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ABSTRACT
Ultra-low-power sensor nodes enable many new applications and are
becoming increasingly pervasive and important. Energy efficiency is
the key determinant of the value of these devices: battery-powered
nodes want their battery to last, and nodes that harvest energy should
minimize their time spent recharging. Unfortunately, current devices
are energy-inefficient.

In this work, we present MANIC, a new, highly energy-efficient
architecture targeting the ultra-low-power sensor domain. MANIC
achieves high energy-efficiency while maintaining programmabil-
ity and generality. MANIC introduces vector-dataflow execution,
allowing it to exploit the dataflows in a sequence of vector instruc-
tions and amortize instruction fetch and decode over a whole vector
of operations. By forwarding values from producers to consumers,
MANIC avoids costly vector register file accesses. By carefully
scheduling code and avoiding dead register writes, MANIC avoids
costly vector register writes. Across seven benchmarks, MANIC is
on average 2.8× more energy efficient than a scalar baseline, 38.1%
more energy-efficient than a vector baseline, and gets to within
26.4% of an idealized design.

CCS CONCEPTS
• Computer systems organization → Single instruction, multiple
data; Data flow architectures.
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1 INTRODUCTION
The emergence of tiny, pervasively deployed, ultra-low-power sensor
systems enables important new applications in environmental sens-
ing, in- and on-body medical implants, civil infrastructure monitors,
and even tiny chip-scale satellites. Existing systems for these applica-
tions suffer fundamental inefficiencies that demand new, extremely
energy-efficient computer architectures.
Sensing workloads are increasingly sophisticated: Sensor devices
collect data from a deployed environment and must process raw data
to support applications. Processing varies and may entail digital
signal processing (DSP), computing statistics, sorting, or sophisti-
cated computations such as machine learning (ML) inference using
a deep neural network (DNN) or a support vector machine (SVM).
As processing sophistication has increased, sensor device capabil-
ity also matured to include high-definition image sensors [61] and
multi-sensor arrays [50], increasing sensed data volume.

This shift poses a challenge: how can we perform sophisticated
computations on simple, ultra-low-power systems? One design is
to offload work by wirelessly transmitting data to a more powerful
nearby computer (e.g., at the “edge” or cloud) for processing. In
offloading, the more data a sensor produces, the more data the device
must communicate. Unfortunately, transmitting data takes much
more energy per byte than sensing, storing, or computing on those
data [32, 52]. While a high-powered device like a smartphone, with
a high-bandwidth, long-range radio, can afford to offload data to
the edge or cloud, this is not practical for power-, energy-, and
bandwidth-limited sensor devices [26, 32].

Since offloading is infeasible, the alternative is to process data
locally on the sensor node itself. For example, recent work [32]
has shown how systems can use commodity off-the-shelf microcon-
trollers (COTS MCU) to filter sensed data so that only meaningful
data (as defined by the application) are transmitted. Processing data
locally at a sensor node eliminates most of the high energy cost
of communication, but makes the device highly sensitive to the
energy-efficiency of computation.

There are two key criteria that make a computation-heavy sensor
system effective. First, the device must process data locally at a low
operating power and with extremely high energy-efficiency. Second,
the device must be programmable and general to support a wide
variety of applications. These goals are in tension, since programma-
bility often carries a significant energy penalty. Our goal is to design
a highly programmable architecture that hides microarchitectural
complexity while eliminating the energy costs of programmability.
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Existing low-power architectures fall short: Ultra-low-power COTS
MCUs used in many deeply embedded sensor nodes (e.g., TI MSP430,
ARM M0+ & M4+) fail to meet the criteria for an effective sensor
node. These MCUs are general-purpose, programmable devices that
support a variety of applications. However, COTS MCUs pay a
high power, energy, and performance cost for their generality and
programmability (see the COTS MCU dot in Fig. 1).

Programmability is expensive in two main ways [7, 34, 39]. First,
instruction supply consumes significant energy: in the best case,
the energy of an instruction cache hit, and in the worst case, the
energy of a main memory read and instruction cache fill. Lacking
sophisticated microarchitectural features such as superscalar and
out-of-order execution pipelines [41, 78], the energy overhead of
instruction supply constitutes a significant fraction of total operating
energy. Second, data supply through register file (RF) access also
consumes significant energy. Together, we find that instruction and
data supply consume 54.4% of the average execution energy in our
workloads.
Programming pitfalls of architectural specialization: To combat
the energy costs of generality, some recent work has turned to mi-
croarchitectural specialization, making a system energy-efficient at
the expense of generality and programmability [13–15, 27, 51, 80].
Specialization customizes a system’s control and datapath to accom-
modate a particular workload (e.g., deep neural networks [13, 15]),
eliminating inessential inefficiencies like instruction supply and RF
access. The downside of specialization is its inability to support a
wide range of applications (see the ASIC dot in Fig. 1).

In contrast to specialization, another approach to programmable
energy-efficiency is to target a conventional vector architecture (such
as NVidia’s Jetson TX2 [64], ARM NEON [2], or TI LEA [42]),
amortizing the cost of instruction supply across a large number of
compute operations. Unfortunately, vector architectures exacerbate
the energy costs of RF access, especially in high-throughput designs
with multi-ported vector register files (VRFs) [3, 49, 65], and so re-
main far from the energy-efficiency of fully specialized designs [34]
(see the classic vector dot in Fig. 1).

The ELM architecture stands out among prior efforts as an ar-
chitecture that targets ultra-low-power operation, operates with ex-
tremely high energy-efficiency, and retains general-purpose pro-
grammability [5, 7]. The key to ELM’s efficiency is an operand
forwarding network that avoids latching intermediate results and a
distributed RF that provides sufficient register storage, while avoid-
ing unfavorable RF energy scaling. Unfortunately, despite these
successes, ELM faces fundamental limitations that prevent its wide-
spread adoption. ELM makes significant changes to the architecture
and microarchitecture of the system, requiring a full re-write of
software to target its exotic, software-managed RF hierarchy and
instruction-register design. This programming task requires expert-
level assembly hand-coding, as compilers for ELM are unlikely to
be simple or efficient; e.g., ELM itself cites a nearly 2× drop in
performance when moving from hand-coded assembly to compiler-
generated assembly [5]. While ELM supports general-purpose pro-
grams, it does so with a high programmability cost and substantial
changes to software development tools (as shown in Fig. 1).
Our design and contributions: In this work we present MANIC: an
efficient vector-dataflow architecture for ultra-low-power embedded

COTS MCU

Ease of Programming

Energy-
Efficiency

MANIC
ELM

ASIC

Classic Vector

Ideal

Better

Figure 1: MANIC seeks to improve energy efficiency without compro-
mising programmability.

systems. As depicted in Fig. 1, MANIC is closest to the Ideal design,
achieving high energy-efficiency while remaining general-purpose
and simple to program. MANIC is simple to program because it
exposes a standard vector ISA interface based on the RISC-V vector
extension [69].

MANIC achieves high energy-efficiency by eliminating the two
main costs of programmability through its vector-dataflow design.
First, vector execution amortizes instruction supply energy over a
large number of operations. Second, MANIC addresses the high
cost of VRF accesses through its dataflow component by forward-
ing operands directly between vector operations. MANIC transpar-
ently buffers vector outputs in a small forwarding buffer and, at
instruction issue, renames vector operands to directly access the for-
warding buffer, eliminating read accesses to the VRF. Additionally,
MANIC extends the vector ISA with kill annotations that denote
the last use of a vector register, eliminating write accesses to the VRF.
The vector-dataflow architecture is efficient because MANIC amor-
tizes the energy of tracking dataflow across many vector operations.
MANIC thus eliminates a large fraction of VRF accesses (90.1% on
average in our experiments) with simple microarchitectural changes
that leave the basic vector architecture intact.

Finally, we have designed and implemented a code scheduling
algorithm that exploits MANIC’s operand forwarding to minimize
VRF energy, while being microarchitecturally agnostic. In other
words, it is not necessary to expose the details of the pipeline archi-
tecture or size of forwarding buffers to minimize VRF energy—a
single code schedule is near-optimal across a range of microarchi-
tectural design points.

We implement MANIC fully in RTL and use industry-grade CAD
tools to evaluate its energy efficiency across a collection of programs
appropriate to the deeply embedded domain. Using post-synthesis
energy estimates, we show that MANIC is within 26.4% of the en-
ergy of an idealized design while remaining fully general and making
few, unobtrusive changes to the ISA and software development stack.

2 RELATED WORK
High-data-rate embedded sensors demand energy-efficient compu-
tation. Battery-powered and energy-harvesting systems are primar-
ily constrained by energy-efficiency, not performance. Despite in-
creases in capability and efficiency, prior systems compromise either
programmability, energy-efficiency, or both. Prior work on energy-
efficient architecture uses datapath specialization, vector execution,
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or compiler support, but does not apply to deeply-embedded, ultra-
low-power systems. This section discusses these prior efforts to
motivate MANIC and give context for our contributions.

2.1 Ultra-low-power embedded systems
An ultra-low-power embedded device combines sensors, compute
components, and radios, and many are designed to capture data and
send them over a radio link to a base station for offloaded processing.
The offload model requires the sensor to communicate all sensed
data. Unfortunately, communication over long distances has a high
energy cost [26], creating a strong incentive to process sensed data
locally.
Battery-powered sensing devices: Some devices are battery-power-
ed [22, 44, 70] which limits lifetime and device duty cycle. With
a single-charge battery, energy-efficiency determines lifetime until
depletion. With a rechargeable battery, the number of recharge cycles
limits lifetime. Recent work [44] suggests that batteries show little
promise for compute-intensive workloads on COTS MCUs. Even
a simple data-logger lasts only a few years deployed despite very
sparse duty cycling and performing almost no computation. As
duty-cycle and computational intensity increase (e.g., for machine
learning on high-rate sensor data), lifetime will drop to weeks or
days, limiting device applicability.
Energy-harvesting sensing devices: Energy-harvesting systems
collect operating energy from their environment and use capaci-
tive energy storage instead of a battery, eliminating complexity,
duty-cycle, and lifetime limitations of batteries [19, 35, 36, 72, 87].
Energy-harvesting devices operate intermittently after buffering suf-
ficient energy and otherwise sleep, waiting for energy. An energy-
harvesting system’s value is determined by the amount of work it
can perform in a tiny energy budget, as once the energy is spent, the
device turns off and must recharge.

Recent software and platform results [9, 10, 18, 19, 30, 32, 36, 37,
45, 53, 54, 56–58, 71, 79, 86] show that intermittently powered sys-
tems can execute sophisticated applications despite these limitations,
and recent work has developed microarchitectural support for cor-
rect intermittent execution [38, 55, 59]. These prior efforts focused
primarily on ensuring correct execution in intermittent systems, with
few [30, 32, 54] optimizing performance and energy.
Relevance to MANIC: We observe that for deeply embedded sys-
tems and energy-harvesting systems, value is largely determined
by energy efficiency. A more energy-efficient system operates more
frequently and does more per operating period. Studying the fre-
quency of power failures and the typically very low cost of JIT
checkpointing [45, 58, 60], we conclude that microarchitectural sup-
port for correctness is not the most urgent research question in an
intermittent architecture; architects should focus on efficiency first.

2.2 Vector architecture
MANIC’s vector-dataflow design is informed by a long history
of vector and dataflow architectures. Early vector machines ex-
ploited vector operations for supercomputing [21] and most com-
mercially available architectures support vectors (e.g., AVX [28] and
GPUs [20]). These vector designs target performance and operate at
a power budget orders-of-magnitude higher than an ultra-low-power

device. MANIC focuses on low-power operation, which leads to
different choices than performance-optimized designs.

Vector execution is data-parallel and provides the energy-efficiency
benefit of amortizing instruction supply energy (fetch, decode, and
issue) across many operations. Unfortunately, a vector design re-
quires a large vector register file (VRF), exacerbating register file
access cost, especially in designs that require a VRF with many
ports. Reducing VRF cost and complexity has been a primary focus
of prior vector designs [3, 49].

T0 [3, 83] is a vector architecture with reconfigurable pipelines.
Software controls datapaths to chain operations, eliminating VRF
access within a chain. However, microarchitectural details of the
datapath are exposed to software, requiring major software changes
and recompilation.

CODE [49] reduces VRF cost by distributing the VRF among
heterogeneous functional units. This design is transparent to software
because CODE renames operands at instruction issue to use registers
near an appropriate functional unit. Distribution lets CODE reduce
VRF ports, but requires a routing network to send values between
functional units.
Relevance to MANIC: Like this prior work, MANIC uses vector
execution to reduce instruction supply overhead, but also includes
additional techniques to lower VRF cost. MANIC reduces VRF ports
by focusing on efficiency, not performance: MANIC uses a single
functional unit per lane, requiring a minimum of VRF ports (2 read,
1 write). VRF access remains expensive, however, requiring MANIC
to avoid VRF access when possible. MANIC’s vector-dataflow ex-
ecution model achieves this by relaxing the ordering of a typical
vector execution, similar to SIMT in GPUs. Like T0, MANIC for-
wards operands to eliminate VRF access, but, unlike T0, does so
transparently to software. Like CODE, MANIC renames operands
to hide microarchitectural complexity, but, unlike CODE, does so to
eliminate VRF access. It is this combination of techniques that lets
MANIC achieve ultra-low-power operation without complicating
software.

2.3 Dataflow architecture
MANIC eliminates VRF accesses by forwarding operands between
instructions according to dataflow. Dataflow machines have a long
history [23–25, 62] that includes changes to the programming and
execution model to eliminate control and data movement overheads.
More recent efforts identify dataflow locality [73, 77] as a key deter-
minant in sequential code. Ample prior work in out-of-order (OoO)
execution engines (i.e., restricted dataflow) uses operator fusion to
improve performance and reduce RF pressure [4, 12, 48, 74, 75].

RSVP [17] uses SIMD execution, specialized for dataflow oper-
ation, focused on performance. However, RSVP requires writing
programs in a custom dataflow language and only targets streaming
workloads. Dyser [33], Plasticine [68], and Stream-dataflow [63]
have revived spatial dataflow, enabling programmable designs at
ASIC-like efficiencies. Their key drawback is the need to compile
programs directly to a spatial fabric, which precludes microarchitec-
tural change.

ELM [5] is perhaps the most related work to MANIC. ELM
is a custom microarchitecture designed for low-power, embedded
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operation. ELM uses restricted SIMD execution and operand for-
warding to provide dataflow-like execution. ELM’s complex register
file hierarchy and forwarding mechanism are software-controlled,
exposing microarchitectural details to the programmer and requiring
expert-level, hand-coded assembly for maximum efficiency. Even
with significant changes to the compiler toolchain, ELM poses a risk
of unpredictable performance and high programming cost.
Relevance to MANIC: Like the work above, MANIC seeks to
exploit dataflow to improve efficiency and, like RSVP and ELM,
uses SIMD in order to amortize instruction supply cost. MANIC
also relies upon operand forwarding like ELM to avoid RF reads
and writes. However, unlike this prior work, MANIC seeks to hide
microarchitectural complexity from the programmer. MANIC uses
dataflow to inform control of a single lane functional unit instead
of opting for a spatial fabric like in Dyser, Plasticine, and Stream-
dataflow. And unlike ELM, which has a significant programming
cost, MANIC relies on the standard vector extension to the RISC-V
ISA with only a few optional changes.

2.4 Register file optimization
MANIC reduces vector register file energy by leveraging dataflow
to avoid register file reads and writes. There are a number of prior
works that also identify the register file as a performance and/or
energy bottleneck.

In the GPU domain, Gebhart et al. and Jeon et al. observe that
producers often have only a single consumer and consumers arrive
shortly after a producer [31, 46]. Gerbhart et al. introduces a RF
cache and operand buffer to forward values directly between instruc-
tions, reducing RF pressure [31, 84]. RF virtualization for GPUs has
also been explored as a way to improve RF utilization [46, 81, 82].
These systems remap registers by dynamically allocating and deallo-
cating registers among running threads in order to expose additional
parallelism [81, 82] or to reduce the number of physical registers
while maintaining performance [46].

For CPU designs, dead-value prediction and operator fusion can
be used to reduce RF reads and writes. Dead-value prediction re-
duces RF pressure by identifying values that do not need to be
persisted to the register file because they are not read again [8, 66].
Finally, compilers can mark dead values [47, 82] so that hardware
can deallocate and free the physical register earlier.
Relevance to MANIC: MANIC exploits the same pattern of regis-
ter liveness (i.e., values are not alive for very long) identified in prior
work. However, instead of exploiting this pattern to improve perfor-
mance or RF utilization, MANIC focuses on eliminating RF accesses
to save energy. MANIC remaps registers similar to RF virtualization,
but operates at a much finer granularity (remapping instruction-by-
instruction vs. at program phases/thread barriers) and remaps regis-
ters explicitly following dataflow (vs. caching them). Lastly, MANIC
uses compiler-generated dead-value hints to avoid VRF writes; to
the best of our knowledge, it is the first to use compiler-generated
hints in a vector design. Prior work on dead-value prediction is in-
applicable to ultra-low-power designs because it requires expensive
speculative recovery mechanisms to handle mispredictions.
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Figure 2: Different execution models. Orange arrows represent control
flow, blue arrows represent dataflow. MANIC relies on vector-dataflow
execution, avoiding register accesses by forwarding and renaming.

3 VECTOR-DATAFLOW EXECUTION
MANIC implements the vector-dataflow execution model. There are
two main goals of vector-dataflow execution (Fig. 1). The first goal
is to provide general-purpose programmability. The second goal is
to do this while operating efficiently by minimizing instruction and
data supply overheads. Vector-dataflow achieves this through three
features: (i) vector execution, (ii) dataflow instruction fusion, and
(iii) register kill points.

3.1 Vector execution
The first main feature of MANIC’s execution model is vector execu-
tion. Vector instructions specify an operation that applies to an entire
vector of input operands (as in ample prior work discussed in Sec. 2).
The key advantage of vector operation for an ultra-low-power design
is that control overheads imposed by each instruction — instruction
cache access, fetch, decode, and issue — amortize over the many
operands in the vector of inputs. Vector operation dramatically re-
duces the cost of instruction supply and control, which is a primary
energy cost of general-purpose programmability. Vector operation is
thus a key ingredient in MANIC’s energy-efficiency.

Fig. 2 illustrates the difference between scalar execution and vec-
tor execution. Fig. 2a executes a sequence of instructions in a scalar
fashion. Blue arrows show dataflow and orange arrows show control
flow. Instructions proceed in sequence and write to and read from the
register file to produce and consume outputs and operands. Fig. 2b
executes the same sequence of instructions in a vector execution.
The execution performs the vector instruction’s operation on each
element of the vector in sequence, consuming operands from and
producing outputs to the register for each operation over the entire
vector. Control proceeds horizontally across each of the vector’s
elements for a single vector instruction before control transfers ver-
tically to the next vector instruction. Vector execution amortizes the
control overhead of a scalar execution because a single instruction
corresponds to an entire vector worth of operations.

3.2 Dataflow instruction fusion
The second main feature of MANIC’s execution model is dataflow
instruction fusion. Dataflow instruction fusion identifies windows
of contiguous, dependent vector instructions. Dataflow instruction
fusion eliminates register file reads by directly forwarding values
between instructions within the window. Comparing to a typical
vector machine illustrates the benefit of dataflow instruction fusion.
In a typical vector machine, instructions execute independently and
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each operation performs two vector register file reads and one vector
register file write. Accessing the vector register file has an extremely
high energy cost that scales poorly with the number of access ports [7,
49]. With dataflow instruction fusion, each instruction that receives
a forwarded input avoids accessing the expensive vector register file
to fetch its input operands. Avoiding these reads reduces the total
energy cost of executing a window of vector instructions.

Fig. 2c illustrates the difference between vector execution and
vector-dataflow execution in MANIC. Vector-dataflow first iden-
tifies data dependencies among a sequence of vector instructions
in a fixed-size instruction window. After identifying dependences
between instructions in the window, MANIC creates an efficient
dataflow forwarding path between dependent instructions (using the
forwarding mechanism described in Sec. 4). Fig. 2c shows a window
of dependent operations made up of instructions I0, I1, and I2.
Execution begins with the first vector instruction in the window (I0)
and the first element of the vector (v[0]). However, unlike a typical
vector execution, control transfers vertically first, next applying the
second vector instruction to the first vector element. The orange arcs
illustrate vertical execution of I0, then I1, then I2 to the vector in-
puts represented by v[0]. After vertically executing an operation for
each instruction in the window for v[0], the orange arcs show that
control steps horizontally, executing the same window of operations
on the next element of the vector, v[1]. The blue arrows illustrate
the dataflow forwarding captured by vertical execution in a window
of vector-dataflow execution. The blue arrow from I0 to I2 shows
that the value produced by I0 is forwarded directly to I2 without
storing the intermediate result in the vector register file.

3.3 Vector register kill points
The third main feature of MANIC’s execution model is its use of
vector register kill points. A vector register is dead at a particular
instruction if no subsequent instruction uses the value in that register.
Hence, a dead value need not be written to the vector register file.
The instruction at which a vector register becomes dead is the kill
point for that register. Though MANIC forwards values between
dependent instructions without going through the vector register
file, MANIC normally must write each operand back to the vector
register file because the operand may be used later in a later window.

However, if a program explicitly informs MANIC of each reg-
ister’s kill points, then MANIC can eliminate register file writes
associated with those registers. We propose to tag each of an instruc-
tion’s operands with an optional kill bit that indicates that the register
is dead at that instruction, and its value need not be written back to
the vector register file. Kill bits do not affect programmability be-
cause they are optional, a compiler analysis to identify dead registers
is simple, and kill bits do not expose microarchitectural details, such
as the size of MANIC’s instruction window.

3.4 Applications benefit from vector-dataflow
We studied the core compute kernels in a wide variety of sensor node
applications and found abundant opportunities for vector-dataflow
execution. Regardless of MANIC’s window size, an application
has more exploitable vector dataflows if its sequences of dependent
instructions tend to be shorter. The length of a dependent instruction
sequence is characterized by the distance (or number of instructions)
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Figure 3: Histograms of kill distances for three different applications.
Distances skew left, suggesting values are consumed for the last time
shortly after being produced.

between a when register’s value is produced and when that register
is killed (the kill point). We deem this the kill distance. Shorter kill
distances require fewer resources for forwarding in a window and
make a window of any size more effective.

We statically measured the distribution of kill distances for all
registers in the inner loops of three kernels. The histograms shown
in Fig. 3 suggest that kill distances tend to be short and that a rea-
sonably small (and thus implementable) window size would capture
dependencies for these kernels.

3.5 Synchronization and memory consistency
In MANIC, the vector unit runs as a loosely-coupled co-processor
with the scalar core. As a result, MANIC must synchronize vector
and scalar execution to ensure a consistent memory state. A typical
sequentially consistent model would require frequent stalls in the
scalar core to disambiguate memory and, worse, would limit the
opportunity for forwarding in the vector unit. These issues could be
avoided with microarchitectural speculation, including load-store
disambiguation and mis-speculation recovery mechanisms, but we
judge such mechanisms too expensive for ultra-low-power applica-
tions. Moreover, in practice, the scalar core and the vector unit rarely
touch the same memory during compute-intensive program phases,
so the mechanisms would be largely unused.

Instead, we add a new vfence instruction that handles both syn-
chronization and memory consistency. vfence stalls the scalar core
until the vector unit completes execution with its current window of
vector-dataflow operations. MANIC’s use of vfence operations is
very similar to memory fences for concurrency in x86, ARM, and
other widely commercially available processors [29]. Properly used,
vfence operations cause the scalar and vector cores’ executions to
be sequentially consistent. In practice, this often means inserting a
vfence at the end of the kernel.

As with any system relying on fences, the programmer is re-
sponsible for their correct use (i.e., avoiding data races). Relying
on the programmer to avoid data races is practical since compilers
struggle with alias analysis, reasonable because vfences are rare,
and consistent with common practice in architectures and high-level
programming languages [11, 43].

4 MANIC: ULTRA-LOW-POWER
VECTOR-DATAFLOW PROCESSING

MANIC is a processor microarchitecture that implements the vector-
dataflow execution model to improve energy efficiency while main-
taining programmability and generality. MANIC’s hardware/soft-
ware interface is the most recent revision of the RISC-V ISA vector
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extension [69]. MANIC adds a vector unit with a single lane to a
simple, in-order scalar processor core. The vector unit has a few
simple additions to support vector-dataflow execution: instruction
windowing hardware and a renaming mechanism together implement
forwarding between dependent instructions. With no modifications
to the ISA, MANIC runs programs efficiently. With a minor ISA
change, MANIC further improves efficiency by conveying register
kill annotations; the microarchitecture uses these annotations to kill
registers instead of incurring the cost of writing them to the vector
register file.

4.1 Vector ISA
The software interface to MANIC’s vector execution engine is the
RISC-V ISA vector extension [69] and RISC-V code1 will run
efficiently on a MANIC system with only minor modifications to add
vfence instructions for synchronization and memory consistency.

A programmer may further optionally recompile their code using
our custom MANIC compiler to use minor ISA changes that support
code scheduling and vector register kill annotations. We empha-
size that these compiler-based features do not require programming
changes, do not expose microarchitectural details, and are optional
to the effective use of MANIC.

MANIC implements the RISC-V V vector extension. RISC-V V
does not specify a fixed number of vector registers, but its register
name encoding includes five bits for vector register names. We im-
plement 16 vector registers, requiring four bits to name, and leaving
a single bit in the register name unused. We use the extra bit in a
register’s name to convey kill annotations from the compiler to the
microarchitecture. If either of an instruction’s input registers has
its high-order bit set, the encoded instruction indicates to MANIC
that the register dies at the instruction. To support code schedul-
ing, MANIC’s optional compiler support runs the dataflow code
scheduling algorithm (described in Sec. 4.5). After scheduling, the
compiler analyzes definitions and uses of each register and adds a
kill annotation to a killed register’s name in the instruction at which
it dies.

4.2 Microarchitecture
The foundation of MANIC’s microarchitecture is an extremely sim-
ple, in-order, single-issue vector core with a single execution lane
that is equipped with a single functional unit. MANIC adds four
components to this base vector core to support vector-dataflow execu-
tion: (1) issue logic and a register renaming table; (2) an instruction
window buffer; (3) an xdata buffer and (4) a forwarding buffer. Fig. 4
shows an overview of MANIC’s design and how these components
relate to one another.
Issue logic and register renaming: MANIC’s issue logic is pri-
marily responsible for creating a window of instructions to execute
according to vector-dataflow. The issue logic activates once per win-
dow of instructions, identifying, preparing, and issuing for execution
a window of dependent instructions over an entire vector of inputs. A
key parameter of the issue logic is the length of the instruction buffer
window, which we explain next. The issue logic analyzes a short
sequence of instructions that has the same number of instructions as
the instruction buffer can hold. The issue logic identifies dataflow
1Specifically, RISC-V E extension, which uses 16 architectural registers.
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Figure 4: A block diagram of MANIC’s microarchitectural components
(non-gray region). Control flow is denoted with orange, while blue de-
notes dataflow. Stateful components (e.g. register files) have dotted out-
lines.

between instructions by comparing the names of their input and
output operands. If two instructions are dependent — the output of
one of the instructions is the input of another — MANIC should
forward the output value directly from its producer to the input of
the consumer, avoiding the register file. MANIC’s issue logic imple-
ments forwarding by renaming the instructions’ register operands to
refer to a free location in MANIC’s forwarding buffer, instead of to
the register file. The issue logic records the renaming in MANIC’s
renaming table, which is a fixed-size, directly-indexed table, with
one entry for each register that can be renamed in a window of
instructions. After the issue logic identifies dependent operations
and performs renaming for a window of operations, it dispatches the
window of operations for execution.
Instruction window: MANIC uses its instruction window to store
an issued window of instructions that have had their register operands
renamed by the issue logic. The instruction window and its associ-
ated control logic (not pictured) determine what operation MANIC’s
single functional unit should execute next. The instruction window’s
control logic executes the operation represented by each instruction
stored in the buffer. As Sec. 3 describes, execution proceeds first
vertically, through the entire window, and then horizontally through
the vector. A key feature of the instruction window’s control logic
is its ability to select an operand’s source or destination. For in-
put operands, the instruction window controls whether to fetch an
operand from the vector register file or from MANIC’s forwarding
buffer (in the case of an operand being forwarded between instruc-
tions in the window). Likewise, for output operands, the instruction
window controls whether to write an output operand to the vector
register file, to the forwarding buffer, or to both.
Limits to window size: There are several classes of instructions
that limit window size. These include stores, permutations, and re-
ductions. Permutations and reductions require interactions between
elements in a vector, which creates a horizontal dependence be-
tween operations on different vector elements. MANIC does not
support forwarding for such operations because of the complexity
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of the dependence tracking that they introduce. Instead, these opera-
tions execute one element at a time, ultimately writing to the vector
register file.

A store also ends issuing for a window. A store may write to a
memory location that a later operation loads from. Such a through-
memory dependence is unknown until execution time. Consequently,
MANIC conservatively assumes that the address of any store may
alias with the address of any load or store in the window (i.e., in a
later vector element). A store ends the construction of a window to
avoid the need for dynamic memory disambiguation to detect and
avoid the effect of such aliasing. We evaluated adding a non-aliasing
store instruction that would allow MANIC to forward past stores,
but this instruction improved energy-efficiency by less than 0.5% in
our applications. This is because store instructions often naturally
close windows (e.g. a vfence follows the store to ensure correct-
ness). Thus, given the added programming complexity for minimum
benefit, we conclude that such an instruction is unnecessary.
Xdata buffer: Some instructions like vector loads and stores require
extra information (e.g. base address and stride) available from the
scalar register file when the instruction is decoded. Due to the loosely
coupled nature of MANIC, this extra information must be buffered
alongside the vector instruction. Since not all vector instructions
require values from the scalar register file, MANIC includes a sep-
arate buffer, called the xdata buffer, to hold this extra information.
Entries in the instruction buffer contain indices into the xdata buffer
as needed. During execution, MANIC uses these indices to read
information from the xdata buffer and execute accordingly.
Forwarding buffer: The forwarding buffer is a small, directly-
indexed buffer that stores intermediate values as MANIC’s execution
unit forwards them to dependent instructions in the instruction win-
dow. The issue logic lazily allocates space in the forwarding buffer
and renames instruction’s forwarded operands to refer to these allo-
cated entries. The benefit of the forwarding buffer is that it is very
small and simple, which corresponds to a very low static power and
access energy compared to the very high static power and access
energy of the vector register file. By accessing the forwarding buffer
instead of accessing the vector register file, an instruction with one
or more forwarded operands consumes less energy than one that
executes without MANIC.
Efficient reductions: RISC-V V contains reduction instructions like
vredsum v1 v2, which adds up all elements of v2 and writes the sum
into the first element of v1. MANIC relies on the forwarding buffer
to avoid VRF accesses for reductions. Instead of writing partial
results to the VRF, MANIC allocates space in the forwarding buffer
for partial accumulation. The decode logic recognizes a reduction,
allocates space, and remaps the second source operand and the
destination to point to the entry in the forwarding buffer. During
execution, MANIC will then use the partial result in the forwarding
buffer as one source for the reduction (e.g., sum) and overwrite it
with the new value as it is produced. This optimization re-purposes
MANIC’s existing dataflow mechanisms to save an entire vector-
length of VRF reads and writes for reductions.
Structural hazards: There are three structural hazards that cause
MANIC to stop buffering additional instructions, stall the scalar
core, and start vector execution. The first hazard occurs when the
instruction buffer is full and another vector instruction is waiting to

be buffered. The second hazard occurs when all slots in the forward-
ing buffer are allocated and an incoming instruction requires a slot.
Finally, the third hazard occurs when the xdata buffer is full and a
decoded vector instruction requires a slot. The prevalence of each
hazard depends on the size of the buffers associated with each. The
first hazard is most common, while the other two tend to be rare.

4.3 Memory system
MANIC includes an instruction cache (icache) and a data cache
(dcache). This departs from the designs of many commercial micro-
controllers in the ultra-low-power computing domain, which do not
have dcaches and have extremely small icaches on the order of 64
bytes [41]. However, we find that even small or moderately sized
dcaches (512B) are effective in minimizing the number of accesses
to main memory. We measured miss curves for the seven different
application we consider; for each application there is an extreme
drop-off in the number of misses for even small cache sizes, and
with a 512B cache the curves are basically flat. Since the energy
of an access to main memory dwarfs an access to the dcache, the
dcache offers a significant reduction in energy.
Caching and intermittence: In the intermittent computing domain,
improperly managed caches may lead to memory corruption because
dirty data may be lost when power fails. As such, MANIC assumes
a hardware-software JIT-checkpointing mechanism (like [9, 45, 58])
for protecting the caches and any dirty data. Checkpointing energy
for cached data is virtually negligible because caches are very small
relative to the operating period.

4.4 Putting it together with an example
We illustrate the operation of the issue logic, renaming table, instruc-
tion window, and forwarding buffer with an example of MANIC’s
operation, shown in Fig. 5. The figure starts with vector-aware as-
sembly code that MANIC transforms into vector-dataflow operations
by populating the renaming table and instruction buffer with infor-
mation about the dataflow. Vector assembly instructions pass into
MANIC’s microarchitectural mechanisms as they decode to the issue
logic and later execute.
Issuing instructions and renaming operands: The figure shows a
three-instruction program and illustrates how the issue logic popu-
lates the instruction buffer and remaps registers for each instruction.
• vload: The issue logic records the load in the instruction window

and, since the instruction is a vector load and requires a base
address, also inserts the base address (&a forwarded from the
scalar register file) into the xdata buffer. In addition, the issue
logic writes an empty renaming entry to v0 in the renaming table
along with the index of the instruction in the instruction buffer. An
empty renaming entry at execution time signifies a vector register
write. However, during issue, an empty entry may be filled by an
instruction added to the instruction window later during the same
issue phase.

• vmul: The multiply instruction consumes two register operands
that are not in the renaming table and, at execution time, will
issue two vector register file reads. As with the load, the issue
logic records the multiply’s output register with an empty entry
in the renaming table as well as the index of the multiply in the
instruction buffer.
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Figure 5: MANIC’s issue logic constructs windows of instructions with
dataflow. The rename table keeps track of registers and names, updat-
ing the instruction buffer when new opportunities for forwarding are
identified.

• vadd: The add’s inputs are v0 and v1 with the kill annotation
indicating that the instruction kills register v0. The issue logic
looks up each input operand in the renaming table and, finding
both have valid entries, identifies this instruction as the target for
forwarding. The issue logic remaps v0 to refer to the first entry
of the forwarding buffer and v1 to the second position. The load
instruction in the instruction buffer (found by the saved index
in the renaming table) is updated and will store its result in F0
instead of v0. Similarly, the multiply instruction is also updated
and will store its result in F1, but since v1 is not killed, it will
still be written-back to the register file. The add instruction then
will fetch its input operands from F0 and F1 instead of the vector
register file. The kill annotations associated with v3 and v0 follow
the re-written instructions into the instruction window, enabling
their use during execution to avoid register file writes.

Executing a window of instructions: After issue, the window of
instructions is ready to execute. Fig. 6 shows (via the orange control-
flow arcs) how MANIC executes the entire window vertically for a
single vector element before moving on to execute the entire window
for the second vector element. The blue dataflow arcs show how
MANIC forwards values between dependent instructions using its
forwarding buffer. The green squares marked with “F” names are
forwarded values. The figure also shows how MANIC uses a kill
annotation at runtime. The registers with kill annotations (v0 and
v3) need not be written to the vector register file when the window
completes executing, sparing the execution two vector register writes
required by a typical vector execution.

4.5 Microarchitecture-agnostic
dataflow scheduling

MANIC’s final feature is microarchitecture-agnostic dataflow sched-
uling. This feature is optional compiler support that re-orders vector
instructions to make dependent operations as close as possible to one
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Figure 6: MANIC’s microarchitecture components execute a window
of instructions using forwarding according to dataflow across an entire
vector of input.

another. If dependent operations are closer together in an instruction
sequence, then it is more likely that they will appear together in one
of MANIC’s vector-dataflow windows. By re-ordering operations to
appear close together in a window, MANIC creates more opportuni-
ties to forward values from a producer instruction to its consumer,
eliminating more vector register file accesses.

MANIC’s dataflow scheduler does not compromise programma-
bility or generality. The programmer need not understand the mi-
croarchitecture to reap the benefits of the dataflow scheduler. The
dataflow scheduler minimizes the forwarding distance between de-
pendent instructions, rather than targeting a particular window size.
While not always optimal for a given window size, this microarchitec-
ture-agnostic optimization prevents the compiler from being brittle
or dependent on the microarchitectural parameters of a particular
system.

To minimize forwarding distance between dependent instructions,
MANIC’s dataflow code scheduler uses sum kill distance. A vector
register’s kill distance is the number of instructions between when an
instruction defines the register and when the value in the register is
used for the last time (i.e., the register dies). The sum kill distance is
the sum of all registers’ kill distances across the entire program. To
remain agnostic to the window size of particular MANIC implemen-
tation, the code scheduler minimizes the sum kill distance (which is
equivalent to minimizing average kill distance). Sum kill distance
is a proxy for the number of register writes in a program because
if a register does not die during a window’s execution, the system
must write its value back to the register file. When sequences of
dependent instructions are closer together, their intermediate values
die more quickly, because registers need not remain live waiting for
unrelated instructions to execute. A larger window accommodates
dependence chains that include longer kill distances.

We implement dataflow code scheduling using brute force (ex-
haustive) search for small kernels containing fewer than 12 vector
operations. For larger kernels (e.g., FFT), we implement dataflow
code scheduling via simulated annealing that randomly mutates in-
struction schedules, while preserving dependences, to produce a new
valid schedule, accepting this new schedule with some probability.
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Figure 7: Code scheduling is microarchitecturally agnostic – minimizing the sum of kill distances
is good proxy for minimizing register writes for specific window size.

Parameter Possible Values Optimal

Core Frequency 100 MHz 100 MHz
Scalar Register # 16 16
Vector Register # 16 16
Vector Length 16/32/64 64
Window Size 8/16/32 16
Main Memory Size 64 KB 64KB
Cache Line Size 4/8 B 4B
DCache Size 128/256/512 B 256B
DCache Associativity 1/2/4/8 8
ICache Size 64/128/256 B 128B
ICache Associativity 1/2/4/8 2

Table 1: Microarchitectural parameters.

Fig. 7 shows that the microarchitecture-agnostic minimization
of the sum kill distance closely approximates a microarchitecture-
specific approach that optimizes for a particular window size. The
plot shows the number of register writes made by one iteration of the
kernel’s inner loop for a given window size using code optimized
by the two different optimization criteria. The blue line shows the
number of register writes of a microarchitecture-specific schedule,
where window size is exposed to the compiler. The red line shows the
number of writes for our microarchitecture-agnostic schedule based
on sum kill distance. The two curves generally agree, suggesting that
minimizing sum kill distance eliminates register writes with similar
efficacy as when window size is exposed explicitly to the compiler.
For the FFT kernel, the instruction window is broken by stores and
permutations (Sec. 4.2), causing additional vector register file writes.
This is a limitation of optimizing only for sum kill distance that we
plan to address in future work.

5 METHODOLOGY
We implement MANIC entirely in RTL and evaluate the system
using post-synthesis timing, power, and energy modeling.

5.1 Full-stack approach
We take a full-stack approach to implementing MANIC. We build
a simulation infrastructure based on Verilator [76] that allows us to
run full applications on top of MANIC. This infrastructure includes
a custom version of Spike, modifications to the assembler, a custom
LibC, a custom bootloader, a cache and memory simulator, and RTL
for both MANIC and its five-stage pipelined scalar core. We develop
a custom version of Spike [1] (the gold standard for functional RISC-
V simulation) with support for vector instructions to verify RTL
simulation. We extend the GNU assembler to generate the correct
bit encodings for the RISC-V vector extension instruction set. We
build a custom LibC and bootloader to minimize the overhead of
startup and to support our architecture. We use a cache and memory
simulator to model timing for loads and stores. Finally, we use a test
harness built with Verilator to run full-application, cycle-accurate
RTL simulations.
Post-synthesis modeling: We synthesize MANIC using the Ca-
dence Genus Synthesis solution and a 45nm standard cell library.
Genus generates post-synthesis timing, area, and generic power es-
timates. To get a better power estimate, we annotate switching for

each application. Towards this end, we use our Verilator test har-
ness to generate a SystemVerilog testbench for each application.
Then we generate a value-change dump (VCD) file, using the Ca-
dence Xcelium RTL simulator, our application testbench, and the
post-synthesis RTL netlist. The VCD file represents switching of
all internal signals in the netlist. Finally, we feed the VCD file back
into Genus and leverage the Joules power estimation tool to estimate
leakage and dynamic power for the entire application. For some
applications, the VCD file that covers the entire execution of the
application is too large to store. In these instances, we generate a
VCD file that is representative of a region of interest.
Modeling memory energy: We model the power, energy, and la-
tency of main memory, caches, and the vector register file using
Destiny [67]. We use Destiny’s SRAM RAM model for the vector
register file and use its SRAM cache model for the caches. A large,
non-volatile main memory is a prerequisite for an intermittently-
powered system, which is one potential target of MANIC. We model
main memory using Destiny’s STT-MRAM model, because STT-
MRAM has favorable energy characteristics and has high write en-
durance compared to alternatives like Flash and RRAM [16, 40, 85].
Each memory model was configured to optimize for low leakage
using the LSTP device roadmap and 45nm technology node.

5.2 Baselines and applications
We compare MANIC to two baselines: an in-order, single-issue
scalar core architecture and a simple vector architecture. We imple-
ment both baselines in RTL and follow the same process detailed pre-
viously for MANIC for estimating energy and power. The scalar and
vector baselines share a scalar core model with MANIC (a simple,
in-order, five-stage-pipelined core, representative of ultra-low-power
systems). Each implementation also has separate instruction and
data caches. The vector baseline is similar to MANIC, possessing a
small instruction buffer, but, unlike MANIC, iterates through each
vector instruction element by element and writes intermediate re-
sults to the vector register file. We also consider an idealized design
that operates with a similar datapath as MANIC, but eliminates the
main costs of programmability, namely instruction fetch/decode and
scalar/vector register file access.
Design space exploration: For the baselines and MANIC as well
as different configurations of each, we conduct a design space ex-
ploration to optimize microarchitectural parameters to reduce total
energy. Holding all but one parameter constant, we identify the
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Figure 8: Full system energy of MANIC against various baselines across
seven different applications. Bars (from left-to-right): scalar baseline, vec-
tor baseline, MANIC, and an idealized vector design with no instruction
or data supply energy. MANIC is within 26.4% of the ideal design and
is overall 2.8× more energy efficient than the scalar baseline and 38.1%
more energy efficient than the vector baseline.
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Figure 9: Impact of MANIC’s optimizations on full system energy, com-
paring (from left-to-right): vector baseline, MANIC with forwarding dis-
abled, MANIC without dataflow code scheduling, and full MANIC. With-
out forwarding, MANIC’s added components slightly increase energy by
<5%. Forwarding saves 15.5% system energy vs. the baseline, and kill an-
notations and dataflow code scheduling saves a further 26.7%.

optimal setting of the variable parameter, iterating through each
parameter and selecting the best value for each in the next iteration
until we reach a fixed point. Our design-space parameters are data
and instruction cache sizes, cache line size (4 or 8 bytes), cache
associativity (1, 2, 4, 8), vector length, and instruction window size.
Unless specified otherwise, our architectural simulations use the
parameters shown in Table 1.
Applications: We evaluate MANIC using seven different bench-
marks representative of the ultra-low-power computing domain and
similar in scope to prior work [6]. We implemented 2D fast-fourier
transform (FFT), dense and sparse matrix-matrix multiply (DMM
and SMM, respectively), dense and sparse matrix-vector multiply
(DMV and SMV, respectively), and dense and sparse 2D convolu-
tion (DConv and SConv, respectively). These kernels are important
because they are at the heart of many important applications includ-
ing signal processing, graph analysis, machine learning (including
deep neural networks), and communications. Often they account
for majority of execution time and application energy – convolution
alone in inference applications can account for more than 80% of
energy [15]. For each benchmark, we wrote four variants: a version
using SONIC [32] which enables safe execution on an intermittent
system, a plain C version, a vectorized plain C version, and a vec-
torized plain C version that we scheduled using MANIC’s dataflow
code scheduler.

The plain-C, vectorized plain-C and scheduled versions use the
same algorithm for each application, except for FFT. For FFT, the
plain-C implementation uses the Cooley-Tukey algorithm, while the
vectorized versions do a series of smaller FFTs leveraging the vector
length and then combine these small FFTs for the output.

6 EVALUATION
We evaluated MANIC to show that it achieves near-ideal energy effi-
ciency without sacrificing generality or programmability. MANIC is

more energy efficient, uses less power, and is as fast or faster than a
vector or scalar baseline.

6.1 MANIC is energy-efficient
Fig. 8 shows that MANIC is energy efficient, comparing full-system
energy for several different architectures across seven workloads.
Comparing the first three bars in the figure (scalar baseline, vector
baseline, and MANIC) illustrates that MANIC uses less total energy
than either baseline. On average, MANIC decreases total energy con-
sumption by 2.8× and by as much as 3.7× over the scalar baseline.
These results are likely to significantly under-estimate MANIC’s im-
provement over a COTS system deployed today because we model
a scalar baseline implemented in 45nm that uses less energy than
a common commercial offering implemented in, e.g., 130nm [41].
MANIC reduces energy by 38.1% compared to the vector baseline
and consistently decreases energy for all applications, decreasing
energy by a minimum of 30.9% (for sparse convolution).

The key to this efficiency is MANIC’s vector-dataflow model
and kill annotations, which eliminate most eliminate vector register
reads and writes. Consequently, vector register file access energy
(blue segment) is significantly lower for MANIC than for the vector
baseline.
MANIC has near-ideal energy-efficiency: Comparing MANIC to
ideal in Fig. 8 shows how MANIC performs compared to an ide-
alized design that removes instruction and data supply energy (i.e.
fetch, decode, and RF accesses). In the idealized design, memory’s
energy cost dominates. MANIC is within 26.4% of the ideal energy
consumption. These data show that the cost of programmibility and
generality in MANIC is low and near the ideal design.
MANIC (without forwarding) has small overhead: Fig. 9 shows
the sensitivity of MANIC to various optimizations. The second bars
in the figure represent MANIC with forwarding disabled. Compared
to the the vector baseline (first bars in the figure), MANIC without
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forwarding incurs only a small energy overhead of less than 5% for
its microarchitectural additions (e.g., the instruction and forwarding
buffers).
Forwarding saves significant energy: The third bars in Fig. 9 show
MANIC with dataflow code scheduling disabled, meaning that there
are no kill annotations and fewer opportunities to forward values.
Even without code scheduling, MANIC decreases energy as com-
pared to the the vector baseline because forwarding effectively elim-
inates vector register reads. On average, MANIC’s forwarding with-
out any special code scheduling reduces total energy by 15.5% over
the vector baseline.
Dataflow code scheduling improves forwarding: Finally, compar-
ing these bars to MANIC (last bars in the figure) shows that code
scheduling improves MANIC’s forwarding to eliminate vector regis-
ter writes and further reduce reads (i.e., the blue segment is smaller
with scheduling). On average, scheduling improves energy by 26.7%
vs. without and, on dense and sparse convolution, MANIC is able to
entirely eliminate all vector register file accesses.
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Figure 10: In the intermittent computing domain, MANIC with hard-
ware JIT-checkpointing is 9.6× more energy efficient than SONIC [32],
which maintains correctness in software alone.

MANIC with JIT-checkpointing outperforms SONIC: To eval-
uate how MANIC would perform under intermittent execution on
an energy-harvesting system, we compare MANIC to SONIC [32],
the state-of-the-art software runtime system for machine inference
on energy-harvesting devices. Fig. 10 shows results for SONIC, the
scalar baseline running plain C, and MANIC. MANIC significantly
outperforms SONIC, by 9.6× on average. This is because MANIC
has hardware support for JIT-checkpointing of architectural state be-
fore power failure, whereas SONIC suffers from increased accesses
to the icache, dcache, and main memory to checkpoint progress
in software. Scalar with JIT-checkpointing is 3.5× more efficient
than SONIC. Note that SONIC’s dcache is write-through because
otherwise the dcache and main memory could be inconsistent and
flushes after every store would be required for correctness.

6.2 MANIC is performant
Fig. 11 shows both the cycle and instruction counts for each applica-
tion running on the scalar and vector baselines as well as MANIC.
The scalar baseline runs on average 10.6× more instructions and
2.5× more cycles than both the vector baseline and MANIC. MANIC
and the vector baseline do not differ in instruction counts and effec-
tively do not differ in cycles counts either (vector dataflow execution
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Figure 11: Instruction and cycle counts for seven benchmarks running
on the scalar baseline, vector baseline, and MANIC. The vector baseline
and MANIC effectively do not differ. Vector execution means that both
run 10.6× less instructions and 2.5× less cycles than the scalar baseline.

requires no additional cycles and both implementations run the same
program). Vector execution explains the difference in performance
between the scalar baseline and the vector implementations. Not only
does vector execution amortize instruction fetch and decode, but it
also completely eliminates scalar instructions in inner-loop nests.
For example, a loop index needs to be incremented significantly less
(up to 64× less if the vector length is 64) in vector implementations
compared to the scalar-only implementations.
Fewer instructions, less energy: The scalar baseline spends 54.4%
of its energy on instruction fetch and register file access (the costs of
programmability). Hence, theoretically, a 2.2× reduction in energy
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Figure 12: Power of the scalar baseline, vector baseline, and MANIC
across seven benchmarks. MANIC uses 10.0% less power than the
scalar baseline and, despite using less energy than the scalar baseline,
the vector baseline actually uses 29.5% more power.
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Figure 13: MANIC’s sensitivity to its microarchitectural parameters: 16 is the best window size, larger vector lengths are generally better, and
moderately sized caches are generally more energy efficient.

can be achieved by eliminating instruction supply and register file en-
ergy from the scalar baseline. However, MANIC achieves a decrease
of 2.8×. What gives? The explanation is Fig. 11b: MANIC runs
fewer instructions than the scalar baseline and effectively eliminates
the need for certain scalar instructions in inner-loop nests. A single
addition for address arithmetic, for example, can replace dozens of
additions in the scalar baseline.

6.3 MANIC is power-efficient
Fig. 12 shows the average power in mW for the scalar and vector
baselines as well as MANIC. Each bar is broken down in the same
way as in Fig. 9. MANIC uses on average 10.0% less power than
the scalar baseline, while the vector baseline actually uses 29.5%
more power than the scalar baseline. (Recall that our goal is to
save energy, not power.) Vector register file accesses (blue segment
in Fig. 9) account for the differences in power. The vector baseline
must access the VRF for every element of every vector instruction,
while MANIC avoids many VRF accesses and thus uses less power.

6.4 Sensitivity
We characterize MANIC by studying the sensitivity of its energy
consumption to window size (Fig. 13a), vector length (Fig. 13b),
instruction cache size (Fig. 13c), and data cache size (Fig. 13d).
Window size of 16 is best: Fig. 13a suggests that larger window
sizes have only a small energy cost and can provide significant
improvement to kernels that can take advantage of the extra length.
Excluding FFT, a window size of 8 is best, which is consistent with

measured kill distances in Fig. 3. For FFT, a window size of 16 or
32 is beneficial. This is because FFT can forward values across loop
iterations, allowing a window to span multiple iterations and expose
additional dataflow opportunities. This phenomenon is not captured
in our static code analysis in Fig. 3, which effectively considers only
a single loop iteration.
Large vector lengths reduce icache energy: Fig. 13b shows that
energy decreases as vector length increases. Forwarding eliminates
90.1% of total VRF accesses and, thus, despite a larger VRF having
a higher access energy, longer vector lengths are still beneficial.
The benefit, however, levels off as the proportion of energy spent
on instruction supply (yellow segments) decreases as a fraction
of the total energy. In our experiments, we stop the vector length
at 64 because certain applications (like FFT) are designed to take
advantage of vector lengths of 64 or less. This is an artificial stopping
point and we plan further work to investigate even larger vector
lengths.
A moderately-sized icache is sufficient: Fig. 13c illustrates the
need for a relatively small instruction cache. The data show that
a very small instruction cache is inefficient, forcing hardware to
access main memory often. However, a large cache is unnecessary
to capture instruction access locality and realize a large energy
efficiency benefit. An instruction cache of 128B is sufficient for
most benchmarks and increasing the size further only seems be a
detriment due to higher access energy.
Relatively-small data cache is adequate: Fig. 13d shows that gen-
erally speaking a cache size of 256B is sufficient. A too small dcache,
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leads to additional misses and accesses to main memory. For most
benchmarks, except dense matrix multiplication, there is no reduc-
tion in energy for the largest cache size of 512B (if anything there
is a slight increase due to increased access energy and leakage).
Dense matrix multiplication still shows improvement in energy for
the largest cache size, but the improvement is small compared to the
improvement between 128B and 256B, suggesting that most of the
benefit has been captured at 256B.

7 CONCLUSION
This paper described MANIC, an ultra-low-power embedded pro-
cessor architecture that achieves high energy efficiency without
sacrificing programmability or generality. The key to MANIC’s ef-
ficient operation is its vector-dataflow execution model, in which
dependent instructions in a short window forward operands to one
another according to dataflow. Vector operation amortizes control
overhead. Dataflow execution avoids costly reads from the vector
register file. Simple compiler and software support helps avoid fur-
ther vector register file writes in a microarchitecture-agnostic way.
MANIC’s microarchitecture implementation directly implements
vector-dataflow with simple hardware additions, while still exposing
a standard RISC-V ISA interface. MANIC’s highly efficient imple-
mentation is on average 2.8× more energy efficient than an scalar
core and is within 26.4% on average of an ideal design that elimi-
nates all costs of programmability. Our results show that MANIC’s
vector-dataflow model is realizable and approaches the limit of en-
ergy efficiency for an ultra-low-power embedded processor.
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