
Behavior-Based Problem Localization for Parallel File Systems
Michael P. Kasick, Rajeev Gandhi, Priya Narasimhan

Electrical & Computer Engineering Department
Carnegie Mellon University; Pittsburgh, PA 15213–3890

{mkasick, rgandhi, priyan}@andrew.cmu.edu

Abstract

We present a behavior-based problem-diagnosis ap-
proach for PVFS that analyzes a novel source of
instrumentation—CPU instruction-pointer samples and
function-call traces—to localize the faulty server and to
enable root-cause analysis of the resource at fault. We
validate our approach by injecting realistic storage and
network problems into three different workloads (dd, IO-
zone, and PostMark) on a PVFS cluster.

1 Introduction
Large scientific applications exhibit compute-intense be-
havior intermixed with periods of intense parallel I/O,
and therefore, depend on file systems that support high-
bandwidth concurrent writes. The Parallel Virtual File
System (PVFS) [2] is an open-source, parallel file sys-
tems that provides such applications with high-speed
data access to files. PVFS has a client-server architec-
ture, with many clients communicating with multiple I/O
servers and one or more metadata servers.

Diagnosing performance problems is important in
high-performance computing (HPC) where the effects of
these problems are magnified due to long-running, large-
scale computations. Our previous work sought to diag-
nose PVFS performance problems through system-call
service times [3] and OS-level performance metrics [4].
While this performance-metric driven diagnosis was ef-
fective, we discovered that problems with a lower-but-
still-significant performance impact (e.g., network-hogs)
are difficult to diagnose from performance metrics alone.

Our contribution in this paper is a problem-diagnosis
approach that analyzes system behavior, as captured by
the servers’ executing functions’ (i) computational de-
mand (derived from CPU instruction-pointer samples),
(ii) call frequency, and (iii) execution time. To the best
of our knowledge, this is the first approach to exploit
both sample profiles and function-call traces (tradition-
ally used for single-node optimization) as instrumenta-
tion sources for distributed fault localization. In doing
so, we automatically localize the faulty server and to en-
able manual root-cause analysis by highlighting the func-
tions that are most impacted by the problem. We validate
our approach by studying realistic storage and network
problems injected into three file-system benchmarks (dd,
IOzone, and PostMark).

2 Problem Statement
Our research is motivated by the following questions:
(i) do the behaviors captured by sample profiles and
function-call traces enable the diagnosis of performance
problems in parallel file systems, and (ii) if so, how do
the two methods differ in their capability and overhead?

Hypotheses. Under a performance fault in a PVFS
cluster, metrics derived from sample profiles and
function-call traces should exhibit observable anomalous
behavior on the culprit servers. Additionally, the statis-
tical trends of these metrics: (i) should be similar (albeit
with inevitable minor differences) across fault-free I/O
servers, even under workload changes, and (ii) should
differ on the culprit server, as compared to the fault-free
I/O servers. This hypothesis drives our peer-comparison
diagnosis approach, where we statistically compare the
same metrics across servers to discover the faulty server.

Assumptions. We assume that a majority of the I/O
servers exhibit fault-free behavior, that all server nodes
have identical software configurations, and that the
clocks on the various nodes are synchronized so that in-
strumented data can be temporally correlated across the
system. We also assume that clients and servers run on
homogeneous hardware and execute similar workloads.

3 Instrumentation
3.1 Sample Profiling
Sample profiling is the act of periodically sampling the
CPU instruction pointer to determine what (program and
function) the CPU is executing. Sample counts serve as a
statistical approximation of the amount of time that CPU
spends executing a particular program and function.

We use OProfile 0.9.6 to collect sample profiles
on each PVFS server. By default, OProfile gener-
ates a non-maskable interrupt for every 100,000 cy-
cles that a CPU executes outside of the halt state
(CPU_CLK_UNHALTED events), during which it records
the instruction pointer along with execution contexts. We
run OProfile with the -separate=kernel option so
that OProfile can attribute samples to an executing pro-
gram name (user-space processes and kernel threads), a
binary image name (executables, shared libraries, and
kernel modules), and a function name (if symbols are
present in the binary image). We also modified OPro-

Draft: 2010/09/05 10:48 Page: 1

file to periodically save profiles into session directories
at a fixed time interval, allowing us to reconstruct sample
profiles for (and thus, localize faults to) specific windows
of time. Currently, we generate sample profiles at an in-
terval of 10 seconds, which is a low enough resolution to
avoid significant jitter. While this method of instrumen-
tation does not require application source code, it does
require function symbols to be present in the binary im-
age in order to attribute samples to individual functions.

Although sample profiling is not perfectly accurate—
in particular, it has difficulty observing functions that ex-
ecute quickly but infrequently—it has the advantage of
being able to collect data globally at low overhead, in-
cluding all user-space processes and kernel threads.

3.2 Function-Call Tracing

Function-call tracing is the act of recording function-call
entries and exits in a given program. From these traces,
we derive a profile of function-call count (the number of
times a particular function is called) and execution time
(the amount of time spent executing within a function).

Our custom, C-based instrumentation module, along
with GCC’s -finstrument-functions option, en-
ables function-call tracing in PVFS at compile-time.
The GCC option automatically instruments all PVFS
function-call sites, calling our module on entry and exit
events. On entry, we record the function address and
entry-time to a thread-local stack. On exit, we incre-
ment the call count and compute the execution time by
subtracting any child (called) function execution times
from the wall-clock-elapsed time since entry. This exe-
cution time includes both the time that the CPU spends
executing the function as well as any time spent, poten-
tially blocked, in system calls. This time is then added
to the parent stack frame as part of its child execution-
time. Finally, the current stack frame is popped and the
incremented call count & time are added to the current
profile—a global table of function addresses with accu-
mulated call counts & times. Finally, we write this pro-
file out to a trace file once every second. Subsequently,
the in-memory profile is zeroed to await new data.

Our current function-call tracing method requires ac-
cess to application source-code but does not need to mod-
ify source-code as the module is injected at build-time.
While our module currently targets threaded, single-
process programs, support for multi-process programs is
possible by recording profiles in a shared memory seg-
ment, and using ptrace to trace process fork and exit
events. Alternatively, if source-code is not available then
binary-instrumentation can be used [7].

Function-call traces provide exact metrics, and not ap-
proximations as sample profiles do. This allows us to ob-
serve call trends that otherwise escape in sampled data.

4 Experimental Set-up
We perform our experiments on AMD Opteron 1220 ma-
chines, each with 4 GB RAM, two Seagate Barracuda
7200.10 320 GB disks (one dedicated for PVFS storage),
and a Broadcom NetXtreme BCM5721 Gigabit Ether-
net controller. Each node runs Debian GNU/Linux 5.0
(lenny) with Linux kernel 2.6.26 and PVFS 2.8.1. The
machines run in stock configuration with no background
tasks. We conduct experiments with 10 combined I/O
and metadata servers and 10 clients.

PVFS is used in the default server configuration
with the same three modifications used in our previous
work [4]. First, we use the Direct I/O method to bypass
the Linux buffer cache for PVFS I/O server storage, a re-
quirement for diagnosis in our previous work that is pre-
served here both for comparability of results and since it
improves large write throughput by 10%. Second, we in-
crease the Flow buffer size to 4 MB, which is is standard
practice in PVFS performance tuning and is required to
maximize our testbed performance. Finally, we patch the
PVFS kernel client to eliminate the 128 MB total size re-
striction on the device request buffers, and we invoke the
client with 64 MB request buffers in order to make the
4 MB data transfers to each of the I/O servers.

The nodes are rebooted prior to the start of each exper-
iment. Time synchronization is performed at boot-time
using ntpdate. In the sample-profiling experiments,
the OProfile monitoring daemon starts capturing profiles
to a local (non-storage dedicated) disk once the servers
are initialized and the client is mounted. In the function-
call tracing experiments, the PVFS server daemon writes
trace profiles to the same local disk used for sample pro-
filing. sync is then performed, followed by a 15-second
sleep, then the experiment benchmark starts. The bench-
mark first runs fault-free for 120 seconds. Then, a fault
is injected for 300 seconds and deactivated after. The ex-
periment continues to the completion of the benchmark,
which is at least 180 seconds after fault deactivation to
determine if there are any delayed effects. We run ten
experiments for each workload and fault combination,
using a different faulty server each time.

4.1 Workloads
One of five experiment workloads (derived from dd,
IOzone, and PostMark) is invoked concurrently on all
clients. The first two workloads, ddw and ddr, ei-
ther write zeros (from /dev/zero) to a client-specific
temporary file or read the contents of a previously writ-
ten temporary file and write the output to /dev/null.
dd performs a constant-rate large-file read/write from/to
disk that models the behavior of scientific-computing
workloads with constant data-write rates.

Our next two workloads, iozonew and iozoner,
consist of the same file-system benchmark, IOzone

Draft: 2010/09/05 10:48 Page: 2

v3.283. We run iozonew in write/rewrite mode and
iozoner in read/reread mode. IOzone is a large-file
I/O-heavy benchmark with few metadata operations, an
fsync, and a workload change half-way through. Our
fifth benchmark is PostMark v1.51, a metadata-server
heavy workload with small file writes (all writes < 64 kB
thus, writes occur only on a single I/O server per file).

Configurations of Workloads. For ddw and ddr, we
use 19 GB and 28 GB files respectively with a record-
size of 40 MB for both. File sizes are chosen to result in
a fault-free runtime of approximately 600 seconds. The
record-size was chosen to result in 4 MB data transfers to
each I/O server, which we empirically determined to be
the knee of the performance vs. record-size curve. For
iozonew and iozoner, we use 9 GB and 12 GB files
respectively with a record-size of 16 MB (the largest that
IOzone supports). For postmark, we use 14,000 trans-
actions for sample profiling and 6,500 for function-call
tracing to give sufficiently long-running benchmarks.

4.2 Fault Injection
In fault-induced experiments, we inject a single fault into
an I/O server to induce degraded storage or network per-
formance. Our faults are modeled after real-world prob-
lems experienced by operators of PVFS clusters [4]:

• disk-hog: a dd process that reads 256 MB blocks (us-
ing direct I/O) from an unused storage disk partition.

• disk-busy: an sgm_dd process that issues low-level
SCSI I/Os via the Linux SCSI Generic (sg) driver to
read 1 MB blocks from the same unused partition.

• network-hog: a third-party node opens a TCP socket
to a listening port on a server and sends zeros to it
(write-network-hog), or a server opens a socket and
sends zeros to a third party node (read-network-hog).

• pktloss: a netfilter firewall rule that drops packets re-
ceived at a single server with probability 5% (receive-
pktloss), or a rule on all clients that drops packets sent
from one server with probability 5% (send-pktloss).

5 Diagnosis Algorithm
Our diagnosis algorithm has two objectives: (i) to auto-
matically identify the faulty server by analyzing samples,
count, and time metrics across servers; and (ii) to enable
manual root-cause analysis by identifying the functions
most affected, indirectly hinting at the resource at fault.

5.1 Finding the Faulty Server
Overview. To find the faulty server we peer-compare
samples, count, and time metrics across servers to deter-
mine those behaving anomalously. We analyze one met-
ric at a time across all servers. On each server, we gen-
erate F-dimensional feature vectors, where each compo-
nent of the feature vector contains the sum of the metric

quantity (samples, count, or time) attributed to a partic-
ular function over a time window of WinSize seconds.
We then compute the distance between feature vectors
for each pair of servers, which represents the degree to
which servers behave differently. We then flag a server
as anomalous over a window if its median feature-vector
distance (relative to the other servers) exceeds a prede-
fined threshold. We then shift the window by WinShi f t
seconds, leaving an overlap of WinSize−WinShi f t sec-
onds between consecutive windows, and repeat the anal-
ysis. We classify a server to be faulty if it shows anoma-
lous behavior for at least k of the past 2k−1 windows.

Feature-Vector Dimensionality. For a particular met-
ric (samples, count, or time), the maximum dimension-
ality (F) of the feature vector is the number of functions
to which the metric is attributed at least once, across all
nodes, in a single experiment. We observe, however,
that this creates feature vectors with very large dimen-
sionality (an average of 7446 for samples and 765 for
count/time). However, many components of these fea-
ture vectors have small values (and thus, little diagnosis
influence) as they represent functions that execute infre-
quently in PVFS. Thus, we reduce the dimensionality of
the feature vectors by including only those functions that
contain a minimum of 100 samples or 1 sec time for at
least one window on a single node, reducing the dimen-
sionality to 201 for samples and 10 for count/time.

Window Aggregation & Anomaly Filtering. We use
a window of 60 seconds (WinSize) to generate the fea-
ture vectors for our analysis. Thus, the components of
the feature vectors in each window contain the six most
recent per-function samples sums, or the 60 most recent
per-function count or time sums. We use a WinShi f t of
30 seconds between each window, leaving a consecutive
window overlap of 30 seconds. This aggregation ensures
that each window reflects average behavior of PVFS re-
quest processing. However, the aggregation process in-
creases the diagnosis latency since samples have to be
collected for 60 seconds (WinSize) before they can be an-
alyzed. In general, we find that diagnosis is insensitive to
WinSizes and WinShi f ts of 60+ and 30+ seconds, respec-
tively. We classify a server as faulty if it shows anoma-
lous behavior for 3 out of the past 5 windows (k = 3).
This filtering process reduces false-positives in the event
of sporadic anomalies when no underlying fault is actu-
ally present, but adds to the diagnosis latency. The com-
bined effect of aggregation and anomaly filtering results
in a fault-injection-to-diagnosis latency of 90 seconds.

Distance Measure. We use the Manhattan distance,
d(~p,~q) = ∑

F
i=1 |pi− qi|, to compute a distance measure

between two feature vectors, ~p & ~q. The Manhattan dis-
tance, which is also used in [7], is a measure of abso-
lute distance that performs well to discriminate anoma-

Draft: 2010/09/05 10:48 Page: 3

lous features. We also tried relative distance measures,
d(~p,~q) = ∑

F
i=1

|pi−qi|
max(pi, qi)

; relative scaling of absolute dis-

tance, d(~p,~q) = ∑
F
i=1

(pi−qi)
2

max(pi, qi)
; and symmetric KL di-

vergence, d(~p,~q) = 1
2 ∑

F
i=1

(
pi log pi

qi
+qi log qi

pi

)
. While

some of these produced better results in certain experi-
ments, we found Manhattan results to be the best overall.

Threshold selection. The distance thresholds used to
differentiate faulty from fault-free servers are determined
through a fault-free training phase that captures the max-
imum expected deviation in server behavior. Instead
of training against all potential workloads, we train on
workloads that are expected to stress the system to its
limits of performance. Since server performance (and
thus, behavior) deviates the most when resources are sat-
urated, these thresholds represent the maximum expected
behavioral deviation under normal operation.

In our experiments, we train with 10 fault-free itera-
tions of ddr, ddw, and (optionally) postmark. For
each metric, we perform a binary search of threshold val-
ues until the minimum integer threshold is determined
that eliminates all anomalies on a particular server. This
server-specific threshold is doubled to provide a cushion
that masks minor manifestations occurring during faults.

5.2 Root-Cause Analysis
To enable manual root-cause analysis we identify the
functions most affected by a performance problem. For
each faulty server, we compute the component-wise sum,
across each anomalous window, of a metric’s component
distances to the median node. We then rank the compo-
nent (function) sums, and present the top ten anomalous
functions of that server for further inspection.

6 Results
Table 1 shows the accuracy rates of our diagnosis algo-
rithm using samples, count, and time metrics. We present
two sets of accuracy rates, for both when postmark
is included and excluded from training and testing data.
The combined columns shows the better true-positive
rate and worse false-positive rate when inspecting (i)
both count and time metrics simultaneously, or (ii) sam-
ples alone. This provides a lower-bound approximation
of using both sample profiling and function-call tracing
in the same experiment. In general, we note that while
certain metrics are excellent discriminators of specific
faults, no single metric is alone sufficient to diagnose a
variety. However, when considering the combination of
all three metrics, nearly all fault types are diagnosable.

We present data both without and with postmark to
illustrate the diagnosis capability for (i) the specific class
of large-I/O comprising workloads that parallel file sys-
tems target, and (ii) the more general class of large-I/O,

small-I/O, and metadata-heavy workloads. Our diagno-
sis capability is greater for the large-I/O workload subset
since postmark’s random requests and uneven meta-
data distribution results in behavioral asymmetry across
fault-free servers, attenuating the count metric capability.

6.1 Fault Manifestations
The disk-hog and disk-busy faults exhibit similar behav-
ioral manifestations; both introduce disk contention that
significantly increases the service time of storage I/O re-
quests. Since PVFS storage I/O is performed in separate
threads that issue blocking I/O calls, time metric asym-
metries best discriminate storage-related faults due to the
increased time spent blocked on disk I/O. Since PVFS
storage I/O uses relatively few CPU cycles and is syn-
chronized by client requests, the disk-hog and disk-busy
influence on samples & count metrics is less prominent.

The network-hog faults significantly increase TCP
traffic volume and primarily manifest as increases in
kernel-level computation (CPU cycles) to validate and
process data & ACK packets. Thus the samples metric,
which best discriminates computational asymmetries and
is collected globally at kernel & user levels, is the met-
ric most influenced by this fault. As network-hogs have
relatively little behavioral influence on the PVFS server
process, the count & time metrics are mostly unaffected.

The pktloss faults manifest as disruptions in PVFS net-
work I/O which reduces the network throughput rate. In
PVFS, network I/O is implemented with a poll loop that
performs non-blocking socket reads as soon as any net-
work data is received and socket writes when the write
buffer is half-depleted. During receive-pktloss there is an
asymmetric increase in non-blocking socket read calls,
which affects the samples and especially count metrics,
as network data is received over a longer period of time
and each call returns less data compared to fault-free
servers. However, this capability is limited to write-
heavy loads as otherwise there is insufficient incoming
data to discriminate read counts. During send-pktloss the
number of write calls made is unaffected as the amount
of data written per-call is independent of the network
transfer rate. Although there is an increase in timed-out
poll operations, their effect on the count metric is insuf-
ficient to reliably diagnose send-pktloss problems. Since
PVFS network I/O does not make use of long-running or
blocking function calls, the time metric is unaffected.

6.2 Root-Cause Analysis
A cursory investigation of the top ten reported anoma-
lous functions indicates that root-cause analysis is possi-
ble for some combinations of faults and metrics. Disk-
and network-hogs exhibit samples attributed to specific
rogue processes (e.g., dd and socat). Disk-hog & disk-
busy faults on read workloads exhibit time blocked in

Draft: 2010/09/05 10:48 Page: 4

Without postmark training or testing With postmark training & testing
Fault samples (%) count (%) time (%) combined (%) samples (%) count (%) time (%) combined (%)

TP FP TP FP TP FP TP FP TP FP TP FP TP FP TP FP
None (control) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 2.0 0.0 0.0 0.0 2.0
disk-hog 12.5 2.5 77.5 0.0 75.0 0.0 92.5 2.5 0.0 0.0 0.0 4.0 70.0 0.0 70.0 4.0
disk-busy 20.0 0.0 42.5 0.0 65.0 2.5 77.5 2.5 0.0 0.0 0.0 0.0 62.0 2.0 62.0 2.0
write-network-hog 100.0 0.0 7.5 0.0 0.0 0.0 100.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
read-network-hog 100.0 0.0 27.5 2.5 0.0 10.0 100.0 10.0 100.0 4.0 0.0 2.0 0.0 8.0 100.0 10.0
receive-pktloss 30.0 2.5 50.0 0.0 0.0 2.5 50.0 2.5 0.0 4.0 8.0 2.0 0.0 2.0 8.0 4.0
send-pktloss 2.5 0.0 25.0 0.0 0.0 0.0 25.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 6.0
Aggregate 44.2 0.7 38.3 0.4 23.3 2.1 74.2 2.9 33.3 1.4 1.3 2.3 22.0 1.7 56.7 4.0

Table 1: Diagnosis accuracy (true- and false-positive) rates. TP is the percentage of experiments where all faulty
servers are correctly indicted as faulty, FP is the percentage where at least one non-faulty server is misindicted.

Overhead for Instrumentation
Workload Sample Profiling Call Tracing

ddr −1.43% ± 0.55% 2.39% ± 0.77%
ddw 2.67% ± 1.32% 1.28% ± 1.75%
iozoner −0.28% ± 0.25% 0.74% ± 0.28%
iozonew 3.23% ± 1.47% 0.82% ± 1.14%
postmark −0.36% ± 1.06% 122.18% ± 3.72%

Table 2: Instrumentation overhead: Increase in runtime
w.r.t. non-instrumented workload ± standard error.

a high-ranking dbpf_pread function, indicating that
time is spent blocked on storage read syscalls. Count-
manifesting faults exhibit no specific high-ranking at-
tributable functions, although their rank/ordering may
serve as useful signatures for root-cause categorization.

6.3 Instrumentation Overhead
Table 2 reports runtime overheads for sample profiling
and function-call tracing for our five workloads. Over-
heads are calculated as the increase in mean workload
runtime (for 10 iterations) with respect to their unin-
strumented counterparts. Negative overheads are result
of sampling error, which is high due runtime variance
across experiments. We conclude that sample profiling
and function-call tracing have comparable overheads for
the large-I/O workloads, both less-than 7% with 98%
confidence. While postmark’s sample profiling over-
head is also comparable, its function-call tracing over-
head is extremely high, representing a deployment chal-
lenge for function-call tracing for general workloads.

6.4 Comparison to Performance Metrics
The combined rate of the behavior-based approach is
comparable to that of our performance metric diagnosis
(avg. 69.8% TP & 2.6% FP) [4]. Instrumentation over-
head is also comparable except for postmark, which
in [4] is superior and consistent with the other workloads.

In disk-hog and disk-busy problems, the time metric is
equivalent to [4]’s await (average I/O wait time) met-
ric, scaled to the size of the PVFS I/O requests. [4] better
diagnoses these problems since their behaviors manifest
in delayed performance (blocked storage-I/O call time),

and await is a more direct representation of that met-
ric. In contrast, the behavior-based approach more reli-
ably diagnoses network-hog faults, which [4] occasion-
ally masks, as these faults manifest greater in behavior
(extra TCP computation) than in performance metrics.

Both approaches diagnose receive-pktloss similarly
well, but [4] requires client-side instrumentation to ob-
serve cwnd (TCP sending congestion-window) metrics,
whereas the behavioral approach uses server-side instru-
mentation only. Unfortunately, the instrumentation used
here is insufficient to reliably diagnose send-pktloss; thus
the performance metric approach performs much better.

7 Future Directions
7.1 Analysis
Currently our diagnosis algorithm does not consider the
relevance of specific functions in discerning the presence
of a fault. We observe across fault-free experiments that
some functions exhibit considerable variance within the
same node in their samples & count metrics due to sam-
pling error and random behavior. These random effects,
especially in postmark, also serve as contributing fac-
tors to cross-node variance within the same experiment,
and thus, inflate the “maximum expected deviation” cap-
tured in our training. This may result in anomalies go-
ing undetected which exhibit less overall deviation, but
whose deviation is concentrated in a few highly relevant
functions that illustrate minimal fault-free variance.

To improve diagnosis sensitivity in the presence of
random behavior we may compute the component-wise
variances of feature vectors across fault-free experiments
and weight components by their observed variance (e.g.,
divide a component by its standard deviation). Thus,
functions that exhibit greater random-behavioral vari-
ance (those which are less relevant) would be deempha-
sized in the overall feature-vector distance, and func-
tions that exhibit little random-behavioral variance (those
which are more relevant) would have greater influence.

More generally, we may apply weighting factors
to functions known to be semantically or empirically
(ir)relevant to the presence of previously-observed faults.

Draft: 2010/09/05 10:48 Page: 5

In particular, we may add weight to functions discovered
through root-cause analysis to be indicative of past prob-
lems, and we may decrease weight (or eliminate) func-
tions discovered to signal false-positives.

7.2 Instrumentation
Missing in our instrumentation is the ability to trace ker-
nel function calls. Kernel-level tracing may be achieved
using the same general approach as our user-level instru-
mentation module. We expect that kernel-level function-
call tracing would significantly improve diagnosis of
send-pktloss faults during read-heavy workloads. Such
faults manifest in TCP retransmits visible at the kernel-
level, but are observable in the PVFS server daemon only
from an increased number of timed-out poll operations.

7.3 Overhead Reduction
The high postmark function-call tracing overhead is
due the high number of I/O and metadata operations rel-
ative to average I/O request size. I/O-bound workloads
that utilize small requests make many more PVFS func-
tion calls in the same amount of time as workloads uti-
lizing large requests, and thus, significantly increase in-
strumentation overhead. We propose that this overhead
may be reduced by selectively instrumenting function
call sites. For example, by instrumenting only the call
sites that are used in faulty feature vectors, we may re-
duce the total number of instrumented call sites from
863 to 14. Unfortunately this call site selection requires
observation of prior faults to determine which functions
need to be included in feature vectors. Previously-unseen
faults may go undetected if they manifest in functions not
selected for inclusion. Alternatively, we may selectively
exclude call sites that are determined via profiling to be
frequently called, but which are empirically (via root-
cause analysis) or semantically (through code inspection)
determined to be irrelevant to diagnosis.

8 Related Work
Mirgorodskiy et al. [7] localizes code-level problems
by tracing function calls and peer comparing execution
times across nodes to identify anomalous nodes in an
HPC cluster. Their debugging tool is designed to locate
the specific functions where problems manifest and is
demonstrated in a qualitative cluster manager case study.
Our approach utilizes execution time along with metrics
of function call frequency and computational demand,
and is quantitatively assessed in its capability to diag-
nose a variety of performance problems, many of which
escape diagnosis when using execution time alone.

Previous problem diagnosis in Internet Services trace
request flows using intercomponent messages (e.g.,
RPCs) to identify request paths with abnormally long la-
tencies [1] or to identify processing components respon-

sible for failed requests [5]. Our work uses function calls
instead of RPCs to model behavior due to relative ease of
instrumentation, but shares the goal of determining the
components (servers) exhibiting abnormal behavior.

Sample profiling and function-call tracing have long
been used to locate performance bottlenecks in program
code. Paradyn [6] and Tau [8] are profiling and tracing
tools targeted at HPC to measure performance in parallel
programs and isolate sources of performance problems.

9 Conclusion
Our new behavior-based problem-diagnosis approach for
performance faults in PVFS demonstrates the viability of
sample profiling and function-call tracing for problem di-
agnosis. While neither instrumentation is alone sufficient
to diagnose each fault, the combination of both enables
diagnosis of nearly all types. Our diagnosis approach au-
tomatically identifies the faulty server, and enables man-
ual root-cause analysis by identifying the functions most
affected by a performance problem.

References
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener,

P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes. In
SOSP, pages 74–89, Bolton Landing, NY, Oct. 2003.

[2] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur.
PVFS: A parallel file system for Linux clusters. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 317–327, Atlanta, GA, Oct. 2000.

[3] M. P. Kasick, K. A. Bare, E. E. Marinelli III, J. Tan,
R. Gandhi, and P. Narasimhan. System-call based
problem diagnosis for PVFS. In Hot Topics in Sys-
tem Dependability, Lisbon, Portugal, June 2009.

[4] M. P. Kasick, J. Tan, R. Gandhi, and P. Narasimhan.
Black-box problem diagnosis in parallel file sys-
tems. In 8th USENIX Conference on File and Stor-
age Technologies, San Jose, CA, Feb. 2010.

[5] E. Kıcıman and A. Fox. Detecting application-level
failures in component-based Internet services. IEEE
Transactions on Neural Networks, 16(5), Sept. 2005.

[6] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K.
Hollingsworth, R. B. Irvin, K. L. Karavanic, K. Kun-
chithapadam, and T. Newhall. The Paradyn paral-
lel performance measurement tool. IEEE Computer,
28(11):37–46, Nov. 2005.

[7] A. V. Mirgorodskiy, N. Maruyama, and B. P. Miller.
Problem diagnosis in large-scale computing environ-
ments. In Supercomputing, Tampa, FL, Nov. 2006.

[8] S. S. Shende and A. D. Malony. The Tau parallel per-
formance system. Intl. Journal of High Performance
Computing Applications, 20(2):287–311, May 2006.

Draft: 2010/09/05 10:48 Page: 6

	Introduction
	Problem Statement
	Instrumentation
	Sample Profiling
	Function-Call Tracing

	Experimental Set-up
	Workloads
	Fault Injection

	Diagnosis Algorithm
	Finding the Faulty Server
	Root-Cause Analysis

	Results
	Fault Manifestations
	Root-Cause Analysis
	Instrumentation Overhead
	Comparison to Performance Metrics

	Future Directions
	Analysis
	Instrumentation
	Overhead Reduction

	Related Work
	Conclusion

