
IRONModel: Robust Performance Models in the Wild

Eno Thereska
Microsoft Research

Gregory R. Ganger
Carnegie Mellon University

ABSTRACT

Traditional performance models are too brittle to be relied on for
continuous capacity planning and performance debugging in many
computer systems. Simply put, a brittle model is often inaccurate
and incorrect. We find two types of reasons why a model’s pre-
diction might diverge from the reality: (1) the underlying system
might be misconfigured or buggy or (2) the model’s assumptions
might be incorrect. The extra effort of manually finding and fixing
the source of these discrepancies, continuously, in both the system
and model, is one reason why many system designers and admin-
istrators avoid using mathematical models altogether. Instead, they
opt for simple, but often inaccurate, “rules-of-thumb”.

This paper describes IRONModel, a robust performance mod-
eling architecture. Through studying performance anomalies en-
countered in an experimental cluster-based storage system, we an-
alyze why and how models and actual system implementations get
out-of-sync. Lessons learned from that study are incorporated into
IRONModel. IRONModel leverages the redundancy of high-level
system specifications described through models and low-level sys-
tem implementation to localize many types of system-model incon-
sistencies. IRONModel can guide designers to the potential source
of the discrepancy, and, if appropriate, can semi-automatically
evolve the models to handle unanticipated inputs.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement techniques,Modeling
techniques,Design studies]

General Terms

Design,Management,Performance

Keywords

Management, what-if, behavioral modeling, active probing

1. INTRODUCTION
System designers and administrators shy away from using math-

ematical models to tune their systems. A glance at several large

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/06 ...$5.00.

code bases from operating systems (Windows and Linux), database
systems (MySql, Microsoft’s SQL Server, Postgres), and web servers
(Apache and Microsoft’s IIS) reveals a distressing lack of any built-
in models for continuous capacity planning and tuning. These sys-
tems are used by millions of users and manage several important
resources (e.g., hardware resources such as CPU, network, buffer
caches and disks, and software resources such as locks). Theo-
retically, even simple queuing laws from 30 years ago [9] could
provide first-order answers to important what-if questions (e.g., the
Windows operating system should arguably answer the question
“What would happen to user response time for the Quake game if I
double the CPU speed?”, since it should know best how the Quake
game utilizes its resources). None of these systems can answer such
questions today, however, and tuning them is still a black-art best
left to experienced administrators.

Over the last 3 years, we have studied the sources behind the lack
of enthusiasm for incorporating and using mathematical models in
systems by tracking their usefulness in an experimental cluster-
based storage system. This paper addresses one such source of
concern: model brittleness. We found that models, especially those
based on queuing analysis, can be brittle for three reasons:

(1) Models are not first-class citizens: Models are usually built
by model designers, not system designers. Models are built about
a system, not within the system. Each time the system changes,
the models might become obsolete. The model designers would
then need to consult the system designers as to what might have
changed. The added communication overhead, coupled with tight
project timelines often means that fixing the model (or system) has
low-priority.

(2) Systems can be misconfigured or buggy: System compo-
nents might have been implemented wrong or might be later mis-
configured in the field. Traditional idealistic models are not pre-
pared to deal with this harsh, but common, reality.

(3) Models can be limited or buggy: Building models is not a
flawless process either. We observe that models often have regions
of system-workload interactions in which they work well and re-
gions in which they do not. Reasons that such regions exist include
non-linear behavior that is mathematically difficult to model and
incomplete understanding by the model creator on how the system
behaves under certain complex conditions (e.g., performance of a
distributed storage system when small buffers in network switches
overflow).

This paper’s main contribution is IRONModel, an instance of a
robust performance modeling framework. IRONModel is built on
several principles. First, the system designer builds and incorpo-
rates the models within the system. We find that approaches in
which the system’s behavior is second-guessed by tools outside the
system lead to inaccurate models and added model management

re
a

d
 t

h
ro

u
g

h
p

u
t

(M
B

/s
)

expected

observed

storage-nodes5

100

50

1

1: Observed versus expected average throughput when striping data.

overhead. Second, the models continuously validate the system’s
structural behavior (i.e., how requests flow through it) and perfor-
mance behavior (i.e., how long each request takes to be processed
by each component). The redundancy of high-level system spec-
ifications described through the models and low-level implemen-
tations can be used to identify the presence and help localize the
source of a performance anomaly. Helping this localization pro-
cess in a distributed system is crucial. Third, queuing-based math-
ematical models are coupled with statistical components that give
fidelity estimates by keeping track of historical information about
their predictions. System-workload regions of operation where the
models frequently mispredict will have low fidelity. In many cases,
these statistical models can continuously adjust queuing models’
parameters for unexpected workload-system attributes.

Figure 1 shows a particularly tough anomaly observed in our
storage system for which both the system and initial models ex-
hibited incorrect behavior. This graph shows a single client’s read
throughput as a function of number of storage-nodes data is striped
over. The observed behavior differs from the expected behavior
given by queuing analysis, especially as data is striped over a large
number of storage nodes.1 When IRONModel was introduced into
the system, it localized the problem to the network resource (by
self-checking and eliminating resources that were working as the
models expected). The problem was eventually localized to a net-
work switch type with insufficient buffer space. That switch type
services over 100 machines in the cluster. Fixing the problem would
have required buying new switches with bigger buffers, which due
to budget constraints was not possible. Hence, the network models,
to be useful for later predictions, had to evolve to account for the
inadequacies of the existing switches. This example is indicative
of a series of “harsh reality checks” one is faced with when using
mathematical models in a real system.

Out of 29 system-model discrepancies encountered during a 3
year period in our experimental storage system, IRONModel cor-
rectly localizes the source of the problem in 23 cases, identifying
18 system bugs and 5 model bugs. For all the 5 model bugs, IRON-
Model was able to retrain the models correctly with minimal human
interaction.

2. BACKGROUND AND RELATED WORK
System models allow one to reason about the behavior of a sys-

tem while abstracting away implementation details. Models can
be useful for answering what-if questions. They take as input a

1This problem known as the TCP-incast problem [23], and we’ll
revisit it in Section 6.

vector of workload and system characteristics/attributes and output
the expected behavior (in this paper, performance metrics such as
throughput and response times) of the modeled component.

2.1 Expectation-based queuing models
We are interested in building robust performance models for sys-

tems whose internals we know (either we have the source code
or we are building them from scratch). We will call such mod-
els expectation-based models.2 This paper does not address build-
ing models for “black-box” systems, for which there exist no ex-
pectations and hence all observations are statistical. Traditional
expectation-based models have had a hardwired definition of “nor-
malcy” (e.g., see [12, 22, 24, 25, 27, 33]). Indeed, highly accurate
models have been built for disk arrays, network installations, cache
behavior, and CPU behavior. Our experience, however, has been
that hardwiring normalcy leads to obsolete models. For example,
the network model for the environment shown in Figure 1 was ob-
solete for the switches with insufficient buffer space.

Designers can model both structural and performance properties
of a system and workload. Figure 2 illustrates one simple expecta-
tion in a hypothetical system consisting of a database and a storage
system. A structural expectation is that, when 3-way replication is
used, three storage-nodes should be contacted on a write, and acks
should be subsequently received. A performance expectation is that
three times the original block size should be seen on the client’s net-
work card. Information on CPU and network demands can be au-
tomatically discovered (e.g., CPU data encoding/encrypting should
use 0.02 ms and it should take 0.5 ms to send the data to the storage-
nodes). A myriad of methods are available for creating perfor-
mance expectations. For example, a CPU model might be based on
direct measurements (i.e., model emulates the real CPU processing
of data and reports on the time that takes). A network model might
be an analytical formula that relates the request size and network
speed to the time it takes to transmit the request. Cache and disk
models might be based on simulation and might replay previously
collected traces with a hypothetical cache size and disk type. Each
of these models shares the property that the algorithms of the un-
derlying modeled resource are known (e.g., the cache model uses
the same replacement algorithm as the real cache manager).

In a distributed system with multiple resource tiers, one needs
a general framework to reason about the effects of a hypothetical
change in any of the tiers on end-to-end performance. Queuing

analysis, which models the system as a network of queues, is the
building block of such a framework. Each queue model represents
a resource. Customers’ requests place demands on these resources.
There is much related work on queuing analysis, dating back 30+
years (e.g., see [9, 13, 15]). This paper does not invent any new
queuing laws. The contribution here is to enable them to be robust.
Fundamentally, queuing theory assumes knowledge of the way re-
quests flow through the system’s service centers (i.e., knowledge
of the queuing network) and knowledge of the performance of the
individual resources (i.e., service centers along the queuing net-
work). For a sufficiently complex system, our experience indicates
that this knowledge needs to be constantly updated.

2.2 Related work
Several success stories in initial system capacity planning (e.g.,

see [4] for a storage system capacity planning tool, and [17] for
an email server capacity planning tool) have proved that queuing
models are useful. However, there is little work done on continu-

ous capacity planning tuning, and few studies check the long-term

2In this context, expectation means intended behavior, not statisti-
cal mean or average.

Write

Write

Write

Write

DB

Storage-node 1

Storage-node 2

Storage-node 3

CPU=1ms

NET=0.5ms

N
ET=0.5m

s

N
ET=1m

s

Disk=7ms

Disk=2ms

Disk=7ms

Ack

N
ET

=
0.

2m
s

N
ET

=
0

.4
m

s

N
ET

=
0.

2m
s

Ack Ack

2: Structural and performance expectations.

behavior of models (and systems) in harsh, but common, system
deployments. Evidence from position papers indicates that unex-
pected behavior is common [11, 19]. Theoretical work encour-
ages combining expectations with observations (e.g., see Chapter
12 of [18], and [29]).

2.2.1 Similar approaches to similar problems

PSpec [22] and PIP [24] are most related to our work. PSpec is
a language that allows system designers to write assertions about
the performance behavior of their system. Once the assertions are
written, they are continuously checked against the system. PIP
augments PSpec by allowing designers to write assertions about
the structural behavior of the system as well. IRONModel builds
on these approaches and generalizes them by trusting neither the
model nor the system implementation as correct. IRONModel uses
a hybrid modeling scheme, where expectation-based models are
augmented with statistical observation-based models to provide long-
term fidelity in the model and system. IRONModel currently relies
on system- and programmer-specific conventions for writing ex-
pectations and using a language like PIP’s is left as future work.

2.2.2 Different approaches to similar problems

Much work has explored the use of purely statistical approaches
to inferring system normalcy. Statistical models do not make a

priori assumptions on system behavior. Instead, they infer nor-
malcy by observing the workload-system interaction space. These
models are often used when components of the system are “black-
box”, i.e., the model designer has no knowledge about their inter-
nals (e.g., see [2, 8, 16]). For example, Cohen et al. [8] describe a
performance model that links sudden performance degradations to
the values of performance counters collected throughout a black-
box system. If correlations are found, for example, between a drop
in performance and a suspiciously high CPU utilization at a server,
the administrator investigates the root cause by first starting to look
at the CPU usage on that server.

Statistical models are the remaining option when expectations
are not available. To test their pros and cons, we actually tried re-
placing expectation-based models with statistical ones for several
resource types (e.g., CPU and network). We make the following
observations: 1) Statistical models do not have a notion of correct
system behavior. In many cases, (e.g., Figure 1’s network through-
put degradation case) a statistical model “learns” the bad behavior,
rather than flagging it as incorrect. An expectation-based model
can easily flag such anomalies. 2) Statistical models are not ef-
ficient in multi-workload environments. In particular, they require
much training data to predict workload interference effects. 3) Fun-
damentally, given enough time and training data, statistical models
do approach the power of expectation-based models. Hence, the
decision on whether to use them depends primarily on the appli-

cations’ tolerance to low-fidelity predictions until enough training
data has been observed.

IRONModel side-steps the need to choose between the two mod-
eling types and uses both to create a robust modeling framework.

2.2.3 Similar approaches to different problems

Detecting and understanding performance bugs is part of the
larger subject of finding bugs in systems. We mention only two ex-
amples here. Engler et al.’s work treats correctness bugs as deviant
behavior [10]. The abstraction level differs from ours: low-level
programming code in Engler et al.’s work, and higher-level request
flows in a distributed system in our work. Our work also has par-
allels in recent work on using programmer comments to check for
implementation bugs in source code [28]. The authors use the re-
dundancy between programmer comments and source code to de-
tect inconsistencies between the two. Such inconsistencies might
indicate either bad comments or buggy code. IRONModel uses the
redundancy between performance models and implementations to
detect inconsistencies.

3. IRONModel’S DESIGN

3.1 Overview of approach
IRONModel uses three approaches to make models robust. First,

models are part of the system or can otherwise obtain information
on all requests the system sees and their performance. Thus, IRON-
Model makes use of the redundancy between a model’s high-level
specifications and system implementation to compare and contrast
system and model behavior. This enables the second and third ap-
proaches to work. Second, IRONModel uses mismatch localization

to localize the source of a performance anomaly to a few resources
in a distributed system. In a system with 100+ resources, this ap-
proach is quicker than having a human manually check each re-
source using trial-and-error approaches. Third, IRONModel uses
model refinement techniques to make educated guesses as to what
the source of the inconsistency might be. Furthermore, the models,
over time, provide a notion of fidelity with predictions; predictions
with low fidelity could be disfavored by upper decision-making lay-
ers (which might include human administrators).

In a queuing network, IRONModel must detect two kinds of mis-
matches. The first, structural mismatches, refers to requests taking
unanticipated paths through the system. For example, for the same
example shown in Figure 2, a transient network partitioning might
cause storage-node 1 to be disconnected from the rest of the sys-
tem. A request directed to that storage-node might then enter a
retry loop before finally being redirected to another storage-node.
IRONModel uses end-to-end tracing techniques to monitor service
centers’ entry and exit points and automatically creates a new struc-
tural profile for that case.

Performance mismatches, on the other hand, refer to requests
taking shorter or longer than models predict (for the buffer cache re-
source, mismatches mean that a request hit in cache, when it should
have missed, and vice-versa). For example, a misconfigured net-
work switch between the database client and storage nodes in Fig-
ure 2 could lead to significant degradation of network throughput (a
similar degradation is shown in Figure 1). In that case, each model
in the system would self-check (e.g., the CPU, buffer cache and
disk models might report that the expected and observed behavior
match), and the network model might report a mismatch.

To refine its models, IRONModel uses observation-based statis-
tical models. Such models have at their core simple machine learn-
ing algorithms. First, they keep track of historical data to create a
notion of fidelity with each prediction. Second, they rank the possi-

Initial structural expectation Structural behavior during failure Structural behavior during repair

3: Structural deviations during failure and repair for 3-way replication. The initial structural expectation for write requests indicates that a write should
contact three storage-nodes. If one of the storage-node fails, one of the writes times out and reenters the sending service center. During repair, a spare
storage-node takes over from the failed one and is populated by the two remaining storage-nodes. Three graphs can be created and contrasted for each of these
scenarios (nodes in such graphs would be entry and exit points from the service centers above and edges would represent the service center’s response times).

ble causes of a system-model inconsistency. These models collect
and analyze, at each service center, several relevant attributes to
find statistical correlations with observed inconsistencies. For ex-
ample, for the network performance degradation in Figure 1, the
attributes most correlated with bad performance are the number of
storage-nodes and the switch type (e.g., switches from vendor A
might have a different “badness” profile than from a vendor B).
IRONModel’s statistical models have a key advantage over off-the-
shelf machine learning tools. In IRONModel, the statistical models
derive their initial structure from the expectation-based models and
hence require no training data to start making predictions.

3.2 Mismatch localization
Structural mismatches happen when designer expectations do

not anticipate ways requests might flow through service centers.
We learned that, to detect structural mismatches, a system must

have a good measurement infrastructure in place that keeps track
of requests at service centers’ entry and exit points. Methods for
designing such end-to-end tracking of requests have been an ac-
tive area of research recently [5, 7, 31]. These methods were pri-
marily developed for accurately measuring latencies in a system.
Our framework, called Stardust, was also initially developed for
accurate performance measurements [31], and we have recently
found it to be useful for anomaly localization as well. Here, we
briefly sketch its general design relevant for localizing structural
mismatches. Section 4 discusses implementation details of one par-
ticular instance of this framework in a distributed storage system.

Stardust tracks every client request along its execution path. It
collects activity records, network RPC records, buffer cache refer-
ence records, disk I/O records, etc. The sequence of records allows
tracking of a request as it moves in the system, from one computer,
through the network, to another computer, and back. An activity
record is a sequence of (attribute, value) pairs. Each activity record
contains an automatically-generated header comprised of, among
other fields, a timestamp and a request ID field. Each timestamp is
a unique value generated by the computer clock that permits cycle-
accurate timing measurements of requests. The request ID permits
records associated with a given request to be correlated within and
across computers. Activity records are posted on the critical path;
however, as Section 5 shows, such posting causes minimal impact
on foreground performance.

Stardust creates causal graphs, similar to the one shown in Fig-
ure 3, for every request. Those graphs can then be contrasted with
the graph of structural expectation that the designer first inputs.
Structural mismatches manifest themselves as a change in the fan-
in/out of service center nodes. Performance mismatches manifest
themselves as a change in the edge latency between service center
nodes (a reasonable policy might define “change” as a one stan-

dard deviation from the expected average edge latency). To local-
ize mismatches, a model must be built to continuously self-check
its behavior and the behavior of the system.

3.3 Model refinement and fidelity
After a successful mismatch localization, a refinement compo-

nent makes educated suggestions to the model designers on the
reason behind the mismatch. Over time, models incorporate new
correlations between performance and system-workload attributes.

3.3.1 A zero-training machine learning model

To make educated suggestions on the reason behind a mismatch,
models need to correlate system-workload attributes with perfor-
mance metrics. Attributes with a high correlation with performance
are reported to the model designer as potential culprits. Formally,
we want a correlator that approximates the function F (A1, ...,An)=
P , where Ai is an element of the workload-system attribute space
and P is the performance metric of interest. Attributes can be any
relevant observations about the operating environment. For exam-
ple, for a disk resource, traditional attributes of interest include disk

type, request inter-arrival time, read:write ratio, etc. P can be any
metric of interest we want to validate, such as, throughput X . We
wanted a correlator to satisfy several requirements:

Handling of mixed-type attributes and combinative associa-

tions: Workload-system attributes can take on categorical, discrete
or continuous values. For example, average inter-arrival time is an
attribute that takes a continuous value, but switch type has categor-
ical attributes (Vendor A, ..., Vendor Z). Furthermore, a system’s
behavior might depend on combinations of attributes. For exam-
ple, the expected throughput from a disk array might depend on
both workload burstiness and request locality.

Reasonably fast and adaptive: The learner must be able to
make predictions reasonably fast, on day 1, and ideally retrain it-
self quickly. In many scenarios, the training and predictions can be
made offline, perhaps at night when the system utilization is low.
In addition, making the prediction must be inexpensive in terms
of computational and storage requirements. The learner must effi-
ciently adapt to new workloads and learn incrementally.

Cost-sensitive and interpretable: The learner should be able
to reduce the overall cost of mispredictions by taking application-
specific cost functions into consideration during training. For ex-
ample, a learner could be accurate 99% of the time, but the cost of
the 1% misprediction could outweigh the benefit of being correct
99% of the time. Newly learned rules or correlations should ide-
ally be human-readable. System designers and administrators we
talk to place a lot of emphasis on needing to build their trust in the
system and validating simple correlations with their intuition.

The base algorithm we chose, CART, is borrowed from the ma-

4: Initial Z-CART model. The initial model is built using expectation-
based models (domain expertise) and requires no training data. To make
a prediction (at the leaves), Z-CART recursively selects an attribute of the
system-workload space to split on.

chine learning community [18] and it fulfills most of the above re-
quirements. Training time is O(nHeight(n)), and predictions take
O(Height(n)) time, where n is the number of observations and
Height(n) is the height of the decision tree (which, for most trees
we have constructed, is between 10 and 100).

Traditional CART models, however, (much like other machine
learning models, like Bayes networks or neural networks) suf-
fer from requiring much training data before even simple classi-
fications can happen. Because IRONModel already incorporates
expectation-based models, training data is not required to make
predictions. We call Z-CART (zero-training CART) the fusion of
CART with expectation-based models. Z-CART derives its ini-
tial structure from the expectation-based models (we think of the
latter as domain knowledge). Over time, Z-CART validates the
expectation-based models are finds new, unforeseen correlations.

Figure 4 shows an example starting point for a Z-CART model.
The goal of the model is to predict the maximum throughput for
a client c, Xc,CPU , from the CPU resource. For this example, as-
sume that the CPU resource is only used to encrypt blocks and
then encode them using an m-of-n erasure coding scheme (e.g.,
1-of-3 means 3-way replication, whereas 3-of-5 is an erasure cod-
ing scheme that writes data to 5 storage nodes and needs to read
from 3 of them to reconstruct the original data; both schemes tol-
erate two storage-node crashes). The CPU model might use direct
measurements to make this prediction. It might encrypt and encode
a block of data and report on the time (or demand, Dc,CPU) it took.
Xc,CPU would then equal 1/Dc,CPU .

Imagine a situation in which, after good predictions for weeks, a
certain workload starts getting less than half of its predicted through-
put (this happened in our system). After successful mismatch lo-
calization, the CPU model’s initial prediction of Dc,CPU is found to
be different from the actual Dc,CPU . Stardust has meanwhile col-
lected trace records containing workload attributes (e.g., block size,
read:write ratio, file name, etc.) for all requests passing through
that service center. Z-CART uses the original CART algorithm
for selecting the attribute most correlated to the unexpected drop
in performance. CART computes a metric called the information

gain on each available attribute, and then greedily chooses the at-
tribute with the largest information gain. Intuitively, the higher the
information gain, the higher the correlation of an attribute and clas-
sification metric. Analytically, the information gain from choosing
attribute Ai with value a from a set of classification instances S with
(observed) probability distribution P(s) is:

Gain(S,Ai) = Entropy(S)− ∑
a∈Ai

|Sa|

|S|
Entropy(Sa) (1)

5: Modified Z-CART model. After several new observations, the initial
Z-CART model evolves to incorporate the new block size attribute. The
predicted value (vertical line) together with one standard deviation (shaded
area around vertical line) is shown by a GUI tool [6]. The location of the
predicted value is relative to the minimum and maximum values observed
(in this case 3.6 MB/s and 57 MB/s respectively).

Entropy(S) ≡− ∑
all classes s

P(s)log2P(s) (2)

Figure 5 shows the modified Z-CART model after the block size
attribute has been incorporated into it (the reason why the system
behaves differently as a function of block size is deferred to later
sections that describe the system in more detail). The leaves of the
Z-CART model contain fidelity information. Fidelity is defined as
the number of pure samples seen in the field (i.e., how many of
the samples does it classify correctly?). If P is categorical (e.g., a
yes/no answer to “is Xc,CPU less than 50 MB/s?”), the leaf main-
tains counters that keep track of observations for each category. If
P is discrete or continuous (e.g., an answer to “what is Xc,CPU?”),
the leaf maintains a histogram of observations.

3.3.2 Accelerating learning through active probing

In many cases, IRONModel might help accelerate the learning
process of finding new correlations. Active probing is the term we
use to describe the synthetic creation of workload-system interac-
tions for the purpose of building fidelity for correlations. IRON-
Model expects system designers to construct template test cases
(usually a few lines of code) to probe the system. IRONModel can
guide the probes based on observed statistical correlations with per-
formance. For example, if the attribute “read size” is found to have
an unexpected (hence not modeled) strong correlation with perfor-
mance, IRONModel reports the correlation to the system designer
who writes a small template probe with “read size” as one of the
attributes. IRONModel can then run the probe on the system and
refine the Z-CART model. From our experience, we have identified
three types of probes necessary to explore the workload-system in-
teraction space.

Probing of primary attributes that have an immediate effect

on performance: This probing involves changing primary work-
load and system attributes, thus effectively generating new syn-
thetic requests and resources to test with. For example, in a storage
system with read requests of the form (file ID, offset, size), syn-
thetic requests can be created by assigning the attribute “size” val-
ues in the range 1-512 KB. As another example, to see the work-
load behavior when a small cache size is used, the system could
temporarily assign a smaller cache partition to the workload.

Probing of workload interference: This probing involves study-

ing unanticipated effects of workload interference. We have found
that modeling the effect of workload interference is more difficult
than modeling single-workload scenarios, and the effects of work-
load interference are almost never gotten right upfront.

Probing of long-term system behavior: Systems behave differ-
ently during their lifetime, even when no new resources have been
added. In storage systems, in particular, we found that performance
usually degrades over time for one primary reason: performance
degradation of key data structures (e.g., hash table performance as
more and more files are stored in the system) and storage-nodes
as the disks get fuller (due to several reasons, e.g., use of lower-
density disk tracks towards the middle of the disk).

3.4 Summary and discussion
IRONModel uses the redundancy between models and system to

contrast their behavior and localize mismatches. IRONModel con-
stantly validates a given model and attempts to refine it by discover-
ing new correlations between system-workload attributes and per-
formance metrics. Ultimately, every what-if question is answered
by the Z-CART models. The first time the question is posed, Z-
CART consults the expectation-based model. The answer from the
expectation-based model is used to construct the initial Z-CART
model and is also returned as the answer to the what-if question.
Each Z-CART model continously refines its predictions and fidelity
in the field.

The question remains on how much have we reduced human in-
tervention and what do humans still need to do? System designers
need to provide support for end-to-end tracing and need to provide
reasonable expectation-based models to start with. IRONModel
automatically checks traces collected during run time for structural
and performance discrepancies. For each discrepancy, IRONModel
ranks the most likely attributes associated with it using the entropy
test and presents the results to the system designer or administrator,
together with suggestions for new test templates for active probing.
The designer ultimately has to find the root cause of the problem
after IRONModel has reduced the search space.

4. IRONModel IN A STORAGE SYSTEM
This section serves illustrates how expectation-based models can

be efficiently accommodated as first-class citizens in a real system.
It also provides context for the evaluation and case studies.

We have implemented a prototype of IRONModel in an exper-
imental cluster-based storage system called Ursa Minor [1]. Ursa
Minor is being developed for deployment in a real data center. On
the software side, Ursa Minor consists of about 250,000 lines of
code. On the mechanical front, clients of the storage system first
find where their data resides by querying a metadata service (or
MDS). The metadata service is also responsible for authorizing
client access to storage-nodes through the use of capabilities. Then,
clients proceed to access the data from storage-nodes in parallel
through an erasure coding protocol family. The storage-nodes have
CPUs, buffer cache and disks. Storage-nodes are heterogeneous, as
they get upgraded or retired over time and sometimes are purchased
from different vendors.

Models in Ursa Minor are needed to predict performance con-
sequences of data migration and resource upgrades [30]. For ex-
ample, a workload migration what-if question of the form “What
is the expected throughput/response client c can get If its workload
is moved to a set of storage-nodes S?” needs answers from several
models. First, the buffer cache hit rate of the new workload and the
existing workloads on those storage-nodes need to be evaluated by

a buffer cache model. Second, the disk demand Dc,DISK
3 for each

of the I/O workloads’ requests that miss in buffer cache will need to
be predicted by a disk model. Third, the network demand Dc,NET

on each of the storage-nodes that results from adding/subtracting
workloads needs to be predicted by a network model.

Each individual model makes the above predictions. A second
modeling tier uses standard bottleneck analysis (e.g., see Chapter
5 of Lazowska et al. [15]) to derive throughput and response time
bounds. For example, to make throughput predictions for closed-
loop workloads, let client c have Nc requests outstanding, and let
its average think time be Zc. Then client c’s throughput Xc is:

Xc ≤ min

(

1

Dmax
c

,
Nc

Dc +Zc

)

(3)

where Dmax
c is the largest demand client c places on any resource

and Dc is the sum of all demands on all resources a request uses.
There is a similar formula for response time that follows from Lit-
tle’s law. For open-loop workloads the models only predict peak
throughput as 1/Dmax

c .
The implementation of the models has been incremental. Ini-

tially, Ursa Minor was designed with expectation-based models
built-in [30]. We studied how well those initial models worked and
why they failed. Then, we implemented IRONModel, an instance
of a robust modeling framework.

4.1 Adding expectation-based models
Figure 6(a) shows a simplified queuing network (only for write

requests) inside Ursa Minor. We explicitly defined the structural
behavior of the system during the system design phase. This was
not an easy task. However, the energy spent on it is a fraction
of the energy already spent verifying the correctness of the vari-
ous algorithms and protocols in the system. Concretely, several
months were spent by several people designing and reviewing how
requests would flow in Ursa Minor. Translating that work into a
queuing network took one person less than a month. Below, we
briefly sketch how each individual model works to make clear what
could go wrong.

4.1.1 Model for CPU-bound service centers

Models for CPU-bound service centers answer questions of the
form “What is the CPU demand Dc,CPU for requests from client
c, If the data is encoded using scheme E?”. The CPU model uses
direct measurements of encode/decode and encrypt/decrypt costs
to answer these questions. Direct measurements of the CPU cost
are acceptable, since each encode/decode operation is short in du-
ration. Direct measurements eliminate the need to construct analyt-
ical models for different CPU architectures. Each time the above
question is asked, the CPU model encodes and decodes one block
several times with the new hypothetical encoding and produces the
average CPU demand for reads and writes.

As first hinted in Section 3.3.1 and further elaborated in Sec-
tion 6, we eventually discovered that we were not modeling the
CPU consumption correctly. A secondary CPU-bound service cen-
ter, which we initially did not consider, models the CPU consumed
by TCP network stack processing inside the kernel. The CPU con-
sumed by the network stack is a function of the request size, and
the model uses direct measurements in this case too. A tool called
Iperf [26] is used to actively probe the CPU consumption from the
network stack as a function of request size.

3All models can operate with quantiles of performance metrics,

e.g., 99th quantile of demand. However, for simplicity, this section
means average demand when it refers to demand.

6: Simplified queuing network in Ursa Minor. The queuing diagram(a) shows the path for writes, from a single client. The clouds represent major software
components in Ursa Minor. In the attributes Table (b), in bold are attributes we felt sure had a direct relationship with performance. These are the attributes of
the expectation-based models. IRONModel validates these relationships and discovers new ones over time.

4.1.2 Network model

The goal of the network model is to answer questions of the form
“What is the network demand Dc,NET for requests from client c,
If the data is encoded using scheme E?”. Inputs to the network
model are the hypothetical encoding E and the measured read:write
ratio of the workload. In Ursa Minor, a write updates n storage-
nodes, and a read retrieves data from only m storage-nodes. The
fragment’s size (a fragment is a fraction of data sent to each storage-
node) is the original request block size divided by m:

Bytes sent = preadBlockSize+ pwriteBlockSize
n

m
(4)

Time =
Bytes sent

Bandwidth
+network setup time (5)

Modeling modern LAN network protocols can be much more
complicated, in practice, since there are factors outside of Ursa Mi-
nor’s control to be considered. For example, we do not have direct
control over the switches and routers in the system. TCP can be-
have in complex ways depending on timeouts and drop rates within
the network [12]. However, the above analytical model proved to
be a good starting point.

4.1.3 Buffer pool models

The goal of a general buffer cache model is to answer questions
of the form “What is the probability pc,HIT that requests from client

c are absorbed4 in cache, If the cache size is X MB?” The buffer
cache model uses simulation to make a prediction. In Ursa Mi-
nor, predictions cannot be accurately done using analytical formu-
lae due to the complexity of the caching algorithms. The model
uses buffer cache records of each of the W1,W2, ...,Ww workloads,
collected through Stardust, and replays them using the buffer cache
size and policies of the target storage-node. In Ursa Minor, the
cache size is partitioned and dedicated to each client (the cache
partitioning algorithms are beyond the scope of this paper, and they
are described in [34]). Hence, the analysis above can be done in-
dependently for every workload Wc, without considering how other
workloads might interfere with it.

4.1.4 Disk model

The goal of the disk model is to answer questions of the form
“What is the average service time Dc,DISK of a request from client
c, If that request accesses a particular disk?”. The average service
time for a request is dependent on the access patterns of the work-
load and the policies of the underlying storage-node. Storage-nodes

4For reads, “absorbed” means the request is found in cache; for
writes “absorbed” means a dirty buffer is overwritten in cache.

in Ursa Minor are optimized for writes, utilize battery-backed RAM,
use a log-structured layout on disk, and prefetch aggressively. Re-
quest scheduling is round-robin across each workload, where the
length of the scheduling quanta for each round is determined ana-
lytically as described by [34].

When a disk is installed, a model is built for it. The model
is based on the disk’s average random read RNDread and write
RNDwrite service times and average sequential read SEQread and
write SEQwrite service times. These four parameters are usually
provided by disk vendors and are also easy to extract empirically.
The disk model is a combination of simulation-based and analytical
methods. It receives the sequence of I/Os from each of the work-
loads (from the buffer cache what-if model), scans the combined
trace to find sequential and random streams within it, and assigns
an expected service time to each request. Within a quanta, each re-
quest gets a service time as follows. Let RUN be an ordered set of
requests that are consecutively sequential (there are read and write
runs), and let RUN[i] be the ith request in the run (ci simply states
that the ith request is from client c). Then, within a quanta Qc:

D
′

ci,DISK =

SEQread if ci ∈ read RUN∧ ci 6= RUN[1]

SEQwrite if ci ∈ write RUN∧ ci 6= RUN[1]

RNDread if ci = read RUN[1]∨ ci 6⊆ RUN

RNDwrite if ci = write RUN[1]∨ ci 6⊆ RUN
(6)

Thus, when considering the quanta length |Qc| for each client c,
assuming request from all clients arrive uniformly distributed dur-
ing the quanta times, the expected request demand and additional
think time for each client request is:

Dci,DISK =

(

|Qc|

∑ j |Q j|

)

D
′

ci,DISK (7)

Zci,DISK =

(

∑ j 6=c |Q j|

∑ j |Q j|

)(

∑ j 6=c |Q j|

2

)

(8)

The length of the quantas to achieve a desired client response
time and throughput are estimated by inverting the above equation
and solving for the quanta times. The description of the policy for
choosing the quanta times in Ursa Minor is beyond the scope of
this paper, and is explained by [34].

4.2 Adding observation-based models
The observation-based models in Ursa Minor are responsible for

helping model designers detect new structural and performance be-
havior in the system. Stardust keeps track of the requests at en-
try and exit points for each service center in the system. Every

Workload Performance Read path Write path RAM for Total activity records

runtime (s) overhead % (#queries) (#queries) in-memory DB (MB) generated (MB/s)

Postmark 9792 0 8.5 19 220 0.34
OLTP 636 1.4 8.5 135 103 0.57
IOzone 329 5.3 11.4 109 323 3.37
Linux-build 1786 0 8.2 42.9 103 0.49
Sci 670 2.6 4 12.5 263 1.85

1: IRONModel’s overhead and memory needed for efficient request flow analysis. Results are averages of 5 runs.

time a request passes through an instrumentation point, an activity
record (containing fields such as timestamp, request ID, and rel-
evant attributes to that service center — usually 64-128 bytes in
total length) is stored in a relational database. Using the informa-
tion contained in the database tables, the system can discover how
requests are propagating through it, even when few or no expecta-
tion models are available. The system periodically constructs and
maintains a graph of how requests are flowing through the system.

The prototype in Ursa Minor for localizing performance devia-
tions currently only works offline. It calculates various statistics
based on observed throughput and response time and compares
those to what expectation-based models predict.

Model retraining is done through Z-CART, which currently uses
the DTX package as the underlying classification and regression
tree structure [6]. Each resource has one Z-CART model. Fig-
ure 6(b) shows the initial attributes Z-CART models used (in bold),
and other attributes they subsequently correlated with performance.
For the latter attributes, we knew their correlation with performance
was non-negligible, but not the exact strength of correlation. We
exposed these attributes to Z-CART, which ranked their correlation
and incorporated them into its tree structure. It is worth stressing
that the process of discovering new correlations is incremental. The
attributes presented here represent what we know so far, from the
various experiments we have run on Ursa Minor. Future workloads
could expose the need for having more attributes to chose from.

4.3 Summary and discussion
This section describes how systems can be made to efficiently

accommodate a modeling architecture like IRONModel. All mod-
els in Ursa Minor are built-in and written by the system designers.
The apparent simplicity of the above expectation-based models re-
flects much thought we placed in the system design process. For
example, the system was designed with the property that workloads
can be analyzed separately from one another through algorithms for
performance isolation [34]. Just that design consideration simpli-
fied the expectation-based models considerably.

This paper’s testbed is Ursa Minor, however we have incorpo-
rated a similar instrumentation infrastructure and similar expectation-
based models in a legacy database system (SQL Server) as well [20].
That gives us faith that the measurement and basic modeling infras-
tructure can be used in other systems. The algorithms that make
the modeling robust, however, have only been incorporated in Ursa
Minor and adding them to SQL Server is part of future work.

5. BASELINE EVALUATION
This section briefly evaluates key properties that demonstrate

IRONModel’s efficiency.

5.1 Experimental setup
For this baseline evaluation we only use a subset of the ma-

chines in the cluster. Clients are run on machines with Pentium 4
Xeon 3.0 GHz processors with 2 GB of RAM. Unless otherwise

mentioned, all storage-nodes have Pentium 4 2.6 GHz processors
with 1 GB of RAM; each has a single Intel 82546 gigabit Ethernet
adapter. The disk configuration in each computer varies and disk
capacities range from 8 to 250 GB. All computers run the Debian
“testing” distribution and use Linux kernel version 2.4.22.

The workloads used for this baseline evaluation are drawn from
a pool of representative storage system workloads. All workloads
use a 1-of-1 encoding, i.e., the data is not replicated. Each work-
load touches a total of 3 machines for operation (client machine,
metadata server and storage-node). Postmark is a single-threaded
file system benchmark designed to emulate small file workloads,
such as e-mail and netnews [14]. OLTP is a TPCC-like [32] bench-
mark that mimics an on-line database performing transaction pro-
cessing. 10 clients access a 5 GB database concurrently. IOzone is
a single-threaded file system benchmark that can be used to mea-
sure streaming data access performance [21]. For our experiments,
IOzone measures the performance of 64 KB sequential writes and
reads to a single 2 GB file. “linux-build” is a development work-
load measures the amount of time to clean and build the source tree
of Linux kernel 2.6.13-4. Sci is a scientific workload designed to
analyze seismic wave-fields produced during earthquakes [3].

5.2 IRONModel’s overheads

5.2.1 Collecting request flow graphs

Stardust’s efficiency as a general measurement infrastructure is
first evaluated in [31]. Here we show new results pertaining to its
usefulness as an infrastructure for model checking.

There are approximately 200 entry and exit points from service
center types in Ursa Minor that post activity records each time a re-
quest flows through them. Stardust places demands on the CPU for
encoding and decoding trace records, as well as network and stor-
age demand for sending the records in relational databases. It also
places a fixed demand of 20 MB of buffer cache at each computer
for temporarily buffering records. The impact of the instrumenta-
tion on the above workloads is observed to be from 0-6%, as shown
in Table 1. The amount of trace data collected can be significant (as
is the case in the IOzone case). However, after problem localiza-
tion, only the data related to anomalous behavior needs to be kept.
In all the above experiments no anomalous behavior was observed
and all the data collected can be eventually discarded.

5.2.2 Cost of parsing observations

An important property of Stardust is ease of querying. In par-
ticular, creating a request flow graph (or causal path) for a request
is a common operation that needs to be efficient. Table 1 shows
the average number of SQL queries required to create such a path
for each of the workloads. All queries are simple SELECT queries
that just select all columns of a row with a given request ID. These
queries do not involve joins (the joins are done by the algorithm
that creates the request flow graph in memory, and not by issuing
JOIN statements to the database). The request ID column has an
index on it. The time to create a path depends mainly on how deep

requests flow through the system. The deeper a request flows into
the system (e.g., when it misses in the client cache and has to go to
the storage-nodes), the longer it takes to recreate its path. Writes,
for example, tend to have deeper paths than reads, since many reads
hit in cache.

Table 1 also shows the amount of RAM memory needed to keep
activity records relevant to anomaly localization fully in an in-memory
database to construct the request path efficiently for all requests. In
practice, we have seen individual path creation times ranging from
a few microseconds, when the request IDs are still in the buffer
cache of the Activity DBs, to a few milliseconds when the re-
quest IDs need to be retrieved from disk. For example, creating
request flow graphs for all requests of the OLTP workload when
the database resides fully in memory, takes on average 2714 sec-
onds (147 seconds for the 90546 read requests and 2567 seconds
for the 111858 write requests). Creating request flow graphs for all
requests of the Postmark workload when the database fully resides
in memory, takes on average 526 seconds (42 seconds for the 25673
read requests and 484 seconds for the 150086 write requests).

In practice, only those requests for which the client complains or
which have a response time above a service-level objective thresh-
old (e.g., one standard deviation away from the expectation) need
to be checked.

5.2.3 Cost of creating expectations

Expectations are given by the expectation-based models described
in Section 4.1. For a given workload, the expectation-based models
report on the CPU and network demand expected to be consumed
per request (the CPU and network models take less than 1 ms to
make these predictions). The expectation-based models report on
the expected cache behavior of a request and its expected disk ser-
vice time. We have observed that for cache hits the cache simulator
and real cache manager need similar times to process a request. The
cache and disk simulators are on average three orders of magnitude
faster than the real system when handling cache misses. The sim-
ulator spends at most 9,500 CPU cycles handling a miss, whereas,
on a 3.0 Ghz processor, the real system spends the equivalent of
about 22,500,000 CPU cycles. For a given client, the cache and
disk models create expectations for common cache sizes once (e.g.,
512 MB, 1 GB, 2 GB) and then memoize the results.

5.2.4 Cost of Z-CART operations

Asymptotic theoretical bounds for Z-CART operations were given
in Section 3.3.1. The base CART algorithm itself has been exten-
sively studied [18] and we do not intend to replicate those results.
Instead, we report empirical observations relevant to this paper, for
one of the models in the system, the CPU model. The Z-CART
CPU model was build from actively probing 2.5 million possible
CPU configurations that cover commonly-used data encoding op-
tions on 200 servers in the data center. Actively probing the system
to generate the above configurations took approximately 30 min-
utes. Building the model (i.e., analyzing the CPU demand for each
of the 2.5 million configurations) took 3 minutes. Z-CART needed
200 MB of RAM to do the analysis. The final decision tree was
a 4 MB data structure, 21 levels deep and contained 34000 nodes.
Querying Z-CART to make a new prediction took approximately
0.02 ms, which in practice means that 1 million new predictions
take approximately 20 seconds to make. Hence, the overall cost is
acceptable. Similar observations can be made for the other models.

6. CASE STUDIES AND EXPERIENCE
This section evaluates the efficacy of IRONModel to locate mis-

matches and revise expectations. The performance anomalies de-

Type of bug Localization method Who will fix? #

System IRONModel Administrator 1
misconfig/bugs Programmer 17
(24) Other technique Administrator 1

Programmer 6
Client 1

Model bug IRONModel Re-training 5
(5) Other technique Programmer 1

2: Key performance-related problem categories (2004 - 2007). Other
techniques to find bugs included looking at printf statements, using gdb,
and trial-and-error. Some problems fall into multiple categories.

scribed here happened while we ran the above workloads nightly to
stress different parts of the system.

6.1 Overall effectiveness
Table 2 shows performance problems that we encountered while

building and experimenting with Ursa Minor. Out of 29 problems
encountered, 23 of them were because of system misconfiguration
or bugs in the code. For five of the problems, the models them-
selves had limited regions of operation. Many problems (23) first
arose before IRONModel (and even Stardust) was incorporated in
the system and we replicate them as best as possible with the cur-
rent code base.

The column “Who will fix?” shows who we think will ultimately
have to fix the system or model (for Ursa Minor, we were both ad-
ministrators, programmers and sometimes clients; in practice these
roles might be separate).

6.2 Localizing sources of mismatch
This subsection describes a few concrete examples when the lo-

calizer worked well and when it did not. For this discussion, we dif-
ferentiate between cases when the system was found to be buggy or
misconfigured, while the models correctly reflected the designers’
intentions, and cases when the system was operating as expected,
but the models had limitations and incorrectly flagged the system
behavior as suspicious. This classification was done after the root
cause of the problem was discovered and is based on whether the
system or the models had to be eventually fixed. However, both the
system component and its model are flagged as suspicious before
the root cause is identified.

Buggy system implementations or misconfigurations: A rep-
resentative problem in this category relates to poor aging of data
structures that leads to degradation in performance. Two concrete
instances of this problem that we experienced are degraded hash
table performance over time and degraded disk performance as the
disk gets fuller. For this discussion, we focus on degradation of
hash table performance. An initial hashing algorithm had a bug
that led to non-uniform hashing. Figure 7 shows how the latency
graph changes as more files are stored in the system. The Postmark
benchmark is run, and the measurements are taken after 10,000 and
20,000 files are created. The drastic degradation over time is not
anticipated by the models (that predict the same disk service time
in each case). When the problem was experimentally replicated,
the storage-node model raised a flag to report the discrepancy in
expected and measured performance. The localization directs the
human’s attention between two instrumentation points.

For most other system bugs or misconfigurations we have seen
(e.g., unexpected locking or retry loops), the mismatch is shown as
a change in edge latencies or number of edges.

(a) After 10,000 files created (b) After 20,000 files created

4562 µsecs 17331 µsecs

NetworkCall

Storage-node Cache Miss

Disk Read

...

...

NetworkCall

Storage-node Cache Miss

Disk Read

...

...

7: Performance degradation over time. A hashing algorithm bug leads to
unexpected performance drops over time (bold edges). The nodes contain
information such as the name of the component posting the record. The
edges contain latency information. This is a simplified graph of a larger
graph (15 nodes) that is not shown here for simplification.

Model bugs: A representative problem in this category relates
to non-linear behavior of the individual models that we did not
correctly model initially. A concrete instance involves the CPU
model. As described first in Section 3.3.1 and then in Section 4,
our initial CPU model under-predicted the CPU demand when the
block size used was small (e.g., 512 B). In queuing terminology,
we had not foreseen the effects of a service center inside the ker-
nel, the network stack. The kernel network stack consumed sig-
nificant amounts of CPU per-block. Hence, it was impossible to
keep the network pipeline full, since the CPU would bottleneck
first. Our CPU model was built using commonly-used block sizes
of 8-16 KB, for which the per-block cost is amortized by the per-
byte cost. The discrepancy showed up between two instrumenta-
tion points at the entrance and exit of the encode/decode module
and the human’s attention was directed there. Section 6.3 describes
a bug with the network model as well, and shows how both CPU
and network model can evolve over time semi-automatically.

Handling multiple symptoms: There were times when IRON-
Model detected multiple mismatches in the system. A concrete
case of this happening is when we upgraded the Linux kernel from
version 2.4 to version 2.6. Several performance benchmarks expe-
rienced performance changes after that. Through Stardust, latency
graphs were obtained for each of the workloads under the 2.4 and
2.6 versions and compared. Furthermore, each of the expectation-
based models self-checked to see if the expectations matched the
observations. In practice, one might run different benchmarks and
examine the paths from those that showed fewest discrepancies
first. That is the approach we took. Figure 8 shows two request
flow graphs for two different file system calls (file create and file
write) for the Postmark benchmark. Bold edges indicate discrepan-
cies between model and system.

Handling adaptive workloads: Adaptive workloads might change
their behavior depending on the performance of the underlying sys-
tem. Traditional models assume that, whether Ursa Minor is “slow”
or “fast”, any Ursa Minor client’s sequence of operations will be
the same. This assumption holds well, especially for static bench-
marks. Many real-world applications are also not adaptive. How-
ever, there are some applications, such as web servers, that might
experience a different workload depending on the speed of the un-
derlying storage system. That happens, for example, when a web
user might depart from the site (e.g., if it is too slow).

As a concrete instance, we modified the OLTP benchmark to
keep changing its indexing behavior as a function of Ursa Minor’s
performance. Our initial models assumed that workloads were not
adaptive, and were not helpful in diagnosing why the predicted
and observed performance were different. For example, the buffer

(a) Performance deviations (b) Structural deviations

FileCreate

MDSCreate

MDS Cache Miss

NetworkCall

Storage-node Cache Miss

...

...

FileWrite

CacheWrite

WriteReply

...

Cache Miss

CacheEvict

...

...

8: Multiple mismatches due to a software upgrade. These (simplified)
request flow graphs contrast the behavior of requests under the 2.4 and 2.6
Linux kernel. File creates experience performance deviations (bold edges
indicate latency differences). File writes experience structural deviations
(bold edges indicate entrance to a new service center — the cache read
handler). Surprisingly, in 2.6 the client’s writes were unaligned, resulting
in read-modify-writes.

cache model would simulate the effect of doubling the buffer cache
size and find it beneficial to double it. After the cache size was dou-
bled, the sequence of accesses the database sent to it were different
from what was originally simulated. IRONModel detects discrep-
ancies at the buffer cache accesses before and after predictions are
made, and chooses not to make predictions for adaptive workloads.

Example limitations: IRONModel has some limitations. One
category of such problems involved anomalies external to the stor-
age system. For example, the client running the scientific workload
was having a problem with the network link just before entering
Ursa Minor. From IRONModel’s perspective, the requests were
behaving as expected, once in the system. A second more subtle
example involved implicit push-back from the system to the client.
In one concrete instance, Ursa Minor had a thread exhaustion prob-
lem at a storage-node that implicitly put pressure on the client to
send fewer requests. The symptoms of this problem were that fewer
outstanding requests were observed in Ursa Minor. However, the
number of outstanding requests is an input to the models, not a
metric that they can predict.

A second category of limitations involved components we had no
direct control over (and thus did not instrument). For example, this
included performance problems inside the Linux kernel (all of Ursa
Minor code runs in user-space). For such problems, IRONModel
attributes the discrepancies to the black-box component, but cannot
be more fine-grained.

6.3 Retraining and fidelity
This section illustrates, through several concrete examples, how

observation-based models could help model designers discover new
workload-system correlations. In addition, this section describes
how fidelity can be reported with each prediction.

Unexpected CPU bottleneck: The localization of this prob-
lem instance was described in Section 6.2. Examining this situ-
ation with observation-based models after the fact, we found that
the models could localize the problem between two Stardust in-
strumentation points. When all resource models (CPU, network,

Block size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Measured
Predicted by expectaton-based model only
Predicted by Z-CART hybrid model

0

10

20

30

0 8 16 24 32 40 48 56 64

9: Improved prediction from hybrid models. After learning the new
correlation from observations on a particular server, the results from the
Z-CART model generalize on any server with the same CPU type. The
standard deviation for the measured performance is negligible, whereas for
the predicted performance it is shown in Figure 5. Throughput is estimated
as 1/Dc,CPU in this example.

cache, disks) self-checked, the CPU model was found to be the
culprit (i.e., it under-predicted the CPU demand). Z-CART noticed
that the attribute “block size” was significantly smaller than in the
test cases and eventually incorporated that attribute in the decision
tree (parts of the resulting tree and fidelity values were first shown
in Figure 5). Of course, “block size” is an attribute that the pro-
grammer had to expose to Z-CART, for Z-CART to discover the
correlation. Figure 9 shows the improvement in accuracy from the
hybrid modeling technique.

When striping goes wrong: As described in Section 4, the net-
work model in our system predicts the network time to read and
write a block of data when a particular data encoding scheme is
used. In experiments, we observed that a particular configuration
led to a workload having larger-than-expected response times when
data was read from multiple storage-nodes at once (e.g., when strip-
ing data over more than 5 servers, see Figure 1 for symptoms).

The manual diagnosis of the problem, done when it was orig-
inally encountered, took unreasonably long. Different tests were
run, on different machine types, kernels and switches. Using this
semi-blind search, the problem was eventually localized at a switch.
Deeper manual investigation revealed that overflowing of switch
buffers, leading to packet drops, was the root cause. That started
TCP retransmissions on the storage nodes. The problem is known
as the “incast” problem [23], and is rather unique to distributed stor-
age systems that read data from multiple sources synchronously.

Using model self-checking after the fact, the diagnoses are better
guided. For example, the cache model predicts that the workload
would get a hit rate of 10% with 256 MB, and indeed that is what
the workload is getting. However, the network model reveals that
remote procedure calls (RPCs) are taking 20 ms, when they should
only be taking 0.2 ms.

For erasure coding schemes, this incast problem is related to m,
the number of nodes the client reads from. To make matters worse,
the minimum m for which this problem arises is dependent on the
switch type. The switches in Ursa Minor are off-the-shelf commod-
ity components, and IRONModel considers them them to be black-
box (i.e., IRONModel has no understanding of their internal algo-
rithms). Furthermore, we cannot afford to replace them. To explore
how Z-CART could help, we exposed to it switch type as one of the

attributes to check. We then ran 825 experiment instances with
erasure coding schemes chosen randomly among 5-of-6, 7-of-8
and 9-of-10. Given this experimental setup, the Z-CART network
model automatically adjusted its expectations for the relationship
between performance and m, as shown in Figure 10.

Example limitations: The main limitation of retraining stems
from a common problem with most machine learning algorithms:
correlations do not imply causality. Whenever a change to the sys-
tem (for example, upgrading the Linux kernel) changes several sys-
tem attributes at once, all of those attributes will have the same
correlation ranking with a subsequent discrepancy. Solving this
issue does require some human intuition in understanding which
attributes caused the others to change in the first place.

7. CONCLUSIONS
This paper, through case studies with models for common re-

sources found in distributed systems, analyzes why and how per-
formance models get out-of-sync with the system over time. We
find that traditional models are brittle because they assume ide-
alized system-workload interactions. The reality is that both the
system and the models are often buggy or misconfigured and unan-
ticipated behavior is the norm. The main contribution of the paper,
IRONModel, is a general robust performance modeling framework.

IRONModel incorporates models as first-class citizens inside a
system. By using the redundancy between each model’s high-level
specification and actual system implementation, IRONModel can
localize performance anomalies and can give hints to the system
and model designer regarding the root-cause of the problem. A
specific implementation of IRONModel in an experimental cluster-
based storage system has proved successful in reducing the admin-
istrator’s search space for most anomalies experienced.

8. ACKNOWLEDGEMENTS
We thank our shepherd Prashant Shenoy and many anonymous

reviewers for their feedback and suggestions. We thank the mem-
bers and companies of the PDL Consortium (including APC, Cisco,
EMC, Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Microsoft,
Network Appliance, Oracle, Seagate, and Symantec) for their in-
terest, insights, feedback, and support. This work is supported in
part by NSF grants CNS-0326453 and CCF-0621508, by Army Re-
search Office grant DAAD19-02-1-0389, and by the Department of
Energy award DE-FC02-06ER25767.

9. REFERENCES
[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,
M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamohideen,
J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie. Ursa
Minor: versatile cluster-based storage. Conference on File
and Storage Technologies, pages 59–72, 2005.

[2] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed
systems of black boxes. ACM Symposium on Operating
System Principles, pages 74–89, 2003.

[3] V. Akcelik, J. Bielak, G. Biros, I. Epanomeritakis,
A. Fernandez, O. Ghattas, E. J. Kim, J. Lopez,
D. O’Hallaron, T. Tu, and J. Urbanic. High Resolution
Forward and Inverse Earthquake Modeling on Terasacale
Computers. ACM International Conference on
Supercomputing, 2003.

[4] E. Anderson, S. Spence, R. Swaminathan, M. Kallahalla, and
Q. Wang. Quickly finding near-optimal storage designs.
ACM Transactions on Computer Systems, 23(4):337–374,
November 2005.

10: Z-CART adapts the predictions to the switch type. Ursa Minor has three types of donated switches (anonymized to srs, ss3x, ss7x), and each of them
behaves differently as a function of m for erasure coding schemes. We treat them as black-box and Z-CART discovers their behavior over time. The location
of the predicted value is relative to the minimum and maximum values observed (in this case 2.1 MB/s and 77 MB/s respectively). This is a simplification of
the real Z-CART tree (it keeps several variables, such as block size, constant), which has over 30000 nodes and is more than 20 levels deep.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for request extraction and workload modelling.
Symposium on Operating Systems Design and
Implementation, pages 259–272, 2004.

[6] C. Borgelt. DTreeGUI - Decision and Regression Tree GUI
and Viewer, 2007.
http://www.borgelt.net//dtgui.html.

[7] A. Chanda, A. Cox, and W. Zwaenepoel. Whodunit:
Transactional profiling for multi-tier applications.
EUROSYS, pages 17–30, 2007.

[8] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and
J. Symons. Correlating instrumentation data to system states:
a building block for automated diagnosis and control.
Symposium on Operating Systems Design and
Implementation, pages 231–244, 2004.

[9] P. J. Denning and J. P. Buzen. The operational analysis of
queueing network models. ACM Computing Surveys,
10(3):225–261, September 1978.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as Deviant Behavior: A General Approach to Inferring
Errors in Systems Code. ACM Symposium on Operating
System Principles, 2001.

[11] S. D. Gribble. Robustness in Complex Systems. Hot Topics
in Operating Systems, 2000.

[12] Q. He, C. Dovrolis, and M. Ammar. On the predictability of
large transfer TCP throughput. ACM SIGCOMM
Conference, pages 145–156, 2005.

[13] R. Jain. The art of computer systems performance analysis.
John Wiley & Sons, 1991.

[14] J. Katcher. PostMark: a new file system benchmark.
Technical report TR3022. Network Appliance, October 1997.

[15] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik.
Quantitative system performance: computer system analysis
using queuing network models. Prentice Hall, 1984.

[16] M. P. Mesnier, M. Wachs, R. R. Sambasivan, A. Zheng, and
G. R. Ganger. Modeling the relative fitness of storage. ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 37–48, 2007.

[17] Microsoft. System Center Capacity Planner, 2007.
http://www.microsoft.com/systemcenter/sccp/.

[18] T. M. Mitchell. Machine learning. McGraw-Hill, 1997.
[19] J. C. Mogul. Emergent (Mis)behavior vs. Complex Software

Systems. EuroSys, pages 293–304, 2006.
[20] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous

resource monitoring for self-predicting DBMS. International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS),
2005.

[21] W. Norcott and D. Capps. IOzone filesystem benchmark
program, 2002. http://www.iozone.org.

[22] S. E. Perl and W. E. Weihl. Performance assertion checking.
ACM Symposium on Operating System Principles, pages
134–145, 5–8 December 1993.

[23] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen,
G. R. Ganger, G. A. Gibson, and S. Seshan. Measurement
and Analysis of TCP Throughput Collapse in Cluster-based
Storage Systems. Conference on File and Storage
Technologies, 2008.

[24] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat. Pip: Detecting the unexpected in
distributed systems. Symposium on Networked Systems
Design and Implementation, pages 115–128, 2006.

[25] K. Shen, M. Zhong, and C. Li. I/O system performance
debugging using model-driven anomaly characterization.
Conference on File and Storage Technologies, pages
309–322, 2005.

[26] Sourceforge.net. Iperf, 2007.
http://sourceforge.net/projects/iperf.

[27] C. Stewart and K. Shen. Performance modeling and system
management for multi-component online services.
Symposium on Networked Systems Design and
Implementation, 2005.

[28] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:
Bugs or Bad Comments? */. ACM Symposium on Operating
System Principles, 2007.

[29] G. Tesauro, R. Das, N. Jong, and M. Bennani. A hybrid
reinforcement learning approach to autonomic resource
allocation. International Conference on Autonomic
Computing, pages 65–73, 2006.

[30] E. Thereska, M. Abd-El-Malek, J. J. Wylie, D. Narayanan,
and G. R. Ganger. Informed data distribution selection in a
self-predicting storage system. International conference on
autonomic computing, pages 187–198, 2006.

[31] E. Thereska, B. Salmon, J. Strunk, M. Wachs,
M. Abd-El-Malek, J. Lopez, and G. R. Ganger. Stardust:
Tracking activity in a distributed storage system. ACM
SIGMETRICS Conference on Measurement and Modeling
of Computer Systems, pages 3–14, 2006.

[32] Transaction Processing Performance Council. TPC
Benchmark C, December 2002.
http://www.tpc.org/tpcc/Revision5.1.0.

[33] M. Uysal, G. A. Alvarez, and A. Merchant. A modular,
analytical throughput model for modern disk arrays.
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems,
pages 183–192, 2001.

[34] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.
Ganger. Argon: performance insulation for shared storage
servers. Conference on File and Storage Technologies, 2007.

http://www.borgelt.net//dtgui.html
http://www.microsoft.com/systemcenter/sccp/
http://www.iozone.org
http://www.tpc.org/tpcc/ Revision 5.1.0

