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Abstract
Distributed systems are complex to develop and administer, and performance problem diagnosis is particularly challenging. When
performance decreases, the problem might be in any of the system’s many components or could be a result of poor interactions
among them. Recent research has provided the ability to automatically identify a small set of most likely problem locations, leaving the
diagnoser with the task of exploring just that set. This paper describes and evaluates three approaches for visualizing the results of a
proven technique called “request-flow comparison” for identifying likely causes of performance decreases in a distributed system. Our
user study provides a number of insights useful in guiding visualization tool design for distributed system diagnosis. For example, we
find that both an overlay-based approach (e.g., diff) and a side-by-side approach are effective, with tradeoffs for different users (e.g.,
expert vs. not) and different problem types. We also find that an animation-based approach is confusing and difficult to use.
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Figure 1: Comparing request-flow graphs. This side-by-side visualization, one of three interfaces we evaluate,
illustrates the output of a diagnosis technique that compares graphs (called request-flow comparison). It shows these
two graphs juxtaposed horizontally, with dashed lines between matching nodes in both. The rightmost series of nodes in
the screenshot do not exist in the graph on the left, causing the yellow nodes to shift downward in the graph on the right.
See Section 2 for further detail on why this change is important and what nodes in the graph represent.

1 Introduction

A distributed system is a set of software components running on multiple networked computers that collectively
provide some service or result. Examples now pervade all walks of life, as society uses distributed services
to communicate (e.g., Google’s Gmail), shop (e.g., Amazon), entertain ourselves (e.g., YouTube), and so
forth. Though such distributed systems often have simple interfaces and usually respond quickly, there is
great complexity involved in developing them and maintaining their performance levels over time. Unexpected
performance degradations arise frequently, and substantial human effort is involved in addressing them.

When a performance degradation arises, the crucial first step in addressing it is figuring out what is causing
it. The “root cause” might be any of the system’s software components, unexpected interactions between
them, or slowdowns in the network connecting them. Exploring the possibilities and identifying the most likely
root causes has traditionally been an ad-hoc manual process, informed primarily by raw performance data
collected from individual components. As distributed systems have grown in scale and complexity, such ad-hoc
processes have grown less and less tenable.

To help, recent research has proposed many tools for automatically localizing the many possible sources of a
new problem to just a few potential culprits [5,8,9,19–21,25,30,31,34,36]. These tools do not identify the root
cause directly, but rather help developers build intuition about the problem and focus their diagnosis efforts.
Though complete automation would be ideal, the complexity of modern systems and the problems that arise in
them ensure that this human-in-the-loop model will be dominant for the foreseeable future. As such, many
researchers recognize the need for localization tools to present their results as clearly as possible [26,29]. But
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apart from from a few select instances [23,26], little research has been conducted on how to do so.

As a step toward addressing this need, this paper presents a 20-person user study evaluating three interfaces
we built for visualizing the results of one powerful, proven technique called “request-flow comparison” [34]. Our
user study uses real problems from a real distributed system. Request-flow comparison compares how the
distributed system services requests (e.g., “read this e-mail message” or “find books by this author”) during
two periods of operation: one where performance was fine (“before”) and the new one in which performance
has degraded (“after”). Each request serviced has a corresponding workflow within the system, representing
the order and timing of components involved; for example, a request to read e-mail might start at a front-end
web-server that parses the request, then be forwarded to the e-mail directory server for the specific user, then
be forwarded to the storage server that holds the desired message, and then return to the web-server so
it can respond to the requester. Figure 2 shows a similar example for a distributed storage system. Each
such request flow can be represented as a graph, and comparing the before and after graphs can provide
significant insight into performance degradations.

Although request-flow comparison has been used to diagnose real problems observed in the Ursa Minor
distributed storage system [1] as well as certain Google services, its utility has been limited by a clunky
interface that presents results using text files and unsophisticated DOT [11] graphs that must be manually and
painstakingly compared with each other. The goal of this study is to identify what visualization techniques
work best for presenting the results of request-flow comparison to their intended audience—developers and
people knowledgeable about distributed systems.

The interfaces we compared all try to show relevant differences between before-and-after pairs of directed
acyclic graphs, which are the output of request-flow comparison. We built our own interfaces because of
domain-specific requirements that precluded off-the-shelf solutions. For example, correspondences between
nodes of before-after pairs are not known a priori, so a significant challenge involved creating heuristics to
identify them. The side-by-side interface shows both graphs, adding correspondence lines between nodes
that represent the same activity in both graphs (see Figure 1). Diff presents a compact view by overlaying
the graphs and highlighting important differences. Finally, animation attempts to clarify differences by rapidly
switching between the two graphs.

Our user study results show diff and side-by-side perform comparably, with animation faring the worst.
The choice between diff and side-by-side varies depending on users’ familiarity with software development
practices and with characteristics of the problem being diagnosed. Non-experts preferred side-by-side due to
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Figure 2: Distributed storage system. To read a file, clients connect to this distributed system. A frontend file server
handles their requests, but may need to access other components like the data location server and storage servers.
For example, Client A makes a request that requires the blue messages 1–5, while the request initiated by Client B
only produces the red messages 1–2. There may be many other paths through the system. Ursa Minor, the distributed
storage system discussed in this paper, has a similar architecture.
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its straightforward presentation. Diff’s more compact representation was favored by experts and advanced
users, but it engendered confusion in those less familiar with distributed systems. We also found that request-
flow comparison’s failure modes sometimes did not match users’ expectations, highlighting the importance of
choosing algorithms that match users’ mental models when creating automated diagnosis tools.

The rest of this paper is organized as follows. Section 2 provides relevant background about request-flow
comparison. Section 3 describes the three interfaces and how node correspondences are determined.
Section 4 describes the user study, and Section 5 describes the results. Section 6 describes key design
lessons learned from the user study for further interface improvements. Section 7 describes related work and
Section 8 concludes.

2 Request-flow comparison

Request-flow comparison [34] is a technique for automatically localizing the root causes of performance
degradations in distributed systems, such as Ursa Minor (shown in Figure 2), GFS [14], and Bigtable [7]. It
uses the insight that such degradations often manifest as changes or differences in the workflow of individual
requests as they are serviced by the system. Exposing these differences and showing how they differ from
previous behavior localizes the source of the problem and significantly guides developer effort.

Request-flow comparison works by comparing request-flow graphs observed during two periods: one of
good performance and one of poor performance. Nodes of these directed acyclic graphs show important
events observed on different components during request processing, and edges show latency between these
events (see Figure 3 for an example). Request-flow comparison groups the flows observed during both
periods (often numbered in the hundreds of thousands or millions) into clusters, then identifies those from the
poor-performance period that appear to most contribute to the performance degradation. As output, it presents
pairs of before-and-after graphs of these culprits, showing how they were processed before the performance
change versus after the change.1 Identifying differences between these pairs of graphs localizes the source of
the problem and provides developers with starting points for their diagnosis efforts. To preserve context, entire
request-flow graphs are presented with some, but not all, important differences highlighted.

This technique identifies two important types of differences. Edge latency changes are differences in the
time required to execute successive events and represent slowdown in request processing. Request-flow
comparison attempts to identify these changes automatically, using hypothesis tests to identify edges with
latency distributions that have a statistically significant difference in the before and after periods. Similar tests
are used in several automated diagnosis tools [19,28,34]. Since hypothesis tests will not identify all edges
worth investigating, developers must still examine the graphs manually to find additional such divergences.
Structural changes are differences in the causal ordering of system events. Developers must contrast the two
graphs manually to identify them. Further details about request-flow comparison can be found in Sambasivan
et al. [34].

3 Interface design

To compare the pairs of before/after graphs output by request-flow comparison, we built three interfaces
designed to represent orthogonal approaches to representing differences. They are shown in Figure 4. The
interfaces occupy three corners in the space of approaches to visualizing differences, as identified by a

1In Sambasivan et al. [34], before graphs are called precursors and after graphs are called mutations.
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Figure 3: Example request-flow graph. This graph shows the flow of a read request through the distributed storage
system shown in Figure 2. Node names represent important events observed on the various components while
completing the required work. Edges show latencies between these events. Fan outs represent the start of parallel
activity, and synchronization points are indicated by fan ins. Due to space constraints, only the events observed on the
frontend file server are shown. The green dots abstract away messages exchanged between other components and the
work done on them. Finally, the original node names, which had meaning only to the developers of the system, have
been replaced with human-readable versions.

taxonomy of comparison approaches [15]. The side-by-side interface is nearly a “juxtaposition,” which presents
independent layouts. The diff interface is an “explicit encoding,” which highlights the differences between
the two graphs. Finally, the animation interface is closest to a “superposition” design that guides attention to
changes that “blink.” All are implemented in JavaScript, and use modified libraries from the Javascript InfoVis
Toolkit [6]. The rest of this section describes these interfaces.

3.1 Side-by-side

The side-by-side interface (Figures 4a and 4d) computes independent layered layouts for the before and
after graphs and displays them beside each other horizontally. Nodes in the before graph are linked to
corresponding nodes in the after graph by dashed lines. This interface is analogous to a parallel coordinates
visualization [18], with coordinates given by the locations of the nodes in the before and after graphs. Figure
4a provides an example of this interface for two graphs containing nodes a,b,c, and d. Using this interface,
latency changes can be identified by examining the relative slope of adjacent dashed lines: parallel lines
indicate no change in latency, while increasing skew is indicative of longer response time. Structural changes
can be identified by the presence of nodes in the before or after graph with no corresponding node in the other
graph.

3.2 Diff

The diff interface (Figures 4b and 4e) shows a single static image in an explicit encoding of the differences
between the before and after graphs, which are associated with the colors orange and blue respectively. The
layout contains all nodes from both the before and after graphs. Nodes that exist only in the before graph are
outlined in orange and annotated with a minus sign; those that exist only in the after graph are outlined in blue
and annotated with a plus sign. Nodes that exist in both graphs are not highlighted. This structural approach is
akin to the output of a contextual diff tool [24] emphasizing insertions and deletions.

We use the same orange and blue scheme to show latency changes, with edges that exist in only one graph

4



(a) Side-by-side diagram (b) Diff diagram (c) Animation diagram

(d) Side-by-side screenshot (e) Diff screenshot (f) Animation screenshot

Figure 4: Three interfaces. This diagram illustrates the three approaches to visualizing differences in request-flow
graphs that we compare in this study. Figures a, b, and c provide samples for small synthetic graphs. Figures d, e, and f
show the interfaces applied to one of the real-world problems that was presented to users.

shown in the appropriate color. Edges existing in both graphs produce a per-edge latency diff: orange and
blue lines are inset together with different lengths. The ratio of the lengths is computed from the ratio of the
edge latencies in before and after graphs, and the subsequent node is attached at the end of the longer line.

3.3 Animation

The animation interface (Figures 4c and 4f) provides user-controllable switching between the before and after
graphs. To provide a smooth transition, we interpolate the positions of nodes between the two graphs. Nodes
that exist in only one graph appear only on the appropriate terminal of the animation, becoming steadily more
transparent as the animation advances and vanishing completely by the other terminal. Users can start and
stop the animation, as well as directly selecting a terminal or intermediate point of their choice.

3.4 Correspondence Determination

All of the interfaces described above require knowing correspondences between the before and after graphs,
which are not known a priori. We must determine which nodes in the before graph map to which matching
nodes in the after graph, and by extension which nodes in each graph have no match in the other. Using graph
structure alone, this problem is hard in the formal sense [12], so we use an approximation technique.

Each node has a distinguished name, and if the nodes are identical in the before and after graphs then their
names are the same. The converse, however, is not true: a node name can appear multiple times in a trace,
and insertions or deletions can have the same name as existing nodes. We exploit this naming property with a
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correspondence approximation approach based on string-edit distance. An overview of the process is shown
in Figure 5.

We first serialize each graph through a depth-first search, producing a string of objects. The two graphs shown
at left in Figure 5, for example, are transformed into the strings abcd and abce. In each recursive step, we
traverse adjacencies in lexical order so that any reordered nodes from request flow graph collection (e.g.,
interchanging nodes b and e in Figure 5(a)) do not produce different strings. This approach is reminiscent of
that used in other graph difference comparison heuristics [12].

We then calculate string-edit distance [39] between the resulting strings, with two components considered
equal if their names are equal, providing a correspondence between nodes. For example, Figure 5(c) shows
three corresponding nodes, one deletion, and one insertion. To obtain these correspondences from the
memoization matrix shown in Figure 5(b), at each computation step we maintain a chain of the edits that led to
the distance shown at bottom right. We then trace the chain to its end.

Finally, we map the differences computed above onto the graph union of the before and after graphs. Each
vertex in the graph union is tagged with one of three types used in displaying the three interfaces — in both
graphs, in only the before graph, or in only the after graph. Edges likewise are tagged with one of these three
types by comparing the adjacency lists of nodes in the two graphs. The graph union is used to compute
the layout of the diff interface, and the three tags control the visualization in each interface (for example, the
opacity of nodes in the animation interface).

Of course, this approach is only approximate. Suppose, for example, that the node named e in Figure 5 were
instead labeled d. The resulting serialized strings would both be abcd, and no nodes would be considered to
be insertions or deletions. We have found, however, that our technique works well in practice on request-flow
graphs, in which changes in structure are typically accompanied by changes in node names.

3.5 Common features

All three of our interfaces incorporate some common features, tailored specifically for request-flow graphs. All
graphs are drawn with a layered layout based on the technique by Sugiyama et al [38]. This algorithm works
well for drawing graphs that can be presented as a hierarchy or a sequence of layers, a property satisfied by
request-flow graphs. Layouts that modify this underlying approach enjoy widespread use [11]. Our interfaces

Figure 5: Correspondence determination process. Here we show our method for finding correspondence, for the
same synthetic graph as shown in Figure 4. Starting from the before-and-after graph pair shown in (a), we perform a
depth-first search to transform the request-flow graphs to strings. These strings are compared by finding their string-edit
distance, as illustrated in (b). While computing the string-edit distance, we maintain information about the insertions,
deletions, and correspondences between nodes, as shown in (c). Finally, we map these edits back to the original graph
structure, as shown in a diff-style format in (d).
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use a slightly modified version omitting some stages that are unnecessary for request flow graphs, such as
detecting and eliminating cycles (requests cannot move backward in time).

To navigate the interface, users can pan the graph view by clicking and dragging or by using a vertical scroll
bar. In large graphs, this allows for movement in the neighborhood of the current view or rapid traversal across
the entire graph. By using the wheel on a mouse, users can zoom in and out, up to a limit. We employ
rubber-banding for both the traversal and zoom features to prevent the interface from moving off the screen or
becoming considerably smaller than the viewing window.

As mentioned in Section 2, the comparison tool automatically identifies certain edges as having changed
statistically significantly between the before and after graphs. The interfaces highlight these edges with a bold
red outline.

As drawn in each graph, the length of an edge relates to its latency. Because latencies within a single
request-flow graph can vary by orders of magnitude, we do not map latency directly to length; instead, we use
a sigmoid-based scaling function that allows both longer and shorter edges to be visible in the same graph.

When graphs contain join points, or locations where multiple parallel paths converge at the same node, a
layered layout will likely produce edge lengths that no longer correspond to the values given by the original
scaling function. This occurs when one flow completes before another and must wait. Our interfaces illustrate
the distinction between actual latency and connecting lines by using thinner lines for the latter. An example of
this notation appears in the right-hand graph in Figure 4a, between nodes b and c.

4 User study overview & methodology

We evaluated the three interfaces via a between-subjects user study, in which we asked participants to
complete five assignments. Each assignment asked participants to find key performance-affecting differences
for a before/after request-flow graph pair obtained from Ursa Minor (the distributed system shown in Figure 2).
Four of the five assignments used graphs that were the output of request-flow comparison for real problems
observed in the system. These problems are described in more detail in Sambasivan et al. [34].

4.1 Participants

Our tool’s target users are the developers of the distributed system being diagnosed. Our example tasks
come from the Ursa Minor system, so we selected the seven Ursa Minor developers to whom we had access
as expert participants. However, due to the limited size of this pool and because we knew some of these
participants personally, we also recruited 13 additional non-expert participants. All of these non-experts were
generally familiar with distributed systems but not with this system specifically. Although we advertised the
study in undergraduate and graduate classes, as well as by posting fliers on and around our campus, all our
non-expert participants were graduate students in computer science, electrical and computer engineering, or
information networking. The user study took about 1.5 hours and we paid participants $20.

Potential non-expert participants were required to complete a pre-screening questionnaire that asked about
key undergraduate-level distributed systems concepts. To qualify, volunteers were required to indicate that they
understood what a request is in the context of a distributed system, along with at least two of five additional
concepts: client/server architecture, concurrency and synchronization, remote procedure calls, batching, and
critical paths. Of the 33 volunteers who completed the questionnaire, 29 were deemed eligible; we selected
the first 13 to respond as participants.
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During the user study, each participant was assigned, round-robin, to evaluate one of the three interfaces.
Table 1 lists the participants, their demographic information, and the interface they were assigned.

4.2 Creating before/after graphs for the assignments

Our user study contains five total assignments, each requiring participants to identify salient differences
between a before/after graph pair. To limit the length of the study and explore the space of possible differences,
we removed a few repeated differences from real-problem graphs and added differences of different types.
However, we were careful to preserve the inherent complexity of the graphs and the problems they represent.
The only synthetic before/after pair was modified from a real request-flow graph observed in the system.
Table 2 describes the various assignments and their properties.

To make the request-flow graphs easier for participants to understand, we changed node labels, which describe
events observed during request processing, to more human-readable versions. For example, we changed the
label “e10__t3__NFS_CACHE_READ_HIT” to “Read that hit in the NFS server’s cache.” The original labels
were written by Ursa Minor developers and only have meaning to them. Finally, we omitted numbers indicating
edge lengths from the graphs to ensure participants used visual properties of our interfaces to find important
differences.

4.3 User study procedure

The study consisted of four parts: training, guided questions, emulation of real diagnoses, and interface
comparison. Participants were encouraged to think aloud throughout the study.

ID Gender Age Interface

ES01 M 26 Side-by-side (S)
ES02 M 33 S
ES03 M 38 S
ED04 M 37 Diff (D)
ED05 M 44 D
EA06 M 33 Animation (A)
EA07 M 26 A

7M Avg=34 3S, 2D, 2A

(a) Participant demographics for experts

ID Gender Age Interface

NS01 F 23 Side-by-side (S)
NS02 M 21 S
NS03 M 28 S
NS04 M 29 S
ND05 M 35 Diff (D)
ND06 M 22 D
ND07 M 23 D
ND08 M 23 D
ND09 M 25 D
NA10 F 26 Animation (A)
NA11 M 23 A
NA12 M 22 A
NA13 M 23 A

6M, 2F Avg=25 4S, 5D, 4A

(b) Participant demographics for non-experts

Table 1: Participant demographics. Our user study consisted of twenty participants, seven of whom were experts
(developers of Ursa Minor) and thirteen of whom were non-experts (graduate students familiar with distributed systems).
Interfaces were assigned round-robin. The ID encodes whether the participant was an expert (E) or non-expert (N) and
the the interface assigned (S=side-by-side, D=diff, A=animation).
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Phase Assignment Differences Before/after
and type graph sizes (nodes)

G 1/Real 4 statistically sig. 122/122
5 other edge latency

2/Real 1 structural 3/16

3/Synth. 4 statistically sig. 94/128
2 other edge latency
3 structural

E 4/Real 4 structural 52/77

5/Real 2 structural 82/226

Table 2: Information about the before/after graph pairs used for the assignments. Assignments 1–3 were used in
the guided questions phase (labeled G and described in Section 4.3.2); 4 and 5 were used to emulate real diagnoses
(labeled E and described in Section 4.3.3). Four of the five assignments were the output of request-flow comparison
for real problems seen in Ursa Minor. The assignments differed in whether they contained statistically significant edge
latency changes, other edge latency changes not identified automatically, or groups of structural changes. The graph
sizes for the various assignments varied greatly.

4.3.1 Training

In the training phase, participants were shown the Ursa Minor diagram similar to the one in Figure 2. They
were not required to understand details about the system, but only that it consists of four components that can
communicate with each other over the network. We also presented them with a sample request-flow graph
and described the meaning of nodes and edges. Finally, we trained each participant on her assigned interface
by showing her a sample before/after graph pair and guiding her through tasks she would have to complete in
latter parts of the study. Participants were given ample time to ask questions and were told that we would be
unable to answer further questions after the training portion.

4.3.2 Finding differences via guided questions

In this phase of the study, we guided participants through the process of identifying differences, asking them
to complete five focused tasks for each of three assignments. Rows 1–3 of Table 2 describe the graphs used
for this part of the study.

TASK 1: Find any edges with statistically significant latency changes. This task required participants to find all
of the graph edges highlighted in red (that is, those automatically identified by the request-flow comparison
tool as having statistically significant changes in latency distribution).

TASK 2: Find any other edges with latency changes worth investigating. The request-flow comparison tool will
not identify all edges worth investigating. For example, edges with large changes in average latency that also
exhibit high variance will not be identified. This task required participants to iterate through the graphs and find
edges with notable latency changes that were not highlighted in red.

TASK 3: Find any groups of structural changes. Participants were asked to identify added or deleted nodes in
the after graph. To reduce effort, we asked them to identify these changes in contiguous groups, rather than
by noting every changed node individually.

TASK 4: Describe in a sentence or two what the changes you identified in the previous tasks represent. This
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task examines whether the interface enables participants to quickly develop an intuition about the problem in
question. For example, all of the edge latency changes (statistically significant and otherwise) for the graphs
presented in assignment 1 indicate a slowdown in network communication between machines and in write
activity within one of Ursa Minor’s storage nodes. It is important that participants be able to identify these
themes, as doing so is a crucial step toward understanding the root cause of the problem.

TASK 5: Of the changes you identified in the previous tasks, identify which one most impacts request response
time. The difference that most affects response time is likely the one that should be investigated first when
attempting to find the root cause. This task evaluates whether the interface allows participants to quickly
identify this key change.

4.3.3 Emulating real diagnoses

In the next phase, participants completed two additional assignments. These assignments, which were less
guided than in the prior phase, were intended to emulate how the interfaces might be used in the wild, as
when diagnosing a new problem for the first time. For each assignment, the participant was asked to complete
tasks 4 and 5 only (as described above). We selected these two tasks because they most closely align with
the questions a developer would ask when diagnosing an unknown problem.

After this part of the study, participants were asked to agree or disagree with two statements using a five-point
Likert scale: “I am confident my answers are correct” and “This interface was useful for solving these problems.”
We also asked them to comment on which features of the interface they liked or disliked, and to suggest
improvements.

4.3.4 Interface preference

Finally, to get a more direct sense of how the interfaces compared, we presented participants with an alternate
interface. We asked them to briefly think about the tasks again, considering whether they would be easier or
harder to complete with the second interface. We also asked participants which features of both interfaces
they liked or disliked. Because our pilot studies suggested the animation interface was most difficult to use, we
focused this part of the study on comparing the side-by-side and diff interfaces.

4.4 Scoring criteria

Our user study includes both quantitative and free-form, qualitative tasks. We evaluated participants’ responses
to the quantitative tasks by comparing them to an “answer key” created by an Ursa Minor developer who
had previously used the request-flow-comparison tool to diagnose many of the real problems used to create
the assignments. Task 5, which required only a single answer, was scored using accuracy (i.e., does the
participant’s answer match the answer key?). Tasks 1–3, which asked for multiple answers, were scored using
precision/recall. Precision measures the fraction of a participant’s answers that were also in the key. Recall
measures the fraction of all answers in the key identified by the participant. Note that is possible to have high
precision and low recall—for example, by identifying only one accurate change out of ten possible ones. In
task 3 (“find groups of structural changes”), participants who marked any part of a correct group were given
credit for that group.

For task 4 (“identify what the changes represent”), we accepted an answer as correct if it was close to one of
several possible explanations, corresponding to different levels of background knowledge. For example, for
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one assignment, non-experts would identify the changes as representing extra cache misses in the after graph.
Participants with more experience would often correctly identify that the after graph showed a read-modify
write, a bane of distributed storage system performance.

We also captured completion times for the quantitative tasks, but found them less useful than precision/recall
because times varied greatly based on how sure participants wanted to be of their answers. Some double-
and triple-checked their answers before moving on to the next task. Several (usually experts) spent additional
time trying to brainstorm why the changes had occurred. As a result, we do not present completion times in
the results.

We recorded and analyzed participants’ comments from each phase as a means to better understand how
they approached each assignment, as well as the strengths and weaknesses of each interface.

4.5 Limitations

Our methodology has several limitations. Most importantly, it is difficult to evaluate the true utility of interfaces
for helping developers diagnose complex problems without asking them to go through the entire process of
debugging a real problem. However, doing so would require a large number of expert participants intimately
familiar with the system being diagnosed. As a compromise, we created tasks that tried to tease out whether
participants were able to understand the gist of the problem and identify starting points for diagnosis. Even this
was sometimes difficult for non-experts. For example, non-experts fared worse than experts on task 4 (“identify
what the changes represent”), largely because they were less knowledgeable about distributed systems and
Ursa Minor (see Figure 7). Overall, our small sample size limits the generalizability of our quantitative results.

When asked to identify aspects of the interfaces they liked or disliked, several participants mentioned issues
with the mechanisms we provided for recording study answers, in addition to issues with the interfaces
themselves. This may have affected participants’ overall views of the utility of the interfaces.

Finally, many of our participants, especially the non-experts, had a difficult time with the wording of task 1.
They often confused “statistically significant latency changes” with “other latency changes worth investigating.”

5 User study results

Figure 6 shows the precision/recall and accuracy results for each of the three interfaces. Results for individual
tasks, aggregated across all assignments, are shown. Both side-by-side and diff fared well, and their results in
most cases are similar for precision, recall, and accuracy. Their results are also similar for the “I am confident
my answers were correct” Likert shown in Figure 8. Though animation fared better than or was comparable
to the other interfaces for tasks 3, 4, and 5, it fared especially poorly for recall in latency-based tasks (tasks
1 and 2). Participants’ comments about animation were also the most negative. Figure 7 shows the same
results broken down by participant type. Between experts and non-experts, there was no clear winner between
diff and side-by-side. Instead, the choice between them seems to depend on the participant’s familiarity with
software development as well as the type of task. Animation fares worse than the other two interfaces for
experts.

The rest of this section describes key findings from our study. We concentrate our analyses on diff and
side-by-side, as these two were the most promising of the interfaces tested.
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Figure 6: Scoring results. By and large, participants performed reasonably well using both side-by-side (blue) and
diff (orange) interfaces. Though animation fared well for certain tasks, such as structural precision, its recall score for
latency-based recall tasks was notably poor.

Figure 7: Scoring results by group. As expected, experts’ results are generally better than non-experts. There is no
clear winner between diff and side-by-side. Experts fared worse with animation than with the other interfaces.

5.1 Finding differences

For all of the interfaces, we observed that participants found most differences by scrubbing the graphs—i.e.,
by slowly scrolling downward from the top and scanning for differences. Participants would often zoom in and
out during this process in order obtain a high-level understanding of the graphs. A few participants complained
about the amount of scrolling necessary for large graphs, especially those with multiple types of differences
(e.g., edge latency and structural). ND05 said, “I do feel like have to spend a lot of time scrolling up and down
here. I feel like there might be a faster way to do that.” NA10 said, “These big graphs make me scared. I have
to look [at them] in parts.” Instead of scrubbing, several participants zoomed out to fit the entire graph on the
screen when identifying statistically significant differences, as the red highlighting used for these changes was
easily distinguishable even when the graphs were small.

When identifying important edge latency differences not marked as statistically significant, users of diff
compared lengths of the blue (before) and orange (after) edges. Many users of side-by-side realized they could
find such edges by looking for successive correspondence lines that were non-parallel. Users of animation
would try to focus on a reference point while repeatedly starting and stopping the animation. Unfortunately,
these participants were usually unable to find such points, because all nodes below any difference will move
during the animation process. As such, participants found it difficult to find all edge latency changes with this
interface, accounting for its low recall score.

When identifying structural differences, users of diff would either look for nodes highlighted in blue or orange
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Figure 8: Likert responses, by condition. Each participant was asked to respond to the statements “The interface
was useful for answering these questions” and “I am confident my answers are correct.”

or look for nodes with plus or minus signs. Users of side-by-side relied on the lack of correspondence lines
between nodes, and users of animation tried to rely on the same process as for edge latency differences.

5.2 Side-by-side is straightforward, but shows too much data

Figure 6 shows that side-by-side and diff’s scores for precision, accuracy, and recall were comparable in most
cases, with side-by-side performing slightly better overall. The most notable exception is recall for task 3 (“find
groups of structural changes”). Figure 7 shows that side-by-side was comparable to diff for both experts and
non-experts in many cases. For recall in task 2 (“find all latency changes worth investigating”), non-experts
performed better with side-by-side than diff and the reverse was true for experts. For task 4 (“identify what the
changes represent”), non-experts performed worse with side-by-side than the other two interfaces.

Figure 8a shows that participants found side-by-side the most useful interface of the three, as 100% of all
participants strongly agreed or agreed to the corresponding Likert question. It was also tied for highest
confidence with diff, as shown by Figure 8b.

Participants liked side-by-side because it was the most straightforward of the three—it showed both graphs
with correspondence lines clearly showing matching nodes in each. Comparing diff to side-by-side, ND09
said, “With [side-by-side], I can more easily see this is happening here before and after. Without the dashed
lines, you can’t see which event in the previous trace corresponds to the after trace.” ND06 similarly said,
“[Side-by-side] gives me a parallel view of the before and after traces because it shows me the lines where one
system is heading and the difference between the graphs. . . . The lines are definitely interesting—they help
you to distinguish between [the] before and after trace.”

Side-by-side’s simple approach comes at a cost. When nodes are very close to another, correspondence lines
became too cluttered and difficult to use. This led to complaints from several participants (e.g., ES02, ES03,
NS01, and NS03). A few participants came up with unique solutions to cope. For example, NS03 gave up
trying to identify corresponding nodes between the graphs and identified structural differences by determining
if the number of correspondence lines on the screen matched the number of nodes visible in both the before
and after graph.

Participants also found it difficult to find differences when one graph was much longer than the other, because
correspondence lines would disappear off the top of the screen. This problem was especially prevalent at the
end of such graph pairs, because the slope of a correspondence line depends on the sum of all timing changes
above it. ES01 complained that “the points that should be lining up are getting farther and farther away, so
it’s getting more difficult to compare the two.” ED04 complained that it was more difficult to match up large
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changes since the other one could be off the screen. Similar complaints were voiced by other participants
(e.g., ES02, NS02).

5.3 Diff is polarizing

Figure 6 shows that the overall precision/recall results for diff and side-by-side are similar, with side-by-side
performing only slightly better. However, diff’s performance varies more than side-by-side, depending on the
type of task. Figure 7 shows that experts performed as well or better with diff than with side-by-side, whereas
the reverse was true for non-experts. Figure 8a shows that 57% of participants found diff useful, the lowest
percentage for any of the interfaces. However, diff tied side-by-side for confidence, as shown in Figure 8b.

Participants’ comments about diff were polarized, with some participants finding it hard to understand and
others preferring its compactness. NS04, who fell into the former category, said, “[Side-by-side] may be more
helpful than [diff], because this is not so obvious, especially for structural changes.” Though participants did
not usually make explicit comments about finding diff difficult to use, we found that diff encouraged incorrect
mental models in non-expert participants. For example, ND08 and ND09 confused structural differences that
resulted in node additions within a single thread of activity with extra parallel activity. It is easy to see why
participants might confuse the two, as both are represented by forks, differentiated only by whether there are
node deletions that correspond to the additions.

Experts and the more advanced non-experts preferred diff’s compactness. For example, ES03 claimed diff’s
compact representation made it easier for him to draw deductions.

We postulate the results for diff vary greatly because its compact representation requires more knowledge
about software development and distributed systems than that required by the more straightforward side-
by-side interface. For example, many developers are familiar with diff tools for text, which would help them
understand our graph-based diff technique more easily.

5.4 Diff and side-by-side have contrasting advantages

When users of diff and side-by-side were asked whether they preferred their starting interface or the alternate
one presented to them at the end of the study (side-by-side for users of diff and diff for users of side-by-side),
almost all participants chose the second, regardless of starting interface. Neither was perfect, and both had
advantages when compared to the other. ED04 was dismayed when we asked him which one he preferred: “If
had to choose between one and the other without being able to flip, I would be sad.”

Table 3 summarizes the comparative advantages of both interfaces, drawn from direct comparisons as well
as our observation of how participants used them. Side-by-side’s main advantages have to do with its
straightforwardness and simplicity of representation, as detailed in Section 5.2. Forks in the graphs always
represent extra parallel activity, and changes in the slope of correspondence lines represent edge latency
changes. Participants also liked that it used horizontal screen space better than diff, which only shows one
(usually) long, skinny graph at a time. Diff’s main advantages have to do with its compactness and lack of
clutter, as detailed in Section 5.3. It is also easier to use to find small edge latency differences, as the items
being compared are much closer to one another (adjacent blue and orange edges vs. correspondence lines).
As a result of these relative strengths, we believe diff is more useful for large graphs and for experts. In
contrast, side-by-side is preferred for smaller graphs and novices.
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Side-By-Side Diff

' Simple Presentation of two graphs simultane-
ously is conceptually straightforward

' Unambiguous Graph forks always represent
parallelism, never structural changes

' Slope=Latency Changes in slope of corre-
spondence lines indicate changes in latency

' Lines=Structure Lack of correspondence
lines indicate structural changes

' Space-Filling Makes better use of horizontal
screen space

' Compact Limits clutter: combines information
for comparison, uses fewer lines, and lines
do not overlap

' Annotated Explicit encoding with plus and mi-
nus symbols helps spot structural changes

' Skew-Free Corresponding nodes remain hori-
zontally aligned

' Latency is Evident Differences in orange and
blue line lengths indicate latency changes
clearly

Table 3: Advantages of side-by-side and diff. This table shows the relative benefits of the side-by-side and diff
interfaces, as drawn from participants’ behaviors and comments.

5.5 Animation has clear weaknesses

Figure 6 shows that though animation’s performance on many tasks was comparable to the other interfaces, its
performance on latency-based recall tasks (2 and 3) was very poor. Figure 7 shows that experts fared worse
with animation than the other two interfaces. Figure 8a shows that 83% of participants found animation useful,
a curiosity because participants’ comments about animation were the most negative. However, Figure 8b
shows only 17% of participants were confident in their answers.

With animation, all differences between the two graphs appear and disappear at the same time. This cacophony
confused participants, especially when multiple types of differences were present. In such cases, edge latency
changes would cause existing nodes to move down and, as they were doing so, trample over nodes that were
fading in or out due to structural changes. EA07 complained, “Portions of graphs where calls are not being
made in the after trace are fading away while other nodes move on top of it and then above it . . . it is confusing.”
NA11 explicitly told us that the fact the graph moved so much annoyed him.

During the animation process, all nodes below a difference will move. This frustrated participants, as they were
unable to identify static reference points for determining how a graph’s structure changed around a particular
node or how much a given edge’s latency changed. NA10 told us: “I want to. . . pick one node and switch it
between before and after. [But the same node] in before/after is in a different location completely.” NA12 said
he didn’t like animation because of the lack of consistent reference points. “If I want to measure the size of an
edge, if it was in the same position as before. . . then it’d be easy to see change in position or length.”

A final negative aspect of this interface is that it implies the existence of a false intermediate state between the
before and after graphs. As a result, NA13 interpreted the animation as a timeline of changes and listed this
as a feature he really liked.

5.6 Automation results must match users’ expectations

One surprising aspect of our study was participants’ difficulty in answering task 1, which asked them to mark
all edges with statistically significant latency changes. Since these edges were automatically highlighted in
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red, we anticipated participants would have no difficulty in finding them. However, most of our participants did
not have a strong background in statistics, and so they took “statistically significant” to mean “large changes in
latency,” generating much confusion and accounting for the lower than expected scores. In reality, even large
differences in average latency may not be statistically significant if the variance in individual latency values
is very high. Conversely, small differences may be statistically significant if variance is low. Request-flow
comparison uses statistical significance as the bar for automatically identifying differences because it bounds
the expected number of false positives when there are large latency increases.

As a result of their incorrect mental model, some participants (usually non-experts) failed to differentiate
between task 1 and task 2, the latter of which asked participants to find other (non statistically-significant) edges
with latency changes worth investigating. Participants were especially concerned with why small changes in
latency were labeled statistically significant. NA10 complained, “I don’t know what you mean by statistically
significant—maybe it’s statistically significant to me,” and followed up with “I am paying special attention to the
ones that are marked in red, but they don’t seem to be changing. . . it’s very confusing.” Confusion about the
red highlighting affected results of other tasks as well, with some participants refusing to mark a change as
having the most impact unless it was highlighted.

We could have worded task 1 better to avoid some of this confusion, but these results demonstrate the
important point that the results of automation must match users’ mental models. Statistics and machine
learning techniques can provide powerful automation tools, but to take full advantage of this power—which
becomes increasingly important as distributed systems become more complex—developers must have the
right expectations about how they work. Both better visualization techniques and more advanced training may
be needed to achieve this.

6 Design lessons

Moving forward, the insights we gleaned from evaluating the three interfaces suggest a number of directions
for improving diagnosis visualization. Here we highlight a few key common themes.

A primary recurring theme is the need to selectively reduce the complexity of large diagnosis outputs. Even
when they were navigable, graphs with hundreds of nodes pose an obstacle to understanding the output at a
high level. In our interface, zooming in and out at the image level allows the entire comparison to be seen,
but it does not provide intuition into the meaning of the graph as a whole. A number of possible concrete
solutions could help alleviate this difficulty for request-flow comparison — for instance, coalescing portions of
the comparison that are the same in both graphs, or grouping sequences of similar operations (mentioned by
ND09, ES02, ED04, and ES01). A small context view indicating the navigation position in the graph structure
would also help (EA07, ED05).

When displaying large and complex graphs, providing anchor points for analysis is also important. This theme
was evidenced by the struggle many users had with the increasing skew in the side-by-side and animation
layouts, as well as the inability to quickly trace a correspondence from one graph to another (e.g., ES02 and
NA10). A future interface could realign graphs or allow users to anchor the comparison around a selected
point.

Ensuring that automation behaves predictably is critical to avoiding the confusion mentioned in Section 5.6.
False positives presented by an interface lead users to question their own intuition and the criteria used
for automatically directing their attention to portions of an output. On the other hand, false negatives lead
users to question the effectiveness of the automated system at pinpointing issues. Ideally, automated tools
would produce perfect output, but failing that, this issue can be mitigated by providing users more training and
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intuition for the failure modes of automation. Offering users control over the parameters that control the output
of automation can also help.

Several participants struggled with comparing the relative impact of changes that were far apart in the graph.
Three of our experts (EA07, ES02, ED05) suggested labeling each edge with its latency. Others requested a
way to measure the total latency for one chunk of a graph. Both of these features are included in an expanded
version of our visualization tool; we presented our participants with the simplified version in order to focus on
how the different visual elements of the three interfaces affected their success.

7 Related work

We briefly survey related work on the topics of finding correspondences between graphs, visualizing differences
between graphs, the effectiveness of animation, and visualization for system diagnosis generally.

Graph difference techniques: A variety of algorithms have been proposed to find the difference or edit
distance between two graphs with unknown correspondence. We direct the interested reader to [12] for
a survey. As finding graph correspondence in the general case is hard, these algorithms are limited in
applicability [40, 41], approximate [2, 10, 22], or both. Few approaches have a theoretical foundation for
correctness [12,33], and we similarly make no attempt to provide a formal model for our technique.

Visual graph comparison: Given two graphs with a known correspondence, visual analysis techniques have
been proposed to help users understand differences and similarities. Different types of graphs and features
to compare have merited different approaches. For trees, TreeJuxtaposer [27] analyzes structural changes
in large graphs, and TreeVersity [16] addresses both structural and node-value changes on smaller data.
G-PARE [35] analyzes only value changes on general graphs. Visualizing sequences of graphs [3,17] is one
of few domains where user studies have been employed to gauge the effectiveness of different approaches. In
particular, one user study compares four approaches to sequence visualization, finding that a “difference map”
(roughly akin to the diff view for unweighted, undirected graphs) was significantly preferred but not more useful.

Animation: The effectiveness of animation to help users analyze data (e.g., identify trends or differences)
is controversial, with some studies finding it more useful than static approaches (e.g., small multiples) and
others finding it less useful. We refer readers to Robertson et al. [32] for a summary of these studies. The lack
of agreement suggests that animation’s effectiveness may be domain specific. For example, Archambault
et al. suggest that animation may be more effective for helping users understand the evolution of nodes and
edges in a graph whereas small multiples may be more useful for tasks that require users to read node or
edge labels [4]. Robertson et al. compare animation’s effectiveness to that of small multiples and one other
static approach for identifying trends in Gapminder Trendalyzer [13] visualizations. They find that animation is
more effective and engaging for presenting trends, whereas static approaches are more effective for helping
users identify them.

Visualization for system diagnosis: Compared to the wealth of recent work in automated diagnosis, there
have been relatively few efforts investigating effective visual methods for understanding the results. For
instance, the Dapper tracing infrastructure at Google focuses on providing APIs to build bespoke tools, with
little investigation or evaluation of its default interface [37]. Indeed, a recent survey of important directions
for log analysis concludes that because humans will remain in the analysis loop, visualization research is an
important next step [29].

One project in this vein is NetClinic, which considers root-cause diagnosis of network faults [23]. The authors
find that visualization in conjunction with automated analysis [19] is helpful for diagnosis. As in this study, the
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tool uses automated processes to direct users’ attention, and the authors observe that automation failures
inhibit users’ understanding. In another system targeted at network diagnosis, Mansmann et al. observe
that automated tools alone are limited in utility without effective presentation of results [26]. Like many other
network monitoring efforts, however, the proposed solution primarily focuses on improving display of the
underlying data rather than the output of an automated tool.

8 Summary

For tools that automate aspects of problem diagnosis to be useful, they must present their results in a manner
developers find clear and intuitive. This paper describes a 20-person user study comparing three interfaces for
presenting the results of request-flow comparison, one particular automated problem localization technique.
Via quantitative analyses and qualitative statements from users, we found two of the three interfaces to be
effective and identified design guidelines for further development. We believe these guidelines can be applied
more broadly to visualizing many automated tools for building and evaluating computer systems.
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