
Observer: keeping system models from becoming
obsolete

Eno Thereska1, Dushyanth Narayanan2, Anastassia Ailamaki1, Gregory R. Ganger1
1 Carnegie Mellon University, 2 Microsoft Research - Cambridge, UK

CMU-PDL-07-101

January 2007

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

To be effective for automation, in practice, system models used for performance prediction and behavior checking must be robust.
They must be able to cope with component upgrades, misconfigurations, and workload-system interactions that were not antic-
ipated. This paper promotes making models self-evolving, such that they continuously evaluate their accuracy and adjust their
predictions accordingly. Such self-evaluation also enables confidence values to be provided with predictions, including identifi-
cation of situations where no trustworthy prediction can be produced. With a combination of expectation-based and observation-
based techniques, we believe that such self-evolving models can be achieved and used as a robust foundation for tuning, problem
diagnosis, capacity planning, and administration tasks.

Acknowledgements: We thank the members and companies of the PDL Consortium (including APC, Cisco, EMC, Hewlett-Packard, Hitachi,
IBM, Intel, Network Appliance, Oracle, Panasas, Seagate, and Symantec) for their interest, insights, feedback, and support. This material is based on
research sponsored in part by the National Science Foundation, via grants #CNS-0326453, #CCF-0621508 and #CCF-0621499, by the Department
of Energy, under Award number DE-FC02-06ER25767, and by the Army Research Office, under agreement number DAAD19–02–1–0389.



Keywords: behavioral models, relearning, statistical methods, queuing laws



1 Introduction

To design and maintain complex systems, it is critical to have a way to reason about them without resorting
to full implementation of alternatives. Hence, system behavioral models are often built to represent software
and hardware components. Such models are consulted for making acquisition, planning and performance
tuning decisions as well as for verifying that the system behaves as expected when deployed. For example, a
distributed storage system model that checks for compliance to specifications could verify that, when 3-way
replication is used, three storage-nodes are contacted on a write. For performance tuning, a storage-node
model could predict whether it is best to buy more memory or get faster disks.

Whereas it is reasonable to expect system designers to construct good behavioral models for how the
system should behave, one cannot expect that the models will account for all workload-system interac-
tions. Systems and workloads evolve, causing them to diverge from the models. Sometimes systems are
misconfigured to start with. The models that are built assuming an idealized, predefined workload-system
configurations thus become obsolete. When the models do not match reality, it is currently up to the system
designer/programmer/administrator (i.e., human being) to find out the root cause of the mismatch and fix
the models or system. In distributed systems with hundreds of resources and tens of competing workloads,
this task is enormous and time consuming and raises system management costs.

To be useful in practice, system models need to be robust. Robust models discover regions of operation
where the prediction confidence is high and regions for which they choose not to predict. They handle
deviations from the physical system by localizing the likely cause of a mismatch and continuously refine
themselves to account for unforeseen (and hence not programmed-in) workload-system interactions. Thus,
in the long run, the models themselves embody the necessary knowledge and rules of thumb that currently
humans attempt to learn.

Building self-evolving models will require detailed collection of system statistics (far more detailed
than currently done) and efficient algorithms for evolving the models. Hence, a significant amount of spare
resources (CPU, network, storage) will need to be used for model evolution. There are indications, however,
that system management costs vastly eclipse hardware costs, sometimes by an order of magnitude [7]. Now
is the time to throw extra hardware towards self-evolving models that are ultimately used to better manage
complex systems.

2 Context

System models allow one to reason about the behavior of the system while abstracting away details. Models
take as input a vector of workload and system characteristics and output the expected behavior (e.g., perfor-
mance) of the modeled component. System modeling approaches fall into two categories: expectation-based
and observation-based. Neither alone is adequate for robust modeling, but each has a role to play.

2.1 Expectation-based models

Expectation-based models use designer and programmer knowledge on how systems behave; thus, the
system is considered as white-box. The models have a built-in, hardwired definition of “normalcy”(e.g.,
see [9, 10, 12]). Indeed, highly accurate models have been built for disk arrays, network installations, cache
behavior, and CPU behavior.

Designers can model both structural and performance properties of a system and workload. For ex-
ample, a structural expectation in a distributed storage system is that, when RAID-5 encoding is used, five
storage-nodes should be contacted on a read. A CPU model might indicate that storage decryption of the
read data should use 0.02 ms for 16 KB blocks, and it should take 1.5 ms to send the data from the five

1



storage servers to the client over a 100 Mbps network. A cache model could predict whether the requests
will miss in cache and a disk model could predict their service time, and so on.

2.2 Observation-based models

Observation-based models do not make a priori assumptions on the behavior of the system. Instead, they
infer “normalcy” by observing the workload-system interaction space. As such, these models usually rely
on statistical techniques (e.g., see [2, 3, 4, 5, 13]). These models are often used when components of the
system are “black-box” (i.e., no knowledge is assumed about their internals).

For example, Cohen et al. [5] describe a performance model that links sudden performance degrada-
tions to the values of performance counters collected throughout the black-box system. If correlations are
found, for example, between a drop in performance and a suspiciously high CPU utilization at a server, the
administrator investigates the root cause by first starting to look at the CPU utilization on that server. In
another example, Wang et al. [13] built a storage server model based on observing historical behavior and
correlating workload characteristics, such as inter-arrival time, request locality, etc., with storage system
performance.

Observation-based models are the remedy option when pre-existing models are not available. How-
ever, they require a large set of training data (i.e., previous observations), an issue which can be a show-
stopper even for simple modeling tasks. In particular, observation-based models predict poorly the effects
of workload interference in shared systems. Consider a data center, for example. The performance of any
workload is strongly correlated with the load placed on the system’s resources (e.g., CPU, network, cache,
disk) by other interfering workloads. With the “load” attribute taking values from 0-100% for each of the
resources, the observation-based model would need to have seen millions of distinct load configurations to
make a reasonable performance prediction (which can be made in a straightforward manner when employing
expectation-based models that use queuing laws).

A simple analogy that illustrates this problem exists with the chess game: you can make the next move
by knowing nothing about chess rules (i.e., black-box) and only considering an annotated database of board
setup images. The other option is to make the move by applying chess rules (i.e., white-box).

2.3 A fusion of models

Expectation-based models are the right starting point for future system designers. However, the issue re-
mains how to evolve these models over time with minimal burden to humans. Models become obsolete if
they do not evolve. Indeed, we observed this to be the case with performance models in systems that we
traditionally considered to be white-box, since we designed and built them from scratch.

In addition, we found black-box behavior that resulted from either 1) unforeseen workload charac-
teristics or system configuration characteristics, 2) unforeseen interaction of white-box components or 3)
administrator misconfiguration of the system. We have come to believe that a robust solution will need to
augment expectation-based approaches with observation-based approaches. Known expectations should be
continuously observed and verified. Over time, high-confidence suggestions from the observation-based
models should be incorporated into the expectation-based models.

3 Components of a solution

We believe that any solution that addresses the problem of model evolution must address two issues: mis-
match localization and re-learning. The former is responsible for localizing mismatches between the model
and physical system. The latter is responsible for incorporating new information into the original model and
thus evolving it.

2



3.1 Mismatch localization

A robust, self-evolving model must detect when there is a deviation between the model and current workload-
system interactions. Thus, in addition to answering hypothetical what-if questions, individual models should
continuously self-check. They should check if the state of the system matches what the models predict. In
addition to individual models self-checking, there must be a second tier of self-checking that checks the
interaction of the individual models. Models are just like systems: as a whole, they can malfunction even
though individually they may be predicting fine [6].

From a feasibility perspective, there are several challenges. First, the self-checking itself must be
managed in terms of when it should happen and how frequently. Second, care must be taken to build efficient
models that do not consume unreasonable amounts of resources to self-check. Because management is
quickly becoming the dominant cost in systems, it may be justified to throw money at dedicated hardware
for modeling, but the costs need to be examined.

3.2 Re-learning and model evolution

After a successful mismatch localization, a re-learning component should be responsible for automatically
evolving the expectation-based models (or at least making educated suggestions to the model designers).
Any algorithm used for evolving must address two issues. First, it should discover new attributes of the
workload-system interaction space that should be incorporated into the model. Second, this component
should discover regions of operation where the prediction confidence is high and regions where the models
should not predict. Hence, any eventual model outputs should have a notion of confidence associated with
them. Below, we discuss a high-level approach that could address both issues.

3.2.1 Attributes, and more attributes

An observation we make is that, in many cases, system designers know the workload and system attributes
that are correlated with the workload’s eventual behavior, but not the exact nature of the correlation. Indeed,
most model designers build expectation-based models using initial attributes they “feel sure” about (because,
perhaps they have a theoretically proven correlation with reality).

For example, disk arrays come with a specification of their expected sequential- and random-access
throughput. This is the information on which many disk array models are initially built. However, there
are other workload characteristics (e.g., request locality and inter-arrival times, burstiness, disk queue size,
stripe width, etc.) that make a large difference in the eventual workload performance. Storage system
designers know that these attributes will have an impact on the prediction, but do not always know 1) which
of the attributes are most important, 2) their effect when combined, and 3) their effect on a particular disk
array type.

Hence, we think that expectation-based models should have observation-based parts to them. The
observation-based parts should incorporate learning algorithms that continuously sample the workload-
system space for new attributes and discover whether these attributes are strongly correlated to the out-
put. Over time, new highly-correlated attributes should be incorporated into the expectation-based model.
Observation-based models can also help with deriving confidence values for each prediction. This should be
done as part of keeping historical data that over time that reflect the model’s prediction accuracy. Confidence
values can them be used to make policy decisions.

Of course, the issue of having a rich attribute pool to select from is challenging. However, we believe
we are close to being able to collect much more detailed system statistics than was possible 10 years ago
(mostly due to hardware resources that are now cheap enough to be dedicated to statistics management). For
example, in our cluster-based storage system [1] we have started to collect environmental data (temperature,

3



humidity, etc), hardware demands (per-request, per-machine), error messages, request flow traces, hardware
and software configuration data (components, topology, users), and annotations of human activity.

3.2.2 Active probing and the big, red button

Two approaches can be used to accelerate the process of discovering strongly correlated attributes: active
probing and some human involvement. Without acceleration, important correlations may be missed due to
infrequent observations (e.g., one in 100 clients uses small stripe units, and their effect might not have been
modeled).

First, once an attribute is observed to have some correlation with the model’s output, active probing
(generating synthetic workloads to test that hypothesis) should be used. The challenges in need of research
here involve how to have the system itself construct meaningful probes, what kind of physical infrastructure
is needed to run the probes onto, and when should these probes run (i.e., a sensitivity study on how much
correlation is good enough to justify a probe).

Second, there needs to be a way to involve the designer/programmer/administrator in directing and
shaping the algorithms’ focus. There are plenty of ’false alarm’ events that may trigger the system to behave
strangely for a while (e.g., power outages, backups, machine re-configuration). In those cases, the human
should advise the algorithm to ignore what it learned. The challenge is to have the system designed with a
“big, red button” in mind that the administrator can press when such false-alarm events happen.

3.3 Example interactions

This section discusses how self-evolving models might help solve some real modeling challenges. We
experienced these challenges in our cluster-based storage system, which currently uses static models used
for performance prediction [11]. The first example illustrates how individual models would evolve. The
second illustrates how a collection of models that work fine individually, might struggle when composed.
The third illustrates how self-checking models could be used as a layer to build on for successful problem
diagnosis.

Unexpected CPU bottleneck: The CPU model in our system predicts the CPU demand needed to
encode/decode and encrypt a block of data when a particular data encoding scheme is used (e.g., replication
or erasure coding). A certain workload was getting less than half of its predicted throughput. A manual
inspection of the resources consumed revealed a CPU bottleneck on the client machine. The model was
significantly under-predicting the amount of CPU consumed and thus did not flag the CPU as a potential
bottleneck. It was later discovered that this was because the workload used small block sizes (512 B) and
the kernel network stack consumed significant amounts of CPU per-block. Hence, it was impossible to keep
the network pipeline full, since the CPU would bottleneck. Our CPU model was built using commonly-used
block sizes of 8-16 KB for which the per-block cost is amortized by the per-byte cost. We did not foresee
the different behavior from small block sizes.

Using robust models would ideally require no manual diagnosis. All resource models (CPU, network,
cache, disks) would self-check and the CPU one would be found the culprit (e.g., it predicted each block
needed 1 ms of CPU time; in reality it was taking 2-3 ms). An observation-based model might notice that
the attribute “block size” was significantly smaller than in the test cases and would start generating test cases
with small block sizes. These probes could run at night on the same physical infrastructure. Eventually the
“block size” attribute would be incorporated into the CPU model.

When striping goes wrong: The network model in our system predicts the network time to read and
write a block of data when a particular data encoding scheme is used. A particular workload had larger-
than-expected response times when data was read from multiple storage-nodes at once (e.g., when striping
data over more than 5 servers). All other workloads that shared servers with the first workload had normal

4



response times. A manual diagnosis of the problem took unreasonably long. Different tests were run, on
different machine types, kernels and switches. Using this semi-blind search, the problem was eventually
localized at a switch. The switch’s buffers were overflowing and packets were getting dropped. That started
TCP retransmissions on the storage nodes. The problem is known as TCP-influx [8], and is rather unique
to storage systems that read data from multiple sources synchronously (i.e., all storage-nodes were sending
data to the client at the same time).

Ideally, any manual diagnosis would be side-stepped by having the models self-check as the workload
is running. For example, the cache model might predict that the workload would get a hit rate of 10%
with 256 MB, and indeed that is what the workload would be getting. However, the network model might
reveal that remote-procedure-calls (RPCs) are taking 20 ms, when they should only be taking 0.2 ms. Sub-
models of the network model, the NIC and switch model, also self-check and the switch model might
report structural mismatches (same packet sent multiple times). The high-level data flow model would then
incorporate the retransmission probability related to the attribute “number of storage nodes used in striping”.

Understanding upgrade effects: We made the decision to upgrade each cluster server from the Linux
2.4 to the 2.6 kernel about a year ago. However, we still have not made the move. Several of our nightly
tests performed differently on 2.6 (some performed better, but a third of the tests performed much worse).
Ideally, each of the behavioral models would self-check to locate the mismatches with the previous kernel
version. It could be the case that several of the models report a discrepancy. For example, a change in the
TCP stack processing affects both network transmission times and CPU consumption. Both affect eventual
throughput and response time. However, we believe orthogonal diagnostic methods could be built on top of
a robust model self-check layer. Such diagnostic methods could, for example, perform a large run of tests
that are slightly different from one another. It could make use of the modeling layer to see how each test
interacts with parts of the system.

4 Conclusions

This position paper argues that humans should be relieved of the task of maintaining system models. After
a good-enough initial implementation, the models should evolve in the field, by incorporating new relevant
workload-system attributes. A robust model design will require maintenance of fine-grained, pervasive
system statistics, and may benefit from accelerated observation-based learning techniques. In the long run,
the models themselves will thus embody the necessary knowledge and rules of thumb that currently humans
attempt to learn.

References

[1] Michael Abd-El-Malek, William V. Courtright II, Chuck Cranor, Gregory R. Ganger, James Hen-
dricks, Andrew J. Klosterman, Michael Mesnier, Manish Prasad, Brandon Salmon, Raja R. Sambasi-
van, Shafeeq Sinnamohideen, John D. Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie. Ursa
Minor: versatile cluster-based storage. Conference on File and Storage Technologies (San Francisco,
CA, 13–16 December 2005), pages 59–72. USENIX Association, 2005.

[2] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick Reynolds, and Athicha Muthi-
tacharoen. Performance debugging for distributed systems of black boxes. ACM Symposium on Op-
erating System Principles (Bolton Landing, NY, 19–22 October 2003), pages 74–89. ACM Press,
2003.

5



[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for request ex-
traction and workload modelling. Symposium on Operating Systems Design and Implementation (San
Francisco, CA, December 2004), pages 259–272. USENIX Association, 2004.

[4] Mike Y. Chen, Anthony Accardi, Emre Kiciman, Dave Patterson, Armando Fox, and Eric Brewer.
Path-based failure and evolution management. Symposium on Networked Systems Design and Imple-
mentation (San Francisco, CA, 29–31 March 2004), pages 309–322. USENIX Association, 2004.

[5] Ira Cohen, Jeffrey S. Chase, Moises Goldszmidt, Terence Kelly, and Julie Symons. Correlating in-
strumentation data to system states: a building block for automated diagnosis and control. Symposium
on Operating Systems Design and Implementation (San Francisco, CA, 06–08 December 2004), pages
231–244. USENIX Association, 2004.

[6] Jeffery C. Mogul. Emergent (Mis)behavior vs. Complex Software Systems. EuroSys (Leuven, Bel-
gium, 18–21 April 2006), pages 293–304. ACM, 2006.

[7] Fred Moore. Storage New Horizons. Horison Information Strategies, 2005.

[8] David Nagle, Denis Serenyi, and Abbie Matthews. The Panasas ActiveScale storage cluster - delivering
scalable high bandwidth storage. SC. (Pittsburgh, PA, 06–12 November 2004), 2004.

[9] Sharon E. Perl and William E. Weihl. Performance assertion checking. ACM Symposium on Operating
System Principles (Asheville, NC), pages 134–145, 5–8 December 1993.

[10] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, and Amin
Vahdat. Pip: Detecting the unexpected in distributed systems. Symposium on Networked Systems
Design and Implementation (San Jose, CA, 08–10 May 2006), pages 115–128. Usenix Association,
2006.

[11] Eno Thereska, Michael Abd-El-Malek, Jay J. Wylie, Dushyanth Narayanan, and Gregory R. Ganger.
Informed data distribution selection in a self-predicting storage system. International conference on
autonomic computing (Dublin, Ireland, 12–16 June 2006), 2006.

[12] Mustafa Uysal, Guillermo A. Alvarez, and Arif Merchant. A modular, analytical throughput model for
modern disk arrays. International Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems (Cincinnati, OH, 15–18 August 2001), pages 183–192. IEEE, 2001.

[13] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Christos Faloutsos, and Gre-
gory R. Ganger. Storage Device Performance Prediction with CART Models. International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (Volendam, The
Netherlands, 05–07 October 2004). IEEE/ACM, 2004.

6


	Introduction
	Context
	Expectation-based models
	Observation-based models
	A fusion of models

	Components of a solution
	Mismatch localization
	Re-learning and model evolution
	Attributes, and more attributes
	Active probing and the big, red button

	Example interactions

	Conclusions

