capacity of the G2 MEMStore. The two devices

have equivalent performanceunder a random workload of 4 KB requeststhat are

uniformly distributed acrossthe capacity (3.46 GB) and arrive one at a time.

The seek curve generated for the •Uberdisk model is based on the formula

Ch. 5. Rolesof MEMStores in systems 57

Capacity 41.6 GB
Rotation speed 55,000RPM
One-cylinder seektime 0.1 ms
Full-stroke seektime 2.0 ms
Head switch time 0.01 ms
Number of cylinders 39511
Number of surfaces 2
Averageaccesstime 0.88 ms
Streaming bandwidth 100 MB/s

Table 5.1: •Ub erdisk parameters. The •Uberdisk is a hypothetical future disk driv e. Its pa-
rameters are scaled from current disks, and are meant to represent those of a disk that matches
the performance of a MEMStore. The average response time is for a random workload which
exercisedonly the �rst 3.46 GB of the disk in order to match the capacity of the G2 MEMStore .

from [Ruemmler and Wilk es1994],with speci�c valueschosenfor the one-cylinder

and full-strok e seeks.Head switch and one-cylinder seek times are expected to

decreasein the future due to microactuators integrated into disk heads,leading to

shorter settle times. With increasingtrack densities,the number of platters in disk

drives is decreasingsteadily, so the •Uberdisk has only two surfaces.The zoning

geometry is basedon simple extrapolation of current linear densities.

An •Uberdisk does not necessarily represent a realistic disk; for example, a

rotation rate of 55,000 RPM (approximately twice the speed of a dental drill)

may never be attainable in a reasonably-priceddisk drive. However, this rate was

necessaryto achieve an averagerotational latency that is small enoughto match

the averageaccesstime of the MEMStore. The •Uberdisk is meant to represent the

combination of parametersthat would be required of a disk in order to match the

performanceof a MEMStore.

If the performanceof a workload running on a MEMStore is the sameas one

running on an •Uberdisk, then any performance improvement is due only to the

intrinsic speedof the device,and not due to the fact that it is a MEMStore or an

•Uberdisk. If the workload performs di�eren tly on the two devices,then it must be

especially well-matched to the characteristics of one deviceor the other.

Ch. 5. Rolesof MEMStores in systems 58

�

�

���

� �

���

� �

���

� �

�	�

� �

��

������	��� �����	���	� ��� "!#������$�!%�'&(���) *

+
�� ,������	�-� ./�

0 1

234

5

2

3

26

78

9

6

2

:

; <

2

=

<

6

>

Fig. 5.1: Random workload performance. The workload in this experiment was 10,000
random requests uniformly distributed acrossthe capacity of the device. Each request was sized
with an exponential distribution with a mean of 4 KB. Requestswere issued every 50 ms. Error
bars show the standard deviation.

5.2 Simpledisk replacement

It is clear that MEMStores can �ll roles in systemsthat disk drives�ll today. This

section directly comparesthe performance of MEMStores to that of disk drives

using several di�eren t workloads.

This section comparesfour storage devices: the G2 MEMStore described in

Chapter 3, the SeagateCheetah 36ES disk drive, the IBM Microdrive (Model

DSCM-11000)1, and the •Uberdisk.

5.2.1 Syntheticworkloads

Figure 5.1 shows the averageresponsetime of four storage devicesunder a syn-

thetic workload of 10,000requests.The requestsare uniformly distributed across

the capacity of each device,and are sizedwith an exponential distribution with a

1DiskSim model of the Micro driv e is courtesy of the Dempsey project at Princeton Univ ersity.

Ch. 5. Rolesof MEMStores in systems 59

�

�

���

� �

���

� �

���	��
 ��
�������� ��� ��������� ����!#"$�%

& '

()*

+

(

)

(,

-.

/

,

(

0

1 2

(

3

2

,

4

Fig. 5.2: Performance comparison of G2 MEMStore , •Ub erdisk, and Cheetah36ES
with one week of the HP Cello trace from 1999.

mean of 50 ms. The MEMStore and the •Uberdisk have equal performance,with

averageresponsetimes of 1.1 ms each. The Cheetah disk has an averageresponse

time of 7 ms. The Microdrive hasvery poor random performance,with an average

responsetime of 21.2 ms. The MEMStore and the •Uberdisk both have very little

variation in responsetime, with standard deviations of 0.2 ms and 0.3 ms, respec-

tiv ely. This is in stark contrast to the wide standard deviations of the Cheetah

disk and Microdrive, with standard deviations of 5.1 ms and 17.1ms, respectively.

5.2.2 Tracereplay

Figure 5.2 shows the result of replaying a workload trace in the DiskSim simulator

con�gured as a G2 MEMStore, an •Uberdisk, and a Cheetah 36ESdisk drive. The

workload is from a departmental server at Hewlett-Packard Laboratories called

Cello, and was gathered during one week in February, 1999.Storageconnectedto

the server varied from single disks to a large disk array, and the trace collected

requeststo all of them. I isolated just those requeststhat went to a single 9 GB

Ch. 5. Rolesof MEMStores in systems 60

disk, which stored the department's Internet newsgroupfeeds.This wasoneof the

busiest disks in the system. The G2 MEMStore is only 4 GB, so I used three of

them con�gured as a single logical volume. As can be seenin the �gure, the G2

MEMStore outperformsthe Cheetah36ESdisk by just over a factor of ten (2.02ms

versus23.5ms averageresponsetime). The •Uberdisk performs slightly worsethan

the MEMStore (2.32 ms averageresponse time). This is due in part to the fact

that there are three MEMStores and only one •Uberdisk in the experiment.

5.3 MEMStores ascachesfor disks

MEMStores can also be usedto augment an existing storagehierarchy. For exam-

ple, with their low entry cost, MEMStores could be incorporated into future disk

drives as very large (1-10 GB) nonvolatile caches. The superior performance of

MEMStores would allow the cache to absorb latency-critical synchronous writes

to metadata and cache small �les to improve small read performance.For example,

Baker et al. showed that using fast nonvolatile storageto absorbsynchronousdisk

writes both at a client and at a �le server increasesperformancebetween20%and

90% [Baker et al. 1992].

To explore MEMStores asnonvolatile cachesfor disk, DiskSim wasaugmented

to allow a MEMStore to serve as a cache for a disk. The cache was 2.5 GB, the

disk was 9.2 GB, and the workload was the 1-day Cello trace from [Ruemmler

and Wilk es 1993]. This trace actually includes eight separatedevicesso the ex-

periments use a cache per disk. The results show that the averageI/O response

time is 14.66 ms for a Quantum Atlas 10K disk drive [Quantum 1999] without

any MEMStore cache vs. 4.03 ms for a disk with a G2 MEMStore (and 2.76 ms

for a single large G2 MEMStore that replaced the disk). Since most of the read

requestsare servicedfrom the client-side DRAM cache, the 3.5� performanceim-

provement, over just a disk drive, is achieved mainly by quickly servicing writes.

However, unlike DRAM-based write caching (which absorbswrites but risks los-

Ch. 5. Rolesof MEMStores in systems 61

ing data), the MEMStore cache is nonvolatile, providing the samedata integrit y

guarantees as disk drives. An alternate experiment, in which all eight devicesin

the Cello trace were re-mapped to a larger version of the Atlas 10K disk with a

single MEMStore cache, only su�ered a slight increasein averageaccesstime to

4.66 ms. This longer service time stems from an increasein queueing time since

the large single device is doing the work of eight. It shows, however, that caching

absorbsenoughof the device'sactivit y to provide a good performanceboost.

Instead of using the MEMStore as a cache, it is also possible to expose the

deviceto the operating systemsothat �le systemscanallocatespeci�c data onto it.

Dependingon their accesspatterns and performanceneeds,�le systemscould place

small structures (e.g., �le system metadata) on MEMStores, while using the disk

for streamedor infrequently-accesseddata. This could be doneon individual disks

or within RAID arrays, creating the potential for AutoRAID-lik e systems[Wilk es

et al. 1995].Further, becauseRAID arrays are lesscost-sensitive than individual

disks,arrays of MEMStores could be incorporated more cost-e�ectively into RAID

arrays, providing signi�cant performance improvements for RAID's costly write

operations.

5.4 Disk array augmentation

One of the roles that has been suggestedfor MEMStores in systems is that of

augmenting or replacing someor all of the disks in a disk array to increaseperfor-

mance [Schlosseret al. 2000;Uysal et al. 2003].However, the lower capacity and

potentially higher cost of MEMStores suggestthat it would be impractical to sim-

ply replaceall of the disks. Therefore, they represent a new tier in the traditional

storage hierarchy, and it will be important to choosewhich data in the array to

place on the MEMStores and which to store on the disks. Uysal et al. evaluate

several methods for partitioning data betweenthe disks and the MEMStores in a

disk array [Uysal et al. 2003].The experiment described below is similar, in that

Ch. 5. Rolesof MEMStores in systems 62

0

5

10

15

20

1 37 71 72 107 124 150 168

Disk number

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)
Before migration After migration

Cheetah after migration MEMStore after migration

0

5

10

15

20

1 37 71 72 107 124 150 168

Disk number

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

Before migration After migration

Cheetah after migration Uberdisk after migration

(a) MEMStore (b) •Uberdisk

Fig. 5.3: Using MEMStore s in a disk arra y. These graphs show the result of augmenting
overloaded disks in a disk array with faster storage components: a MEMStore (a) or an •Uberdisk
(b). In both cases,the busiest logical volume on the original disk (a 73 GB SeagateCheetah)
is moved to the faster device. Requests to the busiest logical volume are serviced by the faster
device, and the tra�c to the Cheetah is reduced. The results for both experiments are nearly
identical, leading to the conclusion that the MEMStore and the •Uberdisk are interchangeable in
this role (e.g., it is not MEMStore -speci�c.)

a subsetof the data that is stored on the back-end disks in a disk array is moved

to a MEMStore.

Some increase in performance is expected from doing this, as Uysal et al.

report. However, the question this dissertation asks is whether the bene�ts are

from a MEMStore-speci�c attribute, or just from the fact that MEMStores are

faster than the disks used in the disk array. Applying the speci�cit y test answers

this question by comparing the performanceof a disk array back-end workload on

three storagecon�gurations. The �rst con�guration usesjust the disks that were

originally in the disk array. The secondcon�guration augments the overloaded

disks with a MEMStore. The third doesthe samewith an •Uberdisk.

The workload is a disk trace gathered from the disks in the back-end of an

EMC Symmetrix disk array during the summer of 2001.The disk array contained

282 SeagateCheetah 73 GB disk drives, model number ST173404.From those,

the experiment usesthe eight busiest (disks 1, 37, 71, 72, 107, 124, 150, and 168),

Ch. 5. Rolesof MEMStores in systems 63

which have an averagerequest arrival rate of over 69 requestsper secondfor the

duration of the trace, which was 12.5 minutes. Each disk is divided into 7 logical

volumes, each of which is approximately 10 GB in size. For each \augmented"

disk, the busiest logical volume was moved to a faster device,either a MEMStore

or an •Uberdisk. The bene�t should be twofold: �rst, responsetimes for the busiest

logical volume will be improved, and second,tra�c to the original disk will be

reduced. Requeststo the busiest logical volume are servicedby the faster device

(either a MEMStore or an •Uberdisk), and all other requestsare serviced by the

original Cheetah disk.

Figure 5.3(a) shows the result of the experiment with the MEMStore. For each

disk, the �rst bar shows the averageresponse time of the trace running just on

the Cheetah, which is 15.1 ms acrossall of the disks. The secondbar shows the

averageresponse time of the samerequestsafter the busiest logical volume has

beenmoved to the MEMStore. Across all disks, the averageis now 5.24 ms. The

third and fourth bars show, respectively, the averageresponsetime of the Cheetah

with the reducedtra�c after augmentation, and the averageresponsetime of the

busiest logical volume, which is now stored on the MEMStore. We indeed seethe

anticipated bene�ts | the averageresponsetime of requeststo the busiest logical

volume have been reduced to 0.86 ms, and the reduction of load on the Cheetah

disk has resulted in a lower averageresponsetime of 7.56 ms.

Figure 5.3(b) shows the sameexperiment, but with the busy logical volume

moved to an •Uberdisk rather than a MEMStore. The results are almost exactly

the same, with the response time of the busiest logical volume migrated to the

•Uberdisk beingaround 0.84ms,and the overall responsetime reducedfrom 15.1ms

to 5.21 ms.

The fact that the MEMStore and the •Uberdisk provide the same bene�t in

this role meansthat this role fails the speci�cit y test. In this role, a MEMStore

really can be consideredto be just a fast disk. The workload is not speci�cally

matched to the useof a MEMStore or an •Uberdisk, but can clearly be improved

Ch. 5. Rolesof MEMStores in systems 64

�

�

���

���

���

� ��� ��� �	�
����������
������

��� �����������	���

� �

 !"

#

!

 $

%&

'

$

(

) *

+

*

$

,

-.�	/ 0�� �1��� 2�� 3�4 � 0�� 56/ 4 ���7��� 2�� 3�4 � 0��

869 ����4 3 9 3	/ 4 ���7��� 2�� 3�4 � 0�� 8 0��	��4 3��:4;3�/ 4 ���7��� 2�� 3�4<� 0��

=

>

?�=

? >

@�=

? A�B BC? B:@ ?�=�B�?�@�DE? > =

FHG I�J�K�L�M�N	O�P

Q R

STU

V

S

T

SW

XY

Z

W

S

[

\]

S

^

]

W

_

`.O	a b�P OcM�G d�P e�f G b�K gHa f O�P7M�G d�P e	f G b�K

h6i O�O�f e i e	a f O�P7M�G d�P e�f G b�K j�G K	O�e�PCe	a f O�P�M�G d�P e�f G b�K

(a) Simpledisk-constant (b) Simpledisk-linear

Fig. 5.4: Using Simpledisks in a disk arra y. These graphs show the same experiment as
shown in Figure 5.3, but with two Simpledisk models instead of MEMStores and •Uberdisks.

with the useof any faster device, regardlessof its technology.

Although it is imperceptible in Figure 5.3, the •Uberdisk gives slightly better

performancethan the MEMStore becauseit bene�ts more from workload locality

due to the pro�le of its seekcurve. The settling time in the MEMStore model

makesany seekexpensive, with a gradual increaseup to the full-strok e seek.The

settling time of the •Uberdisk is somewhat less, leading to less expensive initial

seekand a steeper slope in the seekcurve up to the full-strok e seek.The random

workload usedto comparedeviceshas no locality, but the disk array trace does.

Figure 5.4 examinesthis further by showing the sameexperiment but with two

other disk models, called Simpledisk-constant and Simpledisk-linear. Simpledisk-

constant responds to requests in a �xed amount of time, equal to that of the

response time of the G2 MEMStore under the random workload: 0.88 ms. The

response time of Simpledisk-linear is a linear function of the distance from the

last request in LB N space.The endpoints of the function are equal to the single-

cylinder and full-strok e seektimes of the •Uberdisk, which are 0.1 ms and 2.0 ms,

respectively. Simpledisk-constant should not bene�t from locality, and Simpledisk-

linear should bene�t from locality even more than either the MEMStore or the

Ch. 5. Rolesof MEMStores in systems 65

•Uberdisk. Augmenting the disk array with these devicesgives responsetimes to

the busiest logical volume of 0.92 ms and 0.52 ms, respectively. As expected,

Simpledisk-constant doesnot bene�t from workload locality and Simpledisk-linear

bene�ts more than a real disk.

Uysal et al. proposedseveral other MEMStore/disk combinations for disk ar-

rays [Uysal et al. 2003], including replacing all of the disks with MEMStores,

replacing half of the mirrors in a mirrored con�guration, and using the MEMStore

as a replacement of the NVRAM cache. In all of these cases,and in most of the

other roles outlined in Chapter 2, the MEMStore is usedsimply as a block store,

with no tailoring of accessto MEMStore-speci�c attributes. I believe that if the

speci�cit y test were applied, and an •Uberdisk was usedin each of theseroles, the

sameperformance improvement would result. Thus, the results of prior research

apply more generally to faster mechanical devices.

5.5 Summary

Most roles that MEMStores will �ll really only bene�t from the MEMStore's

intrinsic properties, i.e., that they are faster, smaller, or uselessenergy than disk

drives.Systemsthat usethem will have improved performance,of course,but they

will not require a new abstraction or interface for the MEMStore if this is the only

bene�t. The next chapter examineshow systemsmay bene�t from tailoring their

accesspolicies when using MEMStores.

6 Policiesfor accessingMEMStores

Once MEMStores are usedin systems,those systemscan implement speci�c poli-

cies to tailor their use. If MEMStores have speci�c features from which a system

can bene�t, beyond just the fact that they are faster, smaller, and use less en-

ergy than disk drives, then those policies should be MEMStore-speci�c and may

require an abstraction that is di�eren t from that usedfor current storagedevices.

The speci�cit y test and the merit test from Chapter 1 allow this question to be an-

swered.This chapter evaluatesseveral potential MEMStore-speci�c accesspolicies

using the two objective tests.

6.1 Requestscheduling

An important mechanism for improving storage device e�ciency is deliberate

scheduling of pending requests. Request scheduling improves e�ciency because

positioning delays are dependent on the relative positions of the read/write head

and the destination sector. The sameis true of MEMStores, whoseseektimes are

dependent on the distance to be traveled. Somescheduling policies are most ef-

fectively implemented inside of the device becauseof extra knowledgethat exists

there. Other policies can be implemented externally in the host software, i.e., in-

sidethe operating system,becausethey do not require extra information about the

system.This sectionexploresthe impact of di�eren t requestscheduling algorithms

on the performanceof MEMStores.

Ch. 6. Policies for accessingMEMStores 67

6.1.1 Evaluatingschedulingalgorithms

Someof the experiments below usea synthetically-generated workload called Ran-

dom. For this workload, request inter-arriv al times are drawn from an exponential

distribution; the meanis varied to simulate a rangeof workloads.All other aspects

of the requestsare independent: 67% are reads, 33% are writes, the request size

distribution is exponential with a mean of 4 KB, and request starting locations

are uniformly distributed acrossthe device'scapacity.

To study more realistic workloads, other experiments use two traces of real

disk activit y: the TPC-C trace and the Cello trace. The TPC-C trace camefrom

a TPC-C testbed, consisting of a Microsoft SQL Server atop Windows NT. The

hardware was a 300 MHz Intel Pentium I I-basedsystemwith 128 MB of memory

and a 1 GB test databasestrip ed acrosstwo Quantum Viking disk drives. The

trace captured one hour of disk activit y for TPC-C, and its characteristics are

described in more detail in [Riedel et al. 2000]. The Cello trace came from a

Hewlett-Packard systemrunning the HP-UX operating system.This trace is from

the samemachine as the trace used in Chapter 5, but is from 1992. It captured

disk activit y from a server at HP Labs usedfor program development, simulation,

mail, and news. While the total trace is actually two months in length, I report

data for a single,day-long snapshot.This trace and its characteristicsaredescribed

in detail in [Ruemmler and Wilk es1993].When replaying the traces, each traced

disk is replacedby a distinct simulated MEMStore.

As is often the casein trace-basedstudies, the simulated devicesare newer and

signi�cantly faster than the disks used in the traced systems.To explore a range

of workload intensities, I replicate an approach used in previous disk scheduling

work [Worthington et al. 1994b]:we scalethe traced inter-arriv al times to produce

a range of average inter-arriv al times. When the scale factor is one, the request

inter-arriv al times match those of the trace. When the scale factor is two, the

traced inter-arriv al times are halved, doubling the averagearrival rate.

Ch. 6. Policies for accessingMEMStores 68

6.1.2 Existingdisk-basedalgorithms

Many disk scheduling algorithms have beendevisedand studied over the years.In

this section,I describeand comparethe performanceof four of them both on a disk

drive and on a MEMStore. The �rst is �rst-come, �rst-serv ed (FCFS), which is the

simplest and often gives the poorest performance.The secondalgorithm is called

cyclical look (CLOOK LBN) and it servicesrequests in ascendingLB N order,

starting over with the lowest LB N when all requestsare \b ehind" the most recent

request [Seamanet al. 1966].The third, shortest seektime �rst (SSTF LBN) was

designedto select the request that will incur the smallest seek delay [Denning

1967], but this is rarely the way it functions in practice. Instead, since few host

operating systemshave the information neededto compute actual seekdistances

or predict seektimes, most SSTF implementations usethe di�erence betweenthe

last accessedLB N and the desiredLB N as an approximation of seektime. This

simpli�cation works well for disk drives [Worthington et al. 1994b] since LB N

numbersmap well to physical positions. The fourth, shortest positioning time �rst

(SPTF), selectsthe request that will incur the smallest positioning delay [Seltzer

et al. 1990;Jacobsonand Wilk es1991].For disks, this algorithm di�ers from others

in that it explicitly considersboth seektime and rotational latency.

The �rst three of thesealgorithms (FCFS, CLOOK LBN, and SSTF LBN) can

be easily and e�cien tly implemented in host software (i.e., the operating system)

becausethey do not require detailed knowledgeof the device.They selectrequests

to be servicedsolely basedon their requestedLB N number. They work well for

disk drivesbecauseLB N numbers map well (although not perfectly) to physical

positions. SPTF is most often implemented within a disk drive's �rm ware because

it requiresaccurateknowledgeof the state of the disk, the exact mapping of LB N s

to physical locations, and the exact predicted timing of both seeksand rotational

latencies. Request scheduling algorithms running on MEMStores that export an

interfacewhich mapsLB N s well to physical location should have similar (relativ e)

Ch. 6. Policies for accessingMEMStores 69

�

���

���

���

���

� ���

� ��� � �	� � �	� ���	�

 �

�

��

�

��

��

��

�

�

� �

�

�

�

�

�

������� ��! ! " #$��%&! �(' �*) +-,(.

/�0�/�1

0�2 34345�672�8:9

1&17;:/ 6:2	8&9

1&<7;:/

=

=7> ?

=7> @

=7> A

=7> B

C

C�> ?

C�> @

= D	= C =�= C D�= ?	=�=

E F G

HIJ

K L

M

J

N

NO

L

O

J

P

Q

M

N R

HI

O

H

Q

O

M

P

S�T�U�V U�W W X Y(U�Z&W U([T]\ ^-_(`

a�b�a�c

b$d	e�egf�h:d	i&j

c:c:k:a h7d�i&j

c(lmk:a

(a) Averageresponsetimes (b) Squaredcoe�cien ts of variation (� 2=� 2)

Fig. 6.1:Comparison of scheduling algorithms for the Random workload on the Quan-
tum A tlas 10K disk.

performanceto the samealgorithms running on disk drives.

As a reference,Figure 6.1 comparesthesefour disk scheduling algorithms op-

erating on a Quantum Atlas 10K disk drive [Quantum 1999] under the Random

workload described above. The graphs show performanceas a function of increas-

ing requestarrival rate. Two commonmetrics for evaluating disk scheduling algo-

rithms are shown. First, the averageresponsetime (queuetime plus servicetime)

shows the e�ect on averageperformance.The �gure of merit for an algorithm is

the point at which performance saturates becausethe device cannot service re-

quests fast enough.At saturation, queuesizesgrow without bound and response

times increasedramatically. As expected, FCFS saturates well before the other

algorithms as the arrival rate increases.SSTF LBN outperforms CLOOK LBN,

and SPTF outperforms all other schemes.As a secondmetric of evaluation, the

squared coe�cien t of variation (� 2=� 2) measures\fairness" (or starvation resis-

tance) [Worthington et al. 1994b;Teoreyand Pinkerton 1972];lower valuesindicate

better starvation resistance.As expected, CLOOK LBN avoids the starvation ef-

fects that characterize the SSTF LBN and SPTF algorithms. Although not shown

here, age-weighted versions of these greedy algorithms can reduce request star-

vation without unduly reducing average case performance [Seltzer et al. 1990;

Jacobsonand Wilk es1991].

Ch. 6. Policies for accessingMEMStores 70

�

���

���

���

���

� ���

� 	���� � ����� � 	���� ������� ��	����
������
�	����

� �

�

��

�

�

��

�

�

�

�

�

�

��

�

������� �"! ! # $%��&'! �%(�*) +-,%.

/�01/�2

0�3 4"465�783�98:

282<;8/ 7<3�98:

2%=>;8/

?

?�@ A

?�@ B

?�@ C

?�@ D

E

E @ A

E @ B

? F�?�? E ?�?�? E F�?�? A�?�?�? A�F�?�? G�?�?�? G�F�?�?

H IJ

KLM

N O

P

M

Q

Q R

O

R

M

S

T

P

Q U

KL

R

K

T

R

P

S

V�W�X�Y X�Z Z [\1X�]8Z X'^ W`_ a-b%c

d�e1d�f

e1g�h"h6i�j8g�k8l

f8f<m8d j<g�k8l

f'n<m<d

(a) Averageresponsetimes (b) Squaredcoe�cien ts of variation (� 2=� 2)

Fig. 6.2: Comparison of scheduling algorithms for the Random workload on the G2
MEMStore . Note the scaleof the X axis has increasedby an order of magnitude relativ e to the
graphs in Figure 6.1.

Figure 6.2 shows how well thesealgorithms work for the G2 MEMStore under

the Random workload described above for a range of request arrival rates. In

terms of both performanceand starvation resistance,the algorithms �nish in the

sameorder as for disks: SPTF provides the best performanceand CLOOK LBN

provides the best starvation resistance. However, their performance relative to

each other merits discussion.The di�erence between FCFS and the LB N -based

algorithms (CLOOK LBN and SSTF LBN) is larger for MEMStores becausethe

seek time is a much larger component of the total service time. In particular,

there is no subsequent rotational delay. Also, the averageresponsetime di�erence

between CLOOK LBN and SSTF LBN is smaller for MEMStores, becauseboth

algorithms reducethe X seektimes into the range where X and Y seektimes are

comparable.Sinceneither addressesY seeks,the greedinessof SSTF LBN is less

e�ectiv e. SPTF obtains additional performanceby addressingY seeks.

Figures 6.3(a) and 6.3(b) show how the scheduling algorithms perform for

the Cello and TPC-C workloads, respectively. The relative performance of the

algorithms on the Cello trace is similar to the Random workload. The overall

averageresponsetime for Cello is dominated by the busiest one of Cello's eight

disks; someof the individual disks have di�eren tly shaped curvesbut still exhibit

the sameordering amongthe algorithms. Onenoteworthy di�erence betweenTPC-

Ch. 6. Policies for accessingMEMStores 71

�

���

���

���

���

� ���

� � � ��� ��� ��� 	�� ���
��

� �

�

��

�

�

��

��

�

� �

� �

�

�

��� ���! #"$�!�&% ' (*)#+ �,�.- /0�

132,134

2�576&608�9.5�:!;

4!4.<!1 9.5�:!;

4$=><.1

?

@�?

A�?

B�?

C�?

D ?�?

? D ? @�? E�? A�? F�? B�?

G H

IJK

L

I

J

IM

NO

PM

I

Q

R S

I

T S

M

U

V�W X,Y!Z\[$Y!X�] ^ _*`#a X,Y>b c0W

d�e�d3f

e�g7h&h0i�j.g�k!l

f$f.m.d7j.g�k!l

f$n.m.d

(a) Cello averageresponsetimes (b) TPC-C averageresponsetimes

Fig. 6.3: Comparison of scheduling algorithms for the Cello and TPC-C workloads
on the G2 MEMStore .

C and Cello is that SPTF outperforms the other algorithms by a much larger

margin than for TPC-C at high loads.This occursbecausethe scaled-upversionof

the workload includes many concurrently-p ending requestswith very small LB N

distances between adjacent requests. LB N -based schemes do not have enough

information to choosebetweensuch requests,often causingsmall (but expensive)

X-dimension seeks.SPTF addressesthis problem and therefore performs much

better.

6.1.3 SPTF and settling time

Originally , we had expectedSPTF to outperform the other algorithms by a greater

margin for MEMStores.Our investigationssuggestthat the valueof SPTF schedul-

ing is highly dependent upon the settling time component of X dimension seeks.

With large settling times, X dimension seek times dominate Y dimension seek

times, making SSTF LBN match SPTF. With small settling times, Y dimension

seektimes are a more signi�cant component. To illustrate this, Figure 6.4 com-

pares the scheduling algorithms with the constant settling time set to zero and

0.44ms (double the default value). As expected,SSTF LBN is very closeto SPTF

when the settling time is doubled. With zerosettling time, SPTF outperforms the

other algorithms by a large margin.

Ch. 6. Policies for accessingMEMStores 72

�

���

���

���

���

� ���

� 	���� � ����� � 	���� ������� ��	����
������
�	����

� �

�

��

�

�

��

�

�

�

�

�

�

�

�

�

������� �"! ! # $%��&'! �%(�*) +-,%.

/�01/�2

0�3 4"465�783�98:

282<;8/ 7<3�98:

2%=>;8/

?

@�?

A�?

B�?

C�?

D ?�?

? E�?�? D ?�?�? D E�?�? @�?�?�? @�E�?�? F�?�?�? F�E�?�?

G HI

JKL

I

J

I

MNO

P

M

I

Q

R S

I

T S

M

U

V�W�X�Y X�Z Z [\1X�]8Z X'^ W`_ a-b%c

d�e1d�f

e�g h"h6i�j8g�k8l

f8f<m8d j<g�k8l

f%n>m8d

(a) Random with zero settling time (b) Random with double settling time

Fig. 6.4: Comparison of average performance of the Random workload for zero and
double constan t settling time on the G2 MEMStore . These are in comparison to the
default model (Random with constant settling time of 0.22 ms) shown in Figure 6.2(a). With no
settling time, SPTF signi�can tly outperforms CLOOK LBN and SSTF LBN. With the doubled
settling time, CLOOK LBN, SSTF LBN, and SPTF are nearly identical.

6.1.4 MEMStore-speci�c algorithms

Mechanical and structural di�erences betweenMEMStores and disks suggestthat

request scheduling policies that are tailored to MEMStores may provide better

performance than ones that were designed for disks. Upon close examination,

however, the physical and mechanical motions that dictate how a scheduler may

perform on a given devicecontinue to apply to MEMStores as they apply to disks.

This may be surprising at �rst glance,sincethe devicesare so di�eren t, but after

examining the fundamental assumptionsthat make schedulerswork for disks, it is

clear that those assumptionsare also true for MEMStores.

To illustrate, I haveevaluated a MEMStore-speci�c scheduling algorithm called

shortest-distance-�rst , or SDF. Given a queueof requests,the algorithm compares

the Euclidean distance betweenthe media sled'scurrent position and the o�set of

each requestand schedulesthe requestthat is closest.The goal is to exploit a clear

di�erence betweenMEMStores and disks: the fact that MEMStores position over

two dimensionsrather than only one. When considering the speci�cit y test, it is

not surprising that this quali�es asa MEMStore-speci�c policy. Disk drivesdo, in

fact, position over multiple dimensions,but predicting the positioning time based

Ch. 6. Policies for accessingMEMStores 73

0

5

10

15

20

0
 500
 1000
 1500
 2000

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

Request arrival rate (req/sec)

FCFS

CLOOK_LBN

SSTF_LBN
SDF

SPTF

Fig. 6.5:Performance of shortest-distance-�rst scheduler. A MEMStore-sp eci�c scheduler
that accounts for two-dimensional position gives no bene�t over simple schedulers that use a
linear abstraction (CLOOK LBN and SSTF LBN). This is becauseseektime in a MEMStore is
correlated most strongly with distance only in the X dimension.

on any dimension other than the cylinder distance is very di�cult outside of disk

�rm ware. SDF scheduling for MEMStores is easierand could be done outside of

the device �rm ware, assuming that the proper geometry information is exposed

through the MEMStore's interface, sinceit is basedonly on the logical-to-physical

mapping of the device'ssectorsand any defect management policies used.

Figure 6.5 comparesthe performanceof SDF to that of the other algorithms

described above. As expected, FCFS and SPTF perform the worst and the best,

respectively. CLOOK LBN and SSTF LBN don't perform as well as SPTF be-

causethey use only the LB N numbers to make scheduling decisions.The SDF

scheduler performs slightly worsethan CLOOK LBN and SSTF LBN. The reason

is that positioning time is not as well correlated with two-dimensional position

information. In fact, positioning time is only strongly correlated with positioning

over the X dimension, as shown in Section 3.3. As such, considering the two-

dimensional seekdistance doesnot provide any more utilit y over considering the

one-dimensionalseekdistance alone, as CLOOK LBN and SSTF LBN e�ectiv ely

Ch. 6. Policies for accessingMEMStores 74

do. Thus, the suggestedpolicy fails the merit test: the sameor greater bene�t can

be gainedwith existing schedulersthat don't needMEMStore-speci�c knowledge.

This is based,of course,on the fact that settling time is a signi�cant component of

positioning time. I discussthe e�ect of changing this devicecharacteristic below.

Another MEMStore-speci�c request scheduling algorithm called zone-based

shortest positioning time �rst (ZSPTF) was suggestedby Hong et al. [Hong et al.

2003].The algorithm combines the performanceof SPTF with the starvation re-

sistanceof CLOOK LBN by breaking the logical block spaceinto zones.Requests

within a single zone are serviced in SPTF order, and zones are visited in as-

cending order to improve starvation resistance.The results show somewhat im-

proved performanceover standard LB N -basedalgorithms like CLOOK LBN and

SSTF LBN, with better starvation resistancethan SPTF. However, the authors

did not run the sameexperiments with ZSPTF running on disk drives in order

to decidewhether it is a truly MEMStore-speci�c policy. From the description of

the algorithm, it is clear that it could be implemented on a disk drive, and that it

would probably give the samebene�ts.

The fundamental reasonthat scheduling algorithms developed for disks work

well for MEMStores are that seek time is strongly dependent on seekdistance,

but only the seekdistance in a single dimension. The seektime is only correlated

to a single dimension, which is exposed by the linear abstraction. The same is

true for disks when one cannot predict the rotational latencies, in which only the

distance that the heads must move acrosscylinders is relevant. Hence, a linear

logical abstraction is as justi�ed for MEMStores as it is for disks.

Of course, there may be yet-unknown policies that exploit features that are

speci�c to MEMStores, and research will surely continue in this area. When con-

sideringpotential policiesfor MEMStores, it is important to keepthe two objective

tests in mind. In particular, thesetests can exposea lack of needfor a new policy

or, better yet, the fact that the policy is equally applicable to disks and other

mechanical devices.

Ch. 6. Policies for accessingMEMStores 75

0

5

10

15

20

0
 500
 1000
 1500
 2000
 2500
 3000

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)

Request arrival rate (req/sec)

FCFS

CLOOK_LBN

SSTF_LBN
SDF

SPTF

Fig. 6.6: Performance of shortest-distance-�rst scheduler without settle time. If post-
seeksettle time is eliminated, then the seektime of a MEMStore becomesstrongly correlated with
both the X and Y positions. In this case,a scheduler that takesinto account both dimensionspro-
vides much better performance than those that only consider a single dimension (CLOOK LBN
and SSTF LBN).

6.1.5 Eliminating settling constraints

As described in Section 3.3, seek time is only strongly correlated with one of

the two positioning dimensions. This is based on the observation that di�eren t

mechanismsdetermine the settling time in each of the two axes,X and Y. Settling

time is neededto damp oscillationsenoughfor the read/write tips to reliably access

data. In all published MEMStore designs,data is laid out linearly along the Y-axis,

meaningthat oscillations in Y will appear to the channel asminor variations in the

data rate. Contrast this with oscillations in the X-axis, which pull the read/write

tips o�-trac k. Becauseone axis is more sensitive to oscillation than the other, its

positioning delays will dominate the other's, unlessthe oscillations can be damped

in near-zerotime.

If these di�ering constraints no longer held, and oscillations a�ected each

axis equally, then MEMStore-speci�c policies that take into account the result-

ing two-dimensionality of the seek pro�le, as illustrated in Figure 3.8, would

Ch. 6. Policies for accessingMEMStores 76

becomemore valuable. Now, for example, two-dimensional distance would be a

much better predictor of overall positioning time. Figure 6.6 shows the result of

repeating the experiment from Section 6.1.4, but with the post-seeksettle time

set to zero. In this case,the performanceof the SDF scheduler very closely tracks

shortest-positioning-time-�rst, SPTF, the scheduler basedon full knowledgeof po-

sitioning time. Further, the di�erence betweenSDF and the two algorithms based

on single-dimensionposition (CLOOK LBN and SSTF LBN) is now very large.

CLOOK LBN and SSTF LBN have worse performance becausethey ignore the

seconddimension that is now correlated strongly with positioning time.

6.2 Data layout

Space allocation and data placement for disks continues to be a rip e topic of

research, and the samewill be true of MEMStores. In this section, I discusshow

the characteristics of MEMStore positioning costs a�ect placement decisionsfor

small local accessesand large sequential transfers. A bipartite layout is proposed

and is shown to have somepotential for improving performance.

6.2.1 Small, skewed accesses

As with disks,short distanceseeksare faster than long distanceseeks.Unlikedisks,

MEMStores' spring restoring forcesmakethe e�ectiv eactuator force(and therefore

sledpositioning time) a function of location. Figure 6.7 shows the impact of spring

forces for seeksinside di�eren t \subregions" of a single tip's media region. The

spring forces increasewith increasing sled displacement from the origin (toward

the outermost subregionsin Figure 6.7), resulting in longer positioning times for

short seeks.As a result, distance is not the only component to be consideredwhen

�nding good placements for small, popular data items|o�set relative to the center

could also be considered.

Ch. 6. Policies for accessingMEMStores 77

0.42

0.23

0.39

0.21

0.38

0.20

0.41

0.22

0.38

0.20

0.38

0.19

0.41

0.22

0.38

0.20

0.37

0.19

0.39

0.21

0.42

0.23

0.38

0.20

0.41

0.22

0.38

0.20

0.41

0.22

0.41

0.22

0.38

0.20

0.38

0.19

0.38

0.20

0.41

0.22

0.42

0.23

0.39

0.21

0.38

0.20

0.39

0.21

0.42

0.23

Fig. 6.7: Di�erence in request service time for subregion accesses. This �gure divides
the region accessibleby an individual probe tip into 25 subregions,each 500� 500 bits. Each box
shows the averagerequest service time (in milliseconds) for random requestsstarting and ending
inside that subregion. The upper numbers represent the service time when the default settling
time is included in calculations; numbers in italics represent the servicetime for zero settling time.
Note that the service time di�ers by 14{21% between the centermost and outermost subregions.

6.2.2 Large, sequentialtransfers

Streamingmediatransfer rates for MEMStores and disksaresimilar: 17.3{25.2MB/s

for the Quantum Atlas 10K [Quantum 1999];44.8MB/s for MEMStores. Position-

ing times, however, are an order of magnitude shorter for MEMStores than for

disks. This makespositioning time relatively insigni�can t for large transfers (e.g.,

hundredsof sectors).Figure 6.8 shows the requestservicetimes for a 256KB read

with respect to the X distancebetweenthe initial and �nal sledpositions. Requests

traveling 1250cylinders (e.g., from the sledorigin to maximum sleddisplacement)

incur only a 10%penalty. This lessensthe importance of ensuring locality for data

that will be accessedin large, sequential chunks. In contrast, seekdistance is a

signi�cant issuewith disks, where long seeksmore than double the total service

time for 256 KB requests.

Ch. 6. Policies for accessingMEMStores 78

�

��� �

�

��� �

�

��� �

�

��� �

	

�
���� �
����� ������� �����

� �

� �

� �

�

�

�

��

�

��

!#"%$ &�' (%)�*,+.- *,/10 $)�"2+%3 &�4

576�8�9 ��: 8<;28�9 6�= >?8A@�= BA8

Fig. 6.8:Large (256 KB) request service time vs. X seek distance for a G2 MEMStore .
Becausethe media accesstime is large relativ e to the positioning time, seeking the maximum
distance in X increasesthe service time for large requests by only 12%.

6.2.3 Bipartite layout

The bipartite layout schemetakesadvantage of the above characteristics by plac-

ing small data in the centermost subregions.Long, sequential streaming data are

placedin outer subregions.Two layouts are tested: a �v e-by-�v e grid of subregions

(Figure 6.7) and a simple columnar division of the LB N spaceinto 25 columns

(e.g., column 0 contains cylinders 0{99, column 1 contains cylinders 100{199,etc.).

The di�erence betweenthesetwo divisions is that the subregionedlayout requires

knowledgeof the two-dimensionalnature of the media, while the columnar layout

requiresno knowledgeof the media layout; it only needsto divide the logical LB N

spaceby the number of columns desired(i.e., 25 in this case).

I comparetheselayout schemesagainst the \organ pipe" layout [Vongsathorn

and Carson 1990; Ruemmler and Wilk es 1991], an optimal disk-layout scheme,

assumingno inter-request dependencies.In the organ pipe layout, the most fre-

quently accessed�les are placed in the centermost tracks of the disk. Files of de-

creasingpopularit y aredistributed to either sideof center, with the least frequently

accessed�les located closerto the innermost and outermost tracks. Although this

schemeis optimal for disks, �les must be periodically shu�ed to maintain the fre-

Ch. 6. Policies for accessingMEMStores 79

�

�����

�����

�����

���
	

���
�

�����

�����

�����

���
	

���������� � ������������ "!#�$�
%&�('(�

)�*

+,

-.

+

-/

/

+0

0

1

2

3

+

4

3

0

5

6�786:9 78;$<>=�6@?BAC?:9 D:EBFB;G9H<8A�786I9@J K

7MLNEBOP6:=�;

Fig. 6.9:Comparison of layout schemes for the G2 MEMStore . For the default device, the
organ pipe, subregioned,and columnar layouts achieve a 12{15% performance improvement over
a random layout. Further, for the \settling time = 0" case,the subregioned layout outperforms
the others by an additional 12%. It is interesting to note that an optimal disk layout technique
does not necessarilyprovide the best performance for a MEMStore .

quencydistribution. Further, the layout requiressomestate to be kept, indicating

each �le's popularit y.

To evaluate theselayouts, I useda workload of 10,000whole-�le read requests

whose sizes are drawn from the �le size distribution reported in [Ganger and

Kaashoek 1997]. In this size distribution, 78% of �les are 8 KB or smaller, 4%

are larger than 64 KB, and 0.25% are larger than 1 MB. For the subregioned

and columnar layouts, the large �les (larger than 8 KB) were mapped to the

ten leftmost and ten rightmost subregions,while the small �les (8 KB or less)

were mapped to the centermost subregion. To conservatively avoid second-order

locality within the large or small �les, I assigneda random location to each request

within either the large or the small subregions.For the organ pipe layout, I used

an exponential distribution to determine �le popularit y, which was then used to

place �les.

Figure 6.9 shows that all three layout schemesachieve a 12{15% improvement

Ch. 6. Policies for accessingMEMStores 80

in averageaccesstime over a simple random �le layout. Subregionedand columnar

layouts for MEMStores match the organ pipe layout, even with the conservative

model, and have no need for keeping popularit y data or periodically reshu�ing

�les on the media. For the \no settling time" case,the subregionedlayout provides

the best performanceas it addressesboth X and Y.

Applying the speci�cit y test to this potential data layout schemereveals that

the layout is, indeed, speci�c to MEMStores, since there is no corresponding dif-

ferencein positioning time acrossregions of a disk drive. However, applying the

merit test shows that this layout scheme may not provide enough bene�t to the

systemto require changing the interface to exposethe requisite information to the

system.The columnar layout may be usedwith a normal linear LB N abstraction

and provides almost exactly the samebene�t as both the organ pipe and subre-

gionedlayout. Therefore, by the merit test, it is not clear that taking advantage of

this di�erence in MEMStore positioning dynamicsrequiresa changein the device's

abstraction.

6.3 Exploitingtip-subsetparallelism

One MEMStore feature that may not be exploited by the standard model of stor-

age is their interesting form of internal accessparallelism. Speci�cally , a subset

of the 1000sof read/write tips can be usedin parallel to provide high bandwidth

media access,and the particular subset does not have to be statically chosen.In

contrast to the disk arms in a disk array, which can each seek to independent

locations concurrently , all tips are constrained to accessthe same relative loca-

tion in their respective regions.For certain accesspatterns, however, dynamically

selecting which subsetsof tips should accessdata can provide great bene�ts to

applications. This section describes the available degreesof freedom MEMStores

can employ in parallel accessto data and how they can be usedfor two classesof

applications.

Ch. 6. Policies for accessingMEMStores 81

4

8

0

18

22

26

31

44

53

40

49

36

45

54

63

67

58

71

56

62

72

76

80

9

13

17

5

27

10 11

12 14

15 16

6

3

7

1 2

19 20

21 23

24 25

28 29

30 32

37 38

39 41

42 43

46 47

48 50

51 52

55

57 59

60 61

64 65

66 68

69 70

73 74

75 77

78 79

33 34 35

Fig. 6.10:Data layout with an equiv alence class of LB N s highligh ted. The LB N s marked
with ovals are at the same location within each square and, thus, comprise an equivalence class.
That is, they can potentially be accessedin parallel.

6.3.1 Background

Although a MEMStore includes thousands of read/write tips, it is not possible

to do thousands of entirely independent reads and writes. There are signi�cant

limitations on what locations can be accessedin parallel. As a result, previous

research on MEMStores has treated tip parallelism only as a means to increase

sequential bandwidth and to deal with tip failures. This section de�nes the sets

of LB N s that can potentially be accessedin parallel, and the constraints that

determine which subsetsof them can actually be accessedin parallel.

When a seek occurs, the media is positioned to a speci�c o�set relative to

the entire read/write tip array. As a result, at any point in time, all of the tips

accessthe same locations within their squares.An example of this is shown in

Figure 6.10 in which LB N s at the samelocation within each squareare identi�ed

Ch. 6. Policies for accessingMEMStores 82

with ovals. This set of LB N s form an equivalence class. That is, becauseof their

position they can potentially be accessedin parallel. It is important to note that

the sizeof an equivalenceclassis very small relative to the total number of LB N s

in a MEMStore. In the G2 MEMStore described in Chapter 3, the size of an

equivalenceclass is 100, meaning that only 100 LB N s are potentially accessible

in parallel at any point out of a total of 6,750,000total LB N s in the device.

Only a subsetof any equivalenceclasscan actually be accessedat once.Limi-

tations arise from two factors: the power consumption of the read/write tips, and

components that are shared between read/write tips. It is estimated that each

read/write tip will consume1{3 mW when active and that continuously position-

ing the mediasledwould consume100mW [Schlosseret al. 2000].Assuminga total

power budget of 1 W, only between 300 and 900 read/write tips can be utilized

in parallel which, for realistic devices,translates to 5{10% of the total number of

tips. This givesthe true number of LB N s that can actually be accessedin parallel.

In the G2 MEMStore, only 10 of 100 LB N s in an equivalenceclasscan actually

be accessedin parallel.

In most MEMStore designs,several read/write tips will share physical com-

ponents, such as read/write channel electronics,track-following servos,and power

buses.Such component sharing makes it possible to �t more tips, which in turn

increasesvolumetric density and reducesseekdistances.It also constrains which

subsetsof tips can be active together, reducing
exibilit y in accessingequivalence

classesof LB N s.

For each LB N and its associated equivalence class, a con
ict relation can

be de�ned which restricts the equivalenceclassto re
ect shared component con-

straints. This relation doesnot actually reducethe number of LB N s that can be

accessedin parallel, but will a�ect the choice of which LB N s can be accessed

together. As real MEMStores have not yet been built, there is no real data on

which components might be shared and so I cannot de�ned any realistic con
ict

relations. Therefore, this is an avenue of future work to be addressedwhen real

Ch. 6. Policies for accessingMEMStores 83

designshave beenimplemented.

Figure 6.10 shows a simple example illustrating parallel-accessibleLB N s. If

onethird of the read/write tips can be active in parallel, a systemcould chooseup

to 3 LB N s out of a given equivalenceclass(shown with ovals) to accesstogether.

The three LB N s chosen could be sequential (e.g., 33, 34, and 35), or could be

disjoint (e.g., 33, 38, and 52). In each case,all of thoseLB N s would be transferred

to or from the media in parallel.1

SomeMEMStore designsmay have an additional degreeof freedom:the abilit y

to microposition individual tips by several LB N s along the X dimension. This

capability exists to deal with manufacturing imperfectionsand thermal expansion

of the media due to ambient heat. Sincethe media sled could expand or contract,

sometips may need to servo themselves slightly to addressthe correct columns.

By allowing �rm ware to exploit this micropositioning, the equivalenceclassfor a

given LB N grows by allowing accessto adjacent cylinders. MEMStore designers

indicate that micropositioning by up to 5 columnsin either direction is a reasonable

expectation. Of course,each tip can accessonly onecolumn at a time, intro ducing

additional con
ict relations.

For example,supposethat the deviceshown in Figure 6.10canmicroposition its

tips by oneLB N position along the X dimension.This will expandthe equivalence

class shown in the �gure to include the two LB N s to the immediate left and

right of the current LB N . The size of the equivalenceclasswill increaseby 3� .

Micropositioning may not always be available as predicted by a simple model. If

the media has expandedor contracted so far that the tip must already position

itself far away from its central point, the micropositioning options will be reduced

or altered. Lastly, micropositioning doesnot allow tips to accessdata in adjacent

tips' squaresbecauseof inter-square spacing.

1Although it is not important to host software, the pictures showing tracks within contiguous
rows of squaresare just for visual simplicit y. The tips over which any sector is strip ed would be
spread widely acrossthe device to distribute the resulting heat load and to create independence
of tip failures. Lik ewise, the squaresof sequentially numbered LB N s would be physically spread.

Ch. 6. Policies for accessingMEMStores 84

Tracks potentially accessible

by micro-positioning

Fig. 6.11:Microp ositioning. In the CMU design,the probe tips must havesome�ne-p ositioning
capabilit y in order to deal with thermal expansion of the media sled. This capabilit y could be
exposedthrough the interface, allowing the system to accessdata in nearby tracks and expanding
the range of potentially-accessible data once the sled is positioned. The probe tip in the simple
example above could position itself to accesstwo tracks on either side of the basetrack, increasing
the number of potentially-accessible sectors from seven to thirt y-�v e. In realit y, the probe tips
will probably be able to micro-position over �v e to ten tracks in either direction.

In summary, for each LB N , an equivalenceclassof LB N s that can be poten-

tially accessedin parallel with it exists. The members of the set are determined

by the LB N 's position, and the size of the set is determined by the number of

read/write tips in the device and any micropositioning freedom. Further, only a

subset (e.g., 5{10%) of the equivalence class can actually be accessedin paral-

lel. The size of the subset is determined by the power budget of the device. If

read/write tips sharecomponents, then there will be constraints on which LB N s

from the set can be accessedtogether. Theseconstraints are expressedby con
ict

relations. Lastly, an equivalence class can be expanded signi�cantly (e.g., 11�)

Ch. 6. Policies for accessingMEMStores 85

p Level of parallelism 3
N Number of squares 9
Sx Sectorsper squarein X 3
Sy Sectorsper squarein Y 3
M Degreeof micropositioning 0
Nx Number of squaresin X p 3
Ny Number of squaresin Y N =p 3
ST Sectorsper track Sy � Nx 9
SC Sectorsper cylinder ST � Ny 27

Table 6.1: Device parameters. These are the parameters required to determine equivalence
classesof LB N s that can be potentially accessedin parallel. The �rst �v e parameters are de-
termined by the physical capabilities of the device and the last four are derived from them. The
values in the rightmost column are for the simple device shown in Figure 6.10.

due to micropositioning capability.

6.3.2 Exposingtip-subsetparallelism

This section describes equations and associated device parameters that a system

can useto enumerate LB N s in a MEMStore that can be accessedin parallel.

The goal is that the systembe able, for a given LB N , to determine the equiv-

alence class of LB N s that are parallel-accessible.Determining this class for a

MEMStore requires four parametersthat describe the virtual geometry of the de-

vice and one which describes the degreeof micropositioning. Table 6.1 lists them

with examplevaluestaken from the deviceshown in Figure 6.10.The level of par-

allelism, p, is set by the power budget of the device,as described in Section 6.3.1.

The total number of squares,N , is de�ned by the virtual geometry of the device.

Sincesequential LB N s are laid out over as many parallel tips as possibleto opti-

mize for sequential access,the number of squaresin the X dimension,Nx , is equal

to the level of parallelism, p. The number of squaresin the Y dimensionis the total

number of squares,N , divided by p. The sectorsper squarein either direction, Sx

and Sy , is determined by the bit density of each square.Theseparameters,along

with Nx and Ny , determine the number of sectorsper track, ST , and the number

of sectorsper cylinder, SC .

Ch. 6. Policies for accessingMEMStores 86

Without micropositioning, the size of an equivalenceclass is simply equal to

the total number of squares,N , asthere is an equivalent LB N in each square.The

degreeof micropositioning, M , is another deviceparameterwhich givesthe number

of cylinders in either direction over which an individual tip can microposition. M

has the e�ect of making the equivalenceclass larger by a factor of 2M + 1. So,

if M in Figure 6.10 were 1, then the equivalenceclassfor each LB N would have

(at most) 27 LB N s in it. Micropositioning is opportunistic since,if the media has

expanded,the micropositioning range will be usedjust to stay on track.

Given a single LB N l, a simple two-step algorithm yields all of the other

LB N s in the equivalenceclassE l . The �rst step maps l to an x; y position within

its square.The secondstep iterates through each of the N squaresand �nds the

LB N s in that squarethat are in the equivalenceclass.

The �rst step usesthe following formulae:

x l = bl=SC c

yl =

8
><

>:

(bl=Nxc % Sy) if bl=ST c even

(Sy � 1) � (bl=Nxc % Sy) otherwise

The formula for x l is simply a function of l and the sectors per cylinder. The

formula for yl takes into account the track reversalsdescribed in Section 2.4 by

reversing the y position in every other track.

The secondstep usesthe following formula, LB N l ;i , which givesthe LB N that

is parallel to l in squarei .

LB N l ;i = (x l � SC)

+(i % Sx)

+(bi=Nxc � ST)

+

8
><

>:

(yl � Nx) if bi =Nxc + x l even

(((Sy � 1) � yl) � Nx) otherwise

Ch. 6. Policies for accessingMEMStores 87

Like the formula for yl , this formula takestrack reversalsinto account.

The secondstep of the algorithm is to �nd the LB N s in each square that

comprisethe equivalenceclassE l . Ignoring micropositioning, the equivalenceclass

is found by evaluating LB N l ;i for all N squares:

E l = f LB N l ;0; : : : ; LB N l ;N � 1g

If the MEMStore supports micropositioning, then the sizeof the equivalenceclass

increases.Rather than using just x l , LB N l ;i is evaluated for all of the x positions in

each squarethat are accessibleby micropositioning; i.e., for all x's in the interval

[x l � M ; x l + M].

Oncea systemknows the equivalenceclass,it can then, in the absenceof shared

components, chooseany p sectorsfrom that classand be guaranteed that they can

be accessedin parallel. If there are sharedcomponents, then the con
ict relations

will have to be checked when choosing sectorsfrom the class.

6.3.3 Expressingparallel requests

SinceLB N numbering is tuned for sequential streaming, requeststhat can be ser-

viced in parallel by the MEMStore may include disjoint rangesof LB N s.How these

disjoint LB N rangesare expressedin
uences how theserequestsare scheduled at

the MEMStore. That is, requestsfor disjoint setsof LB N s may be scheduledsep-

arately unlessthere is somemechanism to tell the storagedevicethat they should

be handled together.

Oneoption is for the deviceto delay scheduling of requestsfor a �xed window of

time, allowing concurrent scheduling of equivalent LB N accesses.In this scheme,

a host would sendall of the parallel requestsas quickly as possiblewith ordinary

read and write commands. This method requires additional request-tracking

work for both the host and the device,and it will su�er somelossof performance

if the host cannot deliver all of the requestswithin this time window (e.g., the

Ch. 6. Policies for accessingMEMStores 88

delivery is interleaved by requestsfrom another host).

Another option is for the host to explicitly group the parallel-accessiblerequests

into a batch, informing the device of which media transfers the host expects to

occur in parallel. With explicit information about parallel-accessibleLB N s from

the MEMStore, the host can properly construct batchesof parallel requests.This

secondoption canbeeasierfor a host to work with and moree�cien t at the device.

6.3.4 Application interface

An application writer needsa simple API that enablesthe useof the equivalence

classconstruct and the explicit batching mechanism. The following functions allow

applications to be built that can exploit the parallelism of a MEMStore:

get par al lelism() returns the device parallelism parameter, p, described in Ta-

ble 6.1.

batch() marks a batch of read and write commands that are to accessthe

media in parallel.

get equivalent(LB N) returns the LB N 's equivalenceclass,ELB N .

check con
icting(LB N 1; LB N 2) returns TRUE if there is a con
ict between

LB N 1 and LB N 2 such that they cannot be accessedin parallel (e.g., due

to a sharedcomponent).

get ensemble(LB N) returns LB Nmin and LB Nmax values, where LB Nmin �

LB N � LB Nmax . This denotesthe sizeof a request (in consecutive LB N s)

that yields the most e�cien t device access.For MEMStore, LB Nmax �

LB Nmin = ST , which is the number of blocks on a single track contain-

ing LB N .

All of thesefunctions can executein either the devicedriver or an application's

storage manager, with the necessarydevice parameters exposed through SCSI

mode pages.

Ch. 6. Policies for accessingMEMStores 89

p Level of parallelism 10
N Number of squares 100
Sx Sectorsper squarein X 2500
Sy Sectorsper squarein Y 27
M Degreeof micropositioning 0
Nx Number of squaresin X 10
Ny Number of squaresin Y 10
ST Sectorsper track 270
SC Sectorsper cylinder 2700

Table 6.2: Device parameters for the G2 MEMStore . The parameters given here take into
account the fact that individual 512 byte LB N s are strip ed across64 read/write tips each.

6.3.5 Experimentalsetup

For the purposesof this work, the MEMStore component of DiskSim was aug-

mented to servicerequestsin batches.As a batch is serviced,as much of its data

accessaspossibleis donein parallel given the geometry of the deviceand the level

of parallelism it can provide. If all of the LB N s in the batch are parallel-accessible,

then all of its media transfer will take place at once. Using the �v e basic device

parametersand the algorithm described in Section 6.3.2, an application can gen-

erate parallel-accessiblebatches and e�ectiv ely utilize the MEMStore's available

parallelism.

The relevant parametersfor the G2 MEMStore are shown in Table 6.2. The G2

MEMStore has6400probe tips, and therefore6400total squares.However, a single

LB N is always strip ed over 64 probe tips so N for this device is 6400=64 = 100.

The energy requirements of the tips dictate that only 640 out of 6400read/write

tips can be active simultaneously, making p = 10. Therefore, for a single LB N ,

there are 100LB N s in an equivalenceclass,and out of that set any 10 LB N s can

be accessedin parallel.

Each physical square in the G2 device contains a 2500� 2500 array of bits.

Each 512 byte LB N is strip ed over 64 read/write tips. After striping, the virtual

geometry of the device is a 10� 10 array of virtual squares,with sectorslaid out

vertically along the Y dimension. After servo and ECC overheads,27 512-byte

Ch. 6. Policies for accessingMEMStores 90

sectors�t along the Y dimension,making Sy = 27. Lastly, Sx = 2500,the number

of bits along the X dimension.The total capacity for the G2 MEMStore is 3.46GB.

It has an averagerandom seektime of 0.56 ms, and has a sustainedbandwidth of

38 MB/s.

6.3.6 Accessingblocks for free

As a workload runs on a MEMStore, someof the mediabandwidth may beavailable

for background accessesbecausethe workload is not utilizing the full parallelism

of the device. Every time the media sled is positioned, a full equivalenceclassof

LB N s is available out of which up to p sectorsmay be accessed.Someof those p

sectorswill be usedby the foregroundworkload, but the rest can be usedfor other

tasks.Given an interface that exposesthe equivalenceclass,the systemcan choose

which LB N s to access\for free." This is similar to freeblock scheduling for disk

drives [Lumb et al. 2000],but doesnot require low-level servicetime predictions;

the systemcansimply pick available LB N s from the equivalenceclassasit services

foreground requests.

To evaluate how much \free bandwidth" is available, I ran DiskSim with a

foreground workload of random 4 KB requests,and batched those requestswith

background transfers for other LB N s in the equivalence class. The goal of the

background workload was to scan the entire device until every LB N has been

read at least once, either by the foreground or background workload. Requests

that were scheduled in the background are only those for LB N s that have not

yet beentouched, while the foreground workload is random. Scanning large frac-

tions of a deviceis typical for backup, decision-support, or data integrit y checking

operations. As some MEMStore designsmay utilize recording media that must

be periodically refreshed, this refresh background task could be done with free

bandwidth.

In the default G2 MEMStore model, p = 10, meaning that 10 LB N s can be

accessedin parallel. The 4 KB foreground accesseswill take 8 of these LB N s.

Ch. 6. Policies for accessingMEMStores 91

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

P
er

ce
nt

 c
om

pl
et

e

Time (minutes)

p = 20, M = 5
p = 20, M = 0
p = 10, M = 5
p = 10, M = 0

Fig. 6.12: Reading the entire device for free. In this experiment, a random workload of
4 KB requests is run in the foreground, with a background task that scansthe entire device for
free. The graph shows the percentage of the G2 MEMStore scanned as a function of time. For
p = 10; M = 0, the scan is 95% complete at 1120 minutes and �nishes at 3375 minutes. For
p = 20; M = 0, the scan is 95% complete at 781 minutes and �nishes at 2290 minutes. Allo wing
5 tracks of micropositioning allows more options for the background task. At p = 10; M = 5, the
scan is 95% complete at 940 minutes and completes at 1742 minutes. At p = 20; M = 5, the scan
is 95% complete at 556 minutes and completes at 878 minutes.

Foreground requests, however, are not always aligned on 10 LB N boundaries,

sincethey are random. In thesecases,the media transfer will take two (sequential)

accesses,each of 10 LB N s. In the �rst case,80% of the media bandwidth is used

for data transfer, and in the secondcase,only 40% is used.By using the residual

2 and 12 LB N s, respectively, for background transfers, I was able to increase

media bandwidth utilization to 100%.

Figure 6.12 shows the result of running the foreground workload until each

LB N on the device has been touched either by the foreground workload or for

free. As time progresses,more and more of the device has been read, with the

curve tapering o� as the set of untouched blocks shrinks. By the 1120th minute,

95% of the device has been scanned.The tail of the curve is very long, with the

last block of the devicenot accesseduntil the 3375th minute. For the �rst 95% of

Ch. 6. Policies for accessingMEMStores 92

p M Time to scan95% Time to scan100%
20 5 556 minutes 878 minutes
20 0 781 minutes 2290minutes
10 5 940 minutes 1742minutes
10 0 1120minutes 3375minutes

Table6.3:Reading the entire device for free. The time to read the entire device is dominated
by the last few percent of the LB N s. Greater p allows the device to transfer more LB N s in
parallel, and increasesthe set of LB N s that the background task can choosefrom while gathering
free blocks. Increasing M increasesthe size of the equivalenceclassand, thus, the number of free
blocks for the background task to choosefrom.

the LB N space,an averageof 6.3 LB N s are provided to the scanapplication for

free with each 4 KB request.

To see the e�ect of allowing more parallel access,I increased p in the G2

MEMStore to be 20. In this case,more free bandwidth is available and the device

is fully scannedmorequickly. The �rst 95%of the deviceis scannedin 781minutes,

with the last block being accessedat 2290minutes. For the �rst 95% of the LB N

space,an averageof 11 LB N s are provided to the scanapplication for free.

Micropositioning signi�cantly expands the size of equivalence classes.This

gives the background task many more options from which to choose, reducing

the total runtime of the background scan.To quantify this, I set M = 5, expand-

ing the sizeof the equivalenceclassesfrom 100LB N s to 1100LB N s. In both the

p = 10 caseand the p = 20 case,the device is scannedsigni�cantly faster. With

p = 10 and M = 5, the device scantime is reducedto 1742minutes; with p = 20

and M = 5, it is reducedto 878 minutes.

6.3.7 E�cient 2D table access

Serializing a two-dimensional data structure (e.g., large non-sparsematrices or

database tables) into a linear LB N spaceallows e�cien t accessesalong only a

single dimension of that structure. Hence, a data layout that optimizes for the

most common accessmethod (i.e., accessalong one dimension) is chosenwith the

understanding that accessesalong the other dimension are ine�cien t. To make

Ch. 6. Policies for accessingMEMStores 93

accessesin both dimensionse�cien t, one can create two copiesof the samedata;

one copy is then optimized for row order accessand the other for column or-

der access[Ramamurthy et al. 2002]. Unfortunately, not only does this double

the required space,but updates must propagate to both replicas to ensuredata

integrit y.

This section describes how MEMStores can be used to e�cien tly accesstwo

dimensional data in both row- and column-major orders. It illustrates the advan-

tagesof using MEMStores with a slightly-mo di�ed storage interface for database

table scansthat accessonly a subsetof columns.

Relational database tables

Relational databasesystems(RDBS) use a scan operator to sequentially access

data in a table. This operator scansthe table and returns the desiredrecords for

a subsetof attributes (table �elds). Internally, the scanoperator issuespage-sized

I/Os to the storagedevice,storesthe pagesin its bu�ers, and readsthe data from

the bu�ered pages.A single page (t ypically 8 KB) contains a �xed number of

complete recordsand somepagemetadata overhead.

The pagelayout prevalent in commercialdatabasesystemsstoresa �xed num-

ber of recordsfor all n attributes in a single page.Thus, when scanninga table to

fetch records of only one attribute (i.e., column-major access),the scanoperator

still fetchespageswith data for all attributes, e�ectiv ely reading the entire table

even though only a subsetof the data is needed.To alleviate the ine�ciency of a

column-major accessin this data layout, an alternativ e pagelayout vertically par-

titions data to pageswith a �xed number of recordsof a single attribute [Copeland

and Khosha�an 1985].However, record updatesor appendsrequire writes to n dif-

ferent locations, making such row-order accessine�cien t. Similarly, fetching full

recordsrequiresn single-attribute table accessesand n � 1 joins to reconstruct the

entire record.

With proper allocation of data to the LB N spaceof a MEMStore, one or

Ch. 6. Policies for accessingMEMStores 94

#0

15

0

18

#1

16

1

19

#2

17

2

20

��������� ��	�
 ����
�
 ���

into a capsule

����������� ������� �
������ �����
�� BNs

1 4

8

21

4

6

6

7

10

12

10 12
����� � � �� !#"�$ �

����� � � �� !#"�$ �

����� � � �� !#"�$ �

8

%'&)(�*�&,+.- / 0 l
0�1)1,&)%'%

a2

a1

2

3

3 4

56

7

3 8

9

Fig. 6.13:Data allo cation with capsules. The capsuleon the left shows packing of 12 records
for attributes a1 and a2 into a single capsule. The numbers within denote record number. The
12-record capsulesare mapped such that each attribute can be accessedin parallel and data from
a single attribute can be accessedsequentially , as shown on the right. The numbers in the top
left corner are the LB N s of each block comprising the capsule.

more attributes of a single record can be accessedin parallel. Given a degreeof

parallelism, p, accessinga single attribute yields higher bandwidth by accessing

more data in parallel. When accessinga subset of k + 1 attributes, the desired

records can exploit the internal MEMStore parallelism to fetch records in lock-

step, eliminating the needfor fetching the entire table.

Data layout for MEMStore

To exploit parallel data accessesin both row- and column-major orders, I de�ne

a capsule as the basic data allocation and accessunit. A single capsulecontains

a �xed number of records for all table attributes. As all capsuleshave the same

size, accessinga single capsule will always fetch the same number of complete

records.A single capsuleis laid out such that reading the whole record (i.e., row

order access)results in parallel accessto all of its LB N s. The capsule'sindividual

LB N s are assignedsuch that they belong to the sameequivalenceclass,o�ering

parallel accessto any number of attributes within.

Adjacent capsulesare laid next to each other such that records of the same

attribute in two adjacent capsulesare mapped to sequential LB N s. Such a layout

Ch. 6. Policies for accessingMEMStores 95

ensuresthat reading sequentially acrosscapsulesresults in repositioning only at

the end of each track or cylinder. Furthermore, this layout ensuresthat sequen-

tial streaming of one attribute is achieved at the MEMStore's full bandwidth by

engagingall tips in parallel. Speci�cally , this sequential walk through the LB N

spacecan be realizedby multiple tips reading up to p sequential LB N s in parallel,

resulting in a column-major accessat full media bandwidth.

A simple example that lays records within a capsule and maps contiguous

capsulesinto the LB N spaceis illustrated in Figure 6.13. It depicts a capsule

layout with 12 records consisting of two attributes, a1 and a2, which are 1 and

2 units in size, respectively. It also illustrates how adjacent capsulesare mapped

into the LB N spaceof the three-by-three MEMStore example from Figure 6.10.

Finding the (possibly non-contiguous) LB N s to which a single capsuleshould

be mapped, as well as the location for the next LB N , is done by calling the

get equivalent() and get ensemble()functions. In practice, oncea capsulehasbeen

assignedto an LB N and this mapping is recorded, the locations of the other

attributes can be computed from the valuesreturned by the interface functions.

Allocation

The following describesthe implementation details of the capsulelayout described

in the previous section.This description servesasa condensedexampleof how the

interface functions can be usedin building similar applications.

Data allocation is implemented by two routines that call the functions of the

MEMStore interface. These functions do not perform the calculations described

in this section. They simply lookup data returned by the get equivalent() and

get ensemble() functions. The CapsuleResolve() routine determines an appro-

priate capsulesize using attribute sizes.The degreeof parallelism, p, determines

the o�sets of individual attributes within the capsule. A secondroutine, called

CapsuleAlloc() , assignsa newly allocated capsule to free LB N s and returns

new LB N s for the this capsule.The LB N s of all attributes within a capsulecan

Ch. 6. Policies for accessingMEMStores 96

be found according to the pattern determined by the CapsuleResolve() routine.

The CapsuleAlloc() routine takes an LB N of the most-recently allocated

capsule, l last , �nds enough unallocated LB N s in its equivalenceclassE last , and

assignsthe new capsuleto lnew . By de�nition, the LB N locations of the capsule's

attributes belong to Enew . If there are enough unallocated LB N s in E last , E last

= Enew . If no free LB N s in E last exist, Enew is di�eren t from E last . If there are

somefreeLB N s in E last , someattributes may spill into the next equivalenceclass.

However, this capsulecan still be accessedsequentially .

Allowing a single capsule to have LB N s in two di�eren t equivalenceclasses

doesnot waste any space.However, accessingall attributes of thesesplit capsules

is accomplishedby two separateparallel accesses,the latter being physically se-

quential to the former. Given capsulesizein LB N s, c, there is onesplit capsulefor

every jE j % cp capsules.If onewants to ensurethat every capsuleis always acces-

sible in a single parallel operation, onecan waste 1=(jE j % cp) of devicecapacity.

Theseunallocated LB N s can contain tables with smaller capsulesizes,indexesor

databaselogs.

Becauseof the MEMStore layout, lnew is not always equal to l last + 1. This

discontinuit y occurs at the end of each track.2 Calling get ensemble()determines

if l last is the last LB N of the current track. If so, the CapsuleAlloc() simply

o�sets into E last to �nd the proper lnew . The o�set is a multiple of p and the

number of blocks a capsuleoccupies. If l last is not at the end of the track, then

lnew = l last + 1.

Figure 6.14 illustrates the allocation of capsuleswith two attributes a1 and a2

of size 1 and 2 units, respectively, to the LB N spaceof a G2 MEMStore using

the sequential-optimized layout. The depicted capsulestores a1 at LB N capsule

o�set 0, and the two blocks of a2 at LB N o�sets p and 2p. Thesevaluesare o�set

2This discontin uit y also occurs at the boundaries of equivalence classes,or every p capsules,
when mapping capsulesto LB N s on even tracks of a MEMStore with the sequential-optimized
layout depicted in Figure 6.10 The LB N s of one attribute, however, always span only one track.

Ch. 6. Policies for accessingMEMStores 97

#0

530

0

540

#1

531

1

541

#2

532

2

542

#21

511

21

561

#20

510

20

560

#10

520

10

550

#11

521

11

551

#9

539

9

549

#19

529

19

559

#269

279

269

809

#260

270

260

800

#270

1080

1070

1610

#271

1081

1071

1611

#279

1089

1079

1619

allocated capsules

#n

ST

at
tr

ib
ut

es

a2

a1

Fig. 6.14:Capsule allo cation for the G2 MEMStore . This picture shows capsuleswith two
attributes a1 and a2 whose sizes are 8 and 16 bytes, respectively. Given an LB N size of 512
bytes, and a level of parallelism, p = 10, a single capsule contains 64 records and maps to three
LB N s. Note that each row for capsules 0 through 269 contains contiguous LB N s of a single
track: a1 spans track 0-269, and a2 spans two tracks with LB N ranges 270-539 and 540-809.
The shaded capsulesbelong to the same equivalence class. Thanks to the get equivalent() and
get ensemble() functions, a database system doesnot have to keep track of all these complicated
patterns. Instead, it only keepsthe capsule'sstarting LB N . From this LB N , all other values are
found by the MEMStore interface function calls.

relative to the capsule'sLB N position within ELB N .

Access

For each capsule,the RDBS recordsthe starting LB N from which it candetermine

the LB N s of all attributes in the capsule. This is accomplishedby calling the

get equivalent() function. Becauseof the allocation algorithm, the capsulesare

laid out such that sequential scanning through recordsof the attribute a1 results

in sequential accessin LB N spaceas depicted in Figure 6.14. This sequential

accessin LB N spaceis realized by p batched reads executing in parallel. When

accessingboth a1 and a2, up to p=c capsulescan be accessedin parallel where

capsulesizec = size(a1 + a2).

Streaming a large number of capsulescan be also accomplishedby pipelining

reads of ST sequential LB N s of attribute a1 followed by 2ST sequential LB N s

of a2. Setting a scatter-gather list for thesesequential I/Os ensuresthat data are

put into proper placesin the bu�er pool. The residual capsulesthat span the last

Ch. 6. Policies for accessingMEMStores 98

segment smaller than ST are then read in parallel using batched I/Os.

Implementation details

The parallel scan operator is implemented as a standalone C++ application. It

includes the allocation and layout routines described in Section 6.3.7 and allows

an arbitrary range of records to be scannedfor any subset of attributes. The al-

location routines and the scan operator use the interface functions described in

Section6.3.3.Thesefunctions are exported by a linked-in stub library which com-

municates via a socket to another process.This process,called devman, emulates

the functionalit y of a MEMStore device manager running �rm ware code. It ac-

cepts I/O requestson its socket, and runs the I/O through the DiskSim simulator

con�gured with the G2 MEMStore parameters.The devman processsynchronizes

DiskSim's simulated time with the wall clock time and usesmain memory for data

storage.

Results

To quantify the advantages of the parallel scan operator, this section compares

the times required for di�eren t table accesses.It contrasts their respective perfor-

mance under three di�eren t layouts on a single G2 MEMStore device. The �rst

layout, called normal , is the traditional row-major accessoptimized page layout.

The secondlayout, called vertical, corresponds to the vertically partitioned lay-

out optimized for column-major access.The third layout, called capsule, usesthe

layout and accessdescribed in Section 6.3.7. I compare in detail the normal and

capsule cases.

The sampledatabasetable consistsof 4 attributes a1, a2, a3, and a4 sizedat

8, 32, 15, and 16 bytes, respectively. The normal layout consistsof 8 KB pages

that include 115 records.The vertical layout packs each attribute into a separate

table. For the given table header, the capsule layout producescapsulesconsisting

Ch. 6. Policies for accessingMEMStores 99

Operation Data Layout
normal capsule

entire table scan 22.44s 22.93s
a1 scan 22.44s 2.43 s
a1 + a2 scan 22.44s 12.72s
100 recordsof a1 1.58 ms 1.31 ms

Table 6.4: Database access results. The table shows the runtime of the speci�c operation on
the 10,000,000record table with 4 attributes for the normal and capsule. The rows labeled a1

scan and a1 + a2 represent the scan through all records when speci�c attributes are desired. the
last row shows the time to accessthe data for attribute a1 from 100 records.

of 9 pages(each 512bytes) with a total of 60 records.The table sizeis 10,000,000

recordswith a total of 694 MB of data.

Table 6.4 summarizesthe table scanresults for the normal and capsulecases.

Scanning the entire table takes, respectively, 22.44 s and 22.93 s for the normal

and capsule casesand the corresponding user-data bandwidth is 30.9 MB/s and

30.3 MB/s. The run time di�erence is due to the amount of actual data being

transfered. Since the normal layout can pack data more tightly into its 8 KB

page, it transfers a total of 714 MB at a rate of 31.8 MB/s from the MEMStore.

The capsule layout creates,in e�ect, 512-byte pageswhich waste more spacedue

to internal fragmentation. This results in a transfer of 768 MB. Regardless,it

achieves a sustained bandwidth of 34.2 MB/s, or 7% higher than normal . While

both methods accessall 10 LB N s in parallel most of the time, the data accessin

the capsulecaseis more e�cien t due to smaller repositioning overheadat the end

of a cylinder.

As expected, capsule is highly e�cien t when only a subsetof the attributes is

required. A table scanof a1 or a1+ a2 in the normal casealways takes22.44s, since

entire pagesincluding the undesiredattributes must be scanned.The capsulecase

only requiresa fraction of the time corresponding to the amount of data contained

in each desired attribute. Figure 6.15 comparesthe runs of a full table scan for

all attributes against four scansof individual attributes. The total runtime of four

attribute scansin the capsulecasetakesthe sameamount of time as the full table

Ch. 6. Policies for accessingMEMStores 100

all single all single

22.4 s

89.6 s

22.9 s 23.1 s

0

10

20

30

40

50

60

70

80

90

100

Methodnormal capsule

S
ca

n
tim

e
[s

]

Table scan with G2 MEMStore

a4
a3
a2
a1

Fig. 6.15: Table scan with di�eren t num ber of attributes. This graph shows the runtime
of scanning 10,000,000records using G2 MEMStore . For each of the two layouts the left bar, la-
beled all, shows the runtime of the entire table with 4 attributes. The right bar, labeled single, is
composedof four separatescansof each successive attribute, simulating the situation where mul-
tiple queries accessdi�eren t attributes. Since the capsule layout takesadvantage of MEMStore 's
parallelism, each attribute scan runtime is proportional to the amount of data occupied by that
attribute. The normal , on the other hand, must read the entire table to fetch one of the desired
attributes.

scan.In contrast, the four successive scanstake four times as long as the full table

scanwith the normal layout.

Most importantly , a scanof a singleattribute a1 in the capsulecasetakesonly

one ninth (2.43 s vs. 22.93 s) of the full table scan since all ten parallel accesses

read recordsof a1. On the other hand, scanningthe full table in the normal case

requires a transfer of 9 times as much data.

Short scansof 100records(e.g., in querieswith high selectivity) are 20%faster

for capsule since they fully utilize the MEMStore's internal parallelism. Further-

more, the latency to accessthe �rst record is shorter due to smaller accessunits,

comparedto normal . Compared to vertical, the accesslatency is also shorter due

Ch. 6. Policies for accessingMEMStores 101

to the elimination of the join operation. In this example,the vertically partitioned

layout must perform two joins beforebeingable to fetch an entire record.This join,

however, is not necessaryin the capsule case,as it accessesrecords in lock-step,

implicitly utilizing the available internal parallelism.

The vertical caseexhibits similar results for individual attribute scansas the

capsule case. In contrast, scanning the entire table requires additional joins on

the attributes. The cost of this join depends on the implementation of the join

algorithm which is not the focus here.

Comparing the latency of accessingone complete random record under the

three di�eren t scenariosshows interesting behavior. The capsulecasegivesan av-

erage accesstime of 1.385 ms, the normal case1.469 ms, and the vertical case

4.0 ms. The di�erence is due to di�eren t accesspatterns. The capsule accessin-

cludes a random seekto the capsule'slocation followed by 9 batched accessesto

one equivalence class proceeding in parallel. The normal accessinvolves a ran-

dom seekfollowed by a sequential accessto 16 LB N s. Finally, the vertical access

requires 9 accesseseach consisting of a random seekand one LB N access.

E�e cts of micropositioning

As demonstratedin the previoussection,scanninga1 in a data layout with capsules

spanning 10 LB N s will be accomplishedin one tenth of the time it would take

to scan the entire table. While using micropositioning does not reduce this time

to one-hundredth (it is still governed by p), for speci�c accesses,it can provide 10

times more choices(or more precisely M p) choices, resulting in up to 100-times

bene�t to applications.

6.3.8 Summary

Internal accessparallelism is a clear di�erence between MEMStores and disk

drives,and the policiesthat exploit it describedabovede�nitely passthe speci�cit y

test. After evaluating the bene�ts above, it is also clear that policies that allow

Ch. 6. Policies for accessingMEMStores 102

e�cien t accessto two-dimensionaldatastructures passthe merit test, sincesimilar

e�cien t accessis impossible in disk drives. Therefore, extending the abstraction

of MEMStores to allow such accessis justi�ed.

Interestingly, the results described in this section motivated a separatestudy

into extending the abstraction for disk drives, leading to a project called Atro-

pos [Schindler et al. 2004]. Using device-speci�c knowledge of disk drive param-

eters, we found that two-dimensional datastructure accesson disk drives can be

improved in much the sameway as it was for MEMStores. Despite the fact that

the mechanisms for achieving this bene�t are di�eren t in MEMStores and disks,

the interface and abstraction extensionswere identical. In the end, the database

storagemanagerexecutingquerieswas ignorant of whether the underlying storage

was a disk or a MEMStore. Therefore, the current linear LB N abstraction needs

to be extended in exactly the sameway to exploit MEMStores and disk systems.

6.4 Energyconservation

The physical characteristics of MEMStores may make them use lessenergy than

even low-power disk drives. This advantage comes from several sources: lower

overall energy requirements for moving the media and operating the read/write

tips, and faster transitions betweenactive and standby modes.

While the media sled in a MEMStore doesmove continuously in the X and Y

directions during data access,the sled has much lessmassthan a disk platter and

therefore takes far lesspower to keep in motion. Speci�cally , it is expected that

continuously moving the media sled will take less than 100 mW, while it takes

over 600 mW to continuously spin a disk drive.

Another savings comes from the electronics of MEMStores. In disk drives,

the electronics span multiple chips and great distance from the magnetic head

at the end of the arm to the drive interface. Therefore, high-speed signals must

crossseveral chip boundaries, increasing power dissipation. Further, disks' large

Ch. 6. Policies for accessingMEMStores 103

physical platters, heads,arms and actuators require sophisticated, power-hungry

signal processingalgorithms to compensatefor imperfect manufacturing, thermal

changes,environmental changes,and generalwear. Current low-power drivescon-

sumealmost 1.5 W in drive electronics,much of it spent on accurately positioning

the recording head. Of course,not all drive electronicsmust be active during idle

periods; someelectronics, such as the servo control, can be powered down. This

technique reducestotal drive power by up to 60%, adding a small additional time

penalty to return to active mode (from 40{400 ms).

Driv e power can alsobe saved by turning o� the spindle motor during long idle

periods. Numerous studies have demonstrated the power savings of this standby

mode [Lu et al. 1999;Douglis et al. 1994;Li et al. 1994;Zedlewskiet al. 2003],and

current low-power drivesdo incorporate this feature. MEMStores can alsoemploy

a standby mode, stopping sledmovement during periods of inactivit y. Further, the

sled'slow masswill allow MEMStores to quickly switch betweenactiveand standby

mode in as little as 0.5 ms, where a low-power drive requires up to 2 secondsto

spin up and return to active mode. This long delay signi�cantly increasesaccess

time for the �rst requestafter an idle period. Therefore, drive power-management

algorithms usually wait at least10secondsbeforegoing into standby mode.During

this delay, and during the subsequent 2 secondspin-up time, considerablepower is

wasted. In contrast, MEMStores can transition from standby-to-active in as little

as 0.5 ms, allowing these devices to be much more aggressive in using standby

mode.

To understand how much energy a MEMStore could save over a low-power

drive, I simulated both and measuredtheir energyconsumption acrossthree work-

loads. The disk drive power model is basedon IBM's low-power Travelstar disk

and power management techniques described in [IBM 1999b;2000].The disk has

5 power modes:(1) active mode (data is being accessed)consumes2.5 W for reads

and 2.7 W for writes; (2) performance idle (some electronics are powered down)

consumes2.0 W; (3) fast idle (head is parked and servo control is powered down)

Ch. 6. Policies for accessingMEMStores 104

Andrew Postmark Netscap e
Category Disk MEMStore Disk MEMStore Disk MEMStore
active 19.5 0.7 1930.6 42.0 321.2 1.4
perfIdle 13.3 0.3 1181.1 7.7 1924.1 0.01
goToActive 0.0 0.0 0.0 0.0 513.5 0.0
fastIdle 0.0 0.0 0.0 0.0 1799.9 0.0
lowPowerIdle 0.0 0.0 0.0 0.0 1000.5 0.0
spinup 0.0 0.0 0.0 0.0 228.8 20.0
standby 0.0 0.2 0.0 8.0 308.9 327.9
Total (Joules) 32.8 1.2 3111.7 57.7 6096.9 349.3

Table 6.5: Comparison of energy required to execute three di�eren t workloads using
disks and MEMS-based storage devices. All numbers are given in Joules.

consumes1.3 W; (4) low-power idle (headsare unloaded from the disk) consumes

0.85 W; and (5) standby (spindle motor is stopped) consumes0.2 W. From [IBM

1999a],the maximum time spent in the intermediate modes is: 1 secondfor per-

formance idle, 3 secondsfor fast idle, and 8 secondsfor low-power idle.

For the MEMStore, energyfor a benchmark is computed during simulation by

using the physical parametersin [Carley et al. 2000];each probe tip and its signal

processingelectronics consume1 mW. To minimize packaging costs, the power

budget is set at about 1 W. This limits the MEMStore to no more than about

1,000simultaneously active probe tips. Further, given the sled design, the power

consumedto keepthe sled in motion is 0.1 W. Therefore, the maximum power for

this MEMStore is 1.1 W. Standby power consumption is estimated to be 0.05 W.

Table 6.5 shows that the total energyconsumedfor the MEMStore is between

approximately 10X and 50X lower, depending on the application. The �v e work-

loads already discussedare highly active and so most of the savings comedirectly

from lower energyconsumption during data accesses(active mode). To test a more

interactive workload, I useda trace of the disk accessesgeneratedby a userbrows-

ing the Internet using Netscape on a Linux workstation for ten minutes. In this

case,much of the power savings comesfrom the MEMStore's abilit y to aggres-

sively use its low-power standby mode. In contrast, the disk drive spends90% of

its power transitioning betweenactive and standby modes.

Ch. 6. Policies for accessingMEMStores 105

It is clear from theseresults that MEMStores o�er energysavings over portable

disk drives. However, for the purposesof this dissertation, the schemes above

do not pass the speci�cit y test becausethey use policies that are the same as

for disk drives. Energy is saved in both types of devicesby turning o� various

components during idle periods. Further, there are associated delays when the

devicemust be reactivated when new requestsarrive. The di�erence betweendisks

and MEMStores is the magnitude of the savings and the delays. In terms of energy

conservation, the samepolicies can be usedfor MEMStores as with disks.

6.5 Summary

This chapter proposedsomepotential policiesby which computer systemscan tai-

lor their accessto MEMStores and evaluated them using the two objective tests

intro duced in Chapter 1 to decide whether current storage abstractions must be

changed for MEMStores. Only one of these potential policies (using tip-subset

parallelism to e�cien tly accesstwo-dimensionaldata structures) passedboth the

speci�cit y test and the merit test, justifying an extended storage abstraction for

MEMStores. Interestingly, this result motivated new research in using similar poli-

cies for disk drivesand, in the end, the sameabstraction extension was shown to

work for both MEMStores and disk drives.There may exist undiscovered policies

for using MEMStores that do justify abstraction extensions. In this event, this

dissertation's contribution of the two objective tests will allow future researchers

to make this decision.

7 Conclusionsandfuturework

This dissertation examinesthe useof MEMStores in computer systems,with a fo-

cuson answering the questionof whether systemdesignerswill have to changetheir

assumptionsand expectations of storagedevicesto useMEMStores to their fullest

advantage. It is not enoughto simply say that MEMStores are faster, smaller, and

use less energy than current disk drives, although these features are de�nitely

bene�cial. The goal of this dissertation is to provide understanding of whether

MEMStores accessdata in ways that require specialized usagemodels, so as to

determine whether they require new abstractions and interfaces.Besidesthe de-

scription of MEMStores and their use in systems,a primary contribution of the

dissertation is a methodology for determining whether such di�erences should lead

to changesin the way computer systemsview storagedevices.

As radically new technologiescomeinto the market, it is important to \think

outside of the box" and decidewhether the new technology will changeour view

of systems.It is easyto think that simply becausea new technology is di�eren t, it

must changethe way we think about systems.It is equally important to consider

the cost of changing systemsto accommodate new technologies.Industry momen-

tum, while frustrating at times, exists for a reason:there are signi�cant costs in

changing interfacesand systems'assumptionsabout how deviceswork.

This dissertation describes two objective tests that can be usedwhen consid-

ering device-speci�c specializations in systems.The �rst test, the speci�cit y test,

addressesthe question of whether a specialization (role or a policy) is truly spe-

Ch. 7. Conclusionsand future work 107

ci�c to that device or if that use is more generally applicable to other devices.

The secondtest, the merit test, addressesthe question of whether the specializa-

tion makes enoughof a di�erence in performance(or whatever metric) to justify

changing the system.

Considering the useof MEMStores in systemsis a perfect example of the use

of these tests. MEMStores are faster, smaller, and use less energy than current

storagedevices,and it is tempting to immediately concludethat they will require

changesto systemsin order to be usedto their fullest potential. Through careful

examination employing the two objective tests, this dissertation shows how sys-

tems will be able to use MEMStores with the sameinterfaces,abstractions, and

assumptions that exist for disk drives. The high-level reasoningfor this is clear:

MEMStores are mechanical devices,with many similarities to disk drives.Accesses

incur an initial delay (i.e., seektime) that is distance-dependent. Once the device

is in motion, the most e�cien t accessis to the next sequential data. Most of the

bene�ts of MEMStores come simply from the fact that they are faster, smaller,

and use lessenergy than today's devices,and not from the fact that they access

data di�eren tly .

The dissertation also examinessome of the more substantiv e di�erences be-

tween MEMStores and disk drives under the scrutiny of the two objective tests.

The most radical di�erence is that MEMStores employ a large number of parallel

read/write tips to accessdata, whereasa disk drive usesonly a single read/write

headat a time. The set of a MEMStore's read/write tips that are active at any one

moment does not have to be statically chosen.The performanceof several work-

loads can be improved by taking advantage of the abilit y to dynamically choose

setsof read/write tips to usein parallel. In this case,both the speci�cit y test and

the merit test are satis�ed, and a new interface to MEMStores can be justi�ed.

Interestingly, we found that similar extensionscan be justi�ed for standard disk

drives for someof the sameworkloads, again making the (extended) interface for

MEMStores and disks the same.

Ch. 7. Conclusionsand future work 108

7.1 Future work

As MEMStores havenot yet beenbuilt, much research remains.Clearly, much work

remains in solving the issuesof actually building and manufacturing MEMStores.

For systemsresearchers, the main question is whether MEMStores will be feasible

asa technology. In the late 1990s,whenMEMStores were�rst proposed,the ideaof

10GB of non-volatile storagethat could becarried around in a portable devicewas

very compelling. With the advent of portable music players like the Apple iPod,

miniature hard disk drives with many tens of gigabytes of storage have become

available, perhaps taking away a primary advantage of MEMStores. MEMStores

continue to have four main advantagesover miniature disk drives,though: smaller

physical size,lower energyconsumption,higher performance,and potentially lower

entry cost. The portable storagemarket has changeddramatically during the �v e

years over which this work occurred, and it will be interesting to seewhether

MEMStores will have a place in the future storagemarket.

7.1.1 Reliability and fault tolerance

One of the main unanswered questions about MEMStores is whether they will

be reliable enough to use in real systems. This is especially important because

they are expected to be usedin portable devices,which are often subjected to the

most demandingenvironments. There are few things that can be said at this stage

about how reliable MEMStores will be with regard to physical wear. As physical

components scaledownwards in size, their relative strengths increase[Thompson

1992], making micromachines relatively more robust to external forces such as

shock. As an example, MEMS accelerometersare used today in cars, one of the

harshestenvironments for mass-produced electronics.

More interestingly, MEMStores have a great deal of internal redundancy in

the form of many independent read/write tips accessingdata. If the read/write

tips have relatively high failure rates, it could be possible to trade capacity for

Ch. 7. Conclusionsand future work 109

reliabilit y, as is done in RAID arrays today. Parit y data or even multiple mirrors

of each read/write tip's data could be stored on independent tips. When a tip

fails, that tip's data could be reconstructed on a spare tip. Further, since each

read/write tip addressesthe samepoint of its media squareasall of the other tips

in the array, reconstructed data could be accessedwith the sameperformanceas

the original data.

Unfortunately, it is not clear at this time which failure modes in MEMStores

will be most prevalent. Somefailure modes will be catastrophic (e.g., the loss of

one of the suspensionsprings), but others will be tolerable (e.g., the lossof some

read/write tips). The important question is how much capacity (and, potentially ,

performance)would have to be traded for a gain in reliabilit y. When more detailed

failure models for MEMStores are available, thesequestionscan be answered.

7.1.2 Other rolesand policies

I expect research to continue into roles and policies for MEMStores. There are

many roles that can bene�t from the small size,high performance,and potential

low entry cost of MEMStores. MEMStores could provide a new classof storage

for nodes in sensornetworks, which currently have no massstorage capabilities.

Applications which are very sensitive to mass,such as satellites, could de�nitely

bene�t from MEMStores. Consumerdevicesoften require the absolutelowest cost.

MEMStores could o�er consumerdevicesa new price point for moderate amounts

of non-volatile storage.Lastly, many applications demandthe highest performance

possible.MEMStores could provide an interesting new classof non-volatile disk re-

placement for high-end systems.Imagine replacing a singledisk drive with a brick

of enough MEMStores to equalize capacity. This brick would have the advan-

tagesorder-of-magnitude faster accesstimes and multiple independent actuators,

greatly increasingperformancefor heavy workloads of small I/Os. Further, since

MEMStores can very quickly transition from a low-power idle state to active, en-

ergy consumption of the brick can be reduceddramatically. This is an important

Ch. 7. Conclusionsand future work 110

consideration in today's high-density machine rooms.

These roles are interesting to explore, but all of them only take advantage

of the fact that MEMStores are faster, smaller, and use lessenergy than today's

disks. In this way, they fail the speci�cit y test of this dissertation. However, it is

clear that MEMStores will provide advantages in theseroles becausecomparable

disk drivesdo not, and may never, exist.

Potential MEMStore-speci�c policies,such asrequestscheduling and data lay-

out, continue to be a rip e topic of research. The use of multiple dimensions of

e�cien t accessfor various workloads is probably the most radical di�erence be-

tweenMEMStores and disk drives. One of the restrictions of MEMStores in this

regard is that data is always accessedin a linear fashion along a single dimen-

sion, despite the fact that they can move in either direction. In disk drives, data

is always accessedin a linear fashion and nothing is lost becausethe constantly

spinning disks can only be e�cien tly accessedlinearly. However, in a MEMStore

this is not the case.If the data stored in a single read/write tip's square could

be encoded such that it could be read and written in either dimension, then two-

dimensionaldata structures could be directly accessedin the media. The di�cult y

of such a coding scheme is that, for example, changing a column of data a�ects

the data in all of the rows that the column intersects.

7.1.3 New featuresof MEMStores

The MEMStores described in this dissertation represent only the �rst few genera-

tions of potential devices.As time goeson, other featuresmay becomeavailable. It

is impossibleto predict speci�c featuresof future storagedevices,but MEMStore

designershave suggesteda few, and I describe two of them here.

Somedesignershave postulated that MEMStores could operate in a resonant

mode, in which the media sled constantly oscillates along the dimension of data

access(the Y dimension in my examples).To accessdata, the media sled is posi-

tioned to the correct X o�set and then the device would wait until the requested

Ch. 7. Conclusionsand future work 111

data is available at the read/write tips. A device that operates in resonant mode

may use less energy than standard MEMStores, leading to a further advantage

over disk drives. In this case,the repeating motion of the media sled is similar to

the rotation of the platters in a disk drive, and a MEMStore even more closely

resembles a disk drive.

Others havesuggestedthat MEMStores may beable to very quickly changethe

set of active read/write tips, perhapseven asquickly as the time to accessa single

bit. Put in the terms of a disk drive, the head switch time of a MEMStore could

be expected to be nearly instantaneous.This meansthat the notion of sequential

accesscould be re-examined,sincethe most e�cien t data accessis not only to data

which is in the track currently being accessed.Data that is in other tracks could

be accessedfor the samecost as that in the current track. As a concreteexample,

imaginea hypothetical MEMStore with three LB N s per track and nine read/write

tips, like that shown in Figure 2.5. Data accesswould start at the beginning of

the track using the �rst three read/write tips, and the devicewould accessLB N s

0, 1, and 2. Once these have been accessed,the device could activate the next

three read/write tips and immediately accessLB N s 12, 13, and 14. Sincethe time

to switch read/write tips is instantaneous in this example, this accesswould be

just as e�cien t as if the device had not switched tips and accessedLB N s 3, 4,

and 5 instead. Most likely, this capability could be exploited using the equivalence

classconstruct described in Section6.3. This
exibilit y will potentially allow more

LB N s to be accessedtogether e�cien tly , resulting in larger equivalence classes

than those described above.

As MEMStores becomeavailable and are developed further, more new features

will undoubtedly arise. This underscoresthe value of the two objective tests and

the methodology described in this dissertation, which allows researchers to make

balanceddecisionsabout the e�ects of using new technologiesin systems.

Ch. 7. Conclusionsand future work 112

7.1.4 Integration of MEMStores and computation

SinceMEMStores cantheoretically bebuilt in a CMOS-compatibleprocess[Fedder

et al. 1996], they could be integrated very tightly with computation. This would

intro duce true mass storage to a system-on-a-chip. Much work has been done

in the past on \activ e storage," which leveragescomputational capabilities at

storage devices to e�cien tly enable parallel computation [Acharya et al. 1998;

Keeton et al. 1998;Riedel et al. 1998;Huston et al. 2004]. Integrating processing

with MEMStores could bring this capability into new realms of mobile devices.

Using computation close to the storage could be especially useful in the highly

constrained sensornetwork environment.

Bibliography

Achar ya, A. , Uysal, M. , and Sal tz, J. 1998. Activ e disks: programming

model, algorithms and evaluation. In Architectural Support for Programming

Languagesand Operating Systems. ACM, 81{91.

Alf ar o, J. F. and Fedder, G. K. 2002. Actuation for probe-basedmassdata

storage. In International Conference on Modeling and Simulation of Micr osys-

tems. 202{205.

Baker, M. , Asami, S., Deprit, E. , Ousterhout, J. , and Sel tzer, M. 1992.

Non-volatile memory for fast, reliable �le systems. In Architectural Support for

Programming Languagesand Operating Systems. 10{22.

Carley, L. R. , Bain, J. A. , Fedder, G. K. , Greve, D. W. , Guillou, D. F. ,

Lu, M. S. C., Mukherjee, T. , Santhanam, S., Abelmann, L. , and Min, S.

2000. Single-chip computers with microelectromechanical systems-basedmag-

netic memory. Journal of Applied Physics 87, 9, 6680{6685.

Carley, L. R. , Ganger, G. , Guillou, D. F. , and Nagle, D. 2001. System

design considerationsfor MEMS-actuated magnetic-probe-basedmassstorage.

IEEE Transactions on Magnetics 37, 2, 657{662.

Copeland, G. P. and Khoshafian, S. 1985.A decomposition storagemodel. In

ACM SIGMOD International Conference on Managementof Data. ACM Press,

268{279.

Bibliography 114

Denehy, T. E. , Arp aci-Dussea u, A. C. , and Arp aci-Dussea u, R. H. 2002.

Bridging the information gap in storage protocol stacks. In Summer USENIX

Technical Conference. 177{190.

Denning, P. J. 1967. E�ects of scheduling on �le memory operations. In AFIPS

Spring Joint Computer Conference. 9{21.

Dimitrijevi �c, Z. , Rangasw ami, R. , and Chang, E. 2003. Design and imple-

mentation of semi-preemptibleIO. In Conference on File and StorageTechnolo-

gies. USENIX Association, 145{158.

DiskSim . 2004. The DiskSim simulation environment (version 3.0).

http://www.p dl.cmu.edu/DiskSim/index.h tml.

Douglis, F. , Krishnan, P. , and Marsh, B. 1994.Thwarting the power-hungry

disk. In Winter USENIX Technical Conference. USENIX Association, Berkeley,

CA, 292{306.

Dramaliev, I. and Madhy astha, T. M. 2003.Optimizing probe-basedstorage.

In Conference on File and StorageTechnologies. USENIX Association, 103{114.

El-Sa yed, R. T. and Carley, L. R. 2002. Performanceanalysisof beyond 100

Gb/in 2 MFM-based MEMS-actuated massstoragedevices. IEEE Transactions

on Magnetics 38, 5, 1892{1894.

El-Sa yed, R. T. and Carley, L. R. 2003. Performance analysis of a 0.3-

Tb/in 2 low-power MFM-based scanning-probe device. IEEE Transactions on

Magnetics 39, 6, 3566{3574.

Fedder, G. K. , Santhanam, S., Reed, M. L. , Eagle, S. C. , Guillou, D. F. ,

Lu, M. S.-C. , and Carley, L. R. 1996. Laminated high-aspect-ratio mi-

crostructures in a conventional CMOS process.In IEEE Micr o Electro Mechan-

ical SystemsWorkshop. 13{18.

Bibliography 115

Ganger, G. and Schindler, J. 2004. Database of validated disk parameters

for DiskSim. http://www.ece.cm u.edu/~ganger/disksim/diskspecs.html.

Ganger, G. R. 2001. Blurring the line betweenOSsand storagedevices. Tech.

Rep. CMU{CS{01{166, CarnegieMellon University.

Ganger, G. R. and Kaashoek, M. F. 1997. Embedded inodes and explicit

grouping: exploiting disk bandwidth for small �les. In USENIX Annual Tech-

nical Conference. 1{17.

Griffin, J. L. , Schlosser, S. W. , Ganger, G. R. , and Nagle, D. F. 2000.

Modeling and performanceof MEMS-basedstoragedevices.In ACM SIGMET-

RICS Conference on Measurement and Modeling of Computer Systems. 56{65.

Hennessy, J. L. and Patterson, D. A. 1995.Computer Architecture: A Quan-

titative Approach, 2nd ed. Morgan Kaufmann Publishers, Inc., San Francisco,

CA.

Hewlett-P ackard . 2002. Hewlett-packard laboratories atomic resolution stor-

age. http://www.hpl.hp.com/researc h/storage.html.

Hoen, S., Mer chant, P. , K oke, G. , and Williams, J. 1997. Electrostatic

surfacedrives:theoretical considerationsand fabrication. In International Con-

ference on Solid-state Sensorsand Actuators. 41{44.

Hong, B. 2002. Exploring the usage of MEMS-based stor-

age as metadata storage and disk cache in storage hierarchy.

http://www.cse.ucsc.edu/~hongbo/publications/mems-metadata.pdf.

Hong, B. and Brandt, S. A. 2002.An analytical solution to a MEMS seektime

model. Tech. Rep. UCSC{CRL{02{31, University of California Santa Cruz.

Hong, B. , Brandt, S. A. , Long, D. D. E. , Miller, E. L. , Glocer, K. A. ,

and Peterson, Z. N. J. 2003. Zone-basedshortest positioning time �rst

Bibliography 116

scheduling for MEMS-based storage devices. In International Workshop on

Modeling, Analysis, and Simulation of Computer and Telecommunications Sys-

tems.

Huston, L. , Sukthankar, R. , Wickremesinghe, R. , Saty anara yanan, M. ,

Ganger, G. R. , Riedel, E. , and Ailamaki, A. 2004. Diamond: A storage

architecture for early discard in interactive search. In Conference on File and

StorageTechnologies. USENIX Association, 73{86.

IBM . 1999a. Adaptiv e power management for mobile hard drives. http://-

www.almaden.ibm.com/almaden/pbwhitepaper.pdf.

IBM . 1999b. IBM family of microdrives.http://www.storage.ibm.com/hardsoft/-

diskdrdl/micro/datasheet.p df.

IBM . 2000. IBM Travelstar 8GS. http://www.storage.ibm.com/hardsoft/-

diskdrdl/tra vel/32ghdata.pdf.

Jacobson, D. M. and Wilkes, J. 1991. Disk scheduling algorithms basedon

rotational position. Tech. Rep. HPL{CSP{91{7, Hewlett-Packard Laboratories,

Palo Alto, CA.

Keeton, K. , Patterson, D. A. , and Hellerstein, J. M. 1998. A casefor

intelligent disks (IDISKs). SIGMOD Record 27, 3, 42{52.

Li, K. , Naughton, J. F. , and Plank, J. S. 1994. Low-latency, concurrent

checkpointing for parallel programs. IEEE Transactions on Parallel and Dis-

tributed Systems5, 8, 874{879.

Lin, Y. , Brandt, S. A. , Long, D. D. E. , and Miller, E. L. 2002.Power con-

servation strategiesfor MEMS-basedstoragedevices.In International Workshop

on Modeling, Analysis, and Simulation of Computer and Telecommunications

Systems.

Bibliography 117

Lu, Y.-H. , �Simuni �c, T. , and Micheli, G. D. 1999. Software controlled power

management. In 7th International Workshop on Hardware/Software Codesign.

ACM Press,157{161.

Lumb, C. R. , Schindler, J. , and Ganger, G. R. 2002. Freeblock schedul-

ing outside of disk �rm ware. In Conference on File and Storage Technologies.

USENIX Association, 275{288.

Lumb, C. R. , Schindler, J. , Ganger, G. R. , Nagle, D. F. , and Riedel, E.

2000.Towards higher disk headutilization: extracting freebandwidth from busy

disk drives. In Symposium on Operating SystemsDesign and Implementation.

USENIX Association, 87{102.

Lutwyche, M. , Andreoli, C. , Binnig, B. , Br ugger, J. , Drechsler, U. ,

Haberle, W. , Rohrer, H. , Rothuizen, H. , Vettiger, P. , Yaralioglu,

G. , and Quate, C. 1999. 5x5 2D AFM cantilever arrays a �rst step towards a

terabit storagedevice. Sensorsand Actuators A 73, 1-2, 89{94.

Lutwyche, M. , Drechsler, U. , Haberle, W. , Rothuizen, H. , Widmer,

R. , and Vettiger, P. 1999. Planar micromagnetic X/Y/Z scannerwith �v e

degreesof freedom. In International Symposium on Magnetic Materials, Pro-

cesses,and Devices, Applications to Storage and Micr oelectromechanical Sys-

tems (MEMS) . 423{433.

Madhy astha, T. M. and Yang, K. P. 2001. Physical modeling of probe-based

storage. In IEEE Symposium on Mass StorageSystems. IEEE.

Mamin, H. J. , Ried, R. P. , Terris, B. D. , and Rugar, D. 1999. High-

density data storage basedon the atomic force microscope. Proceedings of the

IEEE 87, 6, 1014{1027.

Mamin, H. J. and Rugar, D. 1992. Thermomechanical writing with an atomic

force microscope tip. Applied Physics Letters 61, 8, 1003{1005.

Bibliography 118

Mamin, H. J. , Terris, B. D. , Fan, L. S., Hoen, S., Barrett, R. C. , and

Rugar, D. 1995. High-density data-storage using proximal probe techniques.

IBM Journal of Research and Development39, 6, 681{699.

Ovonyx 2004. Ovonyx, Inc. http://www.o vonyx.com/.

Patterson, D. A. , Chen, P. , Gibson, G. , and Ka tz, R. H. 1989.Intro duction

to redundant arrays of inexpensive disks (RAID). In IEEE Spring COMPCON.

112{117.

Quantum . 1999. Quantum Atlas 10K 9.1/18.2/36.4 GB Ultr a 160/m SCSI Hard

Disk Drive Product Manual.

Ramamur thy, R. , DeWitt, D. J. , and Su, Q. 2002. A casefor fractured mir-

rors. In International Conference on Very Large Databases. Morgan Kaufmann

Publishers, Inc., 430{441.

Rangasw ami, R. , Dimitrijevi �c, Z. , Chang, E. , and Schauser, K. E. 2003.

MEMS-baseddisk bu�er for streaming media servers. In International Confer-

ence on Data Engineering.

Ried, R. P. , Mamin, H. J. , Terris, B. D. , Fan, L.-S. , and Rugar, D. 1997.

6-MHz 2-N/m piezoresistiveatomic-forcemicroscopecantileverswith INCISIVE

tips. Journal of Micr oelectromechanical Systems6, 4, 294{302.

Riedel, E. , Faloutsos, C. , Ganger, G. R. , and Nagle, D. F. 2000. Data

mining on an OLTP system (nearly) for free. In ACM SIGMOD International

Conference on Managementof Data. ACM, 13{21.

Riedel, E. , Gibson, G. , and Faloutsos, C. 1998.Activ e storagefor large-scale

data mining and multimedia applications. In International Conference on Very

Large Databases. Morgan Kaufmann Publishers Inc., 62{73.

Bibliography 119

Rosenblum, M. , Bugnion, E. , Herr od, S. A. , Witchel, E. , and Gupt a, A.

1995. The impact of architectural trends on operating system performance. In

ACM Symposium on Operating SystemPrinciples.

Rothuizen, H. , Drechsler, U. , Genolet, G. , H •aberle, W. , Lutwyche,

M. , Stutz, R. , Widmer, R. , and Vettiger, P. 2000. Fabrication of a mi-

cromachined magnetic X/Y/Z scannerfor parallel scanningprobe applications.

Micr oelectronic Engineering 53, 509{512.

Ruemmler, C. and Wilkes, J. 1991. Disk Shu�ing. Tech. Rep. HPL-91-156,

Hewlett-Packard Company, Palo Alto, CA.

Ruemmler, C. and Wilkes, J. 1993. UNIX disk accesspatterns. In Winter

USENIX Technical Conference. 405{420.

Ruemmler, C. and Wilkes, J. 1994. An intro duction to disk drive modeling.

IEEE Computer 27, 3, 17{28.

Schindler, J. and Ganger, G. R. 1999.Automated disk drivecharacterization.

Tech. Rep. CMU{CS{99{176, Carnegie-MellonUniversity, Pittsburgh, PA.

Schindler, J. , Griffin, J. L. , Lumb, C. R. , and Ganger, G. R. 2002.Track-

aligned extents: matching accesspatterns to disk drive characteristics. In Con-

ference on File and StorageTechnologies. USENIX Association, 259{274.

Schindler, J. , Schlosser, S. W. , Shao, M. , Ailamaki, A. , and Ganger,

G. R. 2004. Atrop os: A disk array volume manager for orchestrated use of

disks. In Conference on File and StorageTechnologies. USENIX Association.

Schlosser, S. W. , Griffin, J. L. , Nagle, D. F. , and Ganger, G. R. 2000.

Designing computer systemswith MEMS-based storage. In Architectural Sup-

port for Programming Languagesand Operating Systems. 1{12.

Bibliography 120

Schlosser, S. W. , Schindler, J. , Ailamaki, A. , and Ganger, G. R. 2003.

Exposing and exploiting internal parallelism in MEMS-based storage. Tech.

Rep. CMU{CS{03{125, Carnegie-MellonUniversity, Pittsburgh, PA.

Seaman, P. H. , Lind, R. A. , and Wilson, T. L. 1966. On teleprocessing

system design,part IV: an analysis of auxiliary-storage activit y. IBM Systems

Journal 5, 3, 158{170.

Sel tzer, M. , Chen, P. , and Ousterhout, J. 1990. Disk scheduling revisited.

In Winter USENIX Technical Conference. 313{323.

Sheikholeslami, A. and Gulak, P. G. 2000.A survey of circuit innovations in

ferroelectric random-accessmemories. Proceedings of the IEEE 88, 5, 667{689.

Sivan-Zimet, M. and Madhy astha, T. M. 2002.Workload basedoptimization

of probe-basedstorage. In ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems. ACM Press,256{257.

Tala gala, N. , Dusseau, R. H. , and Patterson, D. 2000. Microbenchmark-

basedextraction of local and global disk characteristics. Tech. Rep. CSD{99{

1063,University of California at Berkeley.

Teorey, T. J. and Pinker ton, T. B. 1972. A comparative analysis of disk

scheduling policies. Communications of the ACM 15, 3, 177{184.

Terris, B. D. , Rishton, S. A. , Mamin, H. J. , Ried, R. P. , and Rugar, D.

1998. Atomic force microscope-baseddata storage:track servo and wear study.

Applied Physics A 66, S809S813.

Thompson, D. W. 1992. On Growth and Form. University Press,Cambridge,

MA.

Uysal, M. , Mer chant, A. , and Al varez, G. A. 2003. Using MEMS{based

storagein disk arrays. In Conference on File and StorageTechnologies. USENIX

Association, 89{101.

Bibliography 121

Vettiger, P. , Cr oss, G. , Despont, M. , Drechsler, U. , D •urig, U. , Gots-

mann, B. , H•aberle, W. , Lantz, M. A. , Rothuizen, H. E. , Stutz, R. , and

Binnig, G. K. 2002. The \Millip ede": nanotechnology entering data storage.

IEEE Transactions on Nanotechnology 1, 1, 39{55.

Vettiger, P. , Despont, M. , Drechsler, U. , D •urig, U. , H•aberle, W. ,

Lutwyche, M. I. , Rothuizen, H. E. , Stutz, R. , Widmer, R. , and Binnig,

G. K. 2000. The \Millip ede" { more than one thousand tips for future AFM

data storage. IBM Journal of Research and Development44, 3, 323{340.

Vongsa thorn, P. and Carson, S. D. 1990. A system for adaptive disk rear-

rangement. Software|Pr actice and Experience 20, 3, 225{242.

Wilkes, J. , Golding, R. , St aelin, C. , and Sulliv an, T. 1995. The HP Au-

toRAID hierarchical storagesystem. In ACM Symposium on Operating System

Principles. 96{108.

Wor thington, B. L. , Ganger, G. R. , and Patt, Y. N. 1994a. Schedul-

ing algorithms for modern disk drives. In ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems. ACM Press,241{251.

Wor thington, B. L. , Ganger, G. R. , and Patt, Y. N. 1994b.Scheduling for

modern disk drives and non-random workloads. Tech. Rep. CSE{TR{194{94,

Department of Computer Scienceand Engineering, University of Michigan.

Yu, H. , Agra wal, D. , and Abbadi, A. E. 2002.Towardsoptimal I/O scheduling

for MEMS-based storage. Tech. Rep. UCSB Department of Computer Science

2002-22,University of California at Santa Barbara.

Yu, H. , Agra wal, D. , and Abbadi, A. E. 2003. Tabular placement of rela-

tional data on MEMS-basedstoragedevices. Tech. Rep. UCSB Department of

Computer Science2003-06,University of California, Santa Barbara.

Bibliography 122

Yu, H. , Agra wal, D. , and Abbadi, A. E. 2004. Declustering two-dimensional

datasetsover MEMS-basedstorage. In EDBT . 495{512.

Yu, X. , Gum, B. , Chen, Y. , Wang, R. Y. , Li, K. , Krishnamur thy, A. , and

Anderson, T. E. 2000. Trading capacity for performancein a disk array. In

Symposium on Operating SystemsDesign and Implementation. USENIX Asso-

ciation, 243{258.

Zedlewski, J. , Sobti, S., Gar g, N. , Zheng, F. , Krishnamur thy, A. , and

Wang, R. 2003. Modeling hard-disk power consumption. In Conference on

File and StorageTechnologies. USENIX Association, 217{230.

Zhang, C., Yu, X. , Krishnamur thy, A. , and Wang, R. Y. 2002.Con�guring

and scheduling an eager-writing disk array for a transaction processingworkload.

In Conference on File and StorageTechnologies. USENIX Association, 289{304.

