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Abstract

Systems should be self-predicting. They should continuously monitor themselves and provide quantitative answers to What...if
questions about hypothetical workload or resource changes. Self-prediction would significantly simplify administrators’ planning
challenges, such as performance tuning and acquisition decisions, by reducing the detailed workload and internal system knowledge
required. This paper describes and evaluates support for self-prediction in a cluster-based storage system and its application to
What...if questions about data distribution selection.
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1 Introduction

Storage administration is a difficult and expensive task [Ganger03a, Gartner00, Gray03]. One major por-
tion of this task addresses planning challenges such as acquisition decisions, component configurations,
assignment of datasets/workloads to components, and resolving performance problems. For many of these
challenges, the most complex aspect is understanding the performance consequences of any given deci-
sion.1 These consequences usually depend on specifics of the workload (i.e., the interleaved I/O patterns of
the various applications) and the storage system internals.

Traditionally, administrators use two tools when making planning decisions: their expertise and system
over-provisioning. Most administrators work with a collection of rules-of-thumb learned and developed
over their years of experience. Combined with whatever understanding of application and storage system
specifics are available to them, they apply these rules-of-thumb to planning challenges. For example, one
administrator might apply the rule “if average queueing delays are greater than 10 ms, then spread data/work
over more disks” to resolve a perceived performance problem. Since human-utilized rules-of-thumb are
rarely precise, over-provisioning is used to reduce the need for detailed decisions. For example, one common
historical rule-of-thumb called for ensuring that disk utilization stayed below 30% (i.e., always have three
times the necessary disk throughput available). Both tools are expensive, expertise because it requires
specialization and over-provisioning because it wastes hardware and human2 resources. Further, sufficient
expertise becomes increasingly difficult to achieve as storage systems and applications grow in complexity.

We believe that systems must provide more assistance to administrators. Storage systems should be
self-predicting: able to provide quantitative answers to administrators’ performance questions involved with
their planning. With appropriate built-in monitoring and modeling tools, we believe that storage systems
can answer What...if questions about potential changes. For example, “What would be the performance of
workload X if its data were moved from device A to device B?”. With answers to such What...if questions,
administrators could make informed decisions with much less expertise. Further, iterating over What...if
questions (e.g., one for each possible option) enables a search-based approach to automating, or at least
automatically guiding, planning decisions.

This paper describes support for self-prediction in a cluster-based storage system and its application to
What...if questions about data distribution choices. The data distribution for a dataset describes how it is en-
coded (e.g., replication vs. erasure coding) and assigned to storage-nodes within the cluster. No single data
distribution choice is best for all data [Abd-el-malek05b], and cluster-based storage systems will support a
variety of choices just like disk array systems (RAID 5, RAID 0�1, etc.). The data distribution used for a
given dataset has a large impact on its performance, availability, and confidentiality. Self-prediction assists
with understanding the performance impacts of any given data distribution option.

Of course, the performance for a data distribution is a complex function of I/O workload and storage-
node characteristics. Selecting the right encoding requires knowledge of the access patterns and the bot-
tleneck resources. For example, small random writes often interact poorly with erasure coding, but large
streaming writes benefit from the reduced network bandwidth used relative to replication. Data placement
requires the same knowledge as encoding selection, as well as knowledge of how workloads will interact
when sharing storage-nodes. For example, two workloads that benefit from large caches may experience
dramatic performance decreases if assigned to the same storage-node. Answering What...if questions about
data distribution choices requires accounting for all of these effects.

Self-prediction has two primary building blocks: monitoring and modeling. The monitoring must
be detailed so that per-workload, per-resource demands and latencies can be quantified. The aggregate
performance counters usually exposed by storage systems are insufficient for this purpose. Our system

1Non-performance issues, such as cost and reliability, are also involved. But, these usually require much less understanding of
the inner workings of system components and applications.

2The additional hardware must be configured and maintained.
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uses end-to-end instrumentation in the form of traces of “activity records” that mark steps reached in the
processing of any given request, and post-processes the traces to compute demands and latencies. Modules
for answering What...if questions use modeling tools and the observation data to produce answers. Tools
used include experimental measurements (for encode/decode CPU costs), operational laws (for bottleneck
analysis), and simulation (for cache hit rate projections). What...if questions can be layered, with high-level
What...if modules combining the answers of multiple lower-level What...if modules. For example, “What
would be the performance of client A’s workload if we add client B’s workload onto the storage-nodes it
is using?” would need answers to questions about how the cache hit rate would change, how the network
utilization would change, etc.

Evaluations show that our self-prediction infrastructure is effective. Most importantly, high-level
What...if questions about how performance for different workloads will change with dataset migration or
encoding changes are answered with less than 15% error in almost all cases. Such accuracy should be suf-
ficient for most planning decisions, as they exceed the detail usually available for the traditional approach.
The monitoring instrumentation places less than 6% overhead on foreground workloads, which we view as
an acceptable cost for the benefits provided.

These results demonstrate the feasibility of self-prediction for substantial What...if questions in real
systems. In the specific context of data distribution planning, these What...if questions could be used in
making assignment decisions for new workloads, redistribution decisions when new storage-nodes are ac-
quired or existing storage-nodes fail, migration and re-encode decisions for tuning performance, etc. We
believe that such self-prediction will play an important role in the move towards more automated systems.

2 Data distribution selection

It is difficult to understand the performance implications of a data distribution choice. To do so requires a
detailed understanding of the interactions between a workload and the system resources, and an understand-
ing of how those interactions change with the encoding choice. Both choosing the right encoding and the
right set of storage-nodes on which to actually place the data are dynamic problems. Clients enter and leave
a system and storage-nodes are added and retired during failures. Clients’ workloads also change and may
require re-encoding and re-distribution onto different sets of storage-nodes for load balancing. To improve
the process of data distribution selection, we’ve developed a generic infrastructure that can evaluate the
performance impact of hypothetical choices.

2.1. Cluster-based storage systems

Traditional storage systems are built around a single-vendor, monolithic disk array design that has tradi-
tionally focused on high-performance and availability. Such systems are very reliable, but they are also
expensive and do not scale well. Incremental scaling is not an option with such systems, and a client often
needs to buy another expensive system when the scalability requirements slightly exceed the ones provided
by the older system. Cluster-based storage systems, built from commodity hardware, have been developed
to address these scalability and cost issues [Abd-el-malek05b, Saito04a, Zhang04b]. The individual servers
are often called storage-nodes and provide a certain amount of CPU, buffer cache and storage space. These
components are cheap since they can be mass-produced. Incremental scalability is provided by their addition
into the system.

Commodity hardware is often less reliable than customized hardware, and these storage-nodes usually
have lower performance than customized disk arrays. To make up for the lower storage-node reliability
and performance, data is strategically distributed to enable access parallelism and reliability in face of node
failures. A data distribution is an algorithm for encoding the data to meet availability and confidentiality
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Parameters Description
n Data is encoded in n fragments.
m Any m fragments reconstruct the data.

encryption Encryption ensures confidentiality.

Table 1: Data encoding tunable parameters.

needs and choosing the set of storage-nodes to host the data.
There is no single data distribution that is best for all data. The data distribution choice has major

impact on three crucial system metrics: availability, confidentiality and performance. The data a bank
stores, for example, has different availability goals than the data of an online retailer [Keeton04], and thus
they may require a different encoding. The online retailer may have a stricter confidentiality goal than an
email provider and thus may require encryption. The online retailer may have more stringent performance
requirements than the bank, and require that response times be kept below a threshold.

2.2. Data encoding

A data encoding specifies the degree of redundancy with which a piece of data is encoded, the manner in
which redundancy is achieved, and whether or not the data is encrypted. Availability requirements dictate
the degree of data redundancy. Redundancy is achieved by replicating or erasure coding the data [Chen94,
Rabin89]. The erasure coding scheme is characterized by the parameters �m�n�. An m-of-n scheme encodes
data into n fragments such that reading any m of them can reconstruct the original data. Confidentiality
requirements dictate whether or not encryption is employed. Encryption, is performed prior to such encoding
(and decryption is performed after decoding). Table1 lists these tunable parameters.

There is a large trade-off space in terms of the level of availability, confidentiality, and system re-
sources (such as CPU, network, storage) consumed as a result of the encoding choice. For example, as n
increases, relative to m, data availability increases. However, the storage capacity consumed also increases
(as does the network bandwidth required during data writes). As m increases, the encoding becomes more
space-efficient: less storage capacity is required to provide a specific degree of data redundancy. However,
availability decreases (more fragments are needed to reconstruct the data during a read). When encryption is
used, the confidentiality of the data increases, but the demand on CPU increases (to encrypt the data). Other
trade-offs with respect to CPU, storage and network demand are discussed in Section3.3.4 and Section 3.3.5.

The workload for a given piece of data should also be considered when selecting the data encoding. For
example, it may make more sense to increase m for a write-mostly workload, so that less network bandwidth
is consumed. Compare 3-way replication (i.e., a 1-of-3 encoding) that consumes approximately 40% more
network bandwidth to a 3-of-5 erasure coding scheme for an all-write workload. For an all-read workload,
however, both schemes consume the same network bandwidth. Others have explained these trade-offs in
significant detail [Weatherspoon02, Wylie05].

Because of this large trade-off space and the dependence on workload characteristics, it is very difficult
for an administrator to know a priori the effects of an encoding change — hence the need for system
self-prediction. Ideally, a system would answer high-level performance questions related to throughput
and latency by answering sub-questions of the form “What would be the CPU/network/storage demand of
workload A, if it is encoded using scheme E?”.

2.3. Data placement

In addition to selecting the data encoding, the storage-nodes on which encoded data fragments are placed
must be selected. When data is initially created, the question of placement must be answered. Many different
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system events may require the placement decision to be revisited. For example, when new storage-nodes are
added to the cluster, when old storage-nodes are retired, and when the workloads have changed sufficiently
to warrant re-balancing load. Quantifying the performance effect of adding or subtracting a workload from
a set of storage-nodes is non-trivial. Each storage-node may have different physical characteristics (e.g., the
amount of buffer cache, types of disks, and network connectivity) and host different pieces of data whose
workloads lead to different levels of contention for the physical resources.

Workload movement What...if questions (e.g., “What is the expected throughput/response client A can
get if its workload is moved to a set of storage-nodes S?”) need answers to several sub-questions. First,
the buffer cache hit rate of the new workload and the original workloads on those storage-nodes need to be
evaluated (i.e., for each of the workloads the question is “What is the buffer cache hit rate if I add/subtract
workload A to/from this storage-node?”). The answer to this question will depend on the particulars of the
buffer cache management algorithm the storage-node uses. Second, the disk demand (or service time) for
each of the I/O workloads’ requests that miss in buffer cache will need to be predicted (i.e., for each of the
workloads, the question is “What is the average I/O service time if I add/subtract workload A to/from this
storage-node?”). Third, the network load on each of the storage-nodes that results from adding/subtracting
workloads needs to be predicted as well.

It is challenging for administrators to answer What...if questions such as the above. Doing so requires
one to understand the system internals (e.g., buffer cache replacement policies) and keep track of the work-
loads each resource is seeing (e.g., buffer cache records for each workload and storage-node). The next
section describes how encoding and workload addition/subtraction problems can be answered with end-to-
end instrumentation and built-in models.

3 System design and architecture

This section describes a cluster-based storage system and how its design supports performance self-prediction.

3.1. Versatile cluster-based storage

Ursa Minor is a cluster-based storage system that provides data distribution versatility (i.e., a wide range
of options within a single system) and the ability to change data to a different distribution online. Its
architecture and implementation are described by Abd-El-Malek et al [Abd-el-malek05b]. At the core of its
architecture is the separation of mechanical functions (servicing client requests) from managerial functions
(automating administrative activities). The managerial tier consists of agents and algorithms for automating
internal decisions and helping administrators understand the consequences of external ones. The mechanical
tier is designed to self-monitor and includes self-predictive capabilities used by the management tier. The
high-level architecture of our system is shown in Figure1. Below, we explain some of the terminology used.

Clients: Clients of the system store and access data. Data may have different availability, confiden-
tiality and performance goals. Clients make use of the PASIS protocol family to encode data [Goodson04,
Wylie05]. (We use only a subset of the versatility provided by the PASIS protocol family in this work,
i.e., we exclusively consider crash failures in a synchronous timing model.) Illustrated in Figure1 are two
clients. The first is writing data with a 3-of-5 encoding (thus having to write to 5 storage-nodes). The second
is reading the data from 3 of the 5 storage-nodes.

Storage-nodes: The storage-nodes have CPUs, buffer cache and disks. Storage-nodes are expected
to be heterogeneous, as they get upgraded or retired over time and sometimes are purchased from different
vendors.
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Client (encoding) Storage-nodes

m Fragments Block

n Fragments

Block

 ATI:  CPU, network, cache, disk monitoring

What...if modules: CPU, network, cache, disk

Mechanical
tier

Administrator

Availability, confidentiality,
performance goals

Automation agents

What...If questions

Client (decoding)

Managerial
tier

Quantitative predictions

(optional) What...If questions 

Figure 1: High-level architecture of the self-predictive architecture within Ursa Minor. The mechanical
tier, on the bottom, services I/O requests for clients. The managerial tier, on the top, provides automation. It
makes use of the self-predicting capabilities of the individual system components to get answers to various
What...if explorations.

Administrators: Administrators are responsible for setting availability, confidentiality and perfor-
mance goals. Availability goals may be expressed with a monetary value attached to data loss or data
outage (e.g., as Keeton et al. describe [Keeton04]). Confidentiality may be specified as a binary choice
(encrypt the data or not). Performance goals are often expressed in terms of service-level agreements that
specify a desired level of throughput and response time. Administrators are not required to understand the
workload-system interactions. They can use the predictive infrastructure to ask What...if questions (e.g., for
guiding purchase decisions).

Automation agents: Automation agents are responsible for making sure that administrator goals are
met. Previous work has shown how to convert availability and confidentiality goals into encoding deci-
sions [Goodson04, Keeton04, Wylie05]. In this work, we focus on enabling the automation agents to quan-
tify the performance impact of data distribution choices.

Activity tracking infrastructure (ATI) and What...if modules: The ATI continuously tracks requests
as they move from component to component in the distributed storage system. The ATI is integrated in every
storage-node. It allows differentiation among multiple workload streams and presents a unified distributed
performance monitoring infrastructure. What...if modules use that infrastructure to measure resource con-
sumption by different clients and make performance predictions regarding hypothetical workload and/or
resource changes. Predictions from several resource-specific What...if modules are analyzed by the automa-
tion agents to make high-level throughput and response time predictions.

3.2. Continuous resource monitoring

The ATI is responsible for keeping track of the performance of every client request along the entire execution
path of the request. The ATI thus keeps track of per-client per-resource demands, as well as per-client request
latency graphs. Such graphs can help understand where a request spends most of its time. The ATI retains
activity records, such as buffer cache reference records, I/O records, and network transmit/receive records.
The sequence of records allow tracking of a request as it moves in the system, from one computer, through
the network, to another computer, and back. Retaining activity records permits automation agents to use
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timestamp  breadcrumb  pid  tid diskno  lbn  size  op

header payload

Figure 2: Example activity record. Each activity record has a common header and a payload. The payload
for the disk request activity record shown includes the disk id, logical block number (lbn), size of the I/O in
bytes, and operation type.

simulation techniques to answer What...if questions, when needed. Activity records are effectively a super-
set of performance counters. Any performance counter value of interest can be extracted by querying the
database of records.

Each computer runs a single ATI instance. The ATI instance is responsible for presenting any process
running on that computer with APIs for posting and querying activity records. For querying flexibility, ATI
records are stored in relational databases (Activity DBs). Activity records posted to the ATI instance are
periodically sent to Activity DBs. Activity DBs run on the same infrastructure computers with the rest of
the system. The DBs store the records in relational tables and answer queries on those records.

An activity record is the smallest unit of data stored in the Activity DBs. An activity record is a
sequence of (attribute, value) pairs. Figure2 shows an example activity record. Each activity record contains
an automatically-generated header comprised of a timestamp, breadcrumb, kernel-level process id, and user-
level thread id. The timestamp is a cycle-accurate timestamp generated by the computer that permits accurate
timing measurements of requests. The breadcrumb permits records associated with a given request to be
correlated within and across computers. Activity records are posted at strategic locations in the code so that
the demand on a resource is captured. For example, the disk activity record is posted both when the request
is sent to disk and when the request completes. Both postings contain the same breadcrumb, because they
belong to the same request, and so can be correlated. Posting activity records is on the critical path; however,
as our evaluation shows, such posting causes minimal impact on foreground performance. Table2 lists the
instrumentation points in Ursa Minor.

Activity DBs are queried by internal resource-specific What...if modules using the common SQL lan-
guage. For example, to get a disk I/O trace for a certain storage-node, one could query the Activity DB that
keeps records for that storage-node’s disk activity records. Querying activity records is not on the critical
path, though storing activity records in a database permits efficient execution of queries.

3.3. What. . . if modules

What...if modules are structured in two tiers. The lower tier answers performance questions pertaining
to specific resources (e.g., CPU, buffer cache hit rate, I/O service times). The upper tier is part of the
Automation Agents and is responsible for using the lower tier to make high-level predictions of performance
metrics of interest.

3.3.1 Performance metrics

Performance metrics of interest to us are expected client throughput and response time under a hypothetical
data distribution change. In addition, we want to predict client peak achievable throughput. In Ursa Minor,
there is a request processing pipeline with at least two stages (a request to access data needs to access the
metadata service and then the storage-nodes). Throughput depends on the number of outstanding requests
the client issues to fill that pipeline. Intuitively, peak throughput is achieved when the pipeline is full. Any
further increase in number of outstanding requests does not increase throughput but may increase response
time.

6



Record Type Arguments Description
CPU demand UserThreadSwitch oldthread, newthread A user-level context switch

KernelProcessSwitch cpuid, oldprocess, newprocess A kernel context switch
Buffer cache demand BufferReadHit file, offset, size Denotes a buffer cache hit

BufferReadMiss file, offset, size Denotes a buffer cache miss
BufferWrite file, offset, size Denotes a write. Marks buffer dirty
BufferReadAhead file, offset, numblocks Prefetch pages (non-blocking)
BufferEvict file, offset, size Evict a page to disk
BufferFree file, offset, size Release a page to the free pool

Network demand NetworkTransmit sender, receiver, numbytes Monitors network flow
Disk demand DiskOp diskid, lbn, size, operation Monitors disk activity

Table 2: Activity record types posted in Ursa Minor. KernelProcessSwitch records are provided by the
(modified) OS kernel; the other records are posted from instrumentation points in user-level processes. Each
record is also automatically annotated with a common header as shown in Figure2. There are approximately
200 instrumentation points in Ursa Minor.

3.3.2 Throughput prediction

To predict aggregate throughput under a hypothetical distribution change, our algorithms assume a closed-
loop workload3 and use operational analysis [Lazowska84a] on all resources (CPUs, networks, disks).

Let Dk
i be the average demand, in seconds, of a request from client i on resource k. Let Di be the sum of

all demands on all resources a request uses. Let Dmax
i be the largest demand client i places on any resource

(that resource with the highest demand is called the bottleneck resource). If the ATI measures that client i
has, on average, Ni requests outstanding, then client i’s throughput bound Ti is:

Ti � min

�
1

Dmax
i

�
Ni

Di

�
(1)

If the client has a small number of outstanding requests, and thus cannot keep all resources utilized, then its
throughput is predicted to be the second part of the equation (Ni�Di). Otherwise, the throughput is the peak
throughput 1�Dmax

i obtained by saturating the bottleneck resource. The threshold N�

i for determining if the
load is light or not is N�

i � Di�Dmax
i . N�

i can be thought of as the minimum number of requests required to
keep the request pipeline full.

Let T CPU
i be the maximum throughput of the client CPU, in terms of requests it can process. It equals

1�DCPU
i , where DCPU

i is the average CPU demand per request. The new CPU demand is predicted using the
method described in Section 3.3.4.

Let T NET
i be the maximum network throughput, in terms of number of requests it can process. It equals

1�DNET
i , where DNET

i is the average network demand per request. The original network demand is measured
while the workload has been running. The new network demand is predicted based on the the observed
workload patterns and the new encoding decision as described in Section3.3.5.

Let T I�O
i be the maximum disk throughput, in terms of number of requests that it can process. It equals

1�nI�O
i DI�O

i . nI�O
i is the average number of disk requests that result from the original client request. Not all

original client requests result in a disk request. Some requests hit in the buffer cache and do not go to disk.
In general, if the buffer cache hit rate for a client i is pi, then ni equals 1� pi. DI�O

i is the average service
time for a disk request.

3If the workload is open-loop, then throughput is the number of requests the client is sending and does not need to be predicted.
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Both nI�O
i and DI�O

i need to be predicted for a hypothetical data distribution. Both depend heavily on
the interaction between the node’s buffer cache size and disks at each node, as explained in Sections3.3.6
and 3.3.7 respectively. They also depend on workload access patterns (e.g., sequential or random).

3.3.3 Response time prediction

We predict response time Ri by transforming our throughput predictions above using Little’s law [Lazowska84a],
which states that

Ri �
Ni

Ti
(2)

Equation 2 determines the minimum response time when the client achieves peak throughput. Any fur-
ther increases in the number of client outstanding requests will not increase throughput, but will increase
response time linearly.

3.3.4 CPU What. . . if module

The goal of the client CPU module4 is to answer sub-questions of the form “What is the request demand
DCPU

i for requests from client i if those requests are encoded using scheme E?”. The CPU modules use
direct measurements of encode/decode costs to answer these questions. Direct measurements of the CPU
cost are acceptable, since each encode/decode operation is short in duration. Inputs to the CPU module are
the hypothetical encoding E and the measured read:write ratio of the workload (as measured by the ATI).
The CPU module encodes and decodes one request several times with the new hypothetical encoding and
produces the average CPU time for reads and writes. Intuitively, schemes based on replication utilize little
client CPU, but place more demand on the network and storage resources. Schemes based on erasure coding
are network and storage efficient, but require more client CPU work to encode the data. All schemes require
significant amounts of CPU work when using encryption.

3.3.5 Network What. . . if module

The goal of the network module is to answer sub-questions of the form “What is the request demand DNET
i

for requests from client i if those requests are encoded using scheme E?”. To capture first order effects, the
network module uses a simple analytical function to predict network demand based on the number of bytes
transmitted. Inputs to the network module are the hypothetical encoding E and the measured read:write ratio
of the workload (as measured by the ATI). In Ursa Minor, a write updates n storage-nodes and a read reads
data from only m storage-nodes. The network demand for a single request is the minimum time needed to
transmit the data for a request (i.e., if that request was the only one using the network) plus a well-known
fixed cost for the latency to get the first bit to the destination. The time to transmit data equals the size
of the request in bytes divided by the network bandwidth. The fragment’s size is computed as the original
request’s size divided by m.

3.3.6 Buffer Cache What. . . if module

The goal of the buffer cache module is to answer sub-questions of the form “What is the average number

of requests nI�O
i that miss in buffer cache (and thus have to go to disk) if a workload from client i is added

to a storage-node?”. The buffer cache module can similarly answer questions on other workloads when one
client’s workload is removed from a storage-node. A buffer cache miss requires orders of magnitude more

4There is CPU consumed at the storage-nodes as well, for example, when checking data checksums. However, the storage-
node CPU does not become the bottleneck in practice, so we focus on the client CPU, which is used for encoding/decoding and
encryption.
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time than a buffer cache hit, hence the performance the client sees is very much dependent on the storage-
node’s buffer cache. The buffer cache behavior of a workload depends on its access patterns, working set
size, and the storage-node’s buffer cache replacement policy.

Consider workload W0 being placed on a storage-node that already hosts P workloads W1� ����WP. The
prediction takes the form:

�nI�O
0 �nI�O

1 � ����nI�O
P �� BufferCachemodule�W0�W1� ����WP� (3)

The buffer cache module uses simulation to make a prediction. The module takes buffer cache records
of each of the W0�W1� ����WN workloads, collected through the ATI and replays them, keeping track of the
new number of hits and misses when these records are run on the same nodes. The reason simulation is
used, rather than an analytical model, is because buffer cache replacement and persistence policies are often
complex and system-dependent. They cannot be accurately captured using analytical formulas. The storage-
node buffer cache policy in our system is a variant of least-recently-used (LRU) with certain optimizations.

3.3.7 Disk What. . . if module

The goal of the disk module is to answer sub-questions of the form “What is the average service time
DI�O

i of a request from client i if that request is part of a random/sequential, read/write stream?” The
average service time for a request is dependent on the access patterns of the workload and the policy of the
underlying storage-node. Storage-nodes in Ursa Minor are optimized for writes, utilize NVRAM, and use a
log-structured layout on disk [Soules03].

The disk module is analytical in nature. It receives the interleaved sequence of I/Os from the different
workloads, scans the combined trace to find sequential and random streams within it, and assigns an expected
service time to each of them:

�DI�O
0 �DI�O

1 � ����DI�O
P �� Diskmodule�n

I�O
0 �nI�O

1 � ����nI�O
P � (4)

3.3.8 Using the What. . . if modules together

To predict client A’s throughput, the Automation Agent consults the resource-specific What...if modules to
determine which of the resources will be the bottleneck resource. Client A’s peak throughput will be limited
by the throughput of that resource. In practice, other clients will be sharing the resources too, effectively
reducing the maximum throughput those resources would provide if client A was the only one running. The
Automation Agent adjusts the predicted client A’s throughput to account for that loss.

4 Evaluation

This section evaluates the predictive framework. First, we show the accuracy of the individual What...if
modules under several encoding choices. Second, we show the accuracy of high-level What...if questions on
throughput and response time that make use of several of the above modules at once. Third, we show that
the overhead of the requisite instrumentation is low.

4.1. Experimental setup

The experiments use a cluster of standard x86-based computers. Clients have machines with Pentium 4 Xeon
3.0 GHz processors with 2 GB of RAM. Unless otherwise mentioned, all storage-nodes have Pentium 4
2.6 GHz processors with 1 GB of RAM; they have a single Intel 82546 gigabit Ethernet adapter in each
computer, connected via a Dell PowerConnect 5224 switch. The disk configuration in each computer varies
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and disk capacities range from 8 to 250 GB. All computers run the Debian “testing” distribution and use
Linux kernel version 2.4.22. We use micro- and macro-benchmarks. Macro benchmarks are unmodified and
make use of an NFS server that communicates directly with the storage-nodes using the Ursa Minor access
protocol. Micro benchmarks access the storage-nodes directly using the same protocol.

SSIO BENCHMARK: This micro benchmark allows control of the workload read:write ratio, ac-
cess patterns and client outstanding requests. The performance of this workload is reported in terms of
requests/sec or MB/s and response time per request. The access size is 32 KB for this benchmark.

OLTP workload: The OLTP workload is an on-line TPC-C-like [TPCCdoc] database workload. Trans-
actions consists of 8 KB read-modify-write operations to a small number of records in a 5 GB database. The
performance of this workload is reported in transactions per minute (tpm).

Postmark: Postmark is a user-level file system benchmark designed to emulate small file workloads
such as e-mail and netnews. It measures the number of transactions per second that the system is capable
of supporting [Katcher97]. A transaction is a file creation or deletion, paired with a read or an append.
The configuration parameters used were 20000 files, 20000 transactions, and 140 subdirectories. All other
parameters were left as default. The performance of this workload is reported in transactions per second
(tps).

Iozone: Iozone is a general file system benchmark that can be used to represent streaming data access
(e.g., data mining) [Norcott02]. For our experiments, it measured the performance for 64 KB sequential
writes and reads to a single 2 GB file. The performance of this workload is reported in megabytes per
second read and written.

For conciseness, we present results for only five data encodings. These results are indicative of the
many other encodings we explored. 1-of-1 refers to 1-way replication. 1-of-3 is 3-way replication and
can tolerate up to 2 storage-node faults. 1-of-3 encr is 3-way replication where the data is also encrypted to
ensure confidentiality. 3-of-5 is an example of an erasure coding scheme that also tolerates two storage-node
faults but is more storage efficient than 1-of-3. 3-of-5 encr is the 3-of-5 scheme with encryption. Unless
otherwise mentioned, all experiments are run ten times and the average together with the standard deviation
is reported.

4.2. Resource-specific What. . . if modules

This section illustrates the output of the resource-specific What...if modules in isolation. The CPU and net-
work What...if modules are based on direct measurements, hence the prediction accuracy is almost perfect,
so for those two resources we concentrate more on illustrating the large variance in resource consumption
as a function of encoding choice. The memory and disk What...if modules are based on simulation and
analytical models respectively, and we concentrate on the prediction accuracy of these modules.

CPU What...if module: Recall from Section 3.3.4 that the goal of the CPU module is to answer sub-
questions of the form “What is the request demand DCPU

i for requests from client i if those requests are
encoded using scheme E?”. Figure 3 shows how the CPU demand varies based on the encoding scheme
used. The module runs 100 encode/decode samples each time and reports the average. Some encoding
schemes differ from others by more than an order of magnitude, and as we show later in this evaluation,
the client CPU may become the bottleneck. The main source of error in predicting the CPU demand is the
module being preempted while performing the measurements. However, that error is very small.

Network What...if module: Recall from section 3.3.5 that the goal of the network module is to answer
sub-questions of the form “What is the request demand DNET

i for requests from client i if those requests are
encoded using scheme E?”. Figure 4 shows how the network demand varies based on the encoding schemes
used. Note that some schemes such as 3-way replication place a large demand on the network during writes
because they need to update all storage-nodes involved. As we show later in this evaluation, the network
may become the bottleneck in those cases.
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Figure 3: CPU What...if module output. This figure illustrates how the CPU demand per request can differ
based on the chosen encoding. Five encoding choices are shown, together with the cost for encoding data
(during a write) and decoding it (during a read).
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Figure 4: Network What...if module output. This figure illustrates how the network demand per request
can differ based on the chosen encoding.

Buffer Cache What...if module: Recall from section 3.3.6 that the goal of the buffer cache module is

to answer sub-questions of the form “What is the average number of requests nI�O
i that miss in buffer cache

(and thus have to go to disk) if a workload from client i is added to a storage-node?”. Figure5 illustrates
the accuracy of the buffer cache module under three workloads of varying work-set size and access patterns.
The encoding for these workloads is 1-of-1. For each of the workloads, the ATI collected the original buffer
cache reference trace when the buffer cache size was 512 MB and the What...if module predicted what will
happen for all other buffer cache sizes. (The choice of 512 MB is rather arbitrary, but we have verified that
any other size in the range shown gives similar results). This experiment illustrates what would happen if,
for example, another workload was added to the storage-node and the amount of buffer cache dedicated to
the original one shrinked, or if a workload was removed from the storage-node and the amount of buffer
cache dedicated to the original one was increased.

The simulator’s throughput, in terms of requests that can be simulated per second is an important metric
too. We have observed that for cache hits the simulator and real cache manager need similar times to process
a request. The simulator is on average three orders of magnitude faster than the real system when handling
cache misses (the simulator spends at most 9,500 CPU cycles in a 3.0 GhZ processor, while the real system
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Figure 5: Buffer Cache What...if module output. This figure illustrates the accuracy of the buffer cache
simulator in predicting the storage-node buffer cache hit rate under various workloads. For Postmark and
Iozone, the actual and predicted hit rate are almost indistinguishable, indicating excellent prediction accu-
racy.
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Figure 6: Disk What...if module output. This figure illustrates the accuracy of the disk module in predicting
request service times for several workloads with different access patterns.

spends about 22,548,578 cycles)
Disk What...if module: Recall from section 3.3.7 that the goal of the disk module is to answer sub-

questions of the form “What is the average service time DI�O
i of a request from client i if that request is

part of a random/sequential read/write stream?” Figure 6 illustrates the accuracy of the disk module. The
buffer cache module produces a disk reference trace (for requests that miss in buffer cache) and the disk
module takes those requests, analyzes their access patterns, and predicts individual request service times
from them. The module captures well the service time trends, but there is room for improvement, as seen in
the Postmark case. The rather large inaccuracy at the 512 MB buffer cache size, in that case, occurs because
more requests are hitting in the buffer cache, and those few requests that go to disk are serviced in FIFO
fashion, thereby reducing the efficiency of the disk head in scheduling them. Our module is built assuming
a full disk queue, which enables more efficient disk scheduling; in general predicting the size of the disk
queue requires assumptions about arrival patterns (e.g., Poisson arrivals) that we do not want to make. The
prediction inaccuracy seen is the penalty we pay for having a generic model. In practice, however, such a
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Figure 7: Predicting maximum throughput for CPU-bound workloads. The high-level performance
question that this experiment answers is “What is the maximum throughput client A can get if its workload’s
encoding changes from 3-way replication to 3-way replication with encryption?”

model is sufficient to show when the disk becomes a bottleneck. More accurate disk modules, (e.g., based
on simulation [Bucy03]) could be used to improve the accuracy.

4.3. Automation agent predictions

This section evaluates the accuracy of the Automation Agent in predicting the throughput and response time
using several of the What...if modules in combination.

Predicting cost of encryption: The first experiment is illustrated in Figure 7. The high-level perfor-
mance question that this experiment answers is “What is the maximum throughput client A can get if its
workload’s encoding changes from 3-way replication to 3-way replication with encryption (or the other way
around)?” We answer this question considering different read:write ratios the client’s workload may have.
We use the SSIO BENCHMARK to change the read:write ratio. There are several trends worth noting.
First, the prediction tracks well the actual throughput lines. Second, when using encryption, the client’s
CPU is the bottleneck resource, hence the maximum throughput is limited by its speed. Third, as the read
percentage increases, the throughput for the encoding without encryption increases, since reads obtain data
from only one of the storage-nodes, while writes need to update all three storage-nodes, thus placing more
load on the client’s network card.

Replication vs. erasure codes: The second experiment is illustrated in Figure 8. The high-level
performance question that this experiment answers is “What is the maximum throughput client A can get
if its workload’s encoding changes from 3-way replication to using a 3-of-5 erasure coding scheme (or the
other way around)?”. A 3-of-5 scheme is more storage efficient than 3-way replication, while tolerating
the same number of storage-node faults (two). We answer this question for different read:write ratios using
the SSIO BENCHMARK to change the read:write ratio. The prediction accuracy for the 3-of-5 scheme
is less than that of the 3-way replication. We believe this arises from a TCP inflow problem, as has also
been observed in similar systems [Nagle04]. When reading under the 3-of-5 encoding, three storage-nodes
are contacted to send the data. They send it to the client simultaneously, causing packet collisions on the
network switch, and subsequent TCP retransmissions. We plan to incorporate this loss in throughput due to
TCP retransmissions in our network module in the future.

A trend worth noting is that, for a mostly-write workload, the 3-of-5 encoding performs best, since the
workloads are network bound. The amount of “extra” data that needs to be transmitted to tolerate two faults
is three times more than the data that needs to be transmitted when no faults are tolerated, for the 3-way
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Figure 8: Predicting maximum throughput for network-bound workloads. The high-level performance
question that this experiment answers is “What is the maximum throughput client A can get if its workload’s
encoding changes from 3-way replication to using a 3-of-5 scheme?”

replication; however, the 3-of-5 scheme only transmits 5
3 times more data, hence the network demand is less

for that scheme.
Data placement: The next experiment answers the question “What is the maximum throughput client

A can get if its workload is moved to a new set of storage-nodes?” Client A’s workload is encoded using
3-way replication. Two sets of possible nodes are considered for data placement. The first set S1 currently
services a second workload and the ATI measures a load of 50% on the network of the nodes of the set. The
second set S2 is currently not utilized, however one of the nodes is behind a slow 100 Mbps network (several
machines in our cluster are behind this slower network and are waiting to be upgraded). Figure9 shows that
the accuracy of the predicted performance implication is reasonable.

Data placement with buffer cache interference: The next experiment is also concerned with the data
placement question “What is the maximum throughput client B can get if its workload is moved to a new
set of storage-nodes?”, and the encoding is also 3-way replication but there are several setup differences.
The first set of nodes S1 is currently being used by a sequential workload A that hits in the buffer cache
of the storage-nodes. The workload B accesses data randomly, and the administrator wants to know the
performance implication of moving that workload to the S1 set of storage-nodes. Figure10 shows the results.
The prediction is shown for both original and new setups. Several observations can be made. First, The
prediction accuracy is reasonable for both workloads. Second, once workload B is added, it interferes with
the buffer cache accesses of workload A, causing workload A to miss in cache. The buffer cache What...if
module correctly predicts the resulting hit and miss rate for each of the workloads. Third, although workload
A is inherently sequential and it should theoretically get a higher bandwidth from disk that workload B, its
sequentiality is disrupted by having workload A’s requests interleave with those of workload B. The disk
What...if module correctly predicts the resulting service time for each of the workloads.

Throughput and response time distributions: The next experiment answers the question “What is the
distribution of throughput and response time if the number of outstanding requests from client A changes?”
It is intuitive that the client’s throughput will peak after a certain number of outstanding requests, while
the response time may continue to increase after that point as more requests are queued. Our predictive
infrastructure quantifies the change in both metrics. Figure11 illustrates the prediction accuracy for a client
that is using the 3-of-5 scheme and is network-bound. After the request pipeline fills up (N� � 3) the
throughput peaks, while the response time increases linearly as the formulas in sections3.3.2 and 3.3.3
predicted. The ATI monitors the actual number of outstanding requests from a client from an online system,
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Figure 9: Predicting maximum throughput for workload movements. The high-level performance
question that this experiment answers is “What is the maximum throughput client A can get if its workload
is moved to a new set of storage-nodes?” In this experiment the first set of nodes contains a second workload
that places a 50% load on the network. The second set of nodes is not loaded, however one of the machines
in that set is behind a slow network.

and predicts the expected client throughput and response time. In addition it predicts the peak throughput
achievable and the minimum number of outstanding requests needed to do so.

4.4. Overhead of predictive infrastructure

The predictive infrastructure is lightweight enough for common usage. There are approximately 200 instru-
mentation points in Ursa Minor, that post the records shown in Table 2. The ATI places demands on the
CPU for encoding and decoding trace records, as well as network and storage for sending the records to
the Activity DBs and storing them. It also places a fixed demand of 50 MB of buffer cache at each client
computer for buffering records temporarily. The impact of the instrumentation on the above benchmarks’
performance is observed to be less than 6%. The efficiency of querying the instrumentation framework for
generating per-client, per-resource demands is on-par with the efficiency of databases to parse and process
SQL commands. In Ursa Minor, 5% of the storage space is dedicated to keeping the activity records.

5 Related work

This section discusses related work not already addressed in the flow of the paper.
What...if explorations in systems: Some prior systems have successfully used model-driven explo-

rations to optimize performance, especially in the area of capacity planning. Ergastulum computes a good
initial configuration of a storage system by iterating over the space of possible workload characteristics and
storage device models [Anderson01a]. Hippodrome builds on Ergastulum and continuously refines the con-
figuration based on online workload-system observations [Anderson02]. We share the same goals, however
we want to have system support throughout and incorporate predictive models within the system. There are
differences in the systems considered too: Ursa Minor is decentralized rather than within one enclosure and
it is versatile allowing for many more configuration options.

Indy [Hardwick01] identifies performance bottlenecks in a running system and attempts to predict the
bottleneck shifts resulting from resource upgrade. Indy treats the system as a black box, hence the help it
gets from the system is limited. Indy still requires an expert who knows what kinds of workloads the system
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Figure 10: Predicting maximum throughput for workload movements. The high-level performance
question that this experiment answers is “What is the maximum throughput client A can get if its workload
is moved to a new set of storage-nodes?” In this experiment, the first set of nodes contains a second workload
that is sequential and hits in the buffer cache.

should be able to support and who can provide required system models, all from an external view of the
system. Ursa Minor has self-prediction at its core, sidestepping the need for this external expert.

What...if explorations have been successful for administrators of other systems other than storage. In
database systems, the AutoAdmin tool can answer What...if performance questions as a function of the
indices created [Chaudhuri98a]. The DB2 advisor provides similar functionality [Valentin00]. The Resource
Advisor answers What...if questions related to changing the database buffer size [Narayanan05a].

Data distribution selection: Categorization of encoding schemes and their trade-offs can be found
in [Chen94, Rabin89, Weatherspoon02, Wylie05, Wylie00]. We extend such work by providing a predictive
framework, within the system, for choosing the right encoding based on observed system conditions and
workload characteristics. AutoRAID [Wilkes96] provides versatile storage in a monolithic disk array con-
troller. AutoRAID automatically adapts the choice for a data block (between RAID 5 and mirroring) based
on usage patterns. Our system is distributed, hence we do not have a central point that monitors workloads.
Our system also provides a larger spectrum of encoding choices, whereas AutoRAID provides just two.

Instrumentation frameworks and prediction algorithms: Most existing monitoring systems depend
on isolated performance counters and logs that the administrator is expected to collect, filter and analyze and
are designed with a single-node system in mind [Bouhana96, IBMPerf, ETW, Windows2003, OraclePerf].
Other monitoring systems scale well in distributed systems [Anderson97e, Massie04], but provide only
aggregate resource consumption statistics, and do not maintain per-client information. Such aggregate per-
formance monitors cannot differentiate among different workloads in a shared distributed system. This
makes it difficult to answer finer-grained What...if questions. We designed the ATI for self-monitoring. It
uses more detailed per-client activity records that keep track of all resources touched by a request as it goes
through the system. In that respect, our instrumentation framework is most similar to Magpie [Barham04],
a recent project at MSR.

Work has been done on pinpointing performance bottlenecks in systems. In a middleware-based sys-
tem, Chen et al. show that by instrumenting just the middleware, several resource bottlenecks can be de-
tected [Chen04h]. Aguilera et al. describe a system where software components are treated as black boxes
and bottlenecks are detected by monitoring the packets flowing among them [Aguilera03b]; the instrumen-
tation framework provides coarse-grained answers in that case. Ursa Minor has detailed instrumentation
built-in and can provide finer-grained, per-client answers.
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Figure 11: Predicting throughput and response time distributions. The high-level performance question
that this experiment answers is “What is the distribution of throughput and response time if the number of
outstanding requests from client A changes?”

Much research has been done on prediction algorithms. It is not our goal to invent new methods, but
to rather design systems so that these approaches can work. We utilize queuing analysis to make predic-
tions [Lazowska84a]. Other broad methods include statistical and machine learning techniques [Dinda06,
Goldszmidt03].

6 Discussion and future work

There are several issues that are ongoing research. This section discusses some of them.
Re-distribution times: When making a data distribution selection, another input to the Automation

Agents may be the desired upper bound on the time it takes to re-distribute the data. It is conceivable that
there could be desirable data placement decisions that provide high performance, but which require a long
re-distribution time to get to. An extension to our work would be predicting the re-distribution time and
factoring it in when making the final decision.

Better What...if modules: There are several improvements that can be made to our What...if modules.
First, as discussed throughout this paper, they make use of simple simulation or analytical models. We opted
for simple models that account for first order effects. However, there is room for improvement, especially
for the disk models. Second, our modules currently deal only with closed-loop workloads. An important
extension of this work is to handle open-loop workloads as well. In practice, it is difficult to tell, from
within the system, whether a client’s workload is open- or closed-loop (or a hybrid). The client itself may
give a hint to the system and that would work well. We are also investigating techniques for inferring that
information from within the system, with no external hints.

Third, when workloads have distinct phases (e.g., they alternate between sequential and random reads),
our system currently makes an aggregate prediction over all phases. Ideally we’d like to identify the phases
automatically and make a prediction for each of them.

Fourth, there are operating regions of workload characteristics which may not lead well to accurate
predictions. For example, if the block size the client uses is very small (e.g. less than 4 KB), then we
have observed that a significant portion of the client and storage-node’s CPU is taken by TCP processing,
as illustrated in Figure 12. Such overhead could prevent a client that uses encryption, for example, from
getting the full predicted throughput. Our infrastructure, should, at a minimum, identify the regions where
predictions are possible, and be able to predict when not to predict.
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Figure 12: TCP CPU overhead as function of the block size.

Diverse What...if explorations: The ATI is built to help solve several performance tuning/debugging
questions. In this paper we show how to predict the client’s throughput and response times. It is equally
interesting to predict the throughput and response times associated with a file or group of files. A database,
for example, may be accessed by many clients concurrently. An interesting What...if question would be
“What is the maximum throughput clients can get from this database, if the database is encoded using
scheme E?”. We are hoping to have a flexible ATI such that these questions can be answered with minimal
effort.

Performance debugging: There could be instances where hardware and/or software mis-configurations
in the system cause the system behavior to diverge from what is expected. For example, we observed sev-
eral instances where switches and NICs were not configured right, and the system was not getting the
performance predicted. In those cases, we believe our predictive infrastructure could still be of value to an
administrator and provide suggestions for the cause of the problem. For example, a typical suggestion could
be: “The client should be getting 50 MB/s of throughput, and it is only getting 20 MB/s. The CPUs and
network are underutilized, and the workload is hitting in the buffer cache, so the disk is not a bottleneck.
Perhaps there is a problem with the switch to the storage-nodes”. Such suggestions would reduce, but not
eliminate, the time the administrator needs to spend to find the root cause of the problem.

System-level support for the ATI: An assumption in designing the ATI for our storage system is that
machines will only run our code and the underlying operating system. Because of this assumption, most
of the activity on each computer is storage-related activities, which means that the bulk part of the ATI can
reside in user space. The only modification we had to make outside our code-base was a small change in
the Linux OS to allow for posting of context switch records (in Windows there is already built-in support
for this [ETW]). However, there still remains the question on how to handle off-the-shelf components, like
databases, which are closed source but we may still want to use in our system. Accounting for the resources
such components use can only be done coarse-grained currently.

7 Summary

A self-predicting system monitors itself and answers What...if questions about hypothetical changes. This
paper describes and evaluates self-prediction support in a distributed storage system that can accurately
answer What...if questions about the performance impact of data encoding changes, adding or remov-
ing datasets/workloads, and adding or removing servers. The results demonstrate the feasibility of self-
prediction in a real system, and we believe that the same monitoring architecture and modeling tools will
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work in general. Such self-prediction reduces the amount an administrator must understand about the com-
plex workload-system interactions and is a step towards the goal of self-managing distributed systems.
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