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Abstract

MEMS-basedstorageis an interesting new technology that promisesto bring fast,
non-volatile, mass data storage to computer systems. MEMS-based storage de-
vices (MEMStores) themselwes consist of seweral thousand read/write tips, anal-
ogousto the read/write headsof a disk drive, which read and write data in a
recording medium. This medium is coated on a moving rectangular surfacethat is
positioned by a set of MEMS actuators. Accesstimes are expectedto be lessthan
a millisecond with energy consumption 10{100 lessthan a low-power disk drive,
while streaming bandwidth and volumetric density are expectedto be around that
of disk drives.

This dissertation exploresthe use of MEMStores in computer systems, with
a focus on whether systemscan use existing abstractions and interfacesto incor-
porate MEMStores e ectiv ely, or if they will have to changethe way they access
storageto benet from MEMStores. If systemscan use MEMStores in the same
way that they use disk drives, it will be more likely that MEMStores will be
adopted when they do becomeavailable.

Since real MEMStores do not yet exist, | presen a detailed software model
that allows their useto be explored under a variety of workloads. To answer the
guestion of whether a new type of devicerequires changesto systems,| presen a
methodology that includestwo objective tests for determining whether the bene t
from a deviceis due to a speci ¢ dierence in how that device accesseslata or

is just due to the fact that that deviceis faster, smaller, or useslessenergy than
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current devices.| present a range of potential usesof MEMStores in computer
systems,examining eat under a number of userworkloads, using the two objective
tests to evaluate their e cacy .

Using the evidencepresened and the two objective tests, | show that systems
canincorporate MEMStores easilyand employ the samestandard abstractions and
interfacesusedwith disk systems.At a high level, the intuition is that MEMStores
are medanical storage devices,just like disk drives, only faster, smaller, and re-
quiring lessenergy to operate. Accessingdata requires an initial seektime that
is distance-dependen, and, once accesshas begun, sequettial accessis the most
e cien t. This intuition is described in more detail, and the result is showvn to hold

for the range of usespresened.
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1 Introduction

MEMS-based storage devices (MEMStores) are radically dierent from today's
bulk storage devicesof choice: disk drives and semiconductor memory devices.
MEMStores are fabricated from wafers of silicon, in much the same manner as
microprocessorsand memories,but they are mechanical in nature, much like disk
drives. Their physical sizeis very small, lessthan one cubic certimeter, but their
capacity is large, on the order of two to ten gigabytes. Most importantly, their
small size and inherertly parallel data accesslead to a number of compelling
advantages over current technologies:low accesdatency, high accessbandwidth,
and low energy utilization. Theseadvantagesmake them an interesting technology
to considerin computer systems.

Random accessedo a MEMStore are anticipated to be faster than today's
disk drives by, approximately, a factor of ten and their density is expected to be
much greater than that predicted of semiconductor memory deviceslike FLASH
and MRAM for the foreseeablduture. Their speedand capacity place MEMStores
into the memory hierarchy most comfortably somewherebetweendisk drivesand
semiconductormemory devices.This dissertation exploreshow MEMStores could
be usedin computer systems,including examining speci ¢ examplesand address-
ing the generalissueof whether new interfacesand abstractions will be required.

It is important to re-ewaluate systemswhenewer new technologiesarrive. The
researter's role is vital in this regard becausehe or shehasthe freedomto think

outside the box and considerradical changesto systems.Howewer, this thinking
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must be temperedwith the reality that new technologiescan be most successfulf
they require few changesto existing systems.As the researter identi es usesof
new technologies,he or sheshould not only considerpotential improvemerts, but
also the cost of making making those improvemerns possible.One of the certral
contributions of this dissertation is a methodology for considering such trade-
0 s when investigating new technologies. In studying the use of MEMStores in
systemsand their potential impact on storage abstractions and interfaces,| have
dewveloped this methodology and codi ed it into two simple objective tests, which
are described below.

Systemsuseabstract, simpli ed interfaceslike SCSland ATA to accessstorage
devices.Through theseinterfaces(or abstractions), systemsview storage devices
as a linear array of xed-sized logical blocks, most commonly 512 bytes ead,
which are referred to with logical block numbers (LB N s). These interfaces are
useful becausethey hide the complexities of underlying storagedevices,they allow
storagedevicesto beinterchangeable and they eliminate the needfor the systemto
directly managethe details of the devices.Beforethe abstraction wasstandardized,
dierent types of disk drives, and even dierent models of disks from a single
vendor, required proprietary interface hardware, interconnects, and software to
be used, greatly complicating systems.While such simpli cation is clearly useful,
using any high-level abstraction runs the risk of hiding potentially bene cial details
of the devicethat a system could exploit to improve performance.Thus, there is
a tension betweenthe easeof integration that standard abstractions provide and
the extra performancethat more information could give.

Despite its simplicity, and the detailed information it hides, the standard ab-
straction of SCSland ATA have sened the storageindustry for many yearsand
all signs point to their continued use in most systems. As new storage devices
are introduced, it is important to re-examinethe standard abstractions and their
usefor those new technologies.Industry acceptancestrongly encouragesew tech-

nologiesto useexisting interfaces,for good reason,as interoperability and easeof
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useare crucial to the acceptanceof new technologies.However, it is important to
considerwhether anything is lost in using abstractions developed for old devices
with new technologies.

An instructiv e example is the introduction of disk arrays in the early 1990s.
Somehave arguedthat the standard linear abstraction hidesthe inherent parallel
accesdo data stored in a disk array, and that extendedinterfacescould allow im-
provemerts in performance.However, such extendedinterfaceshave never reached
the marketplace becausefew real-world workloads take advantage of them. Hence,
adding the complexity of a new interface is not justi ed for the majority of cus-

tomers.

1.1 Thesisstatement

MEMS-based storage o ers signi cant performance and energy consumption ad-
vantages over today's mass storage devices (i.e., disk drives). Despite this fact,
the linear logical block abstraction usedin the interface for other storage devices
is appropriate for MEMS-based storage devicesbecauseof their particular data

accesscharacteristics.

1.2 Overview

The main questionthat this dissertation seekgo answer is whether MEMStoresare
su cien tly dierent from existing devices,speci cally disk drives,to require new
interfacesor abstractions, or whether those that are already in useare su cien t.
In order to answer this question, the right comparisonto make is not between
MEMStores and disk drives of today. Rather, the comparison should be made
between MEMStores and hypothetical disk drives of equal average performance,
even though sud disk drivesdo not, and may newer, exist. If the bene t of using
a faster disk drive is the sameasthat when using a MEMStore, then the bene t

simply stemsfrom the fact that both devicesare faster. If the benet of using a
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MEMStore is greater than that of using a fast disk drive, then the workload must
be exploiting somethingspeci ¢ about the MEMStore that the disk drive doesnot
have, or doesnot do. It is thesespeci c di erences that will motivate the useof a
new interface and abstraction. If the bene t is the same,then the abstraction can
remain unchanged. It is this methodology that | useto support the thesis of this
dissertation.

This dissertation considersthe useof MEMStores in computer systemsin three
basicways. First, it describesbene ts that systemscan gain by using MEMStores
for bulk storage. Second,it usessome of these insights to in uence their basic
design. Third, it shows that systemscan employ well-known abstractions and
interfacesdeveloped for disk drivesto accessMEMStores, and canreapthe bene ts
of MEMStores using sud interfaces. Neither of the rst two points draw any
conclusionsother than the fact that MEMStores are fasterthan today's disk drives,
and that systemscan benet from faster devices.While it is interesting to note
the technical reasonsbehind such advantages,the third point addresseghe larger,
meta-questionof whether MEMStores are fundamentally di erent from disk drives
(from the rest of the computer system's perspective) in useful ways, or if they
are basically the same, only faster. Therefore, the argumert of the dissertation
is formed largely around the third point. If a MEMStore is fundamentally the
same as a disk drive (only faster), then systems can use the same abstraction
and interface for both. If the two devicesare fundamertally di erent, and systems
utilize dierent characteristics of eat device, then the abstraction and interface
will have to change.

Put simply, the question that this dissertation seeksto answer is whether
MEMStores should be treated by computer systemsas anything other than fast,
small, low-power disk drives. These qualities are certainly desirable and can lead
to bene ts for systems.In fact, it is thought that the performance of MEMStores
will exceedthat of disk drivesfor many yearsto come, both in terms of access

speed and energy consumption. None would disagreethat faster devices,if used
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properly in systems,will leadto faster systems.Howeer, in this dissertation | seek
to nd advantagesof MEMStores beyond the simple improvemerts in accesgime

and energy consumption. If there are truly MEMStore-speci ¢ mecanisms that

a system can take advantage of, then, most likely, there must be a fundamenal

changein the abstraction and interface that is usedto accesshem.

A changeto the storageabstraction could be as simple asthe systemknowing
the type of device behind the abstraction, or could it be ascomplex asthe system
keepinga detailed model of the device.If the systemis to exploit a speci ¢ feature
of MEMStores, then the abstraction must at least change so that the systemis
aware that the device is a MEMStore and will probably require more device-
speci ¢ information. Somewould argue that the fact that MEMStores are faster
and require less energy than disk drives is compelling in and of itself. This is
certainly true, but simple speed improvemerts do not require a change in the
abstract view of storageusedby systems.

This dissertation answers the question using two complemertary approades.
First, it examinesthe reasonswhy the current abstraction works well for disk
drivesand shows that those reasonshold for MEMStores as well. Second,it uses

two simple tests to decidewhether new abstractions are justi ed.

1.2.1 Rolesand policies

This dissertation divides the aspects of MEMStore usein systemsinto two cate-
gories:roles and policies. MEMStores can take on various rolesin a system, such
as disk replacemen, cacde for hot blocks, metadata-only storage, etc. For the de-
bate at hand, the assiated sub-questionis whether a systemusing a MEMStore
is exploiting something MEMStore-speci ¢ (e.g., becauseof a particularly well-
matched accesspattern) or just bene tting from its general properties (e.g., that
they are faster than current disks). In any given role, external software usesvari-
ous policies, sudh as data layout and requestsdeduling, for managing underlying

storage. The sub-questionhere is whether MEMStore-speci ¢ policies are needed,
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or are those usedfor disk systemssu cien t.

1.2.2 Objectivetests

To help answer the top-level question, | usetwo simple objective tests. The rst
test, calledthe speci city test, asks:ls the potential role or policy truly MEMStore-
speci c? To test this, | evaluate the potential role or policy for both a MEMStore
and a (hypothetical) disk drive of equivalent performance. If the benet is the
same,then the potential role or policy (however e ectiv e) is not truly MEMStore-
speci ¢ and could be just as bene cial to disk drives.

The secondtest, calledthe merit test, asks:Giventhat a potential role or policy
passeghe speci cit y test, doesit make enoughof an impact in performance(e.g.,
accessspeedor energyconsumption) to justify a new abstraction? The test hereis
a simple improvemert comparison,e.g.,if the systemis lessthan 10% faster when
using the new abstraction, then it's not worth the cost.

Thesetwo tests codify a generalrule in engineering:that the costsof incorpo-
rating new technologiesshould be consideredwhen suggestingchangesto systems.
While this dissertation usesthe methodology speci cally to evaluate the use of

MEMStores in systems,it is genericand can be usedfor any new device.

1.3 Contributions
This dissertation makesfour primary contributions:

{ It describesthe various instancesof MEMStores under developmert. It also
describesthe model of MEMStores dewveloped for this dissertation and com-

paresit to othersin the literature.

{ It examinesthe current abstraction usedfor disk drivesand why it works,

and shawvs why the abstraction works for MEMStores.
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{ It preseris two objective tests that can be usedto evaluate the use of new
technologiesin systemsand whether any changesthat are required to those
systemsjustify the bene ts that may be gained. This methodology is generic

and can be usedto evaluate the useof any new technology in systems.

{ It introducessewral potential roles and policies and applies the objective
tests to evaluate the e cacy of the standard disk abstraction for accessing

MEMStores.

1.4 Organization

This dissertation is organizedas follows. Chapter 2 givesa detailed description of
MEMStores and presers related work. Chapter 3 provides details on the model
used in this dissertation. Chapter 4 describes the abstraction used by current
storage systems, why that abstraction works well for disks, and why it should
work well for MEMStores. Chapter 5 exploresseveral potential roles MEMStores
may take in computer systems.Chapter 6 describes seweral potential policies for
tailoring systemaccessto MEMStores. Chapter 7 concludesthe dissertation and

presens future work.



2 Backgroun@andrelatedwork

The MEMStores that have beendescribedin the literature sharemany similarities,
both in designand performance. This chapter describesin somedetail the three
most widely publicized incarnations, with an emphasison the design being built
at Carnegie Mellon, on which much of my work is based.As well, it describesthe
eld of researd to date studying the use of MEMStores in systems.

Building practical MEMStores hasbeenthe goal of seweral major researt labs,
universities, and startup companiesaround the world for over a decade.The three
most widely publicized e orts are from CarnegieMellon University, IBM Researt
in Zurich, and Hewlett-Padkard Laboratories. The three designsdi er largely in
the type of actuators which are usedto position the media and the method usedto
record data in the medium. Despite thesedi erences, however, ead designshares
the samebasic architecture showvn in Figure 2.1 utilizing a moving media sled and
a large array of read/write tips. It would also be possibleto put the read/write
tips onto the moving sled while the media remains xed, although no published

designsdo so.

2.1 Basicdevicedescription

Published MEMStore designsutilize moving media, much like the media in disk
drives,and an array of read/write probe tips to accessdata stored in the media.
Unlik e a disk, however, the media doesnot rotate becauset is di cult to build ro-

tating componerts using MEMS processeslinstead, current designsusea movable
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Fig. 2.1: Comp onents of a MEMS-based storage device. The media sled is suspended
above an array of probe tips. The sled moves small distances along the X and Y axes, allowing
the stationary tips to addressthe media.

media sled, which is coated with the media material. This sledis spring-mounted
and can be pulled in the X and Y dimensionsby actuators on ead edge belov
a two-dimensional array of xed read/write headsor prole tips. To accessdata,
the media sledis rst pulled to a specic location (x,y displacemen). When this
seekis complete, the sled movesin the Y dimension at a constart velocity while
the probe tips accesshe media. With the exception of minute movemerts in the
X and Z dimensionsto adjust for surfacevariation and skewed tracks, the probe
tips remain stationary while the media sled moves. In cortrast, rotating platters
and actuated read/write headssharethe task of positioning in disks. Figures 2.1

and 2.2 illustrate this MEMStore design.

2.1.1 CanegieMellon Universiy

The deviceunder developmert at CarnegieMellon usesmagneticrecordingto store
data, similar to today's disk drives. This choice was made for two reasons.First,
magneticrecordingin disk drivesis a very well-understood process.Second,it does
not require contact betweenthe media and the read/write tips, avoiding questions

of physical wear. Using magnetic recording in a MEMStore, however, doespresert
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Fig. 2.2: The movable media sled. The actuators, spring suspension, and the media sled are
shown. Anchored regions are solid and the movable structure is shaded grey.

challenges.First, the tip/media spacing must be very carefully cortrolled, which
requiresa complexactive seno systemthat must be replicated for eat read/write
tip adding complexity and requiring more power for ead tip. Second,depositing
magnetic materials can be incompatible with manufacturing MEMS componerts.

The researt group at Carnegie Mellon has explored seweral design points,
varying parameterssuc asthe mediafootprint, the number and type of read/write
tips, and the size of bits stored in the media. | have chosenone such designpoint
to highlight throughout the dissertation, and explored someothers to understand
the sensitivity of the modelsto varying parameters. These are described in more
detail in Chapter 3. Much of the discussionthat follows is basedon one of these
design points, which is called the G2 or \second generation" model. This model
has a media footprint of 196 mm?, with 64 mm? of usable media area and 6400
probe tips [Carley et al. 2000].Dividing the mediainto bit cellsof 40 40 nm, and
accounting for an ECC and encading overhead of 2 bits per byte, this designhas

a formatted capacity of 3.2 GB/device.
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In the CMU design,ead bit cell hasa squareaspect ratio, which is not the case
in convertional disk drives.Bits storedin disk driveshave a relatively high aspect
ratio to increasesignal to noiseratio in the face of oscillations of the seekarm.
The media sledin a MEMStore can be positioned much more accurately than the
headsin a disk drive, making squarebits possible.This positioning accuracy and
the smaller aspect ratio it enablesresults in higher areal densitiesin MEMStores
than in disks. However, the smaller media area results in a smaller per-device

capacity of MEMStores relative to disks.

2.1.2 IBM Millipede

IBM's Millip ededesignsharesmany similarities to the CMU designbut is di erent
in sometechnical details. First, data is recorded using a novel thermomecdanical
recording technique in which the probe tips are placedin physical cortact with a
plastic media. To write a bit, a probe tip is heated, melting a depressioninto the
media. To read badk data, the probe tips are dragged acrossthe media surface.
When a probe tip falls into a depression,its displacemer is detected, indicating
a bit. Data is erasedeither in bulk by heating the media, allowing the plastic to
re- ow into the pits, or by point overwrites of data.

This recording technique simplies some aspects of the device signi cantly.
Since the probes are held in contact with the media, there is no need for indi-
vidual control over the tip/media spacing. This, along with the simplicity of the
read/write mechanism, could reducethe energyrequiremerts of ead tip, increas-
ing the number of tips that can be usedconcurrertly. Constant cortact, however,
leads to questions of wear both of the media and of the tips. While initial re-
sults [Terris et al. 1998] suggestthat the media is resilient enoughto withstand
contact, anecdotal evidencesuggestshat possiblere-write and even re-read limits
continue to be a concernfor this technology.

The Millip ede prototype uses electromagnetic actuators, in cortrast to the

electrostatic actuators of the CMU design. These actuators provide much greater
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force, potentially increasing performance or, at least, providing the same force
using lessenergy However, the energy consumption is likely to have a dierent
dynamic. Electromagnetic actuators draw more current, and henceconsumemore
energy asthe media sledis pulled further from its rest position [Rothuizen et al.
2000; Vettiger et al. 2002]. Electrostatic actuators require higher voltages as the
sledis displacedfurther, but require little current so energy consumption is lower
overall and has less dependenceon displacemen. This di erence could lead to
interesting trade-o s between positioning distance and energy consumption for

MEMStores with electromagnetic actuators.

2.1.3 Hewlett-Packard LabsAtomic-ResolutionStorage (ARS)

The device being designedin the Atomic Resolution Storage project at Hewlett-

Padard Laboratories is similar in structure to the CMU and IBM devices,but it,

again, usesa di erent media actuator and recording scheme. Its media actuator
useselectrostatic stepper motors and the recording schemeuseselectron beamsto
make marks in phase-©ilangemedia [Hewlett-Padkard 2002]. The electrostatic mo-
tor is mechanically di erent from the electrostatic comb ngers in the CMU design
but is likely to have similar performanceand energy consumption characteristics.
Using electron beamrecording eliminates the needfor constart tip/media spacing,

which further simpli es tip designand reducesenergy requiremerts.

2.2 Low-leveldata layout

All MEMStore designsthat appear in the literature store data in a linear fash-
ion, i.e., in columns, as illustrated in Figure 2.3. The storage media on the sled
is divided into rectangular regions as shavn in Figure 2.3. Each region contains
M N bits (e.g., 2500 2500) and is accessibleby exactly one probe tip; the num-
ber of regions on the media equalsthe number of probe tips. Each term in the

nomenclature below is de ned both in the text and visually in Figure 2.4.
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Sweep area of one probe tip
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Fig. 2.3: Data organization on MEMS-based storage devices. The illustration depicts a
small portion of the magnetic media sled. Each small rectangle outlines the media area accessible
by a single probe tip, with a total of 16 tip regions shown. A full device contains thousands of
tips and tip regions. Each region stores M N bits, organized into M vertical columns of N bits,

alternating between serwl/trac king information (10 bits) and data (80 bits = 8 encoded data

bytes). To read or write data, the media sled passesover the tips in the Y directions while the

tips accessthe media.

Cylinders. Drawing on the analogyto disk terminology, a cylinder is the set of
all bits with identical x o set within a region (i.e., at identical sled displacemert
in X). In other words, a cylinder consistsof all bits accessibleby all tips when
the sled movesonly in the Y dimension, remaining immobile in the X dimension.
Cylinder 1 is highlighted in Figure 2.4 as the four circled columns of bits. This
de nition parallels that of disk cylinders, which consist of all bits accessibleby
all headswhile the arm remainsimmobile. There are M cylinders per sled. In the
G2 model described in detail below, ead sled has 2500 cylinders that ead hold
1350KB of data.

Tracks. A MEMStore might use6400read/write tips to accessts media; however,
due to power and heat considerationsit is unlikely that all 6400tips can be active
(accessingdata) concurrertly. Device designersexpect to be able to activate 200{
2000 tips at a time. To accourt for this limitation, cylinders are divided into
tracks. A track consistsof all bits within a cylinder that can be read by a group of
concurrertly activetips. The sledin Figure 2.4 hassixteentips (one per region; not

all tips are shawvn), of which up to four can be concurrertly active|eac h cylinder
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Fig. 2.4: Cylinders, trac ks, sectors, and logical blocks. This example shovs a MEMS-
based storage device with 16 tips and M N = 3 280. A cylinder is de ned as all data at the
samex o set within all regions; cylinder 1 is indicated by the four circled columns of bits. Each
cylinder is divided into 4 tracks of 1080 bits, where ead track is composed of four tips accessing
280 bits eadh. Each track is divided into 12 sectors of 80 hits each, with 10 bits of servo/trac king
information between adjacent sectorsand at the top and bottom of ead track. (There are nine
sectorsin ead tip region in this example.) Finally, sectors are grouped together in pairs to form
logical blocks of 16 bytes eath. Sequerial sector and logical block numbering are showvn on the
right. These de nitions are discussedin detail in Section 2.2.

Cylinder 1 Logical block 1 striped across sectors 2 and 3
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therefore has four tracks. Track 0 of cylinder 1 is highlighted in the gure asthe
leftmost circled column of bits. Note again the parallel with disks, where a track
consistsof all bits within a cylinder accessibleby a single active head. Again, in
the G2 model, ead sled has 6400tips and 640 concurrertly active tips, so eath
cylinder corntains 10 tracks that ead hold 135KB of data. Excluding positioning
time, accessingan ertire track takes3.64 ms.

Physical sectors. Continuing the disk analogy, tracks are divided into sectors.
Instead of having ead active tip read or write an ertire vertical column of N bits,
ead tip accessesnly 90 bits at atime|10 bits of senw/trac king information and
80data bits (8 encaded data bytes). Each 80-data-bit group forms an 8-byte sector,
which is the smallestunit of data that canbe accessedby a singletip. Each track in
Figure 2.4 contains 12 sectors(3 per tip). Thesesectorsparallel the partitioning of
disk tracks into physical sectors.As described below, physical sectorsare conbined
together to form larger logical blocks. Physical sectorscan be read in either the
+Y or Y direction, allowing MEMStores to support bidirectional access In the
G2 model, ead track is composedof 34,560sectorsof 8 bytes ead, of which up
to 640 sectorscan be accessedaoncurrertly. Excluding positioning time, ead 640
sector (5 KB) accesdakes0.129ms.

Logical blo cks. The low data rate of individual tips and the desireto use pow-
erful error-correcting codes over large blocks of data provide the motivation for
combining multiple physical sectorsinto larger logical blacks In the G2 model,
64 physical sectorsare conbined together to form 512 byte logical blocks. Each
logical block is, in essencestrip ed across64 tips. Given that the power budget
allows 640tips to be activetogether, 10logical blocks can be accesseaoncurrertly
(640 64 = 10). Becausethe error correcting codes require logical blocks to be
read in their ertirety, the set of tips required for ead logical block must be static.
The remaining logical blocks (e.g., 9 out of 10) can be dynamically chosenfrom

the setthat are addressedby the tips.
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2.3 Mediaaccesshaacteristics

Media accesgrequires constart sledvelocity in the Y dimension and zero velocity
in the X dimension. The Y dimension access speed is a design parameter and is
determined by the per-tip read and write rates, the bit cell width, and the sled
actuator force. Although read and write data rates could di er, tractable control
logic is expected to dictate a single accessvelocity in early MEMStores. In the
default model, the accessspeedis 28 mm/s and the corresponding per-tip data
rate is 0.7 Mbit/s.

Positioning the sledfor read or write involvesseweral mecanical and electrical
actions. To seekto a sector,the appropriate probetips must be activated (to access
the senw information and then the data), the sledmust be positioned at the correct
X,y displacemen, and the sled must be moving at the correct velocity for access.
Whenewer the sled seeksin the X dimension|i.e., when the destination cylinder
di ers from the starting cylinder|extra settling time must be taken into accourt
becausethe spring-sledsystemoscillatesin X after ead cylinder-to-cylinder seek.
Becausethis oscillation is large enoughto causeo -trac k interference, a closed
loop settling phaseis usedto damp the oscillation. To the rst order, this active
damping is expectedto require a constart amourt of time. Although slightly longer
settling times may ultimately be neededfor writes, asis the casewith disks, the
model assumeghat the settling time is the samefor both read and write requests.
Settling time is not a factor in Y dimension seeksbecausethe oscillationsin Y are
subsumedby the large Y dimension accessvelocity and can be tolerated by the
read/write channel.

As the sled movesaway from zero displacemer, the springs apply a restoring
force toward the sled's rest position. These spring forces can either improve or
degrade positioning time (by aecting the e ective actuator force), depending
on the sled displacemen and direction of motion. This force is parameterizedin

the model by the spring factor|the ratio of the maximum spring force to the



Ch. 2. Background and related work 17

maximum actuator force. A spring factor of 75% means that the springs pull
toward the certer with 75% of the maximum actuator force when the sled is at
full displacemen. The spring force decreasedinearly to 0% as sled displacement
approades zero. The spring restoring force makes the acceleration of the sled
a function of instantaneous sled position. In general, the spring forces tend to
degradethe seektime of short seeksand improve the seektime of long seekgGri n
et al. 2000].

Large transfers may require that data from multiple tracks or cylinders be
accessed.To switch tracks during large transfers, the sled switches which tips
are active and performs a turnaround, using the actuators to reversethe sled's
velocity (e.g., from +28 mm/s to 28 mm/s). The turnaround time is expected
to dominate any additional activity, suc asthe time to activate the next set of
active tips, during both track and cylinder switches. One or two turnarounds are
necessaryfor any seekin which the sled is moving in the wrong directionja way
from the sectorto be accessed|b efore or after the seek.

Lastly, a single chip may corntain more than one media sled. Adding more sleds
increasesthe per-device capacity and the number of independert actuators avail-

able to accesdlata, possibly increasing performancefor well-matched workloads.

2.4 Logicaldata layout

Sequetial accessis the most e cien t accesspattern in most mecdanical storage
devices, including MEMStores, becauseonce the media is in motion the most
e cien t thing to do is to keepit in motion. The mapping of logical blocks (LB N s)
onto physical sectorsof a MEMStore will take advantage of this property. Data will
be accessedn linear tracks (in columnsalongthe Y axis), asshown in Figure 2.3,
so successie logical blocks within these tracks will be numbered suc that they
are sequettial.

Once the end of a track is reached, sequetiial LB N s will be mapped to the
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0 33 54 1 34 55 2 35 56
3 30 57 4 31 58 5 32 59
6 27 60 7 28 61 8 29 62
15 36 69 16 37 70 17 38 71
12 39 66 13 40 67 14 41 68
9 42 63 10 43 64 11 44 65
18 51 72 19 52 73 20 53 74
21 48 75 22 49 76 23 50 77
24 45 78 25 46 79 26 47 80

Fig. 2.5: Mapping LB Ns to optimize sequential access.

next track within the samecylinder. This meansthat accessingsequetial tracks
will require only that the device turn the media sled around and switch the set
of read/write tips. No motion in the X dimensionis required until the last track
in the cylinder has beenaccessedAfter that, the devicewill move the media sled
to the next cylinder (requiring a single-cylinder seekin the X direction) and start
again. MEMStores also use many read/write tips concurrertly to accessdata in
parallel. It is most natural to map sequetial LB N s acrossthese parallel tips in
order to optimize sequetial access.

Figure 2.5 shows how LB N s will be mapped to sequettial locations on a sim-
ple MEMStore. This device has nine total read/write tips, of which three can be
concurrertly active due to the power budget. Each read/write tip addressesine
LB N s. Starting in the top left corner,LB N s0, 1, and 2 are simultaneously accessi-

ble by three parallel read/write tips. As the media moves,LB N s 3{8 are accessed,
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completing the rst track of data. The secondtrack (LB N s 9{17) are accessedy
reversing the sled's motion and by activating the secondrow of read/write tips.
Note that successie tracks are reversed with respect to ead other | the rst
track is numbered \down" and the secondis numbered\up.” Thesetrack rever-
sals are necessarysothat the mediais immediately positioned after a turnaround
to accesssequettial data.

Lastly, each LB N will be striped over a number of individual read/write tips
to improve bandwidth and fault tolerance. For example,in the default model used
throughout this dissertation, ead 512 byte sectoris split into 64 physical sectors,
which are spread over 64 concurrertly-op erating read/write tips. These physical
sectorswill be read in parallel and transparertly combined in the device'sbu ers
for delivery to the host. Oncethis striping is assumed,it is usefulto considerthat
the number of read/write tips hasbeenreducedand that ead \virtual* read/write
tip accessesa complete LB N at a time. For example, the default MEMStore
described below has 6400read/write tips and ead LB N is spreadover 64 tips. In
this way, the MEMStore hasa \virtual geometry" with only 100 read/write tips,
ead of which accessea full block at atime. In this design,640physical read/write
tips can be used concurrertly, as determined by the power budget of the device,
meaning that 10 \virtual" read/write tips can be used concurrertly. In order to
spreadthe heat load of the deviceand avoid \hot spots,” physical read/write tips
that are usedtogether to accessvhole LB N swill be physically spreadaround the

device.

2.5 Compaisonto disks

Although MEMStores involve someradically di erent technologiesfrom disks,they
shareenoughfundamerntal similarity for a disk-like model to be a sensiblestarting
point. This sectioncomparesMEMStores and disks from this standpoint, and the

rest of the dissertation shows that little is lost by taking this view.
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Like disks, MEMStores stream data at a high rate and su er a substartial
distance-degendert positioning time delay before eadh nonsequetial access.In
fact, although MEMStores are much faster, they have ratios of requestthroughput
to data bandwidth similar to those of disks from the early 1990s.Somevalues of
the ratio, , of requestservicerate (requests/s) to streaming bandwidth (MB/s)
for somerecent disks include = 26 (1989) for the CDC Wren-IV [Patterson
et al. 1989], = 17 (1993) [Hennessyand Patterson 1995],and = 5:2 (1999)
for the Quantum Atlas 10K [Quantum 1999]. for disks cortinue to drop over
time as bandwidth improvesat a greater rate than medanical positioning times.
In comparison, the MEMStore described below yields = 25 (1111 requests/s

44.8 MB/s), comparableto disks within the last decade.Also, although many
probe tips accesghe media in parallel, they are all limited to accessinghe same
relative x,y o set within aregionat any given point in time|recall that the media
sled movesfreely while the probe tips remain relatively xed. Thus, the probe tip
parallelism provides greater data rates but not concurrert, independert accesses.
There are alternativ e physical device designsthat would support greater access
concurrencyand lower positioning times, but at substartial costin capacity [Gri n
et al. 2000].

The remainder of this sectionenumeratesa number of relevant similarities and
di erences between MEMStores and corvertional disk drives.

Mec hanical positioning. Both disks and MEMStores have two main compo-
nents of positioning time for ead request: seekand rotation for disks, X and Y
dimensionseeksfor MEMStores. The major di erence is that the disk componers
are independert (i.e., desiredsectorsrotate past the read/write head periodically,
independen of when seekscomplete), whereasthe two componerts are explic-
itly handled in parallel for MEMStores. As a result, total positioning time for
MEMStores equalsthe greater of the X and Y seektimes, making the lessertime
irrelevant. This overlap most strongly a ects requestsdceduling, which is discussed

in Section6.1.
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Settling time. For both disks and MEMStores, it is necessaryfor read/write
headsto settle over the desired track after a seek. Settling time for disks is a
relatively small componert of most seektimes (0.5 ms of 1{15 ms seeks).Howe\er,
settling time for MEMStores is expectedto be a relatively substartial componert
of seektime (0.2 ms of 0.2{0.8 ms seeks).Becausethe settling time is generally
constart, this has the e ect of making seektimes more constart, which in turn
could reduce (but not eliminate) the benet of both requestscheduling and data
placemer.

Logical-to-ph ysical mappings. As with disks, the lowest-level mapping of logi-
cal block numbers (LB N s) to physical locations will be straightforward and opti-
mized for sequettial accessthis will be bestfor legacysystemsthat usethesenew
devicesas disk replacemerts. Sudch a sequetially optimized mapping scheme ts
disk terminology and has somesimilar characteristics. Nonetheless,the physical
di erences will make data placemern decisions(mapping of le or databaseblocks
to LB N s) an interesting topic. Sections6.2 and 6.3 discussthis issue.

Seek time vs. seek distance. For disks, seektimes are relatively constart func-
tions of the seekdistance, independert of the start cylinder and direction of seek.
Becauseof the spring restoring forces, this is not true of MEMStores. Short seeks
near the edgestake longer than they do near the certer (as discussedin Sec-
tion 6.2). Also, turnarounds near the edgestake either lesstime or more, depend-
ing on the direction of sled motion. As a result, seek-reducingrequest scheduling
algorithms [Worthington et al. 1994a]jmay not achieve their best performanceif
they look only at distancesbetweenLB N s asthey do with disks.

Recording density. Some MEMStores use the same basic magnetic recording
technologiesas disks [Carley et al. 2000]. Thus, the sametypesof fabrication and
grown media defects can be expected. Howewer, becauseof the much higher bit
densitiesof MEMStores, eat sud media defectwill a ect a much larger number
of bits.

Num bers of mechanical comp onents. MEMStores have many more distinct
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medanical parts than disks. Although their very small movemens make them
more robust than the large disk medanics, the sheernumber of parts makes it
much more likely that some number of them will break. In fact, manufacturing
yields may dictate that the devicesoperate with somenumber of broken medan-
ical componernts.

Concurren t read/write  heads. Becauseit is dicult and expensiwe for drive
manufacturers to enable parallel activity, most modern disk drives use only one
read/write head at a time for data access.Even drivesthat do support parallel
activity are limited to only 2{20 heads.On the other hand, MEMStores (with
their per-tip actuation and control componerts) could theoretically useall of their
probe tips concurrertly. Even after power and heat considerations, hundreds or
thousands of concurrertly active probe tips is a realistic expectation. This paral-
lelism increasesmedia bandwidth and o ers opportunities for improved reliabilit y.
Further, exibilit y in the choice of which tips are usedto accessdata allows for
novel data accessschemes,such as e cien t accesso two-dimensionaldata struc-
tures.

Control over mechanical movements. Unlike disks, which rotate at a con-
stant velocity independent of ongoing accessesthe mecanical movemens of
MEMStores can be explicitly cortrolled. As a result, accesspatterns that su er
signi cantly from independen rotation can be better served. The best example of
this is repeatedaccesdo the sameblock, asoften occursfor synchronous metadata
updates or read-madify-write sequences.

Startup activities. Likedisks, MEMStores will require sometime to ready them-
sehesfor media accessesvhen powered up. However, becauseof the size of their
medanical structures and their lack of rotation, the time and power required for
startup will be much lessthan for disks. How this a ects both energyconsenation
(Section 6.4) and availabilit y (Section 7) is discussedbelow.

Driv e-side managemen t. As with disks, managemen functionality will be split

between host operating systemsand device rm ware. Over the years, increasing
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amounts of functionality have shifted into disk rm ware, enabling a variety of
portabilit y, reliabilit y, mobility, performance,and scalability enhancemets. Sim-
ilar trends are likely with MEMStores, whose silicon implementations o er the
possibility of direct integration of storagewith computational logic.

Speed-matc hing buers. As with disks, MEMStores accessthe media as the
sled moves past the probe tips at a xed rate. Since this rate rarely matches
that of the external interface, speed-matding bu ers are important. Further, be-
causesequetiial requeststreamsareimportant aspectsof many real systems,these
speed-matding bu ers will play animportant role in prefetching and then cading
of sequetial LB N s. Also, most block reusewill be captured by larger host memory
cadesinstead of in the device cade.

Sectors per trac k. Disk mediais organizedas a seriesof conceriric circles, with
outer circles having larger circumferencesthan inner circles. This fact led disk
manufacturers to use banded (zoned) recording in place of a constart bits-per-
track schemein order to increasestorage density and bandwidth. For example,
banded recording results in a 3:2 ratio between the number of sectors on the
outermost (334 sectors)and innermost (229 sectors)tracks on the Quantum Atlas
10K drive [Gangerand Sdiindler 2004].BecauseMEMStores organizetheir media
in xed-size columns instead, there is no length di erence between tracks and
banded recording is not relevant. Therefore, block layout techniquesthat try to
exploit banded recording will not provide bene t for these devices.On the other
hand, for block layouts that try to considertrack boundaries and block o sets
within tracks, this uniformity (which was commonin disks 10 or more yearsago)
will simplify or enablecorrect implementations. The subregionedlayout described

in Section 6.2 is an example of such a layout.



Ch. 2. Background and related work 24
2.6 Other alternativetechnologies

2.6.1 Battery-bacled DRAM

One of the simplest methods of making memory \non-v olatile" is to make sure
it can be powered with batteries in casemain power is removed. This strategy
is widely usedin today's disk arrays which badk up power to their large (seweral
gigabyte) DRAM-based cadeswith large batteries. The main concern, of course,
is that there is enoughbattery power in the systemto allow all of the dirty data
to be de-stagedto truly non-volatile storage (i.e., the badk-end disk drives) in
the event of power loss. The power requiremerts of the system are signi cant,
and the batteries must be large enoughto supply both the DRAM itself and the
badk-end storageto which the data is to be retired. The main benet of battery-
baded DRAM, of course,is its superior performance.Howewer, its lower density
comparedto disk drives makesit prohibitiv ely expensive as a true massstorage
device, except for very high-performancesystemslike high-end disk arrays.

In somesense,the DRAM in someportable devices,suc as PDAs, is \non-
volatile" sincethe deviceis almost always powered by batteries. Often PDAs use
this DRAM to store at least someof their les, with the rest being stored in other

truly non-volatile storagelike FLASH memory.

2.6.2 Miniature disk drives

In just the last few years, portable music players such asthe Apple iPod have cre-
ated a large demandfor high-density portable storage.To meetthis demand, hard
drive companieshave intro duced a plethora of new, miniature disk drives,trading
o performancefor very small form factors. IBM rst introducedits 1.0 inch Mi-
crodrivein the late 1990swith a capacity of 340MB. The Microdrive was followed
by 1.8,1.5,and 0.85inch drivesfrom Toshiba, Hitachi, Cornice, and others. These
drivesare, essetially, scaled-davn versionsof desktop and notebook drives. They

contain only a single platter and often useonly a single head to accessdata. Be-



Ch. 2. Background and related work 25

causethey are scaleddown so signi cantly, their performanceis much worsethan
their desktop counterparts. Rotation speedis usually no faster than 3600 RPM,
their average seektime is generally more than 10 ms, and their bandwidth is
around 5 MB/s.

While thesedisks may seemvery limited, they t their market well. Customers
who use portable music players demand the largest possible capacities because
there is always more music to carry around. Performanceis not too critical, since
the workload is very simple and consistsonly of streaming large music les to and
from the disk through a RAM buer. Once a playlist is read into the memory
bu er, the disk is idled to save power.

Miniature disk drivesare a recert addition to the storagelandscape, and they
presert a strong challenger to MEMStores in that their per-device capacity is
signi cantly greater. MEMStores are ervisioned to store at most 5-10 GB per
chip, and today's miniature disk drivesstore 40 GB. Assumingthat in v e years
when MEMStores are available the capacity of a miniature disk drive will be
100GB, tting 10MEMStore chipsinto a Compact FLASH form factor to equalize
capacities may be a challenge. However, the higher performance of MEMStores
in seeklatency, bandwidth, and energy consumption alone could give them an

advantage over miniature disk drives.

2.6.3 FLASH

Along with miniature disk drives, FLASH memory is the current non-volatile
storage media of choice for mobile devicessuch asdigital cameras,PDAs, cellular
telephones,and portable music players.FLASH is a semiconductormemory, and so
has a much lower density and faster performancethan disk drivesor MEMStores.
Its performance for reads is slightly slower than that of DRAM, but its write
performanceis much slower. Internally, the FLASH memory can only write data
in large (e.g.,128KB) pagessofor small writes, the ertire pagemust be readinto a

bu er, modi ed, the pagein the FLASH must erased,and then the modi ed data
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is programmed from the bu er. This cycle can take on the order of a secondfor
an ertire page, making writes very expensive. Also, FLASH memoriescan only be
written a xed, relatively small, number of times (e.g., 100,000),after which they
becomeinoperable. Newer FLASH memariesmitigate this problem by internally
remapping data pagesfrom cellsthat are approading their re-write limit.

Becauseof its poor write performance, FLASH is not well-suited for general
lesystem workloads, in which small write performanceis crucial for maintaining
metadata. However, FLASH memory is well-suited for simple le storagein dig-
ital camerasand portable music players. In these applications, though, the lower
density of FLASH comparedto diskswill keepits capacity belowv seweral gigabytes
at reasonablecostsand sizes.In responseto the growing popularity of miniature
disk drives, FLASH has shavn sometremendous growth recertly by incorporat-
ing somenew innovations such as storing multiple memory states per cell. For the
foreseeablduture, FLASH will probably dominate the market for low- to medium-
capacity devices(128 MB to 2 GB) and miniature disk driveswill provide high
capacities (10 GB to 100 GB).

2.6.4 MRAM

Magnetic RAM (MRAM) is another emergingnon-volatile storagetechnology that
seeksto supplant FLASH. It employs GMR elemens into semiconductor mem-
ory cellsto store data. MRAM will, most likely, have DRAM-lik e accesstimes,
both for read and write, and will not suer from the re-write limits of FLASH
memory. SomeMRAM componerts are available at very high costsand low den-
sities, and many researdiers and companiesare working to make it a commad-
ity product. The non-volatility and performance properties of MRAM make it
very interesting as a FLASH and even main memory replacemen. Howewer, like
other semiconductormemories,its architecture makesit inherently lessdensethan
medanically-addressedstorage deviceslike disks and MEMStores, making it an

unlikely alternativ e for applications that require high capacities.
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2.6.5 OvonicUni ed Memay

Ovonic memory is a new technology being dewveloped by Ovonyx, Inc. [Ovonyx
2004] that incorporates phase change media into semiconductor memories. It
achievesa similar density to FLASH memory, but doesnot shareseweral of FLASH's
limitations, notably its poor write performanceand re-write limitations. Again, be-
causeit is a semiconductor memory, Ovonic Unied Memory will not approach
the density of medanical storagebecausets density is determined by lithographic

feature sizes.

2.6.6 FERAM

Ferroelectric RAM (FERAM) is another alternativ e semiconductormemory tech-
nology that usesferroelectric capacitors as the memory elemers [Sheikholeslami
and Gulak 2000]. Its density is limited by lithography, like any semiconductor
memory, and it avoids the poor write performance and re-write limitations of
FLASH memory. However, somedesignsmay su er from destructive reads, which

would require cellsto be refreshedimmediately after reads.

2.7 Relatedwork

2.7.1 Devices

Fortunately, the design of MEMStores has not all taken place behind the closed
doors of corporations and researd labs|some of the deviceshave beendescribed
in the literature.

The MEMStore designbeing developed at CarnegieMellon University was rst
described in [Carley et al. 2000]. That paper described the basic architecture of
the deviceand comparedit to seweral other devicesbeing developed concurrertly .
Sewral other papers from that group describe the seno system for tip/media
spacing [Carley et al. 2001],the media actuator [Alfaro and Fedder 2002],and a
potential magnetic recording scheme[El-Sayed and Carley 2002;2003].
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The IBM Millip edeproject has produced seweral paperswhich describe seweral
of the componerts of that device. Two papers describe the overall device[Vettiger
et al. 2000; Vettiger et al. 2002]and its basic architecture. The thermomedanical
writing processwas rst described in [Mamin and Rugar 1992], and was further
studied in [Mamin et al. 1995;Mamin et al. 1999].0ne of the concernsof thermo-
medhanical writing and reading of data has always beenwear of both the media
and the read/write tips, which was rst addressedn [Terris et al. 1998].0Other pa-
pers describe methods to manufacture probe tips [Ried et al. 1997]and the media
actuator [Lutwyche et al. 1999; Lutwyche et al. 1999; Rothuizen et al. 2000].

The electrostatic stepper motor used by the device under dewvelopmen at
Hewlett-Padkard was described in [Hoen et al. 1997],but little elsehasbeenpub-

lished about the device.

2.7.2 Parametersensitiviy

SinceMEMStores are still being developed, systemsreseartierswith knowledge of
how they may be usedcan in uence their design.This wasthe focus of someearly
of our early modeling work and also of a group at the University of California at
Sarta Cruz.

Madhyastha and Yang [Madhyastha and Yang 2001] deweloped a software
model similar to the one that is usedin this dissertation and in [Grin et al.
2000; Schlosseret al. 2000]. Its seekmodel is basedon an open-loop cortroller,
rather than the closed-lap cortroller that | assume.An open-loop systemusesthe
natural damping of the systemto eliminate oscillations, while a closed-lmp sys-
tem actively damps oscillations, leading to faster seektimes. Their model is more
accurate in that it models second-ordere ects that | only approximate, but it is
more likely that real MEMStores will use closed-lmp cortrollers. They describe
two alternativ e seekmodels: the spring model and the optimal control model. In
the spring model, the actuators apply a single constart forcethat drivesthe media

sled to equilibrium at the destination point, waiting for the natural damping of
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the systemto eliminate oscillations. The optimal control model is similar to the

model that | usein that the actuators apply a force to move the sled toward the

destination, and then a counterforce to stop it. However, with an accurate model of

the systemdynamics, they are able to choosethe optimal point at which to switch

actuator direction. The spring model provides an upper bound on seektime, and

the optimal control model provides a lower bound. The model that | use approx-

imates the optimal control model, but doesnot precisely model the second-order
e ects. | comparethesemodels below in Section 3.4, and nd that they dier by,

at most, 55 s.

Sivan-Zimet used a simpli cation of Madhyastha and Yang's model to study
the sensitivity of servicetime to the many con gurable parametersof a MEMStore
[Sivan-Zimet and Madhyastha 2002]. The goalwasto nd an optimal device con-
guration for a number of traced lesystem workloads, minimizing servicetime.
Their simpli ed model doesnot include any settle time and sothey did not obsene
the settle time sensitivity issuesthat | describe in Chapter 3. They do obsene,
however, that longer rangesof motion in the Y dimension lead to better perfor-
mance becausemore data can be accessedefore the sled must changedirection.

Dramaliev used another analytic approximation of Yang's model to re ne the
conclusionsreached by Sivan-Zimet [Dramaliev and Madhyastha 2003].This model
doesinclude settle time for X and closelyapproximates Yang's results. However, it
makesthe simplifying assumption that requestsare uniformly distributed across
the device. The result is a predictive model of average performance basedon a

given device con guration, allowing quick evaluations of the con guration space.

2.7.3 Roles

Seweral researters have studied various roles that MEMStores may take in com-
puter systemsin addition to the roles presened in this dissertation. We pre-
serted the rst work in studying roles for MEMStores in 2000[Grin et al. 2000;

Sdlosseret al. 2000], showing the performance of various application workloads
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using MEMStores as a simple disk replacemen and as a cade for disks.

Hong evaluated the useof MEMStores asa metadata cache, improving response
time by 28{46% for user workloads [Hong 2002]. He also used the MEMStore
as a write cacde for the disk, leading to further improvemerts in performance.
Hong [Hong and Brandt 2002]also developed yet another analytic model of seek
time for this work and to study MEMStore-speci ¢ scheduling policies.| compare
this analytic seekmodel to the model that | usein Section 3.4.

Rangasvami et al. proposedusing MEMStores in streaming media serners as
bu ers between the disks and DRAM [Rangasvami et al. 2003]. They adapted
cadiing and scheduling policies for streaming media serers using disk arrays to
include the faster MEMStore.

Uysal et al. evaluated the use of MEMStores as intermediate storagein disk
arrays [Uysal et al. 2003]under synthetic workloads and le systemtraces of var-
ious systems. They ewaluated se\eral architectures, including replacing all disks
with MEMStores, using MEMStores as mirrors of disks, and seweral hybrid archi-
tectures. They also varied the relative cost of the MEMStores and disks usedin
the system, since cost remains an unknown until MEMStores are available.

None of thesestudies claimed to useany feature of the MEMStores other than
the fact that they are faster than disk drives. Indeed, system performance was
increasedby using faster devices,but was not necessarilydependert on the fact
that those faster devices were MEMStores. These roles fail the specicity test
introduced in Section 1, sincethey could be lled aswell by a hypothetical disk

drive that is asfast asa MEMStore.

2.7.4 Policies

Various policies for tailoring accesso MEMStores beyond those described in this
dissertation have been suggestedin the literature, including MEMStore-speci ¢
request scheduling algorithms, energy consenation strategies, and data layouts.

We comparedexisting disk-basedrequestscedulers, MEMStore-speci ¢ data lay-
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outs, and energy consenation policiesin [Grin et al. 2000]. These policies are
described in more detail in Chapter 6.

A new sdeduling algorithm, zone-basedshortest-positioning time- rst, was
suggestedfor scheduling requeststo a MEMStore [Hong et al. 2003].ZSPTF is a
combination of SPTF and circular scan(C-SCAN) scheduling intended to reduce
the starvation characteristics of SPTF. Yu et al. suggestedanother scheduling
policy based on servicing requestsin minimum-spanning-tree order, with their
results showing performancesimilar to SPTF scheduling [Yu et al. 2002].However,
it isnot clearthat either of thesesdeduling policiesusesany device-speci ¢ aspects
of MEMStores. Both algorithms could be applied to disk drivesjust ase ectiv ely.

Lin et al. studied three methods of reducing MEMStore power consump-
tion [Lin et al. 2002]. First, they useda MEMStore's ability to transition quickly
betweenactive and inactive modes,saving power whenidle. Second,they coalesced
sequettial requeststhat could be servicedin parallel. And third, they allowed re-
guestssmaller than the standard logical block size of 512 bytes, only turning on
those read/write tips that were necessaryto transfer the data. In addition to the
energy savings that thesetechniques a orded, they quanti ed their performance
impact and showved that it wasminimal. This extendedour initial work which used
only the rst of the three methods [Schlosseret al. 2000].1t is not clear that the
third of these methods is actually possiblebecauseerror-correcting codesrequire
that entire logical blocks be read in their ertirety.

Yu et al. alsodescribed storing tabular data such as databaseson MEMStores
and accessingthat data in both row- and column-major orders [Yu et al. 2003].
While this concurrert work is similar to that which | describe in Section 6.3 (and
in [Schlosseret al. 2003]),it doesnot accourt for device-lewel issues(e.q., striping
and ECC), and it lacks a general method to describe available parallelism to
applications. The same researters also described a more general technique for
declustering two-dimensionaldata structures on MEMStores [Yu et al. 2004],and

showved that it achievesan optimal result that is impossiblewith a disk drive.



3 Perfamancenadelingof MEMStaes

Since complete MEMStores are not currently available, we must depend on mod-
eling to study them. Engineers working on the MEMS componerts themselhes
do their own modeling at very low levels; i.e., micromagnetic modeling of the
read/write processor nite elemen analysisof the mecanical componers. These
models are much more detailed than are neededat the systemlevel. This chapter
describesthe simpli ed modelsusedin this work, and how they are usedin various

simulation systems.

3.1 Piecewise-linesseekmodel

When deweloping a performance model for MEMStores, it is useful to rst look
at a commondisk performancemodel. The servicetimes for a disk accesss often

computed as:

time service = tiMe seek + 1AtENCY; gare + tIME tr ansf er

The seektime, time geek, IS @ function of the distance in cylinders that the disk
arm must travel. This includes an acceleration/deceleration componert, a linear
componert (represering the maximum velocity of the seekarm) for long seeks,
and a signi cant disk arm settling delay (approximately 1 ms) for all non-zero
length seeks.The rotational latency, latency, ,,e, Can be computed by dividing

the angular distance betweenthe current and destination sector by the rotational
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(a) Sledaccelerationversustime (b) Sledvelocity versustime

Fig. 3.1: Piecewise-constan t appro ximation of acceleration and velocity during a Y-
dimension seek. The graph in (a) is the derivative of (b) with respect to time. aactator IS
the sled acceleration causedby the actuator force; the net accelerations during eac \c hunk" are
di eren t becauseof the e ects of the spring restoring force. vo = Vs = Vaccess ; iN other words, at
the end of a seekthe sled is traveling at the correct accessvelocity. In the caseof an X seek(not
shown), v, = 0. In this example, each phase of the seekis divided into 3 chunks per phase;our
model divides eadt seekinto 8 chunks per phase.

velocity. Since disks rotate cortinuously, detailed simulation requires accouning
for all advancesin time, including the seektime for the accesseing serviced.The
media transfer time, time y ansf er, CaN be computed as the product of the number
of sectors accesseddivided by the number of sectors per track (in the relevant
zone) and the time for a full revolution. Detailed models must also accourt for all
track and cylinder boundaries crossedby the range of desired sectors, since eah
crossedboundary adds a repositioning delay equal to the corresponding skewsin
the logical-to-physical mapping.

Servicetimes for MEMStores can be modeled with a similar equation:

time service = tiMe seek + tIME ¢ ansf er (3.1)

The obvious di erence is the absenceof rotational latency. Lessobvious from the
equation is the more complicated nature of the time ek term. Recall that the
movable media sled must seekto the correct < x,y> position and attain the proper
media accessvelocity in the proper Y direction. The actuation mecanisms and

control loopsfor X and Y positioning are independert, allowing the two to proceed
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in parallel. Thus,

time seek = Max (time seek_x; tiMe seek_y)

Computing  timesgek x and time seex y. Sincethe sledis a massmoving under a
constart force from the actuators, equations from classical rst-order mecdanics
(e.g, X = vpt+ %atz) can be usedto compute both time sgek x and time seex y. A
seekis broken into two phases accelerationand deceleration. In the acceleration
phase,the actuators pull the sledtoward the destination. In the decelerationphase,
the actuators reversepolarity and deceleratethe sledto its nal destination and
velocity. In addition to the actuator force, the sled springs constartly pull the sled
towards its certermost position. The spring force in eat dimensionis linear with
respect to the sled's displacemen (from certer) in that dimension, which means
that spring force varies as the sled moves.

A piecewise-constahapproximation determinesthe spring force's contribution
to net acceleration. Each phaseof the seekis broken into a set of smaller chunks
with the net accelerationin ead chunk being the sum of the accelerationdue to
the actuators and the averageaccelerationdue to the springs. As an example, the
accelerationcurve for a sled seekingfrom the outermost position to the certermost
position is showvn in Figure 3.1(a). This acceleration curve leadsto the velocity
curve shown in Figure 3.1(b). In this example,the springs help during the acceler-
ation phase(to:::t3), but hurt during the decelerationphase(ts:::tg). Also, because
this example seekmovestoward the certermost position, the spring's impact de-
creasesn ead chunk asthe sled approadiesits rest position.

To parameterize the model, the spring force at full displacemen is setto a
percertage (called spring _f actor) of the actuator force. Generally speaking, the
spring factor should be a large percertage of the actuator forcessince for manu-
facturabilit y reasonsthe springs should be assti aspossible.So, whenthe sledis

at its full displacemen, the springs should push bac against the actuators with
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an almost equal force, yielding a high spring _f actor.

An expressionfor the net accelerationat any point X is:

dfset(x)

a(x) = a spring factor) —————
(X) = @actuator  (Bactuator ~ SPring ) max_dfset

When the actuator is pulling against the springs, the secondterm will be
negative. For ead chunk, the constart net accelerationis taken to be the average
of the net accelerationsat its endpoints:

o = 20)* abin)

Giventheseconstart accelerations,we can compute the velocity of the sled at
the end of ead chunk:
Vi= Vv o1+t a 1(ti toq): (3.2)

Sincethe initial position X, the initial velocity vo, and the accelerationduring
ead chunk are all known, the times at the end of ead chunk can be computed.

To do this, we integrate the velocity curvev; to nd an expressionfor position X;:

Xi=Xi 1+ Vi a(ti t 1)+ %(Vi vi )t tio1): (3-3)

Plugging Equation 3.2 into Equation 3.3 yields a quadratic that can be solved

for tj, the time that the sled arrivesat the end of chunk i:

q
(Vi 1 ati )+ V2 +2a(x X 1)

ti (3.4)

ai
Extra settling time for timegeek x. Equation 3.4 describesthe baseseektime
for both the X and Y dimensions.In the X dimension,the sledstarts and endsead
seekat rest (vg = 0). Extra settling time, tget e, must be added onto X-dimension

seeksto model the time required for the oscillations of the sled-spring system to
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damp out. tsee IS dependert on the resonart frequency of the system, f , which

dependson the construction of the sled and the sti ness of the springs.

1

5t NUMbErtimeconstants (3.5)

time setti e =

where numberimeconstants 1S @ measureof how much damping is neededbefore
the probe tips can begin to robustly accessthe media. This oscillation could be
damped by the sled-spring system itself or by the atmosphere. More likely, the
systemwill have a closed-lap cortrol systemthat actively dampsthe oscillations
using the actuators. Activ e damping hasthe e ect of reducing numbermeconstants
and therefore time gety e-

Extra turnaround times for time seek y. Y-dimension seeksfor which the nal
velocity is the accessvelocity rather than zero, are not expectedto require extra
settling time. Howeer, sincethe media sled may be moving in the wrong direction
before the seekand/or after the seek,it may be necessaryto reversethe sled's

direction onceor twice. For ead sud turnaround:

. Vaccess
time =2 3.6
tur nar ound a(x) ( )

Computing  time ¢ anst er- The time ¢ anst er COMponert of the MEMStore service
time di ers from that of convertional disksin two ways. First, the time to transfer
a single sector is the product of the number of tips over which ead sector is
striped, the rate at which bits are read (Vaccess Widthpit), and the percertage
of bits read that are actual data (e.g., rather than serwvo and ECC). Second,the
time to transfer a range of sectorsmust take into accourt the fact that multiple
sectorscan be accessedn parallel; the number of sectorsaccessedn parallel is the
number of concurrertly active tips divided by the number of tips per sector. As
with conventional disks, when a range of sectorsto be transfered crossesa track
or cylinder boundary, a track or cylinder switch is required. The sequetial track

switch time is equalto the minimum turnaround time, since switching the active



Ch. 3. Performancemodeling of MEMStores 37

G1 G2 G3
bit width (nm) 50 40 30
sled acceleration(g) 70 82 105
accessspeed (kbit/s) 400 | 700 | 1000
X settling time (ms) 0.431| 0.215]| 0.144
total tips 6400 | 6400 | 6400
active tips 640 | 640 | 1280
max throughput (MB/s) | 25.6 | 44.8 | 128
number of sleds 1 1 1
per-sled capacity (GB) 256 | 400 | 7.11
bidirectional access no yes | yes

Table 3.1: Three generations of MEMStore parameters. The G2 design point is used
for most of the results in this dissertation.

tips is expected to take lessthan this time. The sequetiial cylinder switch time
can be computed as a single cylinder seek,but optimizations of the cortrol loop
can be expected to reducethis time to the minimum turnaround time by taking

advantage of the tips' ability to de ect small distancesin the X dimension.

3.2 Baselinedevicepaameters

Giventhe wide rangeof parameters,exploring the entire designspaceof MEMStores
is not feasible.Instead, | usethree MEMStore designpoints, basedon anticipated
technology advancesover the rst three generations(Table 3.1).

The \1st generation (G1)" model represerts aconsenativeinitial MEMStore,
which could be fabricated within the next few years[Carley et al. 2000]. The sled
has a full range of motion of 100 m along the X and Y axes,and the actuators
acceleratethe sled at 70g. To accessdata, the device usesa relatively primitiv e
recording scheme, leading to a per-tip data rate of 400 Kbit/s. This designonly
supports unidirectional accesseswherereadsand writes only occur when the sled
movesin the positive Y direction.

G1's media, tip resolution, and sled positioning system provide a square bit

cell of 50 nm such that ead tip addressesa 2000 2000 array of bits. The sled
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footprint is 0.64 cm? allowing 6400tips for ead sled. This yields a raw capacity
of 2.56 GB per sled. Howewer, media error managemem requiresa 10-bit-per-byte
encading. Also, sledtracking and syndhronization information requires10tracking
bits for every 80 data bits. During media accessthe sled is restricted to a xed
accessvelocity. However, the sled speedis not limited during seeks.

The \2nd Generation (G2)" model. Sewral fundamental improvemerts
enhanceG2 over G1. First, mediaaccessccursin both the +Y and Y directions.
Second,per-tip data rate increasedo 700Kbit/s basedon trends in probetip tech-
nology. A decreasen the sled massand an increasein the actuator voltage leads
to an increasein sled accelerationto 82g. Also, improvemert in the seno system
reducesthe settling time for eadh X seek.Finally, media material improvemerts
increaseG2's bit density by 20%.

The \3rd Generation (G3)" model. G3 approadcesthe high-end of many
MEMStore parameters and characteristics. Here the bit density scalesdown to
30 nm per bit, and a decreasein the sled massleadsto higher sled acceleration.
In this casea changein the suspensionand sled designleadsto a higher resonan
frequency resulting in a shorter X settling time. Throughput is increased,largely

becauseof the addition of more active tips.

3.3 Basicseekperfamance

Figures 3.2 and 3.3 show the seektime asa function of both X and Y displacemen
from the corner and the certer of a media square,respectively. Both show results
for the G2 designpoint described above. The e ect of X dimension settling time
is very clearly shown in Figure 3.3. The overall seektime, which is the greater of
the two seektimes in X and Y, is strongly correlated to the X displacemen only,
with almost no dependenceon Y displacemert.

Table 3.2 shaws the performance of the G2 MEMStore under a workload of

10,000random requests. The requestswere distributed uniformly acrossthe ca-
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Fig. 3.2: Seek time prole from corner of media. This graph shows the seektime for a
G2 MEMStore from a corner of a media square as a function of both X and Y displacemert. It

was generated directly from the seektime equations.
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The seektime of a MEMStore is largely

Fig. 3.3: Seek time prole from center of media.
uncorrelated with the displacemert in the Y dimension due to a large settling time required for
the X dimension seekthat is not required for the Y dimension seek.The overall seektime is the

maximum of the two independert seektimes. This graph shows the seektime for a G2 MEMStore .
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Averageservicetime 0.91ms (0.20)
Maximum servicetime 2.15ms
Averageseektime 0.57ms (0.11)
Maximum seektime 0.78 ms
AverageX seektime 0.57ms (0.11)
Maximum X seektime 0.78 ms
AverageY seektime 0.36 ms (0.13)
Maximum Y seektime 0.75ms
Settling time 0.22ms
Averageper-requestturnaround time 0.07 ms (0.06)
Maximum per-requestturnaround time | 0.50 ms

Table 3.2: Basic G2 MEMStore performance characteristics. These numbers are based
on a random workload of 10,000requests. Standard deviations are provided in parentheses.

pacity of the device, with the inter-arrival time chosenfrom an exponertial dis-
tribution with a mean of 50 ms. The size of the requestswas also drawn from an
exponertial distribution, with a mean of 4 KB. Two thirds of the requestswere
reads and one third were writes. Again, the signi cance of the X dimension set-
tling time is evidert in that the averageseektime (0.57 ms) is equalto the average
X seektime (0.57 ms), which is greater than the averageY seektime (0.36 ms).
Averageper-requestturnaround time is determined both by the number of times
the sled must turn around before a requestis serviced, and the number of times
it must turn around during a transfer becausethe request spansmore than one

track.

3.4 Sping-mass-damgr seekmodel

The mediasledis, in reality, a damped oscillator, the positioning time for which can
be found using a generalexpression.The piecewise-lineamrmodel is a simpli cation

of that solution, which wasmore tractable to usein practice. This sectioncompares
the results of the piecewise-linearmodel to those of a more general solution used

by Hong [Hong et al. 2003].
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Fig. 3.4: Seek time prole of G2 MEMStore from corner of media for Hong's mo del.
This graph is equivalent to that in Figure 3.2.

Fig. 3.5: Seek time prole of G2 MEMStore from center of media for Hong's mo del.
This graph is equivalent to that in Figure 3.3.
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As seenin Figures 3.4 and 3.5, the seekpro les of the G2 MEMStore using
Hong's model are virtually identical to those of the piecewise-lineamodel, shown
in Figures 3.2 and 3.3. Again using the G2 design point, seektimes in the two
models di er, on average,by 29 s for the seeksshown in Figure 3.4, and only
7 sfor the seeksshown in Figure 3.5. The maximum di erence for both sets of
seekswas55 s. As a percertage, the largest di erence in seektime was 9.6%, on
average.Therefore, using the piecewise-linearsimpli cation to the generalsolution

doesnot a ect model accuracy appreciably.

3.5 DiskSim

The model described above has beenincorporated into a complete storage system
simulator called DiskSim [DiskSim 2004]. Both the piecewise-linearand spring-
mass-damger seekmodels have beenimplemented, along with cading, sdheduling,
and data transfer functionalities. DiskSim was originally written to accurately
model disk drives. Adding the MEMStore functionality allows easy comparisons
to disk drivesto be made. DiskSim can be exercisedwith various workloads such
as disk accesdraces and synthetic workloads. It can also be driven externally by
system simulators such as SimOS [Roserblum et al. 1995]. Most of the results in

this dissertation were generatedusing DiskSim con gured asa MEMStore.

3.6 Parametersensitiviy

To understand which device characteristics are important to performance,| ex-
plored the model's performancesensitivity to seweral di erent model parameters.
This section describesthe most interesting results.

Sensitivit y to per-tip data rate. Overall bandwidth to and from the media is
determined by the number of simultaneously active tips and the per-tip data rate.
Like conventional disks, MEMStores must switch tracks (or cylinders) when me-

dia transfers crosstrack boundaries. Unlik e convertional disks, for which rotation
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Fig. 3.6: Sensitivit y of MEMS-based storage device performance to the access ve-
locity. The three MEMStore design points (G1, G2, and G3) are shown, with ead having a
di eren t value for actuator acceleration. The maximum point for eac acceleration value repre-
serts a balance betweenthe benet of higher data rates and the increasedtime required to turn
around for track and cylinder switches.

speed is independert of seekarm positioning, the time required for MEMStores
to switch tracks dependsdirectly upon the accessvelocity (Equation 3.6). Specif-
ically, becauseof their Cartesian nature, MEMStores turn around ead time a
media transfer crossesa track boundary. Reversing direction requires decelerat-
ing, changing direction, and re-acceleratingto the accessvelocity. As the access
velocity increasesthis turnaround time increases.Therefore, one should expect di-
minishing returns from increasingper-tip data rate while keepingother parameters
constart. Figure 3.6 shows the sustainedbandwidth of a singletip givenincreasing
per-tip data rates. The result changesbasedon the MEMStore model usedbecause
ead generation has improved actuator force, leading to higher acceleration. For
ead design point, there is a maximum data rate after which turnaround times
dominate transfer rates. This is an important result becauseit indicates that the
recording head and channel neednot handle ever-higher data rates, making them
simpler to manufacture and lesspower-hungry. Further, this result suggeststhat

e orts may be better spent on improvemert of other design characteristics.
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Fig. 3.7: Delta in seek times from <-1000,1000 > given a spring factor of 75% (com-
pared to 0%) using a G2 MEMStore . Short seeksare made slightly longer and long seeks
are shorter.

Fig. 3.8; Seek times for the G2 MEMStore when no settling time is required for X-
dimension seeks. Without settling time delays, Y-dimension seeksbecomea more signi cant
componernt of overall seektimes.

Sensitivit y to settling time. Whenewer the sled moves in the X-dimension,
sometime is required to damp the sled's oscillations, as described above. This
settling time is basedon the system's resonan frequency and the ability of the
control system to damp out the motion. | model this by computing a settling
time constart (Equation 3.5) and adding this to the X seektime. The number of
settling time constarts added can be varied to allow for improved control systems.
The G2 MEMStore described in Table 3.2 adds one time constart of 0.22 ms.
Figure 3.8 shaws the e ect of eliminating this settling time. It shaws the result

of the same experiment as shown in Figure 3.3 without the settling time in X.
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Rather than uniformly decreasingseektimes by 0.22 ms, overall seektimes are
much more dependent on Y-dimension seeksmaking the seekpro le match better
with expectations for a two-dimensionalmovemert.
Sensitivit y to spring forces. The e ect of springs on seektime is shown in
Figure 3.7. This graph shows the same set of seeksas Figure 3.2, but in this
casewe only seethe di erences (delta) in seektimes causedby the spring forces.
The net e ect of adding the spring forcesis to lengthen the time for short seeks
and to shorten the time for long seeks.The intuition behind this result is fairly
straightforward. Considera spring _f actor value of 50%, meaningthat the springs
push badk with 50% of the actuator force when the sledis at full displacemer.
If the actuators are pulling the sled towards the certer, then the net force on the
sledis 150%of the actuator force. If the actuators are pulling against the springs,
then the net forceis only 50% of the actuator force. Thus, at a given displacemer,
the impact of the springsis greater when they hurt than when they help. During
a short seek,the displacement remains relatively constart throughout the seek,
and so the springs will hurt one phase of the seekmore than it helps the other.
During long seeks,the displacemer changessigni cantly. As a result, the springs
tend to help noticeably in one of the two phasesand be either lesssigni cant or
alsohelpful in the other. Therefore, long seeksare generally helped by the springs.
The springs' e ect on turnaround times are similar to those for short seeks.
Figure 3.9 shawsturnaround times with and without springsfor eat displacemen,
assumingthat the sled is moving at the constart accessvelocity in the positive
direction. Superimposedon the graph is the constart turnaround time that results
from a spring factor of 0%. In the left half of the graph, the springsact againstthe
actuators during the turnaround. In the right half, they help. As with short seeks,

the impact of the springsis more signi cant when they hurt than when they help.
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Fig. 3.9: The eect of springs on turnaround time for a G1 MEMStore . This gure
shows the turnaround time at ead displacemert from center given that the sled is moving at the
accessvelocity in the positive direction. Therefore, the springs hurt the turnaround time for the
negative displacemerts and help in the positive.

3.7 Summay

Without complete MEMStores to test and characterize, we must rely on software
models to understand their behavior. This chapter has described the model that
| dewveloped to study MEMStores. It described the theoretical background for the
model, its implementation, the parameters| have usedto compare MEMStores
to other storage devicesthroughout the dissertation, and the model's sensitivity
to changesof those parameters. It also comparedthe capabilities of this model to
those of an alternative model basedon the dynamics of the spring/mass/damper
systemthat is a MEMStore and shaved that my simpli cation gives nearly the
sameresults.

The next chapter examinesthe use of standard storage abstractions for disk

drivesand discusseshow theseabstractions will work for MEMStores as well.



4 Staageabstractions

High-level storage interfaces (e.g., SCSI and ATA) hide the complexities of me-
chanical storagedevicesfrom the systemsthat usethem, allowing them to be used
in a standard, straightforward fashion. Di erent deviceswith the sameinterface
canbe usedwithout the systemneedingto change.Also, the systemdoesnot need
to managethe low-level details of the storage device. Sud interfacesare common
acrossa wide variety of storage devices, including disk drives, disk arrays, and
FLASH- and RAM-based devices.

Today's storage interface abstracts a storage device as a linear array of xed-
sized logical blacks (usually 512 bytes). Details of the mapping of logical blocks
to physical media locations are hidden. The interface allows systemsto read and
write rangesof blocks by providing a starting logical block number (LB N) and
a block court.

Unwritten contract : Although no performance speci cations of particular
accesstypes are given, an unwritten contract exists between host systems and
storage devicessupporting these standard interfaces(e.qg., disks). This unwritten

contract hasthree terms:
{ Sequetiial accessesre best, much better than non-sequetial.

{ An accesdo a block near the previous accessn LB N spaceis usually con-

siderably more e cien t than an accesso a block farther away.

{ Rangesof the LB N spaceare interchangeable,such that bandwidth and
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positioning delays are a ected by relative LB N addressesbut not absolute

LB N addresses.

Application writers and system designersassumethe terms of this cortract in

trying to improve performance.

4.1 Disksandstandad abstractions

Disk drivesare multi-dimensional machines, with data laid out in concertric cir-
cleson one or more media platters that rotate cortinuously. Data is divided into
xed-sized units, called sectors(usually 512 bytes to match the LB N size). The
sector (and, thereby, LB N) sizewasoriginally drivenby a desireto amortize both
positioning costs and the overhead of the powerful error-correcting codes (ECC)
required for robust magnetic data storage. The densities and speedsof today's
disk driveswould be impossiblewithout thesecodes,and many disk technologists
would like the sectorsize(and, thus, the LB N size)to grow by an order of magni-
tude to support more powerful codes.Each sectoris addressedby a tuple, denoting
its cylinder, surface,and rotational position.

LB N s are mapped onto the physical sectorsof the disk to take advantage of
the disk's characteristics. Sequettial LB N s are mapped to sequetial rotational
positions within a single track, which leads to the rst point of the unwritten
contract. Since the disk is continuously rotating, once the headsare positioned,
sequetial accessds very e cien t. Non-sequetial accessncurs large re-positioning
delays. Successie tracks of LB N's are traditionally mapped to surfaceswithin
cylinders, and then to successie cylinders. This leadsto the secondpoint of the
unwritten cortract: that distant LB N s map to distant cylinders, leading to longer
seektimes.

The linear abstraction works for disk drives,despitetheir clearthree-dimensional
nature, becausetwo of the dimensionsare largely uncorrelated with LB N address-

ing. Accesstime is the sum of the time to position the read/write headsto the
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destination cylinder (seektime), the time for the platters to reac the appropri-
ate rotational o set (rotational latency), and the time to transfer the data to or
from the media (transfer time). Seektime and rotational latency usually dominate
transfer time. The headsare positioned asa unit by the seekarm, meaningthat it
usually doesn't matter which surfaceis being addressed.Unlessthe abstraction is
stripp ed away, rotational latency is nearly impossibleto predict becausethe plat-
ters are continuously rotating and so the starting position is essetially random.
The only dimension that remains is that acrossthe cylinders, which determines
the seektime.

Seektime is almost ertirely dependen on the distance traversed,not on the
absolute starting and ending points of the seek. This leads to the third point
of the unwritten cortract. Ten years ago, all disk tracks had the same number
of sectors, meaning that streaming bandwidths (and, thus, transfer times) were
uniform acrossthe LB N space.Today's zoned disk geometries,however, violate

the third term since streaming bandwidth varies betweenzones.

4.1.1 Holesin the abstractionbounday

Overits fteen year lifespan, seweral shortcomingsof the interface and the unwrit-
ten contract have beenidenti ed. Perhapsthe most obvious violation hasbeenthe
emergenceof multi-zone disks, in which the streaming bandwidth varies by over
50% from one part of the disk to another. Some application writers exploit this
di erence by explicitly usingthe low-numbered LB N s, which are usually mapped
to the outer tracks. Over time, this may becomea fourth term in the unwritten
cortract.

Some have argued [Denely et al. 2002; Schindler et al. 2004] that the stor-
ageinterface should be extendedfor disk arrays. Disk arrays contain seeral disks
which are combined to form one or more logical volumes. Each volume can span
multiple disks, and ead disk may contain parts of multiple volumes. Hiding the

boundaries, parallelism, and redundancy schemespreverts applications from ex-
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ploiting them. Others have argued [Ganger 2001]that, even for disks, the current
interface is not su cien t. For example, knowing track boundaries can improve
performancefor someapplications [Schindler et al. 2002].

The interface persists, however, becauseit greatly simplies most aspects of
incorporating storagecomponerts into systems.Beforethis interface becamestan-
dard, systemsuseda variety of per-deviceinterfaces. Thesewerereplacedbecause
they complicated systemsgreatly and made componerts lessinterchangeable.This
suggeststhat the bar should be quite high for a new storagecomponert to induce
the introduction of a new interface or abstraction.

It is worth noting that some systemsusefully throw out abstraction bound-
aries ertirely, and this is as true in storage as elsewhere.In particular, storage
researters have built tools [Schindler and Ganger 1999; Talagala et al. 2000]for
extracting detailed characteristics of storage devices. Such characteristics have
beenusedfor many ends: writing blocks near the disk head [Zhang et al. 2002],
reading a replica near the disk head [Yu et al. 2000], inserting badkground re-
guestsinto foregroundrotational latencies[Lumb et al. 2002],and achieving semi-
preemptible disk /O [Dimitrijevi c et al. 2003].Giventheir successadding support
for sudh endsinto componert implementations or even extending interfaces may
be appropriate. But, they do not represen a casefor removing the abstractions

in general.

4.2 MEMStaes and standad abstractions

Using a standard storageabstraction for MEMStores hasthe advantage of making
them immediately usable by existing systems. Interoperability is important for
getting MEMStores into the marketplace, but if the abstractions that are used
make performancesu er, then there is reasonto considersomething di erent.
This sectionexplains how the details of MEMStore operation make them natu-

rally conformto the storageabstraction usedfor disks. Also, the unwritten contract
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that applications expect will remain largely intact.

4.2.1 Accessmethad

The standard storage interface allows accessegread s and write s) to rangesof
sizeable xed-sized blocks. The question to ask rst is whether such an access
method is appropriate for a MEMStore.

Is a 512-byte block appropriate, or should the abstraction use something else?
It is true that MEMStores can dynamically choose subsetsof read/write tips to
engagewhen accessingdata, and that thesesubsetscan, in theory, be arbitrarily-
sized. Howewer, enough data must be read or written for error-correcting codes
(ECC) to be e ective. The useof ECC enableshigh storage density by relaxing
error-rate constraints. Since the density of a MEMStore is expected to equal or
exceedthat of disk drives,the ECC protections neededwill be comparable.There-
fore, block sizesof the sameorder of magnitude as disks have should be expected.
Also, any block's size must be xed, sinceit must be read or written in its en-
tirety, along with the assaiated ECC. Accessinglessthan a full block, e.g., to
save energy [Lin et al. 2002], would not be possible.The exibilit y of being able
to engagearbitrary sets of read/write tips can still be usedto selectively choose
setsof these xed-sized blocks.

Large block sizesare alsomotivated by embeddedservo medanisms,coding for
signal processing,and the relatively low per-tip data rate of around 1 Mbit/s. The
latter meansthat data will have to be spread acrossmultiple parallel-operating
read/write tips to adchieve an aggregate bandwidth that is on-par with that of
disk drives. Spreading data acrossmultiple read/write tips also intro ducesphys-
ical redundancy that will improve tolerance of tip failures. MEMStores will use
embedded seno [Terris et al. 1998], requiring that sewral bits corntaining posi-
tion information be read beforeany accesdn order to ensurethat the media sled
is positioned correctly. Magnetic recording techniques commonly use transitions

between bits rather than the bits themselesto represen data, meaning that a
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sequenceof bits must be accessedogether. Further, signal encadings use multi-bit

codewords that map a sequenceof bits to valueswith interpretable patterns (e.g.,
not all onesor all zeros).The result is that, in order to accessany data after a seek,
someamount of data (10 bits in my model) must be read for serwo information,

and then bits must be accessedsequettially with somecoding overhead (10 bits
per byte in my model). Given these overheads,a large block size should be used
to amortize the costs. This block will be spreadacrossmultiple read/write tips to
improve data rates and fault tolerance.

Using current storage interfaces, applications can only request ranges of se-
quential blocks. Sucth accessis reasonablefor MEMStores, since blocks are laid
out sequetiially, and their abstraction should support the same style of access.
There may be utilit y in extending the abstraction to allow applications to request
batchesof non-cortiguous LB N sthat can be accessedy parallel read/write tips.

An extensionlik e this is discussedin Section 6.3.

4.2.2 Unwritten contract

Assumingthat MEMStore accesaisesthe standard storageinterface, the next step
is to seeif the unwritten contract for disks still holds. If it does,then MEMStores
can be usede ectiv ely by systemssimply as fast disks.

The rst term of the unwritten cortract is that sequetial accesss more e -
cient than random accessThis will cortinueto bethe casefor MEMStores because
data must still be accessedn a linear fashion. The signal processingtechniques
that are commonly usedin magnetic storageare basedon transitions betweenbits,
rather than the state of the bits in isolation. Moreover, they only work properly
when state transitions comefrequertly enoughto ensureclock syndronization so
they encade multi-bit data sequencesnto alternate codewords. Thesecharacteris-
tics dictate that the bits must be accessedequetially . Designsbasedon recording
techniques other than magnetic will, most likely, encade data similarly. Once the

media sled is in motion, it is most e cien t for it to stay in motion, sothe most
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e cien t thing to accesds the next unit of sequetial data, just asit is for disks.

The secondterm of the unwritten contract is that the di erence betweentwo
LB N numbers should map well to the physical distance betweenthem. This is
dependert on how LB N s are mappedto the physical media, and this mapping can
easily be constructed in a MEMStore to make the secondpoint of the unwritten
contract true. A MEMStore is a multi-dimensional machine, just like a disk, but
the dimensionsare correlated di erently. Each media position is identied by a
tuple of the X position, the Y position, and the set of read/write tips that are
enabled, much like the cylinder/head/rotational position tuples in disks. There
are thousands of read/write tips in a MEMStore, and ead one accessests own
small portion of the media. Just asthe headsin a disk drive are positioned asa unit
to the samecylinder, the read/write tips in a MEMStore are always positioned
to the same o set within their own portion of the media. The choice of which
read/write tips to activate has no correlation with accessime, sinceany set can
be chosenfor the samecost oncethe media is positioned.

As with disks, seektime for a MEMStore is a function of seekdistance. Since
the actuators on ead axis areindependert, the overall seektime is the maximum of
the individual seektimes in eat dimension, X and Y. But, the X seektime almost
always dominatesthe Y seektime becauseextra settle time must be included for
X seeks,but not for Y seeks.The reasonfor this is that post-seekoscillations in
the X dimension lead to o -trac k interference, while the sameoscillations in the
Y dimension a ect only the bit rate of the data transfer. Since the overall seek
time is the maximum of the two individual seektimes, and the X seektime is
almost always greater than the Y seektime, the overall seekdistance is (almost)
uncorrelated with the Y position, as seenin Figure 3.3. In the end, despite the
fact that a MEMStore has multiple dimensionsover which to position, the overall
accesdime is (almost) only correlated with just a single dimension, which makes
a linear abstraction su cien t.

The last term of the unwritten corntract statesthat the LB N spaceis uniform,
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and that accesstime does not vary acrossthe range of the LB N's. The springs
that attach the media sledto the chip do a ect seektimes by applying a greater
restoring force the further they are displaced.However, the e ect is minimal, with
seektimes varying by at most 10{15%, meaning that overall accesstimes at the
application level would vary by far less. Also, MEMStores do not need zoned
recording. It is safeto say that the last point of the unwritten contract still holds:

rangesof the LB N spaceof a MEMStore are interchangeable.

4.3 Summay

Like MEMStores, disk drives are multi-dimensional mecanical machines. Using
a linear logical block abstraction for disk drives hides details of the device that
could be usefully exploited by systems.However, the linear logical block abstrac-
tion works well for disk drives becauseof their accesscharacteristics. This chap-
ter has explored this t, and discussedhow the sameabstraction works well for
MEMStores for many of the samereasons.

The next two chapters examinepotential MEMStore-speci ¢ rolesand policies,
using the two objective tests from Chapter 1. The two tests answer the question
of whether a new deviceis su cien tly dierent from a disk drive to warrant using
adierent abstraction. The rst test, the speci cit y test, askswhether a potential
role or policy can apply to a disk drive as well as a MEMStore. Given that a
potential role or policy passesthe speci cit y test, the secondtest, the merit test
decideswhether it makesenoughof an impact on performanceto justify changing

the abstraction.



5 Rolesof MEMStaesin systems

MEMStores cantake on variousrolesin a system,the simplestof which is to bethe
main bulk storageinstead of a disk drive. There are someapplications for which a
disk drive cannot Il this role, perhapsbecauseof energy cost, or size constraints.
For example, cellular telephoneswill probably not be able to use disk drives for
someor all of thesereasons.In these applications, MEMStores clearly have an
advantage and can Il this role. Further, other applications may use MEMStores
simply becausethey demand the fastest performancepossible.
This chapter examinesthe useof MEMStores in three di erent roles. The rst

is asa simple disk replacemen, the secondis asa nonvolatile cade for disk drives,

and the third is asan augmenation of the existing disk drivesin alarge disk array.

5.1 Devicedor compaison

5.1.1 G2MEMStore

The MEMStore usedfor comparisonsin this chapter is the G2 design point de-
scribed in Table 3.1.

5.1.2 IBM Microdrive

The IBM Microdrive (described in Section 2.6.2) is a miniature hard disk drive
that wasintroducedin the late 1990'sfor usein mobile applications suc asdigital
cameras, music players, and PDAs. It is highly optimized for small size and low

energyrequiremerts rather than accesgerformance.The model usedfor compar-
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ison in this chapter is of the 1 GB device (model DSCM-11000). DiskSim models
of this drive were provided by the members of the Dempsey project [Zedlewski

et al. 2003]at Princeton University.

5.1.3 SeagateCheetah36ES

The Cheetahis Seagate'scurrent enterprise-market drive, meart for servers and
disk arrays. It is designedfor high performance and reliability, rather than for
capacity and low cost. The specic drive evaluated here is the Cheetah 36ES
(ST336706LC),a 36 GB disk. Clearly the Cheetahis not targeting the samemarket
as a MEMStore, but it is included here as a point of comparisonto the fastest

modern disks.

5.1.4 Quantum Atlas 10K

The Atlas 10K was Quantum's (now Maxtor) high-end enterprise SCSI drive in
1999[Quantum 1999].The speci ¢ drive usedin someof the experiments below is
the 9 GB versionof the drive which rotates at 10,000RPM and hasan averageseek
time of 5.7 ms for readsand 6.19 ms for writes. The experiments use a validated

DiskSim model of this drive [Ganger and Scindler 2004].

5.1.5 Uberdisk

The Uberdisk is a hypothetical disk drive that approximates the performance of
a G2 MEMStore. Its parameters given in Table 5.1 are based on extrapolating
from today's disk characteristics. The Uberdisk is also modeled using DiskSim.
In order to do a capacity-to-capacity comparison, | use only the rst 3.46 GB
of the Uberdisk to match the capacity of the G2 MEMStore. The two devices
have equivalent performanceunder a random workload of 4 KB requeststhat are
uniformly distributed acrossthe capacity (3.46 GB) and arrive one at a time.

The seek curve generated for the Uberdisk model is based on the formula
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Capacity 41.6GB
Rotation speed 55,000RPM
One-cylinder seektime 0.1ms
Full-strok e seektime 2.0ms
Head switch time 0.01ms
Number of cylinders 39511
Number of surfaces 2
Averageaccesgime 0.88ms
Streaming bandwidth 100 MB/s

Table 5.1: Ub erdisk parameters. The Uberdisk is a hypothetical future disk drive. Its pa-
rameters are scaled from current disks, and are meart to represert those of a disk that matches
the performance of a MEMStore. The average response time is for a random workload which
exercisedonly the rst 3.46 GB of the disk in order to match the capacity of the G2 MEMStore .

from [Ruemmler and Wilk es1994],with speci ¢ valueschosenfor the one-cylinder
and full-strok e seeks.Head switch and one-cylinder seektimes are expected to
decreasen the future dueto microactuators integrated into disk heads,leading to
shorter settle times. With increasingtrack densities,the number of platters in disk
drivesis decreasingsteadily, so the Uberdisk has only two surfaces.The zoning
geometry is basedon simple extrapolation of current linear densities.

An Uberdisk does not necessarilyrepresen a realistic disk; for example, a
rotation rate of 55,000 RPM (approximately twice the speed of a dental drill)
may never be attainable in a reasonably-priceddisk drive. However, this rate was
necessaryto achieve an averagerotational latency that is small enoughto match
the averageaccesdime of the MEMStore. The Uberdisk is meart to represert the
combination of parametersthat would be required of a disk in order to match the
performanceof a MEMStore.

If the performanceof a workload running on a MEMStore is the sameas one
running on an Uberdisk, then any performanceimprovemert is due only to the
intrinsic speedof the device,and not due to the fact that it is a MEMStore or an
Uberdisk. If the workload performsdi erently on the two devices,then it must be

especially well-matched to the characteristics of one device or the other.
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Fig. 5.1: Random workload performance. The workload in this experiment was 10,000
random requestsuniformly distributed acrossthe capacity of the device. Each request was sized
with an exponertial distribution with a mean of 4 KB. Requestswere issued every 50 ms. Error
bars show the standard deviation.

5.2 Simplediskreplacement

It is clearthat MEMStores can Il rolesin systemsthat disk drives Il today. This
section directly comparesthe performance of MEMStores to that of disk drives
using several di erent workloads.

This section comparesfour storage devices:the G2 MEMStore described in
Chapter 3, the SeagateCheetah 36ES disk drive, the IBM Microdrive (Model
DSCM-11000}, and the ®berdisk.

5.2.1 Syntheticworkloads

Figure 5.1 shaws the averageresponsetime of four storage devicesunder a syn-
thetic workload of 10,000requests.The requestsare uniformly distributed across

the capacity of ead device,and are sizedwith an exponertial distribution with a

! DiskSim model of the Micro driv e is courtesy of the Dempsey project at Princeton Univ ersity.
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[ ]

Fig. 5.2: Performance comparison of G2 MEMStore , Wb erdisk, and Cheetah36ES
with one week of the HP Cello trace from 1999.

mean of 50 ms. The MEMStore and the Uberdisk have equal performance, with
averageresponsetimes of 1.1 ms ead. The Cheetah disk has an averageresponse
time of 7 ms. The Microdrive hasvery poor random performance,with an average
responsetime of 21.2ms. The MEMStore and the Uberdisk both have very little
variation in responsetime, with standard deviations of 0.2 ms and 0.3 ms, respec-
tively. This is in stark contrast to the wide standard deviations of the Cheetah

disk and Microdrive, with standard deviations of 5.1 msand 17.1 ms, respectively.

5.2.2 Tracereplay

Figure 5.2 shaws the result of replaying a workload trace in the DiskSim simulator
con gured asa G2 MEMStore, an Uberdisk, and a Cheetah 36ESdisk drive. The
workload is from a departmenal serer at Hewlett-Padard Laboratories called
Cello, and was gathered during one weekin February, 1999. Storage connectedto
the serwer varied from single disks to a large disk array, and the trace collected

requeststo all of them. | isolated just those requeststhat wert to a single 9 GB
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disk, which stored the department's Internet newsgroupfeeds.This wasone of the
busiest disks in the system. The G2 MEMStore is only 4 GB, so | usedthree of
them con gured as a single logical volume. As can be seenin the gure, the G2
MEMStore outperformsthe Cheetah36ESdisk by just over a factor of ten (2.02ms
versus23.5ms averageresponsetime). The Uberdisk performs slightly worsethan
the MEMStore (2.32 ms averageresponsetime). This is due in part to the fact

that there are three MEMStores and only one Uberdisk in the experimert.

5.3 MEMStaes ascachedor disks

MEMStores can alsobe usedto augmen an existing storage hierarchy. For exam-
ple, with their low entry cost, MEMStores could be incorporated into future disk
drives as very large (1-10 GB) nonvolatile cades. The superior performance of
MEMStores would allow the cade to absorb latency-critical syndronous writes
to metadata and cache small les to improve small read performance.For example,
Baker et al. showved that using fast nonvolatile storageto absorb synchronousdisk
writes both at a client and at a le sener increasesperformancebetween20% and
90% [Baker et al. 1992].

To explore MEMStores as nonvolatile cachesfor disk, DiskSim was augmerted
to allow a MEMStore to serwe as a cacde for a disk. The cacthe was 2.5 GB, the
disk was 9.2 GB, and the workload was the 1-day Cello trace from [Ruemmler
and Wilk es 1993]. This trace actually includes eight separate devicesso the ex-
periments use a cace per disk. The results shov that the averagel/O response
time is 14.66 ms for a Quantum Atlas 10K disk drive [Quantum 1999] without
any MEMStore cade vs. 4.03 ms for a disk with a G2 MEMStore (and 2.76 ms
for a single large G2 MEMStore that replacedthe disk). Since most of the read
requestsare servicedfrom the client-side DRAM cace, the 3.5 performanceim-
provemert, over just a disk drive, is achieved mainly by quickly servicing writes.

However, unlike DRAM-based write caching (which absorbswrites but risks los-
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ing data), the MEMStore cade is nonvolatile, providing the samedata integrity
guarantees as disk drives. An alternate experiment, in which all eight devicesin
the Cello trace were re-mapped to a larger version of the Atlas 10K disk with a
single MEMStore cade, only su ered a slight increasein averageaccesstime to
4.66 ms. This longer servicetime stemsfrom an increasein queueingtime since
the large single deviceis doing the work of eight. It shows, however, that cacing
absorbsenoughof the device'sactivity to provide a good performanceboost.
Instead of using the MEMStore as a cade, it is also possibleto exposethe
deviceto the operating systemsothat le systemscanallocate speci ¢ data onto it.
Depending on their accesgatterns and performanceneeds, le systemscould place
small structures (e.g., le systemmetadata) on MEMStores, while using the disk
for streamedor infrequently-accesseddata. This could be doneon individual disks
or within RAID arrays, creating the potential for AutoRAID-lik e systems[Wilk es
et al. 1995]. Further, becauseRAID arrays are lesscost-sensitive than individual
disks, arrays of MEMStores could be incorporated more cost-e ectively into RAID
arrays, providing signi cant performance improvemens for RAID's costly write

operations.

5.4 Diskarray augmentation

One of the roles that has been suggestedfor MEMStores in systemsis that of
augmening or replacing someor all of the disksin a disk array to increaseperfor-
mance [Schlosseret al. 2000; Uysal et al. 2003]. Howewer, the lower capacity and
potentially higher cost of MEMStores suggestthat it would be impractical to sim-
ply replaceall of the disks. Therefore, they represen a new tier in the traditional
storage hierarchy, and it will be important to choosewhich data in the array to
place on the MEMStores and which to store on the disks. Uysal et al. evaluate
seweral methods for partitioning data betweenthe disks and the MEMStores in a

disk array [Uysal et al. 2003]. The experiment described below is similar, in that
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Fig. 5.3: Using MEMStore s in a disk array. These graphs show the result of augmerting
overloaded disks in a disk array with faster storage componerts: a MEMStore (a) or an Uberdisk
(b). In both cases,the busiest logical volume on the original disk (a 73 GB Seagate Cheetah)
is moved to the faster device. Requeststo the busiest logical volume are serviced by the faster
device, and the trac to the Cheetah is reduced. The results for both experiments are nearly
identical, leading to the conclusion that the MEMStore and the Uberdisk are interchangeablein
this role (e.g., it is not MEMStore -speci c.)

a subsetof the data that is stored on the badk-end disks in a disk array is moved
to a MEMStore.

Some increasein performance is expected from doing this, as Uysal et al.
report. However, the question this dissertation asksis whether the bene ts are
from a MEMStore-speci ¢ attribute, or just from the fact that MEMStores are
faster than the disks usedin the disk array. Applying the speci cit y test answers
this question by comparing the performanceof a disk array badk-end workload on
three storage con gurations. The rst con guration usesjust the disks that were
originally in the disk array. The secondcon guration augmerts the overloaded
disks with a MEMStore. The third doesthe samewith an Uberdisk.

The workload is a disk trace gathered from the disks in the badk-end of an
EMC Symmetrix disk array during the summer of 2001. The disk array contained
282 SeagateCheetah 73 GB disk drives, model number ST173404.From those,
the experiment usesthe eight busiest (disks 1, 37,71, 72, 107,124,150, and 168),
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which have an averagerequestarrival rate of over 69 requestsper secondfor the
duration of the trace, which was 12.5 minutes. Each disk is divided into 7 logical
volumes, ead of which is approximately 10 GB in size. For eat \augmented"
disk, the busiestlogical volume was moved to a faster device, either a MEMStore
or an Uberdisk. The bene t should be twofold: rst, responsetimes for the busiest
logical volume will be improved, and second,trac to the original disk will be
reduced. Requeststo the busiest logical volume are servicedby the faster device
(either a MEMStore or an Uberdisk), and all other requestsare serviced by the
original Cheetah disk.

Figure 5.3(a) shows the result of the experiment with the MEMStore. For eat
disk, the rst bar shows the averageresponsetime of the trace running just on
the Cheetah, which is 15.1 ms acrossall of the disks. The secondbar shows the
averageresponsetime of the samerequestsafter the busiest logical volume has
beenmoved to the MEMStore. Across all disks, the averageis now 5.24 ms. The
third and fourth bars show, respectively, the averageresponsetime of the Cheetah
with the reducedtrac after augmertation, and the averageresponsetime of the
busiestlogical volume, which is now stored on the MEMStore. We indeed seethe
anticipated benets | the averageresponsetime of requeststo the busiestlogical
volume have beenreducedto 0.86 ms, and the reduction of load on the Cheetah
disk hasresulted in a lower averageresponsetime of 7.56 ms.

Figure 5.3(b) shows the same experiment, but with the busy logical volume
moved to an Uberdisk rather than a MEMStore. The results are almost exactly
the same,with the responsetime of the busiest logical volume migrated to the
Uberdisk beingaround 0.84ms, and the overall responsetime reducedfrom 15.1ms
to 5.21ms.

The fact that the MEMStore and the Uberdisk provide the samebenet in
this role meansthat this role fails the speci city test. In this role, a MEMStore
really can be consideredto be just a fast disk. The workload is not speci cally

matched to the use of a MEMStore or an Uberdisk, but can clearly be improved
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(a) Simpledisk-constart (b) Simpledisk-linear

Fig. 5.4: Using Simpledisks in a disk array. These graphs show the same experiment as
shown in Figure 5.3, but with two Simpledisk models instead of MEMStores and Uberdisks.

with the useof any faster device, regardlessof its technology.

Although it is imperceptible in Figure 5.3, the Uberdisk givesslightly better
performancethan the MEMStore becauseit bene ts more from workload locality
due to the prole of its seekcurve. The settling time in the MEMStore model
makesany seekexpensivwe, with a gradual increaseup to the full-strok e seek.The
settling time of the WUberdisk is somewhat less, leading to less expensiwe initial
seekand a steeper slope in the seekcurve up to the full-strok e seek.The random
workload usedto comparedeviceshas no locality, but the disk array trace does.

Figure 5.4 examinesthis further by showing the sameexperiment but with two
other disk models, called Simpledisk-constant and Simpledisk-linear. Simpledisk-
constart responds to requestsin a xed amourt of time, equal to that of the
responsetime of the G2 MEMStore under the random workload: 0.88 ms. The
responsetime of Simpledisk-linear is a linear function of the distance from the
last requestin LB N space.The endpoints of the function are equal to the single-
cylinder and full-strok e seektimes of the Uberdisk, which are 0.1 ms and 2.0 ms,
respectively. Simpledisk-constan should not bene t from locality, and Simpledisk-

linear should benet from locality even more than either the MEMStore or the
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Uberdisk. Augmerting the disk array with these devicesgivesresponsetimes to
the busiest logical volume of 0.92 ms and 0.52 ms, respectively. As expected,
Simpledisk-constarn doesnot bene t from workload locality and Simpledisk-linear
bene ts more than a real disk.

Uysal et al. proposedseeral other MEMStore/disk combinations for disk ar-
rays [Uysal et al. 2003], including replacing all of the disks with MEMStores,
replacing half of the mirrors in a mirrored con guration, and usingthe MEMStore
as a replacemen of the NVRAM cade. In all of these cases,and in most of the
other roles outlined in Chapter 2, the MEMStore is usedsimply asa block store,
with no tailoring of accessto MEMStore-speci ¢ attributes. | believe that if the
speci cit y test were applied, and an Uberdisk was usedin ead of theseroles, the
same performanceimprovemert would result. Thus, the results of prior researd

apply more generally to faster mechanical devices.

5.5 Summay

Most roles that MEMStores will 1l really only benet from the MEMStore's
intrinsic properties, i.e., that they are faster, smaller, or uselessenergythan disk
drives.Systemsthat usethem will have improved performance,of course,but they
will not require a new abstraction or interface for the MEMStore if this is the only
bene t. The next chapter examineshow systemsmay bene t from tailoring their

accesyyolicies when using MEMStores.



6 Policiesfor accessinylEMStaes

Once MEMStores are usedin systems,those systemscan implement speci ¢ poli-
ciesto tailor their use.If MEMStores have speci ¢ featuresfrom which a system
can benet, beyond just the fact that they are faster, smaller, and use less en-
ergy than disk drives, then those policies should be MEMStore-speci ¢ and may
require an abstraction that is di erent from that usedfor current storagedevices.
The speci cit y test and the merit test from Chapter 1 allow this questionto be an-
swered. This chapter evaluates seeral potential MEMStore-speci ¢ accesolicies

using the two objective tests.

6.1 Requestscheduling

An important medanism for improving storage device e ciency is deliberate
scheduling of pending requests. Request scheduling improves e ciency because
positioning delays are dependert on the relative positions of the read/write head
and the destination sector. The sameis true of MEMStores, whoseseektimes are
dependert on the distance to be traveled. Some scheduling policies are most ef-
fectively implemented inside of the device becauseof extra knowledgethat exists
there. Other policies can be implemented externally in the host software, i.e., in-
sidethe operating system,becausehey do not require extra information about the
system.This sectionexploresthe impact of di erent requestsdeduling algorithms

on the performance of MEMStores.
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6.1.1 Evaluatingschedulingalgaithms

Someof the experiments belowv usea synthetically-generated workload called Ran-
dom. For this workload, requestinter-arriv al times are drawn from an exponertial
distribution; the meanis varied to simulate a range of workloads. All other aspects
of the requestsare independert: 67% are reads, 33% are writes, the request size
distribution is exponertial with a mean of 4 KB, and request starting locations
are uniformly distributed acrossthe device's capacity.

To study more realistic workloads, other experiments use two traces of real
disk activity: the TPC-C trace and the Cello trace. The TPC-C trace camefrom
a TPC-C testbed, consisting of a Microsoft SQL Serer atop Windows NT. The
hardware was a 300 MHz Intel Pertium [I-based systemwith 128 MB of memory
and a 1 GB test database striped acrosstwo Quantum Viking disk drives. The
trace captured one hour of disk activity for TPC-C, and its characteristics are
described in more detail in [Riedel et al. 2000]. The Cello trace came from a
Hewlett-Padkard systemrunning the HP-UX operating system. This trace is from
the samemacine as the trace usedin Chapter 5, but is from 1992.1t captured
disk activity from a server at HP Labs usedfor program developmert, simulation,
mail, and news. While the total trace is actually two months in length, | report
data for a single, day-long snapshot.This trace and its characteristics are described
in detail in [Ruemmler and Wilk es 1993]. When replaying the traces, ead traced
disk is replacedby a distinct simulated MEMStore.

As is often the casein trace-basedstudies, the simulated devicesare newer and
signi cantly faster than the disks usedin the traced systems.To explore a range
of workload intensities, | replicate an approac usedin previous disk scheduling
work [Worthington et al. 1994b]:we scalethe traced inter-arriv al times to produce
a range of averageinter-arrival times. When the scalefactor is one, the request
inter-arrival times match those of the trace. When the scale factor is two, the

traced inter-arrival times are halved, doubling the averagearrival rate.



Ch. 6. Policiesfor accessingIEMStores 68

6.1.2 Existingdisk-basedalgaithms

Many disk scheduling algorithms have beendevisedand studied over the years.In
this section, | describe and comparethe performanceof four of them both on a disk
driveand on a MEMStore. The rst is rst-come, rst-served(FCFS), which is the
simplest and often givesthe poorest performance. The secondalgorithm is called
cyclical look (CLOOK _LBN ) and it servicesrequestsin ascendingLB N order,
starting over with the lowestLB N whenall requestsare \b ehind" the most recert
request[Seamanet al. 1966]. The third, shortest seektime rst (SSTF_LBN ) was
designedto selectthe requestthat will incur the smallest seekdelay [Denning
1967], but this is rarely the way it functions in practice. Instead, since few host
operating systemshave the information neededto compute actual seekdistances
or predict seektimes, most SSTF implementations usethe di erence betweenthe
last accessed_-B N and the desiredLB N as an approximation of seektime. This
simpli cation works well for disk drives [Worthington et al. 1994b]since LB N
numbers map well to physical positions. The fourth, shortest positioning time rst
(SPTF), selectsthe requestthat will incur the smallest positioning delay [Seltzer
et al. 1990;Jacobsonand Wilk es1991].For disks, this algorithm di ers from others
in that it explicitly considersboth seektime and rotational latency.

The rst three of thesealgorithms (FCFS, CLOOK _LBN, and SSTF_LBN) can
be easily and e cien tly implemerted in host software (i.e., the operating system)
becausethey do not require detailed knowledgeof the device. They selectrequests
to be servicedsolely basedon their requestedLB N number. They work well for
disk drivesbecauseLB N numbers map well (although not perfectly) to physical
positions. SPTF is most often implemented within a disk drive's rm ware because
it requiresaccurate knowledgeof the state of the disk, the exact mapping of LB N s
to physical locations, and the exact predicted timing of both seeksand rotational
latencies. Request scheduling algorithms running on MEMStores that export an

interfacewhich mapsLB N swell to physical location should have similar (relativ e)
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(a) Averageresponsetimes (b) Squaredcoe cien ts of variation ( 2= ?)
Fig. 6.1: Comparison of scheduling algorithms for the Random workload on the Quan-
tum Atlas 10K disk.
performanceto the samealgorithms running on disk drives.

As a reference,Figure 6.1 comparesthese four disk scheduling algorithms op-
erating on a Quantum Atlas 10K disk drive [Quantum 1999]under the Random
workload described above. The graphs show performanceas a function of increas-
ing requestarrival rate. Two common metrics for evaluating disk scdheduling algo-
rithms are shawn. First, the averageresponsetime (queuetime plus servicetime)
shows the e ect on averageperformance. The gure of merit for an algorithm is
the point at which performance saturates becausethe device cannot service re-
questsfast enough. At saturation, queuesizesgrow without bound and response
times increasedramatically. As expected, FCFS saturates well before the other
algorithms as the arrival rate increases.SSTF_LBN outperforms CLOOK _LBN,
and SPTF outperforms all other schemes.As a secondmetric of evaluation, the
squared coe cien t of variation ( 2= 2) measures\fairness" (or starvation resis-
tance) [Worthington et al. 1994b;Teoreyand Pinkerton 1972];lower valuesindicate
better starvation resistance.As expected, CLOOK _LBN avoids the starvation ef-
fectsthat characterizethe SSTF_LBN and SPTF algorithms. Although not shovn
here, age-weighted versions of these greedy algorithms can reduce request star-
vation without unduly reducing average case performance [Seltzer et al. 1990;

Jacobsonand Wilk es 1991].
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(a) Averageresponsetimes (b) Squaredcoe cien ts of variation ( 2= ?)

Fig. 6.2: Comparison of scheduling algorithms for the Random workload on the G2
MEMStore . Note the scaleof the X axis hasincreasedby an order of magnitude relativ e to the
graphs in Figure 6.1.

Figure 6.2 shavs how well thesealgorithms work for the G2 MEMStore under
the Random workload described above for a range of request arrival rates. In
terms of both performanceand starvation resistance,the algorithms nish in the
sameorder as for disks: SPTF provides the best performanceand CLOOK _LBN
provides the best starvation resistance. However, their performance relative to
eat other merits discussion.The di erence between FCFS and the LB N -based
algorithms (CLOOK _LBN and SSTF_LBN) is larger for MEMStores becausethe
seektime is a much larger componert of the total service time. In particular,
there is no subsequen rotational delay. Also, the averageresponsetime di erence
between CLOOK LBN and SSTF_LBN is smaller for MEMStores, becauseboth
algorithms reducethe X seektimes into the range where X and Y seektimes are
comparable. Since neither addressesy seeks,the greedinessof SSTF_LBN is less
e ective. SPTF obtains additional performanceby addressingY seeks.

Figures 6.3(a) and 6.3(b) show how the sdeduling algorithms perform for
the Cello and TPC-C workloads, respectively. The relative performance of the
algorithms on the Cello trace is similar to the Random workload. The overall
averageresponsetime for Cello is dominated by the busiest one of Cello's eight
disks; someof the individual disks have di erently shaped curvesbut still exhibit

the sameordering amongthe algorithms. One noteworthy di erence betweenTPC-
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(a) Cello averageresponsetimes (b) TPC-C averageresponsetimes

Fig. 6.3: Comparison of scheduling algorithms for the Cello and TPC-C workloads

on the G2 MEMStore

C and Cello is that SPTF outperforms the other algorithms by a much larger
margin than for TPC-C at high loads. This occursbecausehe scaled-upversion of
the workload includes many concurrertly-p ending requestswith very small LB N

distances between adjacernt requests. LB N -based schemesdo not have enough
information to choosebetweensud requests,often causingsmall (but expensiwe)
X-dimension seeks.SPTF addressesthis problem and therefore performs much

better.

6.1.3 SPTF and settling time

Originally, we had expected SPTF to outperform the other algorithms by a greater
margin for MEMStores. Our investigationssuggestthat the value of SPTF schedul-
ing is highly dependert upon the settling time componert of X dimension seeks.
With large settling times, X dimension seektimes dominate Y dimension seek
times, making SSTF_LBN match SPTF. With small settling times, Y dimension
seektimes are a more signi cant componert. To illustrate this, Figure 6.4 com-
pares the scheduling algorithms with the constart settling time set to zero and
0.44ms (double the default value). As expected, SSTF_LBN is very closeto SPTF
when the settling time is doubled. With zerosettling time, SPTF outperformsthe

other algorithms by a large margin.
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(a) Random with zero settling time (b) Random with double settling time

Fig. 6.4: Comparison of average performance of the Random workload for zero and
double constant setting time on the G2 MEMStore . These are in comparison to the
default model (Random with constant settling time of 0.22 ms) shown in Figure 6.2(a). With no
settling time, SPTF signi cantly outperforms CLOOK _LBN and SSTF_LBN. With the doubled
settling time, CLOOK _LBN, SSTF_LBN, and SPTF are nearly identical.

6.1.4 MEMStore-speci ¢ algaithms

Mechanical and structural di erences betweenMEMStores and disks suggestthat
request scheduling policies that are tailored to MEMStores may provide better
performance than onesthat were designed for disks. Upon close examination,
howewer, the physical and medanical motions that dictate how a scheduler may
perform on a given devicecontinue to apply to MEMStores asthey apply to disks.
This may be surprising at rst glance,sincethe devicesare sodi erent, but after
examining the fundamental assumptionsthat make schedulerswork for disks, it is
clear that those assumptionsare also true for MEMStores.

Toillustrate, | have evaluated a MEMStore-speci ¢ scheduling algorithm called
shortest-distane- rst , or SDF. Given a queueof requests,the algorithm compares
the Euclidean distance betweenthe media sled's current position and the o set of
ead requestand schedulesthe requestthat is closest.The goalis to exploit a clear
di erence between MEMStores and disks: the fact that MEMStores position over
two dimensionsrather than only one. When consideringthe speci city test, it is
not surprising that this quali es asa MEMStore-speci ¢ policy. Disk drivesdo, in

fact, position over multiple dimensions,but predicting the positioning time based
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Fig. 6.5: Performance of shortest-distance- rst scheduler. A MEMStore-speci ¢ scheduler
that accourts for two-dimensional position gives no benet over simple schedulers that use a
linear abstraction (CLOOK _LBN and SSTF_LBN). This is becauseseektime in a MEMStore is
correlated most strongly with distance only in the X dimension.

on any dimension other than the cylinder distanceis very di cult outside of disk
rm ware. SDF stheduling for MEMStores is easierand could be done outside of
the device rm ware, assumingthat the proper geometry information is exposed
through the MEMStore's interface, sinceit is basedonly on the logical-to-physical
mapping of the device'ssectorsand any defect managemen policies used.

Figure 6.5 comparesthe performance of SDF to that of the other algorithms
described above. As expected, FCFS and SPTF perform the worst and the best,
respectively. CLOOK LBN and SSTF_LBN don't perform as well as SPTF be-
causethey useonly the LB N numbers to make sceduling decisions.The SDF
scheduler performs slightly worsethan CLOOK _LBN and SSTF_LBN. The reason
is that positioning time is not as well correlated with two-dimensional position
information. In fact, positioning time is only strongly correlated with positioning
over the X dimension, as shown in Section 3.3. As sud, considering the two-
dimensional seekdistance does not provide any more utilit y over consideringthe

one-dimensionalseekdistance alone, as CLOOK _LBN and SSTF_LBN e ectiv ely
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do. Thus, the suggestedpolicy fails the merit test: the sameor greater bene t can
be gainedwith existing schedulersthat don't needMEMStore-speci ¢ knowledge.
This is based,of course,on the fact that settling time is a signi cant componert of
positioning time. | discussthe e ect of changing this device characteristic below.

Another MEMStore-speci ¢ request scheduling algorithm called zone-based
shortest positioning time rst (ZSPTF) was suggestedby Hong et al. [Hong et al.
2003]. The algorithm combines the performance of SPTF with the starvation re-
sistanceof CLOOK _LBN by breaking the logical block spaceinto zones.Requests
within a single zone are serviced in SPTF order, and zonesare visited in as-
cending order to improve starvation resistance.The results shov somewhatim-
proved performanceover standard LB N -basedalgorithms like CLOOK _LBN and
SSTF_LBN, with better starvation resistancethan SPTF. However, the authors
did not run the same experiments with ZSPTF running on disk drivesin order
to decidewhether it is a truly MEMStore-speci ¢ policy. From the description of
the algorithm, it is clearthat it could be implemented on a disk drive, and that it
would probably give the samebene ts.

The fundamenal reasonthat sdheduling algorithms dewveloped for disks work
well for MEMStores are that seektime is strongly dependert on seekdistance,
but only the seekdistancein a single dimension. The seektime is only correlated
to a single dimension, which is exposed by the linear abstraction. The sameis
true for disks when one cannot predict the rotational latencies,in which only the
distance that the heads must move acrosscylinders is relevant. Hence, a linear
logical abstraction is asjustied for MEMStores asit is for disks.

Of course, there may be yet-unknown policies that exploit featuresthat are
speci ¢ to MEMStores, and researt will surely continue in this area. When con-
sidering potential policiesfor MEMStores, it isimportant to keepthe two objective
testsin mind. In particular, thesetests can exposea lack of needfor a new policy
or, better yet, the fact that the policy is equally applicable to disks and other

medanical devices.
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Fig. 6.6: Performance of shortest-distance- rst scheduler without settle time. If post-
seeksettle time is eliminated, then the seektime of a MEMStore becomesstrongly correlated with
both the X and Y positions. In this case,a scheduler that takesinto accourt both dimensions pro-
vides much better performance than those that only consider a single dimension (CLOOK _LBN
and SSTF_LBN).

6.1.5 Eliminating settling constraints

As described in Section 3.3, seektime is only strongly correlated with one of
the two positioning dimensions. This is based on the obsenation that dierent
medanismsdetermine the settling time in ead of the two axes,X and Y. Settling
time is neededto damp oscillations enoughfor the read/write tips to reliably access
data. In all published MEMStore designs,data is laid out linearly alongthe Y-axis,
meaningthat oscillationsin Y will appearto the channelasminor variations in the
data rate. Contrast this with oscillations in the X-axis, which pull the read/write
tips o -trac k. Becauseone axis is more sensitive to oscillation than the other, its
positioning delays will dominate the other's, unlessthe oscillations can be damped
in near-zerotime.

If these diering constraints no longer held, and oscillations a ected ead
axis equally, then MEMStore-speci ¢ policies that take into accourt the result-

ing two-dimensionality of the seekprole, as illustrated in Figure 3.8, would
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becomemore valuable. Now, for example, two-dimensional distance would be a
much better predictor of overall positioning time. Figure 6.6 shows the result of
repeating the experiment from Section 6.1.4, but with the post-seeksettle time
setto zero. In this case,the performanceof the SDF scheduler very closely tracks
shortest-positioning-time- rst, SPTF, the scheduler basedon full knowledgeof po-
sitioning time. Further, the di erence betweenSDF and the two algorithms based
on single-dimensionposition (CLOOK _LBN and SSTF_LBN) is now very large.
CLOOK _LBN and SSTF_LBN have worse performance becausethey ignore the

seconddimensionthat is now correlated strongly with positioning time.

6.2 Data layout

Space allocation and data placemen for disks cortinues to be a ripe topic of
researd, and the samewill be true of MEMStores. In this section, | discusshow
the characteristics of MEMStore positioning costs a ect placemen decisionsfor
small local accessesnd large sequettial transfers. A bipartite layout is proposed

and is shawvn to have somepotential for improving performance.

6.2.1 Small, skewed accesses

As with disks, short distanceseeksare faster than long distance seeksUnlik e disks,
MEMStores' spring restoring forcesmake the e ectiv e actuator force (and therefore
sled positioning time) a function of location. Figure 6.7 shows the impact of spring
forces for seeksinside di erent \subregions” of a single tip's media region. The
spring forcesincreasewith increasing sled displacemen from the origin (toward
the outermost subregionsin Figure 6.7), resulting in longer positioning times for
short seeks.As a result, distanceis not the only componert to be consideredwhen
nding good placemeris for small, popular data items|o set relativeto the certer

could also be considered.
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Fig. 6.7: Dierence in request service time for subregion accesses. This gure divides
the region accessibleby an individual probe tip into 25 subregions,eac 500 500 bits. Each box
shows the averagerequest servicetime (in milliseconds) for random requestsstarting and ending
inside that subregion. The upper numbers represert the service time when the default settling
time is included in calculations; numbersin italics represert the servicetime for zero settling time.
Note that the servicetime diers by 14{21% betweenthe cerntermost and outermost subregions.

6.2.2 Large, sequentiaftransfers

Streaming mediatransfer rates for MEMStores and disksare similar: 17.3{25.2MB/s
for the Quantum Atlas 10K [Quantum 1999];44.8MB/s for MEMStores. Position-
ing times, however, are an order of magnitude shorter for MEMStores than for
disks. This makespositioning time relatively insigni cant for large transfers (e.g.,
hundreds of sectors). Figure 6.8 shaws the requestservicetimes for a 256 KB read
with respectto the X distancebetweenthe initial and nal sledpositions. Requests
traveling 1250cylinders (e.g., from the sledorigin to maximum sled displacemer)
incur only a 10% penalty. This lessenghe importance of ensuringlocality for data
that will be accessedn large, sequetiial chunks. In cortrast, seekdistance is a
signi cant issuewith disks, where long seeksmore than double the total service

time for 256 KB requests.
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-

Fig. 6.8:Large (256 KB) request service time vs. X seek distance for a G2 MEMStore
Becausethe media accesstime is large relative to the positioning time, seekingthe maximum
distance in X increasesthe servicetime for large requestsby only 12%.

6.2.3 Bipartite layout

The bipartite layout schemetakesadvantage of the above characteristics by plac-
ing small data in the certermost subregions.Long, sequettial streaming data are
placedin outer subregions.Two layouts are tested: a v e-by- v e grid of subregions
(Figure 6.7) and a simple columnar division of the LB N spaceinto 25 columns
(e.g.,column 0 contains cylinders 0{99, column 1 contains cylinders 100{199, etc.).
The di erence betweenthesetwo divisions is that the subregionedlayout requires
knowledge of the two-dimensionalnature of the media, while the columnar layout
requiresno knowledgeof the medialayout; it only needsto divide the logical LB N
spaceby the number of columns desired (i.e., 25in this case).

| comparetheselayout schemesagainst the \organ pipe" layout [Vongsathorn
and Carson 1990; Ruemmler and Wilk es 1991], an optimal disk-layout scheme,
assuming no inter-request dependencies.In the organ pipe layout, the most fre-
quently accessedles are placedin the certermost tracks of the disk. Files of de-
creasingpopularity aredistributed to either sideof certer, with the leastfrequertly
accessedles located closerto the innermost and outermost tracks. Although this

schemeis optimal for disks, les must be periodically shued to maintain the fre-
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Fig. 6.9: Comparison of layout schemes for the G2 MEMStore . For the default device, the
organ pipe, subregioned, and columnar layouts achieve a 12{15% performance improvemert over
a random layout. Further, for the \settling time = 0" case,the subregioned layout outperforms
the others by an additional 12%. It is interesting to note that an optimal disk layout technique
does not necessarily provide the best performance for a MEMStore .

guencydistribution. Further, the layout requires somestate to be kept, indicating
eat le's popularity.

To evaluate theselayouts, | useda workload of 10,000whole- le read requests
whose sizesare drawn from the le size distribution reported in [Ganger and
Kaashoek 1997]. In this size distribution, 78% of les are 8 KB or smaller, 4%
are larger than 64 KB, and 0.25% are larger than 1 MB. For the subregioned
and columnar layouts, the large les (larger than 8 KB) were mapped to the
ten leftmost and ten rightmost subregions,while the small les (8 KB or less)
were mapped to the certermost subregion. To consenatively avoid second-order
locality within the large or small les, | assigneda random location to ead request
within either the large or the small subregions.For the organ pipe layout, | used
an exponertial distribution to determine le popularity, which was then usedto
place les.

Figure 6.9 shows that all three layout schemesacdhieve a 12{15% improvemert
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in averageaccesdime over a simplerandom le layout. Subregionedand columnar
layouts for MEMStores match the organ pipe layout, even with the consenative
model, and have no need for keeping popularity data or periodically reshuing
les on the media. For the \no settling time" case,the subregionedlayout provides
the best performanceasit addressedoth X and Y.

Applying the speci cit y test to this potential data layout schemerevealsthat
the layout is, indeed, speci ¢ to MEMStores, sincethere is no corresponding dif-
ferencein positioning time acrossregions of a disk drive. Howewer, applying the
merit test shows that this layout scheme may not provide enoughbenet to the
systemto require changing the interfaceto exposethe requisite information to the
system. The columnar layout may be usedwith a normal linear LB N abstraction
and provides almost exactly the samebenet asboth the organ pipe and subre-
gionedlayout. Therefore, by the merit test, it is not clear that taking advantage of
this di erence in MEMStore positioning dynamics requiresa changein the device's

abstraction.

6.3 Exploitingtip-subsetparallelism

One MEMStore feature that may not be exploited by the standard model of stor-
age is their interesting form of internal accessparallelism. Speci cally, a subset
of the 1000sof read/write tips can be usedin parallel to provide high bandwidth
media access,and the particular subsetdoesnot have to be statically chosen.In
contrast to the disk arms in a disk array, which can eah seekto independert
locations concurrertly, all tips are constrained to accessthe samerelative loca-
tion in their respective regions. For certain accessatterns, however, dynamically
selecting which subsetsof tips should accessdata can provide great bene ts to
applications. This section describesthe available degreesof freedom MEMStores
canemploy in parallel accesgo data and how they can be usedfor two classesof

applications.
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@ | @= | @n
3 30 57 4 31 58 5 32 59
6 27 60 7 28 61 8 29 62
15 (36) 69 16@70 17 (38) 71
12 39 66 13 40 67 14 41 68
9 42 63 10 43 64 11 44 65
18@72 19@73 20@74
21 48 75 22 49 76 23 50 77
24 45 78 25 46 79 26 47 80

81

Fig. 6.10:Data layout with an equiv alence class of LB N s highligh ted. The LB N smarked
with ovals are at the samelocation within ead square and, thus, comprise an equivalence class.
That is, they can potentially be accessedn parallel.

6.3.1 Background

Although a MEMStore includes thousands of read/write tips, it is not possible
to do thousands of ertirely independert reads and writes. There are signi cant
limitations on what locations can be accessedn parallel. As a result, previous
researdhr on MEMStores has treated tip parallelism only as a meansto increase
sequetial bandwidth and to deal with tip failures. This section de nes the sets
of LB N s that can potentially be accessedn parallel, and the constraints that
determine which subsetsof them can actually be accessedn parallel.

When a seekoccurs, the media is positioned to a specic o set relative to
the ertire read/write tip array. As a result, at any point in time, all of the tips
accessthe same locations within their squares.An example of this is shown in

Figure 6.10in which LB N s at the samelocation within ead squareare identi ed
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with ovals. This set of LB N s form an equivalene class That is, becauseof their

position they can potentially be accessedn parallel. It is important to note that

the sizeof an equivalenceclassis very small relative to the total number of LB N s
in a MEMStore. In the G2 MEMStore described in Chapter 3, the size of an

equivalenceclassis 100, meaning that only 100 LB N s are potentially accessible
in parallel at any point out of a total of 6,750,000total LB Nsin the device.

Only a subsetof any equivalenceclasscan actually be accessedt once.Limi-
tations arise from two factors: the power consumption of the read/write tips, and
componerts that are shared between read/write tips. It is estimated that ead
read/write tip will consumel{3 mW when active and that cortin uously position-
ing the mediasledwould consumel00mW [Sclosseret al. 2000].Assuminga total
power budget of 1 W, only between 300 and 900 read/write tips can be utilized
in parallel which, for realistic devices,translates to 5{10% of the total number of
tips. This givesthe true number of LB N sthat canactually be accessedn parallel.
In the G2 MEMStore, only 10 of 100 LB N s in an equivalenceclasscan actually
be accessedn parallel.

In most MEMStore designs,several read/write tips will share physical com-
ponerts, such asread/write channel electronics, track-following servos, and power
buses.Suc componert sharing makesit possibleto t more tips, which in turn
increasesvolumetric density and reducesseekdistances.It also constrains which
subsetsof tips can be active together, reducing exibilit y in accessingequivalence
classesof LB N s.

For eadh LB N and its assaiated equivalence class, a conict relation can
be de ned which restricts the equivalenceclassto re ect shared componert con-
straints. This relation doesnot actually reducethe numkber of LB N s that can be
accessedn parallel, but will aect the choice of which LB Ns can be accessed
together. As real MEMStores have not yet been built, there is no real data on
which componerts might be sharedand so | cannot de ned any realistic con ict

relations. Therefore, this is an avenue of future work to be addressedwhen real
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designshave beenimplemented.

Figure 6.10 shaws a simple example illustrating parallel-accessibleLB N s. If
onethird of the read/write tips canbe activein parallel, a systemcould chooseup
to 3 LB N s out of a given equivalenceclass(shown with ovals) to accesgogether.
The three LB N's chosencould be sequetial (e.g., 33, 34, and 35), or could be
disjoint (e.g., 33,38, and 52). In ead case,all of thoseLB N swould be transferred
to or from the mediain parallel.!

SomeMEMStore designsmay have an additional degreeof freedom:the ability
to microposition individual tips by sewral LB N's along the X dimension. This
capability existsto deal with manufacturing imperfectionsand thermal expansion
of the media due to ambient heat. Sincethe media sled could expand or cortract,
sometips may needto serwo themsehesslightly to addressthe correct columns.
By allowing rm ware to exploit this micropositioning, the equivalenceclassfor a
given LB N grows by allowing accessto adjacert cylinders. MEMStore designers
indicate that micropositioning by up to 5 columnsin either direction is a reasonable
expectation. Of course,ead tip canaccesnly onecolumn at a time, introducing
additional conict relations.

For example,supposethat the deviceshowvn in Figure 6.10canmicroposition its
tips by oneLB N position alongthe X dimension. This will expandthe equivalence
class shovn in the gure to include the two LB Ns to the immediate left and
right of the current LB N. The size of the equivalenceclasswill increaseby 3
Microp ositioning may not always be available as predicted by a simple model. If
the media has expandedor contracted so far that the tip must already position
itself far away from its certral point, the micropositioning options will be reduced
or altered. Lastly, micropositioning doesnot allow tips to accessdata in adjacert

tips' squaresbecauseof inter-square spacing.

L Although it is not important to host software, the pictures shawing tracks within contiguous
rows of squaresare just for visual simplicity. The tips over which any sector is strip ed would be
spread widely acrossthe device to distribute the resulting heat load and to create independence
of tip failures. Lik ewise,the squaresof sequerially numbered LB N s would be physically spread.
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Tracks potentially accessible
by micro-positioning

Fig. 6.11:Microp ositioning. In the CMU design,the probetips must have some ne-p ositioning
capability in order to deal with thermal expansion of the media sled. This capability could be
exposedthrough the interface, allowing the systemto accessdata in nearby tracks and expanding
the range of potentially-accessible data once the sled is positioned. The probe tip in the simple
example above could position itself to accesswo tracks on either side of the basetrack, increasing
the number of potentially-accessible sectors from sewen to thirt y-v e. In reality, the probe tips
will probably be able to micro-position over v e to ten tracks in either direction.

In summary, for each LB N, an equivalenceclassof LB N s that can be poten-
tially accessedn parallel with it exists. The members of the set are determined
by the LB N's position, and the size of the set is determined by the number of
read/write tips in the device and any micropositioning freedom. Further, only a
subset (e.g., 5{10%) of the equivalence class can actually be accessedn paral-
lel. The size of the subsetis determined by the power budget of the device. If
read/write tips sharecomponerts, then there will be constraints on which LB N s
from the set can be accessedogether. These constraints are expressedoy con ict

relations. Lastly, an equivalence class can be expanded signi cantly (e.g., 11 )
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p | Level of parallelism 3
N | Number of squares 9
Sx | Sectorsper squarein X 3
Sy | Sectorsper squarein Y 3
M | Degreeof micropositioning 0
Nx | Number of squaresin X p 3
Ny | Number of squaresin Y N=p 3
St | Sectorsper track Sy Ny | 9
Sc | Sectorsper cylinder St Ny |27

Table 6.1: Device parameters. These are the parameters required to determine equivalence
classesof LB N s that can be potentially accessedin parallel. The rst v e parameters are de-
termined by the physical capabilities of the device and the last four are derived from them. The
valuesin the rightmost column are for the simple device shown in Figure 6.10.

due to micropositioning capability.

6.3.2 Exposingtip-subsetparallelism

This section describes equations and assaiated device parametersthat a system
can useto enumerate LB N s in a MEMStore that can be accessedn parallel.
The goalis that the systembe able, for a given LB N, to determine the equiv-
alence class of LB N s that are parallel-accessible.Determining this class for a
MEMStore requiresfour parametersthat describe the virtual geometry of the de-
vice and one which describesthe degreeof micropositioning. Table 6.1 lists them
with examplevaluestaken from the deviceshown in Figure 6.10. The level of par-
allelism, p, is set by the power budget of the device, as described in Section6.3.1.
The total number of squares,N, is de ned by the virtual geometry of the device.
Sincesequettial LB N s are laid out over asmany parallel tips as possibleto opti-
mize for sequetial accessthe number of squaresin the X dimension, Ny, is equal
to the level of parallelism, p. The number of squaresin the Y dimensionis the total
number of squares,N, divided by p. The sectorsper squarein either direction, Sy
and Sy, is determined by the bit density of ead square. These parameters, along
with Ny and Ny, determine the number of sectorsper track, St, and the number

of sectorsper cylinder, Sc.
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Without micropositioning, the size of an equivalenceclassis simply equal to
the total number of squares,N, asthere is an equivalent LB N in ead square.The
degreeof micropositioning, M , is another deviceparameter which givesthe number
of cylinders in either direction over which an individual tip can microposition. M
has the e ect of making the equivalence classlarger by a factor of 2M + 1. So,
if M in Figure 6.10 were 1, then the equivalenceclassfor each LB N would have
(at most) 27 LB N sin it. Microp ositioning is opportunistic since,if the media has
expanded,the micropositioning range will be usedjust to stay on track.

Given a single LB N |, a simple two-step algorithm yields all of the other
LB N sin the equivalenceclassk,. The rst step mapsl| to an x; y position within
its square. The secondstep iterates through ead of the N squaresand nds the
LB Nsin that squarethat arein the equivalenceclass.

The rst step usesthe following formulae:

X] BI:SCC
2 (b=NxC % Sy) if b=Src even

y =
2 (S 1) (B=N,c%S,) otherwise

The formula for x; is simply a function of | and the sectors per cylinder. The
formula for y, takesinto accourt the track reversalsdescribed in Section 2.4 by
reversing the y position in every other track.

The secondstep usesthe following formula, LB N;.;, which givesthe LB N that

is parallel to | in squarei.

LB N|;i = (X| Sc)

+(i % S)
+(§j=NxC St)
. 2 (i Ny if bi =NyCc+ X, even

Sy 1) y) N, otherwise
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Lik e the formula for y,, this formula takestrack reversalsinto accoun.
The secondstep of the algorithm is to nd the LB Ns in eat square that
comprisethe equivalenceclassk,. Ignoring micropositioning, the equivalenceclass

is found by evaluating LB N for all N squares:

If the MEMStore supports micropositioning, then the sizeof the equivalenceclass
increasesRather than usingjust x|, LB N, is evaluated for all of the x positionsin
ead squarethat are accessibleby micropositioning; i.e., for all x's in the interval
[X| M;x;+ M].

Oncea systemknowsthe equivalenceclass,it canthen, in the absenceof shared
componerts, chooseany p sectorsfrom that classand be guaranteedthat they can
be accessedn parallel. If there are sharedcomponerts, then the conict relations

will have to be chedked when choosing sectorsfrom the class.

6.3.3 Expressingparallel requests

SinceLB N numbering is tuned for sequetial streaming, requeststhat can be ser-
viced in parallel by the MEMStore may include disjoint rangesof LB N s. How these
disjoint LB N rangesare expressedn uences how theserequestsare scheduled at
the MEMStore. That is, requestsfor disjoint setsof LB N s may be scheduled sep-
arately unlessthere is somemecdanism to tell the storagedevicethat they should
be handled together.

Oneoption is for the deviceto delay scheduling of requestsfor a xed window of
time, allowing concurrernt scheduling of equivalent LB N accessesln this scheme,
a host would sendall of the parallel requestsas quickly as possiblewith ordinary
read and write commands. This method requires additional request-tradking
work for both the host and the device,and it will su er somelossof performance

if the host cannot deliver all of the requestswithin this time window (e.g., the
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delivery is interleaved by requestsfrom another host).

Another option is for the hostto explicitly group the parallel-accessibleequests
into a batch, informing the device of which media transfers the host expects to
occur in parallel. With explicit information about parallel-accessibleLB N s from
the MEMStore, the host can properly construct batchesof parallel requests.This

secondoption can be easierfor a host to work with and more e cien t at the device.

6.3.4 Applicationinterface

An application writer needsa simple API that enablesthe use of the equivalence
classconstruct and the explicit batching medanism. The following functions allow

applications to be built that can exploit the parallelism of a MEMStore:

get_parallelism() returns the device parallelism parameter, p, described in Ta-

ble 6.1.

batch() marks a batch of read and write commandsthat are to accessthe

mediain parallel.
get_equivalent( LB N) returns the LB N's equivalenceclass,E g\ -

check_conicting( LB N ;LB N3) returns TRUE if there is a conict between
LB N1 and LB N, such that they cannot be accessedn parallel (e.g., due

to a shared componert).

get_ensemble( LB N) returns LB Njn and LB Nmax values, where LB Nmin
LB N LB Nmax. This denotesthe sizeof a request(in consecutive LB N s)
that yields the most e cient device access.For MEMStore, LB Npax
LB Nmin = St, which is the number of blocks on a single track cortain-

ing LB N.

All of thesefunctions can executein either the devicedriver or an application's
storage manager, with the necessarydevice parameters exposed through SCSI

mode pages.



Ch. 6. Policiesfor accessingIEMStores 89

p | Level of parallelism 10
N | Number of squares 100
Sx | Sectorsper squarein X 2500
Sy | Sectorsper squarein Y 27
M | Degreeof micropositioning 0
Nx | Number of squaresin X 10
Ny | Number of squaresin Y 10
St | Sectorsper track 270
Sc | Sectorsper cylinder 2700

Table 6.2: Device parameters for the G2 MEMStore . The parameters given here take into
accourt the fact that individual 512 byte LB N s are strip ed across64 read/write tips ead.

6.3.5 Experimentalsetup

For the purposesof this work, the MEMStore componert of DiskSim was aug-
mented to servicerequestsin batches. As a batch is serviced,as much of its data
accessaspossibleis donein parallel giventhe geometry of the deviceand the level
of parallelism it can provide. If all of the LB N sin the batch are parallel-accessible,
then all of its media transfer will take place at once. Using the v e basic device
parametersand the algorithm described in Section 6.3.2, an application can gen-
erate parallel-accessiblebatches and e ectiv ely utilize the MEMStore's available
parallelism.

The relevant parametersfor the G2 MEMStore are shavn in Table6.2. The G2
MEMStore has6400probetips, and therefore 6400total squares.However, a single
LB N is always strip ed over 64 probe tips soN for this deviceis 640064 = 100.
The energyrequiremerts of the tips dictate that only 640 out of 6400 read/write
tips can be active simultaneously, making p = 10. Therefore, for a single LB N,
there are 100LB N sin an equivalenceclass,and out of that setany 10LB N'scan
be accessedn parallel.

Each physical squarein the G2 device contains a 2500 2500 array of bits.
Each 512 byte LB N s strip ed over 64 read/write tips. After striping, the virtual
geometry of the deviceis a 10 10 array of virtual squares,with sectorslaid out

vertically along the Y dimension. After serno and ECC overheads, 27 512-byte
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sectors t alongthe Y dimension, making Sy = 27. Lastly, Sy = 2500,the number
of bits alongthe X dimension. The total capacity for the G2 MEMStore is 3.46GB.
It hasan averagerandom seektime of 0.56 ms, and has a sustainedbandwidth of

38 MB/s.

6.3.6 Accessinglocks for free

As aworkload runs on a MEMStore, someof the mediabandwidth may be available
for badkground accessedecausethe workload is not utilizing the full parallelism
of the device. Every time the media sled is positioned, a full equivalenceclassof
LB N s is available out of which up to p sectorsmay be accessedSomeof those p
sectorswill be usedby the foreground workload, but the rest can be usedfor other
tasks. Given an interface that exposesthe equivalenceclass,the systemcan choose
which LB N s to access\for free." This is similar to freeblock scheduling for disk
drives[Lumb et al. 2000],but doesnot require low-level servicetime predictions;
the systemcan simply pick available LB N sfrom the equivalenceclassasit services
foreground requests.

To evaluate how much \free bandwidth" is available, | ran DiskSim with a
foreground workload of random 4 KB requests,and batched those requestswith
badckground transfers for other LB N's in the equivalence class. The goal of the
badkground workload was to scanthe ertire device until every LB N has been
read at least once, either by the foreground or badkground workload. Requests
that were scheduled in the badkground are only those for LB N s that have not
yet beentouched, while the foreground workload is random. Scanninglarge frac-
tions of a deviceis typical for backup, decision-supprt, or data integrity cheding
operations. As some MEMStore designsmay utilize recording media that must
be periodically refreshed, this refresh badkground task could be done with free
bandwidth.

In the default G2 MEMStore model, p = 10, meaning that 10 LB N s can be

accessedn parallel. The 4 KB foreground accessewill take 8 of these LB N s.
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Fig. 6.12: Reading the entire device for free. In this experiment, a random workload of
4 KB requestsis run in the foreground, with a background task that scansthe entire device for
free. The graph shows the percertage of the G2 MEMStore scannedas a function of time. For
p= 10,M = 0, the scanis 95% complete at 1120 minutes and nishes at 3375 minutes. For
p= 20;M = 0, the scanis 95% complete at 781 minutes and nishes at 2290 minutes. Allowing
5 tracks of micropositioning allows more options for the background task. At p= 10;M = 5, the
scanis 95% complete at 940 minutes and completesat 1742 minutes. At p= 20;M = 5, the scan
is 95% complete at 556 minutes and completes at 878 minutes.

Foreground requests, howewer, are not always aligned on 10 LB N boundaries,
sincethey are random. In thesecasesthe mediatransfer will take two (sequeritial)
accesseseadt of 10 LB N's. In the rst case,80% of the media bandwidth is used
for data transfer, and in the secondcase,only 40% is used.By using the residual
2 and 12 LB Ns, respectively, for badkground transfers, | was able to increase
media bandwidth utilization to 100%.

Figure 6.12 shaws the result of running the foreground workload until ead
LB N on the device has been touched either by the foreground workload or for
free. As time progressesmore and more of the device has beenread, with the
curve tapering o  as the set of untouched blocks shrinks. By the 1120" minute,
95% of the device has beenscanned.The tail of the curve is very long, with the

last block of the device not accessedintil the 3373" minute. For the rst 95% of
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p | M || Time to scan95% | Time to scan100%
20| 5 556 minutes 878 minutes
20| O 781 minutes 2290minutes
10| 5 940 minutes 1742 minutes
10| O 1120 minutes 3375minutes

Table6.3:Reading the entire device for free. The time to read the entire deviceis dominated
by the last few percert of the LB N's. Greater p allows the device to transfer more LB N's in
parallel, and increasesthe set of LB N sthat the background task can choosefrom while gathering
free blocks. Increasing M increasesthe size of the equivalenceclassand, thus, the number of free
blocks for the background task to choosefrom.

the LB N space,an averageof 6.3 LB N s are provided to the scanapplication for
free with ead 4 KB request.

To seethe e ect of allowing more parallel access,| increasedp in the G2
MEMStore to be 20. In this case,more free bandwidth is available and the device
is fully scannedmore quickly. The rst 95%of the deviceis scannedin 781 minutes,
with the last block being accessedt 2290 minutes. For the rst 95% of the LB N
space,an averageof 11 LB N s are provided to the scanapplication for free.

Microp ositioning signi cantly expands the size of equivalence classes.This
gives the badkground task many more options from which to choose, reducing
the total runtime of the badcground scan. To quartify this, | setM = 5, expand-
ing the sizeof the equivalenceclassesrom 100LB Nsto 1100LB N s. In both the
p = 10 caseand the p = 20 case,the deviceis scannedsigni cantly faster. With
p= 10and M = 5, the device scantime is reducedto 1742 minutes; with p= 20

and M = 5, it is reducedto 878 minutes.

6.3.7 Ecient 2D table access

Serializing a two-dimensional data structure (e.g., large non-sparsematrices or
databasetables) into a linear LB N spaceallows e cien t accesseslong only a
single dimension of that structure. Hence, a data layout that optimizes for the
most common accesamethod (i.e., accessalong one dimension) is chosenwith the

understanding that accesseslong the other dimension are ine cien t. To make
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accesse# both dimensionse cien t, one can create two copiesof the samedata;
one copy is then optimized for row order accessand the other for column or-
der access|[Ramamurthy et al. 2002]. Unfortunately, not only does this double
the required space,but updates must propagate to both replicas to ensuredata
integrity.

This section describes how MEMStores can be usedto e cien tly accesstwo
dimensional data in both row- and column-major orders. It illustrates the advan-
tages of using MEMStores with a slightly-modi ed storageinterface for database

table scansthat accessonly a subsetof columns.

Relational datatasetables

Relational database systems(RDBS) use a scan operator to sequetially access
data in a table. This operator scansthe table and returns the desiredrecordsfor
a subsetof attributes (table elds). Internally, the scanoperator issuespage-sized
I/Os to the storagedevice, storesthe pagesin its bu ers, and readsthe data from
the bu ered pages.A single page (typically 8 KB) contains a xed number of
complete records and somepage metadata overhead.

The pagelayout prevalert in commercial databasesystemsstoresa xed num-
ber of recordsfor all n attributes in a single page. Thus, when scanninga table to
fetch records of only one attribute (i.e., column-major access),the scanoperator
still fetchespageswith data for all attributes, e ectiv ely reading the ertire table
even though only a subsetof the data is needed.To alleviate the ine ciency of a
column-major accessn this data layout, an alternativ e pagelayout vertically par-
titions data to pageswith a xed number of recordsof a single attribute [Copeland
and Khosha an 1985].However, record updates or appendsrequire writes to n dif-
ferent locations, making such row-order accessine cien t. Similarly, fetching full
recordsrequiresn single-attribute table accesseand n 1 joins to reconstruct the
ertire record.

With proper allocation of data to the LB N spaceof a MEMStore, one or
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Fig. 6.13:Data allo cation with capsules. The capsuleon the left shows packing of 12 records
for attributes a; and a; into a single capsule. The numbers within denote record number. The
12-record capsulesare mapped such that ead attribute can be accessedn parallel and data from
a single attribute can be accessedsequerially, as shown on the right. The numbers in the top
left corner are the LB N s of each block comprising the capsule.

more attributes of a single record can be accessedn parallel. Given a degreeof
parallelism, p, accessinga single attribute yields higher bandwidth by accessing
more data in parallel. When accessinga subset of k + 1 attributes, the desired
records can exploit the internal MEMStore parallelism to fetch recordsin lock-

step, eliminating the needfor fetching the ertire table.

Data layout for MEMStore

To exploit parallel data accessesn both row- and column-major orders, | de ne
a capsule as the basic data allocation and accessunit. A single capsule contains
a xed number of recordsfor all table attributes. As all capsuleshave the same
size, accessinga single capsule will always fetch the same number of complete
records. A single capsuleis laid out such that reading the whole record (i.e., row
order accessyesults in parallel accesgo all of its LB N s. The capsule'sindividual
LB N s are assignedsud that they belongto the sameequivalenceclass, o ering
parallel accesso any number of attributes within.

Adjacent capsulesare laid next to ead other suc that records of the same

attribute in two adjacernt capsulesare mapped to sequettial LB N s. Such a layout
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ensuresthat reading sequettially acrosscapsulesresults in repositioning only at
the end of ead track or cylinder. Furthermore, this layout ensuresthat sequen-
tial streaming of one attribute is achieved at the MEMStore's full bandwidth by
engagingall tips in parallel. Speci cally, this sequetial walk through the LB N

spacecan berealized by multiple tips reading up to p sequetial LB N sin parallel,

resulting in a column-major accessat full media bandwidth.

A simple example that lays records within a capsule and maps contiguous
capsulesinto the LB N spaceis illustrated in Figure 6.13. It depicts a capsule
layout with 12 records consisting of two attributes, a; and ap, which are 1 and
2 units in size, respectively. It alsoillustrates how adjacen capsulesare mapped
into the LB N spaceof the three-by-three MEMStore example from Figure 6.10.

Finding the (possibly non-cortiguous) LB N s to which a single capsuleshould
be mapped, as well as the location for the next LB N, is done by calling the
get equivalent() and getensemble()functions. In practice, oncea capsulehasbeen
assignedto an LB N and this mapping is recorded, the locations of the other

attributes can be computed from the valuesreturned by the interface functions.

Allocation

The following describesthe implementation details of the capsulelayout described
in the previous section. This description seresasa condensedexample of how the
interface functions can be usedin building similar applications.

Data allocation is implemented by two routines that call the functions of the
MEMStore interface. These functions do not perform the calculations described
in this section. They simply lookup data returned by the getequivalent() and
getensemble() functions. The CapsuleResolve() routine determines an appro-
priate capsulesize using attribute sizes.The degreeof parallelism, p, determines
the o sets of individual attributes within the capsule.A secondroutine, called
CapsuleAlloc() , assignsa newly allocated capsuleto free LB N's and returns

new LB N s for the this capsule.The LB N s of all attributes within a capsulecan
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be found accordingto the pattern determined by the CapsuleResolve() routine.

The CapsuleAlloc() routine takes an LB N of the most-recerly allocated
capsule,ljast, nds enoughunallocated LB Ns in its equivalenceclassE s, and
assignsthe new capsuleto I,ew. By de nition, the LB N locations of the capsule's
attributes belongto Enew. If there are enoughunallocated LB Ns in E|ast, Ejast
= Enew. If Nnofree LB Nsin E a5t €Xist, Enew IS di erent from E,as. If there are
somefree LB N sin E |55, SOmeattributes may spill into the next equivalenceclass.
Howewer, this capsulecan still be accessedequetially .

Allowing a single capsuleto have LB N s in two dierent equivalence classes
doesnot waste any space.However, accessingall attributes of thesesplit capsules
is accomplishedby two separate parallel accessesthe latter being physically se-
quertial to the former. Given capsulesizein LB N s, ¢, there is one split capsulefor
every jEj % cp capsules.If onewants to ensurethat every capsuleis always acces-
sible in a single parallel operation, one can waste 1=(JEj % cp) of device capacity.
Theseunallocated LB N s can cortain tables with smaller capsulesizes,indexesor
databaselogs.

Becauseof the MEMStore layout, lhew IS not always equal to ljas + 1. This
discortinuity occurs at the end of ead track.? Calling get ensemble()determines
if l|ast is the last LB N of the current track. If so, the CapsuleAlloc() simply
o sets into Ejast to nd the proper lhew. The o0 set is a multiple of p and the
number of blocks a capsuleoccupies.If 155t is not at the end of the track, then
Inew = liast + 1.

Figure 6.14illustrates the allocation of capsuleswith two attributes a; and a,
of size1 and 2 units, respectively, to the LB N spaceof a G2 MEMStore using
the sequettial-optimized layout. The depicted capsulestoresa; at LB N capsule
o set 0, and the two blocks of a, at LB N 0 sets p and 2p. Thesevaluesare o set
mscontin uity also occurs at the boundaries of equivalence classes,or every p capsules,

when mapping capsulesto LB N's on even tracks of a MEMStore with the sequeriial-optimized
layout depicted in Figure 6.10 The LB N s of one attribute, however, always span only one track.
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allocated capsules
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Fig. 6.14:Capsule allo cation for the G2 MEMStore . This picture shows capsuleswith two
attributes a; and a, whose sizesare 8 and 16 bytes, respectively. Given an LB N size of 512
bytes, and a level of parallelism, p = 10, a single capsule contains 64 records and maps to three
LB N's. Note that ead row for capsulesO through 269 contains contiguous LB N's of a single
track: a; spanstrack 0-269, and a, spanstwo tracks with LB N ranges 270-539 and 540-809.
The shaded capsulesbelong to the same equivalence class. Thanks to the getequivalent() and
getensemble() functions, a database system doesnot have to keeptrack of all these complicated
patterns. Instead, it only keepsthe capsule'sstarting LB N. From this LB N, all other valuesare
found by the MEMStore interface function calls.

relative to the capsule'sLB N position within E g N .

Access

For ead capsule,the RDBS recordsthe starting LB N from which it candetermine
the LB N's of all attributes in the capsule. This is accomplishedby calling the
getequivalent() function. Becauseof the allocation algorithm, the capsulesare
laid out such that sequetiial scanningthrough records of the attribute a; results
in sequenial accessin LB N spaceas depicted in Figure 6.14. This sequetial
accessin LB N spaceis realized by p batched reads executing in parallel. When
accessingboth a; and ap, up to p=c capsulescan be accessedn parallel where
capsulesizec = sizga; + ay).

Streaming a large number of capsulescan be also accomplishedby pipelining
reads of St sequetial LB N s of attribute a; followed by 2Sr sequenial LB Ns
of ay. Setting a scatter-gather list for these sequetial 1/0Os ensuresthat data are

put into proper placesin the bu er pool. The residual capsulesthat spanthe last
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segmen smaller than St are then read in parallel using batched I/Os.

Implementation details

The parallel scan operator is implemented as a standalone C++ application. It
includes the allocation and layout routines described in Section 6.3.7 and allows
an arbitrary range of recordsto be scannedfor any subsetof attributes. The al-
location routines and the scan operator use the interface functions described in
Section6.3.3. Thesefunctions are exported by a linked-in stub library which com-
municates via a socket to another process.This process,called devman emulates
the functionality of a MEMStore device manager running rm ware code. It ac-
ceptsl/O requestson its saocket, and runs the 1/0O through the DiskSim simulator
con gured with the G2 MEMStore parameters. The devman processsyndironizes
DiskSim's simulated time with the wall clock time and usesmain memory for data

storage.

Results

To quarntify the advantages of the parallel scan operator, this section compares
the times required for di erent table accesseslt contrasts their respective perfor-
mance under three di erent layouts on a single G2 MEMStore device. The rst
layout, called normal, is the traditional row-major accessoptimized page layout.
The secondlayout, called vertical, corresponds to the vertically partitioned lay-
out optimized for column-major access.The third layout, called capsule usesthe
layout and accessdescribed in Section 6.3.7.1 comparein detail the normal and
capsule cases.

The sample databasetable consistsof 4 attributes ai, a», as, and a4 sizedat
8, 32, 15, and 16 bytes, respectively. The normal layout consistsof 8 KB pages
that include 115records. The vertical layout padks ead attribute into a separate

table. For the given table header,the capsule layout producescapsulesconsisting
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Operation Data Layout
normal capsule
entire table scan 22.44s 22.93s
a; scan 22.44s 2.43s
a; + ap scan 22.44s 12.72s
100recordsof a; 1.58 ms 1.31ms

Table 6.4: Database access results. The table shows the runtime of the speci c operation on
the 10,000,000record table with 4 attributes for the normal and capsule. The rows labeled a;
scanand a; + a, represert the scanthrough all records when speci ¢ attributes are desired. the
last row shows the time to accessthe data for attribute a; from 100 records.

of 9 pages(each 512 bytes) with a total of 60 records. The table sizeis 10,000,000
recordswith a total of 694 MB of data.

Table 6.4 summarizesthe table scanresults for the normal and capsule cases.
Scanningthe ertire table takes, respectively, 22.44 s and 22.93 s for the normal
and capsule casesand the corresponding user-data bandwidth is 30.9 MB/s and
30.3 MB/s. The run time dierence is due to the amount of actual data being
transfered. Since the normal layout can padk data more tightly into its 8 KB
page,it transfers a total of 714 MB at a rate of 31.8 MB/s from the MEMStore.
The capsulelayout creates,in e ect, 512-byte pageswhich waste more spacedue
to internal fragmertation. This results in a transfer of 768 MB. Regardless,it
achieves a sustained bandwidth of 34.2 MB/s, or 7% higher than normal. While
both methods accessall 10 LB N s in parallel most of the time, the data accessn
the capsule caseis more e cien t due to smaller repositioning overheadat the end
of a cylinder.

As expected, capsuleis highly e cien t when only a subsetof the attributes is
required. A table scanof a; or a;+ a, in the normal casealways takes22.44s, since
entire pagesincluding the undesiredattributes must be scanned.The capsulecase
only requiresa fraction of the time corresponding to the amount of data corntained
in ead desired attribute. Figure 6.15 comparesthe runs of a full table scan for
all attributes against four scansof individual attributes. The total runtime of four

attribute scansin the capsule casetakesthe sameamourt of time asthe full table
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Table scan with G2 MEMStore
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Fig. 6.15: Table scan with dieren t number of attributes.  This graph shows the runtime
of scanning 10,000,000records using G2 MEMStore . For eact of the two layouts the left bar, la-
beled all, shows the runtime of the entire table with 4 attributes. The right bar, labeled single, is
composedof four separate scansof eat successie attribute, simulating the situation where mul-
tiple queries accessdi eren t attributes. Since the capsule layout takes advantage of MEMStore 's
parallelism, ead attribute scanruntime is proportional to the amount of data occupied by that
attribute. The normal, on the other hand, must read the entire table to fetch one of the desired
attributes.

scan.In cortrast, the four successie scanstake four times aslong asthe full table
scanwith the normal layout.

Most importantly, a scanof a single attribute a; in the capsule casetakesonly
one ninth (2.43 s vs. 22.93s) of the full table scansinceall ten parallel accesses
read recordsof a;. On the other hand, scanningthe full table in the normal case
requires a transfer of 9 times as much data.

Short scansof 100records(e.g., in querieswith high selectivity) are 20%faster
for capsule since they fully utilize the MEMStore's internal parallelism. Further-
more, the latency to accesshe rst record is shorter due to smaller accesaunits,

comparedto normal. Comparedto vertical, the accesdatency is also shorter due
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to the elimination of the join operation. In this example,the vertically partitioned
layout must perform two joins beforebeing able to fetch an entire record. This join,
however, is not necessaryin the capsule case,as it accessesecordsin lock-step,
implicitly utilizing the available internal parallelism.

The vertical caseexhibits similar results for individual attribute scansas the
capsule case.In cortrast, scanning the ertire table requires additional joins on
the attributes. The cost of this join dependson the implementation of the join
algorithm which is not the focus here.

Comparing the latency of accessingone complete random record under the
three di erent scenariosshows interesting behavior. The capsule casegivesan av-
erage accesstime of 1.385ms, the normal casel.469 ms, and the vertical case
4.0 ms. The dierence is due to di erent accesspatterns. The capsule accessin-
cludesa random seekto the capsule'slocation followed by 9 batched accesseso
one equivalence class proceedingin parallel. The normal accessinvolves a ran-
dom seekfollowed by a sequetial accesso 16 LB N s. Finally, the vertical access

requires 9 accessegad consisting of a random seekand one LB N access.

E e cts of micropositioning

As demonstratedin the previoussection,scanninga; in a data layout with capsules
spanning 10 LB N s will be accomplishedin one tenth of the time it would take
to scanthe entire table. While using micropositioning does not reduce this time

to one-hundredth (it is still governedby p), for speci ¢ accessest can provide 10
times more choices (or more precisely M p) choices,resulting in up to 100-times

benet to applications.

6.3.8 Summay

Internal accessparallelism is a clear di erence between MEMStores and disk
drives,and the policiesthat exploit it describedabove de nitely passthe speci city

test. After evaluating the bene ts above, it is also clear that policies that allow
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e cien t accesdo two-dimensionaldatastructures passthe merit test, sincesimilar
e cien t accessis impossiblein disk drives. Therefore, extending the abstraction
of MEMStores to allow sudch accesss justi ed.

Interestingly, the results described in this section motivated a separate study
into extending the abstraction for disk drives, leading to a project called Atro-
pos [Sdiindler et al. 2004]. Using device-sgeci ¢ knowledge of disk drive param-
eters, we found that two-dimensional datastructure accesson disk drivescan be
improved in much the sameway asit was for MEMStores. Despite the fact that
the medanismsfor achieving this benet are di erent in MEMStores and disks,
the interface and abstraction extensionswere identical. In the end, the database
storagemanagerexecuting querieswas ignorant of whether the underlying storage
was a disk or a MEMStore. Therefore, the current linear LB N abstraction needs

to be extendedin exactly the sameway to exploit MEMStores and disk systems.

6.4 Energyconservation

The physical characteristics of MEMStores may make them use lessenergy than
even low-power disk drives. This advantage comesfrom sewral sources:lower
overall energy requiremerts for moving the media and operating the read/write
tips, and faster transitions betweenactive and standby modes.

While the media sledin a MEMStore doesmove continuously in the X and Y
directions during data accessthe sled has much lessmassthan a disk platter and
therefore takes far lesspower to keepin motion. Speci cally, it is expected that
continuously moving the media sled will take lessthan 100 mW, while it takes
over 600 mW to cortinuously spin a disk drive.

Another savings comesfrom the electronics of MEMStores. In disk drives,
the electronics span multiple chips and great distance from the magnetic head
at the end of the arm to the drive interface. Therefore, high-speed signals must

crossseveral chip boundaries, increasing power dissipation. Further, disks' large
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physical platters, heads,arms and actuators require sophisticated, power-hungry
signal processingalgorithms to compensatefor imperfect manufacturing, thermal
changes,environmental changes,and generalwear. Current low-power drivescon-
sumealmost 1.5W in drive electronics,much of it spent on accurately positioning
the recording head. Of course,not all drive electronicsmust be active during idle
periods; some electronics, sudh as the serwo cortrol, can be powered down. This
technique reducestotal drive power by up to 60%, adding a small additional time
penalty to return to active mode (from 40{400 ms).

Driv e power can alsobe saved by turning o the spindle motor during long idle
periods. Numerous studies have demonstrated the power savings of this standby
mode [Lu et al. 1999;Douglis et al. 1994;Li et al. 1994;Zedlewskiet al. 2003],and
current low-power drivesdo incorporate this feature. MEMStores can also employ
a standby mode, stopping sled movemen during periods of inactivit y. Further, the
sled'slow masswill allow MEMStoresto quickly switch betweenactive and standby
mode in aslittle as 0.5 ms, where a low-power drive requires up to 2 secondsto
spin up and return to active mode. This long delay signi cantly increasesaccess
time for the rst requestafter an idle period. Therefore, drive power-managemeh
algorithms usually wait at least 10 secondseforegoinginto standby mode. During
this delay, and during the subsequeh 2 secondspin-up time, considerablepower is
wasted. In contrast, MEMStores can transition from standby-to-active in aslittle
as 0.5 ms, allowing these devicesto be much more aggressie in using standby
mode.

To understand how much energy a MEMStore could save over a low-power
drive, | simulated both and measuredtheir energyconsumption acrossthree work-
loads. The disk drive power model is basedon IBM's low-power Travelstar disk
and power managemen techniques described in [IBM 1999b;2000]. The disk has
5 power modes: (1) active mode (data is being accessedronsumes2.5W for reads
and 2.7 W for writes; (2) performanceidle (some electronics are powered down)

consumes2.0 W; (3) fast idle (head is parked and servo cortrol is powered down)
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Andrew P ostmark Netscap e
Category Disk | MEMStore | Disk | MEMStore | Disk | MEMStore
active 19.5 0.7 1930.6 42.0 321.2 14
perfldle 13.3 0.3 1181.1 7.7 1924.1 0.01
goToActive 0.0 0.0 0.0 0.0 513.5 0.0
fastldle 0.0 0.0 0.0 0.0 1799.9 0.0
lowPowerldle 0.0 0.0 0.0 0.0 1000.5 0.0
spinup 0.0 0.0 0.0 0.0 228.8 20.0
standby 0.0 0.2 0.0 8.0 308.9 327.9
Total (Joules) | 32.8 1.2 3111.7 57.7 6096.9 349.3

Table 6.5: Comparison of energy required to execute three dieren t workloads using
disks and MEMS-based storage devices. All numbers are givenin Joules.

consumesl.3W; (4) low-power idle (headsare unloaded from the disk) consumes
0.85W; and (5) standby (spindle motor is stopped) consumes0.2 W. From [IBM
1999a],the maximum time spert in the intermediate modesis: 1 secondfor per-
formanceidle, 3 secondsfor fast idle, and 8 secondsfor low-power idle.

For the MEMStore, energyfor a benchmark is computed during simulation by
using the physical parametersin [Carley et al. 2000];ead probe tip and its signal
processingelectronics consumel mW. To minimize padaging costs, the power
budget is set at about 1 W. This limits the MEMStore to no more than about
1,000 simultaneously active probe tips. Further, given the sled design, the power
consumedto keepthe sledin motion is 0.1 W. Therefore, the maximum power for
this MEMStore is 1.1 W. Standby power consumption is estimated to be 0.05W.

Table 6.5 shaws that the total energy consumedfor the MEMStore is between
approximately 10X and 50X lower, depending on the application. The v e work-
loads already discussedare highly active and so most of the savings comedirectly
from lower energyconsumption during data accessegactive mode). To test a more
interactive workload, | useda trace of the disk accessegeneratedby a userbrows-
ing the Internet using Netscape on a Linux workstation for ten minutes. In this
case,much of the power savings comesfrom the MEMStore's ability to aggres-
sively useits low-power standby mode. In cortrast, the disk drive spends 90% of

its power transitioning betweenactive and standby modes.
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It is clearfrom theseresultsthat MEMStores o er energysavings over portable
disk drives. Howewer, for the purposesof this dissertation, the schemesabove
do not passthe specicity test becausethey use policies that are the same as
for disk drives. Energy is saved in both types of deviceshy turning o various
componerts during idle periods. Further, there are assaiated delays when the
devicemust be reactivated when new requestsarrive. The di erence betweendisks
and MEMStoresis the magnitude of the savings and the delays. In terms of energy

consenation, the samepolicies can be usedfor MEMStores as with disks.

6.5 Summay

This chapter proposedsomepotential policiesby which computer systemscan tai-
lor their accessto MEMStores and evaluated them using the two objective tests
introduced in Chapter 1 to decide whether current storage abstractions must be
changed for MEMStores. Only one of these potential policies (using tip-subset
parallelism to e cien tly accesswo-dimensionaldata structures) passedboth the
speci cit y test and the merit test, justifying an extended storage abstraction for
MEMStores. Interestingly, this result motivated new researt in using similar poli-
ciesfor disk drivesand, in the end, the sameabstraction extensionwas showvn to
work for both MEMStores and disk drives. There may exist undiscovered policies
for using MEMStores that do justify abstraction extensions.In this event, this
dissertation's cortribution of the two objective tests will allow future researders

to make this decision.



7 Conclusionandfuturework

This dissertation examinesthe useof MEMStores in computer systems,with a fo-
cuson answering the questionof whether systemdesignerswill haveto changetheir
assumptionsand expectations of storagedevicesto use MEMStores to their fullest
advantage. It is not enoughto simply say that MEMStores are faster, smaller, and
use less energy than current disk drives, although these features are de nitely
bene cial. The goal of this dissertation is to provide understanding of whether
MEMStores accessdata in ways that require specialized usagemodels, so as to
determine whether they require new abstractions and interfaces. Besidesthe de-
scription of MEMStores and their usein systems,a primary cortribution of the
dissertation is a methodology for determining whether such di erences should lead
to changesin the way computer systemsview storage devices.

As radically new technologiescomeinto the market, it is important to \think
outside of the box" and decide whether the new technology will changeour view
of systems.lIt is easyto think that simply becausea new technology is di erent, it
must changethe way we think about systems.lIt is equally important to consider
the cost of changing systemsto accommalate new technologies.Industry momen-
tum, while frustrating at times, exists for a reason:there are signi cant costsin
changing interfacesand systems'assumptionsabout how deviceswork.

This dissertation describestwo objective tests that can be usedwhen consid-
ering device-speci ¢ specializationsin systems.The rst test, the speci city test,

addresseghe question of whether a specialization (role or a policy) is truly spe-
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cic to that device or if that useis more generally applicable to other devices.
The secondtest, the merit test, addressegshe question of whether the specializa-
tion makesenoughof a di erence in performance (or whatever metric) to justify
changing the system.

Considering the use of MEMStores in systemsis a perfect example of the use
of these tests. MEMStores are faster, smaller, and use less energy than current
storagedevices,and it is tempting to immediately concludethat they will require
changesto systemsin order to be usedto their fullest potential. Through careful
examination employing the two objective tests, this dissertation shavs how sys-
tems will be able to use MEMStores with the sameinterfaces, abstractions, and
assumptionsthat exist for disk drives. The high-level reasoningfor this is clear:
MEMStores are mecanical devices,with many similarities to disk drives.Accesses
incur an initial delay (i.e., seektime) that is distance-dependent. Oncethe device
is in motion, the most e cien t accessis to the next sequettial data. Most of the
bene ts of MEMStores come simply from the fact that they are faster, smaller,
and uselessenergy than today's devices,and not from the fact that they access
data di erently.

The dissertation also examinessome of the more substartiv e di erences be-
tween MEMStores and disk drives under the scrutiny of the two objective tests.
The most radical di erence is that MEMStores employ a large number of parallel
read/write tips to accessdata, whereasa disk drive usesonly a single read/write
headat atime. The setof a MEMStore's read/write tips that are active at any one
momert doesnot have to be statically chosen.The performance of seweral work-
loads can be improved by taking advantage of the ability to dynamically choose
setsof read/write tips to usein parallel. In this case,both the speci cit y test and
the merit test are satis ed, and a new interface to MEMStores can be justi ed.
Interestingly, we found that similar extensionscan be justi ed for standard disk
drivesfor someof the sameworkloads, again making the (extended) interface for

MEMStores and disks the same.



Ch. 7. Conclusionsand future work 108
7.1 Future work

As MEMStores have not yet beenbuilt, much resear® remains. Clearly, much work
remainsin solving the issuesof actually building and manufacturing MEMStores.
For systemsresearters, the main questionis whether MEMStores will be feasible
asatechnology. In the late 1990swhen MEMStores were rst proposed,the ideaof
10 GB of non-volatile storagethat could be carried around in a portable devicewas
very compelling. With the advent of portable music players like the Apple iPod,
miniature hard disk drives with many tens of gigabytes of storage have become
available, perhapstaking away a primary advantage of MEMStores. MEMStores
continue to have four main advantagesover miniature disk drives,though: smaller
physical size,lower energyconsumption, higher performance,and potentially lower
entry cost. The portable storage market has changeddramatically during the v e
years over which this work occurred, and it will be interesting to seewhether

MEMStores will have a placein the future storage market.

7.1.1 Reliability and fault tolerance

One of the main unanswered questions about MEMStores is whether they will
be reliable enoughto usein real systems. This is especially important because
they are expectedto be usedin portable devices,which are often subjected to the
most demanding environments. There are few things that can be said at this stage
about how reliable MEMStores will be with regard to physical wear. As physical
componerts scaledownwards in size,their relative strengths increase[Thompson
1992], making micromachines relatively more robust to external forces such as
shock. As an example, MEMS accelerometersare usedtoday in cars, one of the
harshesternvironments for mass-praluced electronics.

More interestingly, MEMStores have a great deal of internal redundancy in
the form of many independert read/write tips accessingdata. If the read/write

tips have relatively high failure rates, it could be possibleto trade capacity for
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reliability, asis donein RAID arrays today. Parity data or even multiple mirrors
of eat read/write tip's data could be stored on independert tips. When a tip
fails, that tip's data could be reconstructed on a spare tip. Further, since eath
read/write tip addresseshe samepoint of its media squareasall of the other tips
in the array, reconstructed data could be accessedvith the sameperformanceas
the original data.

Unfortunately, it is not clear at this time which failure modesin MEMStores
will be most prevalert. Somefailure modeswill be catastrophic (e.g., the loss of
one of the suspensionsprings), but others will be tolerable (e.g., the loss of some
read/write tips). The important questionis how much capacity (and, potentially,
performance)would have to be traded for a gain in reliabilit y. When more detailed

failure models for MEMStores are available, these questionscan be answered.

7.1.2 Other rolesand policies

| expect researt to cortinue into roles and policies for MEMStores. There are
many rolesthat can benet from the small size, high performance,and potential

low entry cost of MEMStores. MEMStores could provide a new classof storage
for nodesin sensornetworks, which currently have no massstorage capabilities.
Applications which are very sensitive to mass, sud as satellites, could de nitely

bene t from MEMStores. Consumerdevicesoften require the absolute lowest cost.
MEMStores could o er consumerdevicesa new price point for moderate amounts
of non-volatile storage.Lastly, many applications demandthe highest performance
possible. MEMStores could provide an interesting new classof non-volatile disk re-
placemen for high-end systems.Imagine replacing a single disk drive with a brick
of enough MEMStores to equalize capacity. This brick would have the advan-
tagesorder-of-magnitude faster accesgimes and multiple independert actuators,
greatly increasing performancefor heavy workloads of small I/Os. Further, since
MEMStores can very quickly transition from a low-power idle state to active, en-

ergy consumption of the brick can be reduceddramatically. This is an important
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consideration in today's high-density machine rooms.

These roles are interesting to explore, but all of them only take advantage
of the fact that MEMStores are faster, smaller, and use lessenergy than today's
disks. In this way, they fail the speci cit y test of this dissertation. Howewer, it is
clear that MEMStores will provide advantagesin theseroles becausecomparable
disk drivesdo not, and may never, exist.

Potential MEMStore-speci ¢ policies, sud asrequestsceduling and data lay-
out, continue to be a ripe topic of researt. The use of multiple dimensions of
e cien t accessfor various workloads is probably the most radical di erence be-
tween MEMStores and disk drives. One of the restrictions of MEMStores in this
regard is that data is always accessedn a linear fashion along a single dimen-
sion, despite the fact that they can move in either direction. In disk drives, data
is always accessedn a linear fashion and nothing is lost becausethe constartly
spinning disks can only be e cien tly accessedinearly. Howewer, in a MEMStore
this is not the case.If the data stored in a single read/write tip's square could
be encaded sud that it could be read and written in either dimension, then two-
dimensional data structures could be directly accessedn the media. The dicult y
of such a coding schemeis that, for example, changing a column of data a ects

the data in all of the rows that the column intersects.

7.1.3 New featuresof MEMStores

The MEMStores described in this dissertation represent only the rst few genera-
tions of potential devices.As time goeson, other featuresmay becomeavailable. It
is impossibleto predict speci ¢ features of future storagedevices,but MEMStore
designershave suggesteda few, and | describe two of them here.
Somedesignershave postulated that MEMStores could operate in a resonar
mode, in which the media sled constartly oscillates along the dimension of data
accesgqthe Y dimensionin my examples).To accesdata, the media sled is posi-

tioned to the correct X o set and then the device would wait until the requested
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data is available at the read/write tips. A devicethat operatesin resonan mode
may use less energy than standard MEMStores, leading to a further advantage
over disk drives. In this case,the repeating motion of the media sled is similar to
the rotation of the platters in a disk drive, and a MEMStore even more closely
resenbles a disk drive.

Others have suggestedhat MEMStores may be able to very quickly changethe
set of active read/write tips, perhapseven asquickly asthe time to accessa single
bit. Put in the terms of a disk drive, the head switch time of a MEMStore could
be expectedto be nearly instantaneous. This meansthat the notion of sequettial
acceszould be re-examined,sincethe most e cien t data accessds not only to data
which is in the track currently being accessedData that is in other tracks could
be accessedor the samecostasthat in the current track. As a concreteexample,
imagine a hypothetical MEMStore with three LB N s per track and nine read/write
tips, like that shown in Figure 2.5. Data accesswould start at the beginning of
the track using the rst three read/write tips, and the devicewould accesd B N s
0, 1, and 2. Once these have been accessedthe device could activate the next
three read/write tips and immediately accesd.B Ns 12,13, and 14. Sincethe time
to switch read/write tips is instantaneousin this example, this accesswould be
just as ecient asif the device had not switched tips and accessed.B Ns 3, 4,
and 5 instead. Most likely, this capability could be exploited using the equivalence
classconstruct described in Section6.3. This exibilit y will potentially allow more
LB Ns to be accessedogether e cien tly, resulting in larger equivalence classes
than those described above.

As MEMStores becomeavailable and are developed further, more new features
will undoubtedly arise. This underscoresthe value of the two objective tests and
the methodology described in this dissertation, which allows researtiers to make

balanced decisionsabout the e ects of using new technologiesin systems.



Ch. 7. Conclusionsand future work 112

7.1.4 Integration of MEMStores and computation

SinceMEMStores cantheoretically bebuilt in a CMOS-compatible procesqFedder
et al. 1996],they could be integrated very tightly with computation. This would
introduce true mass storage to a system-on-a-tip. Much work has been done
in the past on \activ e storage,” which leveragescomputational capabilities at
storage devicesto e cien tly enable parallel computation [Acharya et al. 1998;
Keeton et al. 1998; Riedel et al. 1998; Huston et al. 2004]. Integrating processing
with MEMStores could bring this capability into new realms of mobile devices.
Using computation closeto the storage could be especially useful in the highly

constrained sensornetwork environment.
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