
MASK: Redesigning the GPU Memory Hierarchy
to Support Multi-Application Concurrency

Rachata Ausavarungnirun1 Vance Miller2 Joshua Landgraf2 Saugata Ghose1
Jayneel Gandhi3 Adwait Jog4 Christopher J. Rossbach2,3 Onur Mutlu5,1

1Carnegie Mellon University 2University of Texas at Austin 3VMware Research
4College of William and Mary 5ETH Zürich

Abstract
Graphics Processing Units (GPUs) exploit large amounts of thread-
level parallelism to provide high instruction throughput and to
efficiently hide long-latency stalls. The resulting high throughput,
along with continued programmability improvements, have made
GPUs an essential computational resource in many domains. Appli-
cations from different domains can have vastly different compute
and memory demands on the GPU. In a large-scale computing envi-
ronment, to efficiently accommodate such wide-ranging demands
without leaving GPU resources underutilized, multiple applications
can share a single GPU, akin to how multiple applications execute
concurrently on a CPU. Multi-application concurrency requires sev-
eral support mechanisms in both hardware and software. One such
key mechanism is virtual memory, which manages and protects
the address space of each application. However, modern GPUs lack
the extensive support for multi-application concurrency available
in CPUs, and as a result suffer from high performance overheads
when shared by multiple applications, as we demonstrate.

We perform a detailed analysis of which multi-application con-
currency support limitations hurt GPU performance the most. We
find that the poor performance is largely a result of the virtual mem-
ory mechanisms employed in modern GPUs. In particular, poor
address translation performance is a key obstacle to efficient GPU
sharing. State-of-the-art address translation mechanisms, which
were designed for single-application execution, experience signifi-
cant inter-application interference when multiple applications spa-
tially share the GPU. This contention leads to frequent misses in
the shared translation lookaside buffer (TLB), where a single miss
can induce long-latency stalls for hundreds of threads. As a result,
the GPU often cannot schedule enough threads to successfully hide
the stalls, which diminishes system throughput and becomes a
first-order performance concern.

Based on our analysis, we proposeMASK , a new GPU framework
that provides low-overhead virtual memory support for the con-
current execution of multiple applications. MASK consists of three
novel address-translation-aware cache and memory management
mechanisms that work together to largely reduce the overhead
of address translation: (1) a token-based technique to reduce TLB
contention, (2) a bypassing mechanism to improve the effectiveness

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173169

of cached address translations, and (3) an application-aware mem-
ory scheduling scheme to reduce the interference between address
translation and data requests. Our evaluations show that MASK
restores much of the throughput lost to TLB contention. Relative to
a state-of-the-art GPU TLB,MASK improves system throughput by
57.8%, improves IPC throughput by 43.4%, and reduces application-
level unfairness by 22.4%. MASK ’s system throughput is within
23.2% of an ideal GPU system with no address translation overhead.

CCS Concepts • Computer systems organization → Single
instruction, multiple data; • Software and its engineering→
Virtual memory;

Keywords graphics processing units; GPGPU applications; ad-
dress translation; virtual memorymanagement; memory protection;
memory interference; memory systems; performance

ACM Reference format:
R. Ausavarungnirun et al. MASK: Redesigning the GPU Memory Hier-
archy to Support Multi-Application Concurrency. In Proceedings of 2018
Architectural Support for Programming Languages and Operating Systems,
Williamsburg, VA, USA, March 24–28, 2018 (ASPLOS’18), 16 pages.

1 Introduction
Graphics Processing Units (GPUs) provide high throughput by
exploiting a high degree of thread-level parallelism. A GPU executes
hundreds of threads concurrently, where the threads are grouped
into multiple warps. The GPU executes each warp in lockstep (i.e.,
each thread in the warp executes the same instruction concurrently).
When one or more threads of a warp stall, the GPU hides the latency
of this stall by scheduling and executing another warp. This high
throughput provided by a GPU creates an opportunity to accelerate
applications from a wide range of domains (e.g., [1, 11, 28, 31, 37,
45, 65, 73, 80, 82, 85, 91, 121]).

GPU compute density continues to increase to support demand-
ing applications. For example, emerging GPU architectures are
expected to provide as many as 128 streaming multiprocessors (i.e.,
GPU cores) per chip in the near future [13, 135].While the increased
compute density can help many individual general-purpose GPU
(GPGPU) applications, it exacerbates a growing need to share the
GPU cores across multiple applications in order to fully utilize the
large amount of GPU resources. This is especially true in large-scale
computing environments, such as cloud servers, where diverse de-
mands for compute and memory exist across different applications.
To enable efficient GPU utilization in the presence of application
heterogeneity, these large-scale environments rely on the ability to
virtualize the GPU compute resources and execute multiple appli-
cations concurrently on a single GPU [7, 9, 50, 51].

1

https://doi.org/10.1145/3173162.3173169

The adoption of GPUs in large-scale computing environments is
hindered by the primitive virtualization support in contemporary
GPUs [3, 4, 5, 12, 27, 34, 49, 53, 92, 93, 95, 96, 98, 101, 107, 139, 142].
While hardware virtualization support has improved for integrated
GPUs [3, 12, 27, 34, 49, 53, 92, 93, 107, 142], where the GPU cores and
CPU cores are on the same chip and share the same off-chipmemory,
virtualization support for discrete GPUs [4, 5, 12, 95, 96, 98, 101,
107, 139], where the GPU is on a different chip than the CPU and
has its own memory, is insufficient. Despite poor existing support
for virtualization, discrete GPUs are likely to be more attractive
than integrated GPUs for large-scale computing environments, as
they provide the highest-available compute density and remain the
platform of choice in many domains [1, 11, 28, 31, 45].

Two alternatives for virtualizating discrete GPUs are time multi-
plexing and spatial multiplexing. Modern GPU architectures sup-
port time multiplexing using application preemption [44, 79, 96,
101, 127, 141], but this support currently does not scale well be-
cause each additional application increases contention for the lim-
ited GPU resources (Section 2.1). Spatial multiplexing allows us
to share a GPU among concurrently-executing applications much
as we currently share multi-core CPUs, by providing support for
multi-address-space concurrency (i.e., the concurrent execution of
application kernels from different processes or guest VMs). By effi-
ciently and dynamically managing application kernels that execute
concurrently on the GPU, spatial multiplexing avoids the scaling
issues of time multiplexing. To support spatial multiplexing, GPUs
must provide architectural support for both memory virtualization
and memory protection.

We find that existing techniques for spatial multiplexing in mod-
ern GPUs (e.g., [96, 101, 102, 103]) have two major shortcomings.
They either (1) require significant programmer intervention to
adapt existing programs for spatial multiplexing; or (2) sacrifice
memory protection, which is a key requirement for virtualized
systems. To overcome these shortcomings, GPUs must utilize mem-
ory virtualization [54], which enables multiple applications to run
concurrently while providing memory protection. While memory
virtualization support in modern GPUs is also primitive, in large
part due to the poor performance of address translation, several
recent efforts have worked to improve address translation within
GPUs [35, 105, 106, 134, 151]. These efforts introduce translation
lookaside buffer (TLB) designs that improve performance signifi-
cantly when a single application executes on a GPU. Unfortunately,
as we show in Section 3, even these improved address translation
mechanisms suffer from high performance overheads during spatial
multiplexing, as the limited capacities of the TLBs become a source
of significant contention within the GPU.

In this paper, we perform a thorough experimental analysis
of concurrent multi-application execution when state-of-the-art
address translation techniques are employed in a discrete GPU (Sec-
tion 4). We make three key observations from our analysis. First, a
single TLB miss frequently stallsmultiple warps at once, and incurs
a very high latency, as each miss must walk through multiple levels
of a page table to find the desired address translation. Second, due
to high contention for shared address translation structures among
the multiple applications, the TLB miss rate increases significantly.
As a result, the GPU often does not have enough warps that are
ready to execute, leaving GPU cores idle and defeating the GPU’s
latency hiding properties. Third, contention between applications
induces significant thrashing on the shared L2 TLB and significant

interference between TLB misses and data requests throughout
the entire GPU memory system. With only a few simultaneous
TLB miss requests, it becomes difficult for the GPU to find a warp
that can be scheduled for execution, which defeats the GPU’s basic
fine-grained multithreading techniques [119, 120, 128, 129] that are
essential for hiding the latency of stalls.

Based on our extensive experimental analysis, we conclude that
address translation is a first-order performance concern in GPUs
when multiple applications are executed concurrently. Our goal in
this work is to develop new techniques that can alleviate the severe
address translation bottleneck in state-of-the-art GPUs.

To this end, we propose Multi-Address Space Concurrent
Kernels (MASK), a new GPU framework that minimizes inter-
application interference and address translation overheads during
concurrent application execution. The overarching idea ofMASK is
to make the entire memory hierarchy aware of TLB requests. MASK
takes advantage of locality across GPU cores to reduce TLB misses,
and relies on three novel mechanisms to minimize address transla-
tion overheads. First, TLB-Fill Tokens provide a contention-aware
mechanism to reduce thrashing in the shared L2 TLB, including
a bypass cache to increase the TLB hit rate. Second, our Address-
Translation-Aware L2 Bypass mechanism provides contention-aware
cache bypassing to reduce interference at the L2 cache between
address translation requests and data demand requests. Third, our
Address-Space-Aware DRAM Scheduler provides a contention-aware
memory controller policy that prioritizes address translation re-
quests over data demand requests to mitigate high address trans-
lation overheads. Working together, these three mechanisms are
highly effective at alleviating the address translation bottleneck, as
our results show (Section 5).

Our comprehensive experimental evaluation shows that, via the
use of TLB-request-aware policies throughout the memory hier-
archy, MASK significantly reduces (1) the number of TLB misses
that occur during multi-application execution; and (2) the overall
latency of the remaining TLB misses, by ensuring that page table
walks are serviced quickly. As a result, MASK greatly increases
the average number of threads that can be scheduled during long-
latency stalls, which in turn improves system throughput (weighted
speedup [42, 43]) by 57.8%, improves IPC throughput by 43.4%, and
reduces unfairness by 22.4% over a state-of-the-art GPU memory
management unit (MMU) design [106]. MASK provides perfor-
mance within only 23.2% of an ideal TLB that always hits.

This paper makes the following major contributions:
• To our knowledge, this is the first work to (1) provide a thorough
analysis of GPU memory virtualization under multi-address-
space concurrency, (2) show the large impact of address trans-
lation on latency hiding within a GPU, and (3) demonstrate the
need for new techniques to alleviate contention caused by ad-
dress translation due to multi-application execution in a GPU.

• We proposeMASK , a new GPU framework that mitigates address
translation overheads in the presence of multi-address-space
concurrency.MASK consists of three novel techniques that work
together to increase TLB request awareness across the entire
GPUmemory hierarchy.MASK (1) significantly improves system
performance, IPC throughput, and fairness over a state-of-the-art
GPU address translation mechanism; and (2) provides practical
support for spatially partitioning a GPU across multiple address
spaces.

2

2 Background
There is an increasingly pressing need to share the GPU hardware
among multiple applications to improve GPU resource utilization.
As a result, recent work [2, 17, 79, 96, 101, 102, 103] enables sup-
port for GPU virtualization, where a single physical GPU can be
shared transparently across multiple applications, with each ap-
plication having its own address space.1 Much of this work relies
on traditional time and spatial multiplexing techniques that are
employed by CPUs, and state-of-the-art GPUs contain elements
of both types of techniques [126, 130, 140]. Unfortunately, as we
discuss in this section, existing GPU virtualization implementations
are too coarse-grained: they employ fixed hardware policies that
leave system softwarewithout mechanisms that can dynamically re-
allocate GPU resources to different applications, which are required
for true application-transparent GPU virtualization.

2.1 Time Multiplexing
Most modern systems time-share (i.e., time multiplex) the GPU by
running kernels from multiple applications back-to-back [79, 96].
These designs are optimized for the case where no concurrency ex-
ists between kernels from different address spaces. This simplifies
memory protection and scheduling at the cost of two fundamental
trade-offs. First, kernels from a single address space usually cannot
fully utilize all of the GPU’s resources, leading to significant re-
source underutilization [60, 69, 70, 103, 137, 138, 141]. Second, time
multiplexing limits the ability of a GPU kernel scheduler to provide
forward-progress or QoS guarantees, which can lead to unfairness
and starvation [114].

While kernel preemption [44, 96, 101, 127, 141] could allow a
time-sharing scheduler to avoid a case where one GPU kernel un-
fairly uses up most of the execution time (e.g., by context switching
at a fine granularity), such preemption support remains an active
research area in GPUs [44, 127]. Software approaches [141] sacrifice
memory protection. NVIDIA’s Kepler [96] and Pascal [101] archi-
tectures support preemption at the thread block and instruction
granularity, respectively. We empirically find that neither granular-
ity is effective at minimizing inter-application interference.

To illustrate the performance overhead of time multiplexing,
Figure 1 shows how the execution time increases when we use time
multiplexing to switch between multiple concurrently-executing
processes, as opposed to executing the processes back-to-back with-
out any concurrent execution. We perform these experiments on
real NVIDIA K40 [96, 97] and NVIDIA GTX 1080 [100] GPUs. Each
process runs a GPU kernel that interleaves basic arithmetic opera-
tions with loads and stores into shared and global memory. We ob-
serve that as more processes execute concurrently, the overhead of
time multiplexing grows significantly. For example, on the NVIDIA
GTX 1080, time multiplexing between two processes increases the
total execution time by 12%, as opposed to executing one process
immediately after the other process finishes. When we increase
the number of processes to 10, the overhead of time multiplexing
increases to 91%. On top of this high performance overhead, we find
that inter-application interference pathologies (e.g., the starvation
of one or more concurrently-executing application kernels) are easy
to induce: an application kernel from one process consuming the
majority of shared memory can easily cause application kernels

1In this paper, we use the term address space to refer to distinct memory protection
domains, whose access to resources must be isolated and protected to enable GPU
virtualization.

from other processes to never get scheduled for execution on the
GPU. While we expect preemption support to improve in future
hardware, we seek a multi-application concurrency solution that
does not depend on it.

0%
20%
40%
60%
80%

100%

2 3 4 5 6 7 8 9 10

Pe
rf

or
m

an
ce

O
ve

rh
ea

d

Number of Concurrent Processes

Tesla K40 Pascal GTX 1080

Figure 1. Increase in execution time when time multiplexing is
used to execute processes concurrently on real GPUs.

2.2 Spatial Multiplexing
Resource utilization can be improved with spatial multiplexing [2],
as the ability to execute multiple application kernels concurrently
(1) enables the system to co-schedule kernels that have complemen-
tary resource demands, and (2) can enable independent progress
guarantees for different kernels. Examples of spatial multiplexing
support in modern GPUs include (1) application-specific software
scheduling of multiple kernels [103]; and (2) NVIDIA’s CUDAs-
tream support [96, 101, 102], which co-schedules kernels from in-
dependent “streams” by merging them into a single address space.
Unfortunately, these spatial multiplexing mechanisms have signifi-
cant shortcomings. Software approaches (e.g., Elastic Kernels [103])
require programmers tomanually time-slice kernels to enable their
mapping onto CUDA streams for concurrency. While CUDAstream
supports the flexible partitioning of resources at runtime, merging
kernels into a single address space sacrifices memory protection,
which is a key requirement in virtualized settings.

True GPU support for multiple concurrent address spaces can
address these shortcomings by enabling hardware virtualization.
Hardware virtualization allows the system to (1) adapt to changes
in application resource utilization or (2) mitigate interference at
runtime, by dynamically allocating hardware resources to multiple
concurrently-executing applications. NVIDIA and AMD both of-
fer products [6, 46] with partial hardware virtualization support.
However, these products simplify memory protection by statically
partitioning the hardware resources prior to program execution.
As a result, these systems cannot adapt to changes in demand at
runtime, and, thus, can still leave GPU resources underutilized. To
efficiently support the dynamic sharing of GPU resources, GPUs
must provide memory virtualization and memory protection, both
of which require efficient mechanisms for virtual-to-physical ad-
dress translation.

3 Baseline Design
We describe (1) the state-of-the-art address translation mechanisms
for GPUs, and (2) the overhead of these translation mechanisms
when multiple applications share the GPU [106]. We analyze the
shortcomings of state-of-the-art address translationmechanisms for
GPUs in the presence of multi-application concurrency in Section 4,
which motivates the need for MASK .

State-of-the-art GPUs extend the GPU memory hierarchy with
translation lookaside buffers (TLBs) [106]. TLBs (1) greatly reduce
the overhead of address translation by caching recently-used virtual-
to-physical address mappings from a page table, and (2) help ensure

3

that memory accesses from application kernels running in different
address spaces are isolated from each other. Recent works [105, 106]
propose optimized TLB designs that improve address translation
performance for GPUs.

We adopt a baseline based on these state-of-the-art TLB designs,
whose memory hierarchy makes use of one of two variants for
address translation: (1) PWCache, a previously-proposed design that
utilizes a shared page walk cache after the L1 TLB [106] (Figure 2a);
and (2) SharedTLB, a design that utilizes a shared L2 TLB after the
L1 TLB (Figure 2b). The TLB caches translations that are stored
in a multi-level page table (we assume a four-level page table in
this work). We extend both TLB designs to handle multi-address-
space concurrency. Both variants incorporate private per-core L1
TLBs, and all cores share a highly-threaded page table walker. For
PWCache, on a miss in the L1 TLB (1 in Figure 2a), the GPU
initializes a page table walk (2), which probes the shared page
walk cache (3). Any page walk requests that miss in the page walk
cache go to the shared L2 cache and (if needed) main memory. For
SharedTLB, on a miss in the L1 TLB (4 in Figure 2b), the GPU
checks whether the translation is available in the shared L2 TLB
(5). If the translationmisses in the shared L2 TLB, the GPU initiates
a page table walk (6), whose requests go to the shared L2 cache
and (if needed) main memory.2

Page Table Walker

L1 TLB CR3

Page Walk Cache

Shared L2 Cache

Page Table Walker

Shared L2 TLB

Private
Shared

Shared L2 Cache

Main Memory

(a) PWCache (b) SharedTLB

L1 TLB CR3 L1 TLB CR3 L1 TLB CR3

Shader Core Shader Core Shader Core Shader Core

Main Memory

1

2

4

5

3 6

Figure 2. Two variants of baseline GPU design.

Figure 3 compares the performance of both baseline variants
(PWCache, depicted in Figure 2a, and SharedTLB, depicted in Fig-
ure 2b), running two separate applications concurrently, to an ideal
scenario where every TLB access is a hit (see Table 1 for our simu-
lation configuration, and Section 6 for our methodology). We find
that both variants incur a significant performance overhead (45.0%
and 40.6% on average) compared to the ideal case.3 In order to
retain the benefits of sharing a GPU across multiple applications,
we first analyze the shortcomings of our baseline design, and then
use this analysis to develop our new mechanisms that improve TLB
performance to make it approach the ideal performance.

4 Design Space Analysis
To improve the performance of address translation in GPUs, we
first analyze and characterize the translation overhead in a state-of-
the-art baseline (see Section 3), taking into account especially the
2In our evaluation, we use an 8KB page walk cache. The shared L2 TLB is located next
to the shared L2 cache. L1 and L2 TLBs use the LRU replacement policy.

3We see discrepancies between the performance of our two baseline variants compared
to the results reported by Power et al. [106]. These discrepancies occur because Power
et al. assume a much higher L2 data cache access latency (130 ns vs. our 10 ns latency)
and a much higher shared L2 TLB access latency (130 ns vs. our 10 ns latency). Our
cache latency model, with a 10 ns access latency plus queuing latency (see Table 1 in
Section 6), accurately captures modern GPU parameters [98].

0.0
0.2
0.4
0.6
0.8
1.0

N
or
m
al
iz
ed

Pe
rf
or
m
an
ce

PWCache SharedTLB Ideal

Figure 3. Baseline designs vs. ideal performance.

performance challenges induced by multi-address-space concur-
rency and contention. We first analyze how TLB misses can limit
the GPU’s ability to hide long-latency stalls, which directly impacts
performance (Section 4.1). Next, we discuss two types of mem-
ory interference that impact GPU performance: (1) interference
introduced by sharing GPU resources among multiple concurrent
applications (Section 4.2), and (2) interference introduced by sharing
the GPU memory hierarchy between address translation requests
and data demand requests (Section 4.3).

4.1 Effect of TLB Misses on GPU Performance
GPU throughput relies on fine-grainedmultithreading [119, 120, 128,
129] to hide memory latency.4 We observe a fundamental tension
between address translation and fine-grained multithreading. The
need to cache address translations at a page granularity, combined
with application-level spatial locality, increase the likelihood that
address translations fetched in response to a TLB miss are needed
by more than one warp (i.e., many threads). Even with the massive
levels of parallelism supported by GPUs, we observe that a small
number of outstanding TLB misses can result in the warp scheduler
not having enough ready warps to schedule, which in turn limits
the GPU’s essential latency-hiding mechanism.

Figure 4 illustrates a scenario for an application with four warps,
where all four warps execute on the same GPU core. Figure 4a
shows how the GPU behaves when no virtual-to-physical address
translation is required. When Warp A performs a high-latency
memory access (1 in Figure 4), the GPU core does not stall since
other warps have schedulable instructions (Warps B–D). In this
case, the GPU core selects an active warp (Warp B) in the next cycle
(2), and continues issuing instructions. Even though Warps B–
D also perform memory accesses some time later, the accesses
are independent of each other, and the GPU avoids stalling by
switching to a warp that is not waiting for a memory access (3 , 4).
Figure 4b depicts the same 4 warps when address translation is
required. Warp A misses in the TLB (indicated in red), and stalls (5)
until the virtual-to-physical translation finishes. In Figure 4b, due
to spatial locality within the application, the other warps (Warps B–
D) need the same address translation as Warp A. As a result, they
too stall (6 , 7 , 8). At this point, the GPU no longer has any
warps that it can schedule, and the GPU core stalls until the address
translation request completes. Once the address translation request
completes (9), the data demand requests of the warps are issued
to memory. Depending on the available memory bandwidth and
the parallelism of these data demand requests, the data demand
requests from Warps B–D can incur additional queuing latency
(10 , 11 , 12). The GPU core can resume execution only after the
data demand request for Warp A is complete (13).

4More detailed information about the GPU execution model and its memory hierarchy
can be found in [14, 16, 17, 59, 61, 62, 63, 68, 90, 104, 111, 136, 137].

4

No virtual
address
translation

Warp A

Warp B

Memory Instruction

Data Demand Request

Address Translation Stall

(a)

(b) Available to Execute

time

With virtual
address
translation

Warp C

Warp D

Warp A

Warp B

Warp C

Warp D

No warp can run:
GPU core stalls

1

2

Queuing Latency

4

5

3

6

7

8

9

10

11

13

12

Figure 4. Example bottlenecks created by TLB misses.

Three phenomena harm performance in this scenario. First,
warps stalled on TLB misses reduce the availability of schedulable
warps, which lowers GPU utilization. In Figure 4, no available warp
exists while the address translation request is pending, so the GPU
utilization goes down to 0% for a long time. Second, address trans-
lation requests, which are a series of dependent memory requests
generated by a page walk, must complete before a pending data
demand request that requires the physical address can be issued,
which reduces the GPU’s ability to hide latency by keeping many
memory requests in flight. Third, when the address translation data
becomes available, all stalled warps that were waiting for the trans-
lation consecutively execute and send their data demand requests
to memory, resulting in additional queuing delay for data demand
requests throughout the memory hierarchy.

To illustrate how TLB misses significantly reduce the number of
ready-to-schedule warps in GPU applications, Figure 5 shows the
average number of concurrent page table walks (sampled every 10K
cycles) for a range of applications, and Figure 6 shows the average
number of stalled warps per active TLB miss, in the SharedTLB base-
line design. Error bars indicate the minimum and maximum values.
We observe from Figure 5 that more than 20 outstanding TLBmisses
can perform page walks at the same time, all of which contend for
access to address translation structures. From Figure 6, we observe
that each TLB miss can stall more than 30 warps out of the 64 warps
in the core. The combined effect of these observations is that TLB
misses in a GPU can quickly stall a large number of warps within a
GPU core. The GPU core must wait for the misses to be resolved be-
fore issuing data demand requests and resuming execution. Hence,
minimizing TLB misses and the page table walk latency is critical.
Impact of Large Pages. A large page size can significantly im-
prove the coverage of the TLB [17]. However, a TLB miss on a large
page stalls many more warps than a TLB miss on a small page. We
find that with a 2MB page size, the average number of stalled warps
increases to close to 100% [17], even though the average number of
concurrent page table walks never exceeds 5 misses per GPU core.
Regardless of the page size, there is a strong need for mechanisms
that mitigate the high cost of TLB misses.

0
10
20
30
40
50
60

3D
S

B
FS

2
B
LK B
P

C
FD

C
O
N
S

FF
T

FW
T

G
U
P
S

H
IS
TO H
S

JP
E
G

LI
B

LP
S

LU
D

LU
H

M
M

M
U
M N
N

N
W

Q
TC

R
A
Y

R
E
D

S
A
D

S
C

S
C
A
N

S
C
P

S
P
M
V

S
R
A
D

TR
DAv

er
ag

e
C

on
cu

rr
en

t
Pa

ge
 W

al
k

Figure 5. Average number of concurrent page walks.

0

10

20

30

40

3D
S

B
FS

2
B
LK B
P

C
FD

C
O
N
S

FF
T

FW
T

G
U
P
S

H
IS
TO H
S

JP
E
G

LI
B

LP
S

LU
D

LU
H

M
M

M
U
M N
N

N
W

Q
TC

R
A
Y

R
E
D

S
A
D

S
C

S
C
A
N

S
C
P

S
P
M
V

S
R
A
D

TR
D

Av
er

ag
e

W
ar

ps
 S

ta
lle

d
Pe

r T
LB

 M
is

s

Figure 6. Average number of warps stalled per TLB miss.

4.2 Interference at the Shared TLB
When multiple applications are concurrently executed, the address
translation overheads discussed in Section 4.1 are exacerbated due
to inter-address-space interference. To study the impact of this
interference, we measure how the TLB miss rates change once an-
other application is introduced. Figure 7 compares the 512-entry
L2 TLB miss rate of four representative workloads when each ap-
plication in the workload runs in isolation to the miss rate when
the two applications run concurrently and share the L2 TLB. We
observe from the figure that inter-address-space interference in-
creases the TLB miss rate significantly for most applications. This
occurs because when the applications share the TLB, address trans-
lation requests often induce TLB thrashing. The resulting thrashing
(1) hurts performance, and (2) leads to unfairness and starvation
when applications generate TLB misses at different rates in the TLB
(not shown).

0.0
0.2
0.4
0.6
0.8
1.0

App 1 App 2 App 1 App 2 App 1 App 2 App 1 App 2

L2
 T

LB
 M

is
s

R
at

e
(L

ow
er

 is
 B

et
te

r) Alone Shared

3DS_HISTO CONS_LPS MUM_HISTO RED_RAY

Figure 7. Effect of interference on the shared L2 TLB miss rate.
Each set of bars corresponds to a pair of co-running applications
(e.g., “3DS_HISTO” denotes that the 3DS and HISTO benchmarks
are run concurrently).

4.3 Interference Throughout the Memory Hierarchy

Interference at the Shared Data Cache. Prior work [16] demon-
strates that while cache hits in GPUs reduce the consumption of off-
chip memory bandwidth, the cache hits result in a lower load/store
instruction latency only when every thread in the warp hits in the
cache. In contrast, when a page table walk hits in the shared L2
cache, the cache hit has the potential to help reduce the latency
of other warps that have threads which access the same page in

5

memory. However, TLB-related data can interfere with and displace
cache entries housing regular application data, which can hurt the
overall GPU performance.

Hence, a trade-off exists between prioritizing address translation
requests vs. data demand requests in the GPU memory hierarchy.
Based on an empirical analysis of our workloads, we find that
translation data from page table levels closer to the page table root
are more likely to be shared across warps, and typically hit in the
cache. We observe that, for a 4-level page table, the data cache
hit rates of address translation requests across all workloads are
99.8%, 98.8%, 68.7%, and 1.0% for the first (root), second, third, and
fourth levels of the page table, respectively. This means that address
translation requests for the deepest page table levels often do not
utilize the cache well. Allowing shared structures to cache page
table entries from only the page table levels closer to the root could
alleviate the interference between low-hit-rate address translation
data and regular application data.
Interference at MainMemory. Figure 8 characterizes the DRAM
bandwidth used by address translation and data demand requests,
normalized to the maximum bandwidth available, for our work-
loads where two applications concurrently share the GPU. Figure 9
compares the average latency of address translation requests and
data demand requests. We see that even though address translation
requests consume only 13.8% of the total utilized DRAM bandwidth
(2.4% of the maximum available bandwidth), their average DRAM
latency is higher than that of data demand requests. This is unde-
sirable because address translation requests usually stall multiple
warps, while data demand requests usually stall only one warp
(not shown). The higher latency for address translation requests is
caused by the FR-FCFS memory scheduling policy [110, 152], which
prioritizes accesses that hit in the row buffer. Data demand requests
from GPGPU applications generally have very high row buffer
locality [15, 69, 143, 150], so a scheduler that cannot distinguish
address translation requests from data demand requests effectively
de-prioritizes the address translation requests, increasing their la-
tency, and thus exacerbating the effect on stalled warps.

4.4 Summary and Our Goal
We make two important observations about address translation in
GPUs. First, address translation can greatly hinder a GPU’s ability
to hide latency by exploiting thread-level parallelism, since one
single TLB miss can stall multiple warps. Second, during concur-
rent execution, multiple applications generate inter-address-space
interference throughout the GPU memory hierarchy, which further
increases the TLB miss latency and memory latency. In light of

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

3D
S

_B
P

3D
S

_H
IS

TO
B

LK
_L

P
S

C
FD

_M
M

C
O

N
S

_L
P

S
C

O
N

S
_L

U
H

FW
T_

B
P

H
IS

TO
_G

U
P

H
IS

TO
_L

P
S

LU
H

_B
FS

2
LU

H
_G

U
P

M
M

_C
O

N
S

M
U

M
_H

IS
TO

N
W

_H
S

N
W

_L
P

S
R

A
Y

_G
U

P
R

A
Y

_H
S

R
E

D
_B

P
R

E
D

_G
U

P
R

E
D

_M
M

R
E

D
_R

A
Y

R
E

D
_S

C
S

C
A

N
_C

O
N

S
S

C
A

N
_H

IS
TO

S
C

A
N

_S
A

D
S

C
A

N
_S

R
A

D
S

C
P

_G
U

P
S

C
P

_H
S

S
C

_F
W

T
S

R
A

D
_3

D
S

TR
D

_H
S

TR
D

_L
P

S
TR

D
_M

U
M

TR
D

_R
A

Y
TR

D
_R

E
D

A
ve

ra
ge

N
or

m
al

iz
ed

D
R

A
M

 B
an

dw
id

th
 U

til
. Address Translation Requests Data Demand Requests

Figure 8. DRAM bandwidth utilization of address translation re-
quests and data demand requests for two-application workloads.

0
200
400
600
800

1000

3D
S

_B
P

3D
S

_H
IS

TO
B

LK
_L

P
S

C
FD

_M
M

C
O

N
S

_L
P

S
C

O
N

S
_L

U
H

FW
T_

B
P

H
IS

TO
_G

U
P

H
IS

TO
_L

P
S

LU
H

_B
FS

2
LU

H
_G

U
P

M
M

_C
O

N
S

M
U

M
_H

IS
TO

N
W

_H
S

N
W

_L
P

S
R

A
Y

_G
U

P
R

A
Y

_H
S

R
E

D
_B

P
R

E
D

_G
U

P
R

E
D

_M
M

R
E

D
_R

A
Y

R
E

D
_S

C
S

C
A

N
_C

O
N

S
S

C
A

N
_H

IS
TO

S
C

A
N

_S
A

D
S

C
A

N
_S

R
AD

S
C

P
_G

U
P

S
C

P
_H

S
S

C
_F

W
T

S
R

A
D

_3
D

S
TR

D
_H

S
TR

D
_L

P
S

TR
D

_M
U

M
TR

D
_R

A
Y

TR
D

_R
E

D
A

ve
ra

ge

D
R

A
M

 L
at

en
cy

(C
yc

le
s)

Address Translation Requests Data Demand Requests

Figure 9. Latency of address translation requests and data demand
requests for two-application workloads.

these observations, our goal is to alleviate the address translation
overhead in GPUs in three ways: (1) increasing the TLB hit rate by
reducing TLB thrashing, (2) decreasing interference between ad-
dress translation requests and data demand requests in the shared
L2 cache, and (3) decreasing the TLB miss latency by prioritizing
address translation requests in DRAM without sacrificing DRAM
bandwidth utilization.

5 Design of MASK
To improve support for multi-application concurrency in state-of-
the-art GPUs, we introduce MASK . MASK is a framework that
provides memory protection support and employs three mecha-
nisms in the memory hierarchy to reduce address translation over-
heads while requiring minimal hardware changes, as illustrated in
Figure 10. First, we introduce TLB-Fill Tokens, which regulate the
number of warps that can fill (i.e., insert entries) into the shared
TLB in order to reduce TLB thrashing, and utilize a small TLB by-
pass cache to hold TLB entries from warps that are not allowed
to fill the shared TLB due to not having enough tokens (1). Sec-
ond, we design an Address-Translation-Aware L2 Bypass mechanism,
which significantly increases the shared L2 data cache utilization
and hit rate by reducing interference from the TLB-related data
that does not have high temporal locality (2). Third, we design
an Address-Space-Aware DRAM Scheduler to further reduce inter-
ference between address translation requests and data demand
requests (3). In this section, we describe the detailed design and
implementation of MASK . We analyze the hardware cost of MASK
in Sections 7.4 and 7.5.

5.1 Enforcing Memory Protection
Unlike previously-proposed GPU sharing techniques that do not
enable memory protection [44, 60, 79, 96, 101, 127, 141], MASK
provides memory protection by allowing different GPU cores to
be assigned to different address spaces. MASK uses per-core page
table root registers (similar to the CR3 register in x86 systems [52])
to set the current address space on each core. The page table root
register value from each GPU core is also stored in a page table root
cache for use by the page table walker. If a GPU core’s page table
root register value changes, the GPU core conservatively drains
all in-flight memory requests in order to ensure correctness. We
extend each L2 TLB entry with an address space identifier (ASID).
TLB flush operations target a single GPU core, flushing the core’s
L1 TLB, and all entries in the L2 TLB that contain the matching
address space identifier.

6

BypassedPAddressPTranslationPRequests

D
R

A
M

BankP0

BankP1

BankP2

BankPn

Address-Translation-Aware
Cache Bypass

RequestPBuffers

AddressPTranslation

Request

DataPDemand

Request

Hits
Misses

Prev. Hit

Tokens

TagsuuEntriesTLBuBypass

Cache

Tokens Dir

TLB

Miss

Page

Table

Walker

DataPDemand

Requests

L1

Cache

GoldenuQueue

NormaluQueue

AddressPTranslationPRequests

DataPDemandPRequestsMemory

Requests

SilveruQueue

DataPDemandPRequests

PageuTableu

RootuCache

PagePTablePRoot

AddressPTranslation

Requests

ifu>LeveluHituRateu

>=uL2uHituRate=

LevelP1PHitPRate

LevelP2PHitPRate

LevelP3PHitPRate

L2PHitPRate

LevelP4PHitPRate

ifu>LeveluHituRateu<uL2uHituRate=

L2uCache
ShareduL2uTLB

MemoryuController

AddressP

TranslationP

Requests

1 2 3TLB-Fill Tokens
Address-Space-Aware

Memory Scheduler

Figure 10. MASK design overview.

5.2 Reducing L2 TLB Interference
Sections 4.1 and 4.2 demonstrate the need to minimize TLB misses,
which induce long-latency stalls. MASK addresses this need with
a new mechanism called TLB-Fill Tokens (1 in Figure 10). To re-
duce inter-address-space interference at the shared L2 TLB, we use
an epoch- and token-based scheme to limit the number of warps
from each GPU core that can fill (and therefore contend for) the L2
TLB. While every warp can probe the shared L2 TLB, only warps
with tokens can fill the shared L2 TLB. Page table entries (PTEs)
requested by warps without tokens are only buffered in a small TLB
bypass cache. This token-based mechanism requires two compo-
nents: (1) a component to determine the number of tokens allocated
to each application, and (2) a component that implements a policy
for assigning tokens to warps within an application.

When a TLB request arrives at the L2 TLB controller, the GPU
probes tags for both the shared L2 TLB and the TLB bypass cache
in parallel. A hit in either the TLB or the TLB bypass cache yields a
TLB hit.
Determining the Number of Tokens. Every epoch,5 MASK
tracks (1) the L2 TLB miss rate for each application and (2) the
total number of all warps in each core. After the first epoch,6 the
initial number of tokens for each application is set to a predeter-
mined fraction of the total number of warps per application.

At the end of any subsequent epoch, for each application,MASK
compares the application’s shared L2 TLB miss rate during the
current epoch to its miss rate from the previous epoch. If the miss
rate increases by more than 2%, this indicates that shared TLB
contention is high at the current token count, so MASK decreases
the number of tokens allocated to the application. If the miss rate
decreases bymore than 2%, this indicates that shared TLB contention
is low at the current token count, so MASK increases the number
of tokens allocated to the application. If the miss rate change is
within 2%, the TLB contention has not changed significantly, and
the token count remains unchanged.
Assigning Tokens toWarps. Empirically, we observe that (1) the
different warps of an application tend to have similar TLB miss
rates; and (2) it is beneficial for warps that already have tokens to
retain them, as it is likely that their TLB entries are already in the
shared L2 TLB. We leverage these two observations to simplify the
token assignment logic: our mechanism assigns tokens to warps,

5We empirically select an epoch length of 100K cycles.
6Note that during the first epoch, MASK does not perform TLB bypassing.

one token per warp, in an order based on the warp ID (i.e., if there
are n tokens, the n warps with the lowest warp ID values receive
tokens). This simple heuristic is effective at reducing TLB thrashing,
as contention at the shared L2 TLB is reduced based on the number
of tokens, and highly-used TLB entries that are requested by warps
without tokens can still fill the TLB bypass cache and thus still take
advantage of locality.
TLB Bypass Cache.While TLB-Fill Tokens can reduce thrashing
in the shared L2 TLB, a handful of highly-reused PTEs may be
requested by warps with no tokens, which cannot insert the PTEs
into the shared L2 TLB. To address this, we add a TLB bypass cache,
which is a small 32-entry fully-associative cache. Only warps with-
out tokens can fill the TLB bypass cache in our evaluation. To
preserve consistency and correctness,MASK flushes all contents of
the TLB and the TLB bypass cache when a PTE is modified. Like the
L1 and L2 TLBs, the TLB bypass cache uses the LRU replacement
policy.

5.3 Minimizing Shared L2 Cache Interference
We find that a TLB miss generates shared L2 cache accesses with
varying degrees of locality. Translating addresses through a multi-
level page table (e.g., the four-level table used in MASK) can gen-
erate dependent memory requests at each level. This causes sig-
nificant queuing latency at the shared L2 cache, corroborating
observations from previous work [16]. Page table entries in levels
closer to the root are more likely to be shared and thus reused
across threads than entries near the leaves.

To address both interference and queuing delays due to address
translation requests at the shared L2 cache, we introduce anAddress-
Translation-Aware L2 Bypass mechanism (2 in Figure 10). To deter-
mine which address translation requests should bypass (i.e., skip
probing and filling the L2 cache), we leverage our insights from
Section 4.3. Recall that page table entries closer to the leaves have
poor cache hit rates (i.e., the number of cache hits over all cache
accesses). We make two observations from our detailed study on
the page table hit rates at each page table level (see our technical
report [18]). First, not all page table levels have the same hit rate
across workloads (e.g., the level 3 hit rate for the MM_CONS work-
load is only 58.3%, but is 94.5% for RED_RAY). Second, the hit rate
behavior can change over time. This means that a scheme that stat-
ically bypasses address translation requests for a certain page table
level is not effective, as such a scheme cannot adapt to dynamic hit
rate behavior changes. Because of the sharp drop-off in the L2 cache

7

hit rate of address translation requests after the first few levels, we
can simplify the mechanism to determine when address translation
requests should bypass the L2 cache by comparing the L2 cache
hit rate of each page table level for address translation requests to
the L2 cache hit rate of data demand requests. We impose L2 cache
bypassing for address translation requests from a particular page
table level when the hit rate of address translation requests to that
page table level falls below the hit rate of data demand requests. The
shared L2 TLB has counters to track the cache hit rate of each page
table level. Each memory request is tagged with a three-bit value
that indicates its page walk depth, allowing MASK to differentiate
between request types. These bits are set to zero for data demand
requests, and to 7 for any depth higher than 6.

5.4 Minimizing Interference at Main Memory
There are two types of interference that occur at main memory:
(1) data demand requests can interfere with address translation
requests, as we saw in Section 4.3; and (2) data demand requests
from multiple applications can interfere with each other. MASK ’s
memory controller design mitigates both forms of interference
using an Address-Space-Aware DRAM Scheduler (3 in Figure 10).

The Address-Space-Aware DRAM Scheduler breaks the traditional
DRAM request buffer into three separate queues. The first queue,
called the Golden Queue, is a small FIFO queue.7 Address translation
requests always go to theGolden Queue, while data demand requests
go to one of the two other queues (the size of each queue is similar to
the size of a typical DRAM request buffer). The second queue, called
the Silver Queue, contains data demand requests from one selected
application. The last queue, called the Normal Queue, contains data
demand requests from all other applications. The Golden Queue
is used to prioritize TLB misses over data demand requests. The
Silver Queue allows the GPU to (1) avoid starvation when one or
more applications hog memory bandwidth, and (2) improve fairness
when multiple applications execute concurrently [15, 84]. When
one application unfairly hogs DRAM bandwidth in the Normal
Queue, the Silver Queue can process data demand requests from
another application that would otherwise be starved or unfairly
delayed.

Our Address-Space-Aware DRAM Scheduler always prioritizes
requests in the Golden Queue over requests in the Silver Queue,
which are always prioritized over requests in the Normal Queue.
To provide higher priority to applications that are likely to be
stalled due to concurrent TLB misses, and to minimize the time that
bandwidth-heavy applications have access to the silver queue, each
application takes turns being assigned to the Silver Queue based
on two per-application metrics: (1) the number of concurrent page
walks, and (2) the number of warps stalled per active TLB miss.
The number of data demand requests each application can add to
the Silver Queue, when the application gets its turn, is shown as
threshi in Equation 1. After application i (Appi) reaches its quota,
the next application (Appi+1) is then allowed to send its requests
to the Silver Queue, and so on. Within both the Silver Queue and
Normal Queue, FR-FCFS [110, 152] is used to schedule requests.

threshi = threshmaxx
ConPTWi ∗WarpsStalledi∑numApps

j=1 ConPTWj ∗WarpsStalledj
(1)

7We observe that address translation requests have low row buffer locality. Thus,
there is no significant performance benefit if the memory controller reorders address
translation requests within the Golden Queue to exploit row buffer locality.

To track the number of outstanding concurrent page walks
(ConPTW in Equation 1), we add a 6-bit counter per application to
the shared L2 TLB.8 This counter tracks the number of concurrent
TLB misses. To track the number of warps stalled per active TLB
miss (WarpsStalled in Equation 1), we add a 6-bit counter to each
TLBMSHR entry, which tracks the maximum number of warps that
hit in the entry. The Address-Space-Aware DRAM Scheduler resets
all of these counters every epoch (see Section 5.2).

We find that the number of concurrent address translation re-
quests that go to each memory channel is small, so our design has
an additional benefit of lowering the page table walk latency (be-
cause it prioritizes address translation requests) while minimizing
interference.

5.5 Page Faults and TLB Shootdowns
Address translation inevitably introduces page faults. Our design
can be extended to use techniques from previous works, such as
performing copy-on-write for handling page faults [106], and either
exception support [83] or demand paging techniques [10, 101, 151]
for major faults. We leave this as future work.

Similarly, TLB shootdowns are required when a GPU core
changes its address space or when a page table entry is updated.
Techniques to reduce TLB shootdown overhead [26, 113, 149] are
well-explored and can be used with MASK .

6 Methodology
To evaluate MASK , we model the NVIDIA Maxwell architec-
ture [98], and the TLB-fill bypassing, cache bypassing, and memory
scheduling mechanisms in MASK , using the Mosaic simulator [17],
which is based on GPGPU-Sim 3.2.2 [20]. We heavily modify the
simulator to accurately model the behavior of CUDA Unified Vir-
tual Addressing [98, 101] as described below. Table 1 provides the
details of our baseline GPU configuration. Our baseline uses the
FR-FCFS memory scheduling policy [110, 152], based on findings
from previous works [15, 29, 150] which show that FR-FCFS pro-
vides good performance for GPGPU applications compared to other,
more sophisticated schedulers [71, 72]. We have open-sourced our
modified simulator online [115].

GPU Core Configuration

System Overview 30 cores, 64 execution units per core.
Shader Core 1020 MHz, 9-stage pipeline, 64 threads per warp,

GTO scheduler [112].
Page Table Walker Shared page table walker, traversing 4-level page tables.

Cache and Memory Configuration

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2, 1-cycle latency.

Private L1 TLB 64 entries per core, fully associative, LRU, 1-cycle latency.
Shared L2 Cache 2MB total, 16-way associative, LRU, 16 cache banks,

2 ports per cache bank, 10-cycle latency
Shared L2 TLB 512 entries total, 16-way associative, LRU, 2 ports,

10-cycle latency
Page Walk Cache 16-way 8KB, 10-cycle latency
DRAM GDDR5 1674 MHz [118], 8 channels, 8 banks per rank, 1 rank,

FR-FCFS scheduler [110, 152], burst length 8

Table 1. Configuration of the simulated system.

8We leave techniques to virtualize this counter for more than 64 applications as future
work.

8

TLB and Page Table Walker Model.We accurately model both
TLB design variants discussed in Section 3. We employ the non-
blocking TLB implementation used by Pichai et al. [105]. Each core
has a private L1 TLB. The page table walker is shared across threads,
and admits up to 64 concurrent threads for walks. On a TLB miss,
a page table walker generates a series of dependent requests that
probe the L2 cache and main memory as needed. We faithfully
model the multi-level page walks.
Workloads.We randomly select 27 applications from the CUDA
SDK [94], Rodinia [31], Parboil [121], LULESH [65, 66], and
SHOC [37] suites. We classify these benchmarks based on their
L1 and L2 TLB miss rates into one of four groups, as shown in Ta-
ble 2. For our multi-application results, we randomly select 35 pairs
of applications, avoiding pairs where both applications have a low
L1 TLB miss rate (i.e., <20%) and low L2 TLB miss rate (i.e., <20%),
since these applications are relatively insensitive to address trans-
lation overheads. The application that finishes first is relaunched
to keep the GPU core busy and maintain memory contention.

L1 TLB Miss Rate L2 TLB Miss Rate Benchmark Name
Low Low LUD, NN
Low High BFS2, FFT, HISTO, NW,

QTC, RAY, SAD, SCP
High Low BP, GUP, HS, LPS
High High 3DS, BLK, CFD, CONS,

FWT, LUH, MM, MUM, RED, SC,
SCAN, SRAD, TRD

Table 2. Categorization of workloads.

We divide 35 application-pairs into three workload categories
based on the number of applications that have both high L1 and
L2 TLB miss rates, as high TLB miss rates at both levels indicate
a high amount of pressure on the limited TLB resources. n-HMR
contains application-pairs where n applications in the workload
have both high L1 and L2 TLB miss rates.
Evaluation Metrics. We report performance using weighted
speedup [42, 43], a commonly-used metric to evaluate the perfor-
mance of a multi-application workload [15, 38, 39, 68, 71, 72, 86,
88, 89, 124, 125, 132]. Weighted speedup is defined as ∑ I PCShared

I PCAlone
,

where IPCalone is the IPC of an application that runs on the same
number of GPU cores, but does not share GPU resources with
any other application, and IPCshared is the IPC of an application
when it runs concurrently with other applications. We report the
unfairness of each design using maximum slowdown, defined as
Max I PCAlone

I PCShared
[15, 38, 41, 71, 72, 122, 123, 124, 125, 132, 133].

Scheduling and Partitioning of Cores. We assume an oracle
GPU scheduler that finds the best partitioning of the GPU cores
for each pair of applications. For each pair of applications that are
concurrently executed, the scheduler partitions the cores according
to the best weighted speedup for that pair found by an exhaustive
search over all possible static core partitionings. Neither the L2
cache nor main memory are partitioned. All applications can use all
of the shared L2 cache and the main memory.
Design Parameters. MASK exposes two configurable parameters:
InitialTokens for TLB-Fill Tokens, and threshmax for the Address-
Space-Aware DRAM Scheduler . A sweep over the range of possible
InitialTokens values reveals less than 1% performance variance, as
TLB-Fill Tokens are effective at reconfiguring the total number of
tokens to a steady-state value (Section 5.2). In our evaluation, we
set InitialTokens to 80%. We set threshmax to 500 empirically.

7 Evaluation
We compare the performance of MASK against four GPU designs.
The first, called Static, uses a static spatial partitioning of resources,
where an oracle is used to partition GPU cores, but the shared
L2 cache and memory channels are partitioned equally across ap-
plications. This design is intended to capture key design aspects
of NVIDIA GRID [46] and AMD FirePro [6], based on publicly-
available information. The second design, called PWCache, models
the page walk cache baseline design we discuss in Section 3. The
third design, called SharedTLB, models the shared L2 TLB baseline
design we discuss in Section 3. The fourth design, Ideal, repre-
sents a hypothetical GPU where every single TLB access is a TLB
hit. In addition to these designs, we report the performance of
the individual components of MASK : TLB-Fill Tokens (MASK-TLB),
Address-Translation-Aware L2 Bypass (MASK-Cache), and Address-
Space-Aware DRAM Scheduler (MASK-DRAM).

7.1 Multiprogrammed Performance
Figure 11 compares the average performance by workload cate-
gory of Static, PWCache, SharedTLB, and Ideal to MASK and the
three individual components of MASK . We make two observations
from Figure 11. First, compared to SharedTLB, which is the best-
performing baseline, MASK improves the weighted speedup by
57.8% on average. Second, we find that MASK performs only 23.2%
worse than Ideal (where all accesses to the L1 TLB are hits). This
demonstrates that MASK reduces a large portion of the TLB miss
overhead.

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0-HMR 1-HMR 2-HMR Average

W
ei

gh
te

d
Sp

ee
du

p

Static PWCache SharedTLB MASK-TLB
MASK-Cache MASK-DRAM MASK Ideal

57.8%52.0%61.2%
58.7%

Figure 11.Multiprogrammed workload performance, grouped by
workload category.

Individual Workload Performance. Figures 12, 13, and 14
compare the weighted speedup of each individual multipro-
grammed workload for MASK , and the individual performance
of its three components (MASK-TLB, MASK-Cache, and MASK-
DRAM), against Static, PWCache, and SharedTLB for the 0-HMR
(Figure 12), 1-HMR (Figure 13), and 2-HMR (Figure 14) workload
categories. Each group of bars in Figures 12–14 represents a pair
of co-scheduled benchmarks. We make two observations from the
figures. First, compared to Static, where resources are statically par-
titioned, MASK provides better performance, because when an ap-
plication stalls for concurrent TLB misses, it no longer needs a large
amount of other shared resources, such as DRAM bandwidth. Dur-
ing such stalls, other applications can utilize these resources. When
multiple GPGPU applications run concurrently using MASK , TLB
misses from two or more applications can be staggered, increasing
the likelihood that there will be heterogeneous and complementary
resource demands. Second,MASK provides significant performance

9

0
1
2
3
4
5

HISTO_GUP HISTO_LPS NW_HS NW_LPS RAY_GUP RAY_HS SCP_GUP SCP_HSW
ei

gh
te

d
Sp

ee
du

p Static PWCache SharedTLB MASK-TLB MASK-Cache MASK-DRAM MASK

Figure 12. Performance of multiprogrammed workloads in the 0-HMR workload category.

0
1
2
3
4
5

W
ei

gh
te

d
Sp

ee
du

p Static PWCache SharedTLB MASK-TLB MASK-Cache MASK-DRAM MASK

Figure 13. Performance of multiprogrammed workloads in the 1-HMR workload category.

0
1
2
3
4
5

W
ei

gh
te

d
Sp

ee
du

p Static PWCache SharedTLB MASK-TLB MASK-Cache MASK-DRAM MASK

Figure 14. Performance of multiprogrammed workloads in the 2-HMR workload category.

improvements over both PWCache and SharedTLB regardless of the
workload type (i.e., 0-HMR to 2-HMR). This indicates that MASK is
effective at reducing the address translation overhead both when
TLB contention is high and when TLB contention is relatively low.

Our technical report [18] provides additional analysis on the
aggregate throughput (system-wide IPC). In the report, we show
that MASK provides 43.4% better aggregate throughput compared
to SharedTLB.

Figure 15 compares the unfairness ofMASK to that of Static, PW-
Cache, and SharedTLB. We make two observations. First, compared
to statically partitioning resources (Static), MASK provides better
fairness by allowing both applications to access all shared resources.
Second, compared to SharedTLB, which is the baseline that provides
the best fairness, MASK reduces unfairness by 22.4% on average.
As the number of tokens for each application changes based on the
L2 TLB miss rate, applications that benefit more from the shared
L2 TLB are more likely to get more tokens, causing applications
that do not benefit from shared L2 TLB space to yield that shared
L2 TLB space to other applications. Our application-aware token
distribution mechanism and TLB-fill bypassing mechanism work in
tandem to reduce the amount of shared L2 TLB thrashing observed
in Section 4.2.
Individual Application Analysis. MASK provides better
throughput for all individual applications sharing the GPU due to
reduced TLBmiss rates for each application (shown in our technical
report [18]). The per-application L2 TLB miss rates are reduced by
over 50% on average, which is in line with the reduction in system-
wide L2 TLB miss rates (see Section 7.2). Reducing the number

0.0

0.5

1.0

1.5

2.0

0-HMR 1-HMR 2-HMR Average

U
nf
ai
rn
es
s

Static PWCache SharedTLB MASK

22.4%21.8%25.0%
20.1%

Figure 15.Multiprogrammed workload unfairness.

of TLB misses via our TLB-fill bypassing policy (Section 5.2), and
reducing the latency of TLB misses via our shared L2 bypassing
(Section 5.3) and TLB- and application-aware DRAM scheduling
(Section 5.4) policies, enables significant performance improvement.

In some cases, running two applications concurrently provides
better performance as well as lower unfairness than running each
application alone (e.g., for the RED_BP and RED_RAY workloads
in Figure 13, and the SC_FWT workload in Figure 14). We attribute
such cases to substantial improvements (more than 10%) of two
factors: a lower L2 cache queuing latency for bypassed address
translation requests, and a higher L1 cache hit rate of data demand
requests when applications share the L2 cache and main memory
with other applications.

We conclude that MASK is effective at reducing the address
translation overheads in modern GPUs, and thus at improving
both performance and fairness, by introducing address translation
request awareness throughout the GPU memory hierarchy.

10

7.2 Component-by-Component Analysis
This section characterizesMASK ’s underlying mechanisms (MASK-
TLB,MASK-Cache, andMASK-DRAM). Figure 11 shows the average
performance improvement of each individual component of MASK
compared to Static, PWCache, SharedTLB, and MASK . We summa-
rize our key findings here, and provide a more detailed analysis in
our technical report [18].
Effectiveness of TLB-Fill Tokens. MASK uses TLB-Fill Tokens to
reduce thrashing. We compare TLB hit rates for Static, SharedTLB,
and MASK-TLB. The hit rates for Static and SharedTLB are sub-
stantially similar. MASK-TLB increases shared L2 TLB hit rates by
49.9% on average over SharedTLB [18], because the TLB-Fill Tokens
mechanism reduces the number of warps utilizing the shared L2
TLB entries, in turn reducing the miss rate. The TLB bypass cache
stores frequently-used TLB entries that cannot be filled in the tra-
ditional TLB. Measurement of the average TLB bypass cache hit
rate (66.5%) confirms this conclusion [18].9

Effectiveness ofAddress-Translation-Aware L2 Bypass.MASK
uses Address-Translation-Aware L2 Bypass with the goal of prioritiz-
ing address translation requests. We measure the average L2 cache
hit rate for address translation requests. We find that for address
translation requests that fill into the shared L2 cache, Address-
Translation-Aware L2 Bypass is very effective at selecting which
blocks to cache, resulting in an address translation request hit rate
that is higher than 99% for all of our workloads. At the same time,
Address-Translation-Aware L2 Bypass minimizes the impact of long
L2 cache queuing latency [16], leading to a 43.6% performance
improvement compared to SharedTLB (as shown in Figure 11).
Effectiveness of Address-Space-Aware DRAM Scheduler. To
characterize the performance impact of MASK ’s DRAM scheduler,
we compare the DRAM bandwidth utilization and average DRAM
latency of (1) address translation requests and (2) data demand
requests for the baseline designs andMASK , and make two observa-
tions. First, we find thatMASK is effective at reducing the DRAM la-
tency of address translation requests, which contributes to the 22.7%
performance improvement of MASK-DRAM over SharedTLB, as
shown in Figure 11. In cases where the DRAM latency is high, our
DRAM scheduling policy reduces the latency of address translation
requests by up to 10.6% (SCAN_SAD), while increasing DRAMband-
width utilization by up to 5.6% (SCAN_HISTO). Second, we find
that when an application is suffering severely from interference due
to another concurrently-executing application, the Silver Queue sig-
nificantly reduces the latency of data demand requests from the suf-
fering application. For example, when the Silver Queue is employed,
SRAD from the SCAN_SRAD application-pair performs 18.7% bet-
ter, while both SCAN and CONS from SCAN_CONS perform 8.9%
and 30.2% better, respectively. Our technical report [18] provides a
more detailed analysis of the impact of our Address-Space-Aware
DRAM Scheduler .

We conclude that each component of MASK provides com-
plementary performance improvements by introducing address-
translation-aware policies at different memory hierarchy levels.

7.3 Scalability and Generality
This section evaluates the scalability of MASK and provides evi-
dence that the design generalizes well across different architectures.

9We find that the performance of MASK-TLB saturates when we increase the TLB
bypass cache beyond 32 entries for the workloads that we evaluate.

We summarize our key findings here, and provide a more detailed
analysis in our technical report [18].
Scalability.We compare the performance of SharedTLB, which is
the best-performing state-of-the-art baseline design, and MASK ,
normalized to Ideal performance, as the number of concurrently-
running applications increases from one to five. In general, as the
application count increases, contention for shared resources (e.g.,
shared L2 TLB, shared L2 cache) draws the performance for both
SharedTLB and MASK further from the performance of Ideal. How-
ever, MASK maintains a consistent performance advantage rela-
tive to SharedTLB, as shown in Table 3. The performance gain of
MASK relative to SharedTLB is more pronounced at higher levels
of multi-application concurrency because (1) the shared L2 TLB
becomes heavily contended as the number of concurrent applica-
tions increases, and (2) MASK is effective at reducing the amount
of contention at the heavily-contended shared TLB.

Number of Applications 1 2 3 4 5
SharedTLB performance 47.1% 48.7% 38.8% 34.2% 33.1%
normalized to Ideal
MASK performance 68.5% 76.8% 62.3% 55.0% 52.9%
normalized to Ideal

Table 3. Normalized performance of SharedTLB and MASK as the
number of concurrently-executing applications increases.

Generality.MASK is an architecture-independent design: our tech-
niques are applicable to any SIMT machine [4, 5, 12, 95, 96, 98, 101,
107, 139]. To demonstrate this, we evaluate our two baseline vari-
ants (PWCache and SharedTLB) and MASK on two additional GPU
architectures: the GTX480 (Fermi architecture [95]), and an inte-
grated GPU architecture [3, 12, 27, 34, 49, 53, 92, 93, 106, 107, 142],
as shown in Table 4. We make three key conclusions. First, address
translation leads to significant performance overhead in both PW-
Cache and SharedTLB. Second, MASK provides a 46.9% average
performance improvement over PWCache and a 29.1% average per-
formance improvement over SharedTLB on the Fermi architecture,
getting to within 22% of the performance of Ideal. Third, on the
integrated GPU configuration used in previous work [106], we find
that MASK provides a 23.8% performance improvement over PW-
Cache and a 68.8% performance improvement over SharedTLB, and
gets within 35.5% of the performance of Ideal.

Relative Performance Fermi Integrated GPU [106]
PWCache 53.1% 52.1%
SharedTLB 60.4% 38.2%

MASK 78.0% 64.5%

Table 4. Average performance of PWCache, SharedTLB, andMASK ,
normalized to Ideal.

We conclude that MASK is effective at (1) reducing the perfor-
mance overhead of address translation, and (2) significantly improv-
ing system performance over both the PWCache and SharedTLB
designs, regardless of the GPU architecture.
Sensitivity to L1 and L2 TLB Sizes. We evaluate the benefit of
MASK over many different TLB sizes in our technical report [18].
We make two observations. First, MASK is effective at reducing
(1) TLB thrashing at the shared L2 TLB, and (2) the latency of address
translation requests regardless of TLB size. Second, as we increase
the shared L2 TLB size from 64 to 8192 entries, MASK outperforms
SharedTLB for all TLB sizes except the 8192-entry shared L2 TLB.
At 8192 entries,MASK and SharedTLB perform equally, because the
working set fits completely within the 8192-entry shared L2 TLB.

11

Sensitivity to Memory Policies. We study the sensitivity of
MASK to (1) main memory row policy, and (2) memory sched-
uling policies. We find that for all of our baselines and for MASK ,
performance with an open-row policy [71] is similar (within 0.8%)
to the performance with a closed-row policy, which is used in vari-
ous CPUs [47, 48, 53]. Aside from the FR-FCFS scheduler [110, 152],
we use MASK in conjunction with another state-of-the-art GPU
memory scheduler [60], and find that with this scheduler, MASK
improves performance by 44.2% over SharedTLB. We conclude that
MASK is effective across different memory policies.
Sensitivity toDifferent Page Sizes.We evaluate the performance
of MASK with 2MB large pages assuming an ideal page fault la-
tency [14, 18] (not shown). We provide two observations. First,
even with the larger page size, SharedTLB continues to experience
high contention during address translation, causing its average
performance to fall 44.5% short of Ideal. Second, we find that using
MASK allows the GPU to perform within 1.8% of Ideal.

7.4 Storage Cost
To support memory protection, each L2 TLB entry has an 9-bit
address space identifier (ASID), which translates to an overhead of
7% of the L2 TLB size in total.

At each core, our TLB-Fill Tokens mechanism uses (1) two 16-bit
counters to track the shared L2 TLB hit rate, with one counter
tracking the number of shared L2 TLB hits, and the other counter
tracking the number of shared L2 TLB misses; (2) a 256-bit vector
addressable by warp ID to track the number of active warps, where
each bit is set when a warp uses the shader core for the first time,
and is reset every epoch; and (3) an 8-bit incrementer that tracks
the total number of unique warps executed by the core (i.e., its
counter value is incremented each time a bit is set in the bit vector).

We augment the shared cache with a 32-entry fully-associative
content addressable memory (CAM) for the bypass cache, 30 15-bit
token counters, and 30 1-bit direction registers to record whether
the token count increased or decreased during the previous epoch.
These structures allow the GPU to distribute tokens among up to
30 concurrent applications. In total, we add 706 bytes of storage
(13 bytes per core in the L1 TLB, and 316 bytes total in the shared
L2 TLB), which adds 1.6% to the baseline L1 TLB size and 3.8% to
the baseline L2 TLB size (in addition to the 7% overhead due to the
ASID bits).

Address-Translation-Aware L2 Bypass uses ten 8-byte counters
per core to track L2 cache hits and L2 cache accesses per level. The
resulting 80 bytes add less than 0.1% to the baseline shared L2 cache
size. Each L2 cache and memory request requires an additional
3 bits to specify the page walk level, as we discuss in Section 5.3.

For each memory channel, our Address-Space-Aware DRAM
Scheduler contains a 16-entry FIFO queue for theGolden Queue, a 64-
entry memory request buffer for the Silver Queue, and a 192-entry
memory request buffer for the Normal Queue. This adds an extra
6% of storage overhead to the DRAM request queue per memory
controller.

7.5 Chip Area and Power Consumption
We compare the area and power consumption ofMASK to PWCache
and SharedTLB using CACTI [87]. PWCache and SharedTLB have
near-identical area and power consumption, as we size the page
walk cache and shared L2 TLB (see Section 3) such that they both
use the same total area. We find that MASK introduces a negligible

overhead to both baselines, consuming less than 0.1% additional
area and 0.01% additional power in each baseline. We provide a
detailed analysis of area and power consumption in our technical
report [18].

8 Related Work
To our knowledge, this paper is the first to (1) provide a thorough
analysis of GPU memory virtualization under multi-application
concurrency, and (2) redesign the entire GPU memory hierarchy to
be aware of address translation requests. In this section, we discuss
previous techniques that aim to (1) provide sharing and virtual-
ization mechanisms for GPUs, (2) reduce the overhead of address
translation in GPUs, and (3) reduce inter-application interference.

8.1 Techniques to Enable GPU Sharing

Spatial Multiplexing and Multi-Application Concurrency.
Several works propose techniques to improve GPU utilization
with multi-application concurrency [17, 60, 78, 103, 141, 148], but
they do not support memory protection. Jog et al. [60] propose
an application-aware GPU memory scheduler to improve the per-
formance of concurrently-running GPU applications. Adriaens et
al. [2] observe the need for spatial sharing across protection do-
mains, but do not propose or evaluate a design. NVIDIA GRID [46]
and AMD Firepro [6] support static partitioning of hardware to
allow kernels from different VMs to run concurrently, but the parti-
tions are determined at startup, which causes fragmentation and un-
derutilization (see the Static configuration evaluated in Section 7.1).
MASK ’s goal is flexible, dynamic partitioning. NVIDIA’s Multi Pro-
cess Service (MPS) [99] allows multiple processes to launch kernels
on the GPU, but the service provides no memory protection or
error containment. Xu et al. [147] propose Warped-Slicer, which is
a mechanism for multiple applications to spatially share a GPU core.
Warped-Slicer provides no memory protection, and is not suitable
for supporting multi-application execution. Ausavarungnirun et
al. [17] propose Mosaic, a mechanism that provides programmer-
transparent support for multiple page sizes in GPUs that provide
memory protection for multi-application execution. The main goal
of Mosaic is to increase the effective size of the TLB, which is or-
thogonal to MASK , and Mosaic can be combined with MASK to
achieve even higher performance, as shown in [14].
Time Multiplexing. As discussed in Section 2.1, time multiplex-
ing is an active research area [44, 127, 141], and architectural sup-
port [79, 101] will likely improve in future GPUs. These techniques
are complementary to and can be combined with MASK .
GPU Virtualization. Techniques to provide GPU virtualization
can support concurrent execution of GPGPU applications [67, 126,
130]. However, these GPU virtualization approaches require dedi-
cated hardware support, such as the Virtual Desktop Infrastructure
(VDI) found in NVIDIA GRID [46] and AMD FirePro [6]. As we
discuss in Section 2.2, these techniques do not provide dynamic
partitioning of hardware resources, and perform worse than MASK
(see Section 7). vmCUDA [140] and rCUDA [40] provide close-
to-ideal performance, but they require significant modifications
to GPGPU applications and the operating system, which sacrifice
transparency to the application, performance isolation, and compat-
ibility across multiple GPU architectures. Vijaykumar et al. [136]

12

propose a framework to virtualize GPU resources for a single ap-
plication. This technique is complementary to MASK .
Demand Paging. Recent works on CC-NUMA [10], AMD’s
hUMA [8], and NVIDIA’s PASCAL architecture [101, 151] sup-
port demand paging in GPUs. These techniques can be used in
conjunction with MASK .

8.2 TLB Design

GPU TLB Designs. Previous works [17, 35, 105, 106, 134] explore
TLB designs in heterogeneous systems with GPUs. Cong et al. [35]
propose a TLB design for accelerators. This design utilizes the
host (CPU) MMU to perform page walks, which results in high
performance overhead in the context of multi-application GPUs.
Pichai et al. [105] explore a TLB design for heterogeneous CPU-
GPU systems, and add TLB awareness to the existing CCWS GPU
warp scheduler [112]. Warp scheduling is orthogonal to our work,
and can be combined to further improve performance.

Vesely et al. [134] analyze support for virtual memory in het-
erogeneous systems, finding that the cost of address translation
in GPUs is an order of magnitude higher than that in CPUs, and
that high-latency address translations limit the GPU’s latency hid-
ing capability and hurt performance. We show additionally that
inter-address-space interference further slows down applications
sharing the GPU. MASK is capable of not only reducing interfer-
ence between multiple applications (Section 7.1), but also reducing
the TLB miss rate during single-application execution as well (as
shown in our technical report [18]).

Lee et al. [75] propose VAST, a software runtime that dynamically
partitions GPU kernels to manage the memory available to each
kernel. VAST does not provide any support for memory protection.
In contrast,MASK enables memory virtualization in hardware, and
offers memory protection.
TLB Designs in CPU Systems. Cox and Bhattacharjee [36] pro-
pose a TLB design that allows entries corresponding to multiple
page sizes to share the same TLB structure, simplifying the design
of TLBs. This design solves a different problem (area and energy
efficiency), and is orthogonal to MASK . Other works [24, 25, 81]
examine shared last-level TLB designs and page walk cache de-
signs [23], proposing mechanisms that can acceleratemultithreaded
applications by sharing translations between cores. These propos-
als are likely to be less effective for multiple concurrent GPGPU
applications, for which translations are not shared between virtual
address spaces. Barr et al. [21] propose SpecTLB, which specula-
tively predicts address translations to avoid the TLB miss latency.
Doing so can be costly in GPUs, because there can be multiple
concurrent TLB misses to many different TLB entries in the GPU.

Direct segments [22] and redundant memory mappings [64] re-
duce address translation overheads by mapping large contiguous
virtual memory regions to a contiguous physical region. These tech-
niques increase the reach of each TLB entry, and are complementary
to MASK .

8.3 Techniques to Reduce Inter-Application Interference

GPU-Specific Resource Management. Lee et al. [74] propose
TAP, a TLP-aware cache management mechanism that modifies the
utility-based cache partitioning policy [109] and the baseline cache
insertion policy [56] to lower cache space interference between

GPGPU and CPU applications. TAP does not consider address trans-
lation traffic.

Variousmemory scheduler designs target systemswith GPUs [15,
30, 57, 63, 131, 132, 150]. Unlike MASK , these designs focus on a
single GPGPU application, and are not aware of address translation
requests. While some of these works propose mechanisms that
reduce inter-application interference [15, 57, 131, 132], they differ
from MASK because they (1) consider interference bewteen CPU
applications and GPU applications, and (2) are not aware of address
translation requests.
Cache Bypassing Policies in GPUs. There are many techniques
(e.g., [16, 32, 33, 58, 76, 77, 145, 146]) to reduce contention in shared
GPU caches. UnlikeMASK , these works do not differentiate address
translation requests from data demand requests, and focus on only
single-application execution.
Cache and TLB Insertion Policies. Cache insertion policies that
account for cache thrashing [55, 56, 108], future reuse [116, 117], or
inter-application interference [144] work well for CPU applications,
but previous works have shown that some of these policies can be
ineffective for GPU applications [16, 74]. This observation holds
for the shared L2 TLB in multi-address space execution.

9 Conclusion
Spatial multiplexing support, which allows multiple applications to
run concurrently, is needed to efficiently deploy GPUs in a large-
scale computing environment. Unfortunately, due to the primitive
existing support for memory virtualization, many of the perfor-
mance benefits of spatial multiplexing are lost in state-of-the-art
GPUs. We perform a detailed analysis of state-of-the-art mech-
anisms for memory virtualization, and find that current address
translation mechanisms (1) are highly susceptible to interference
across the different address spaces of applications in the shared TLB
structures, which leads to a high number of page table walks; and
(2) undermine the fundamental latency-hiding techniques of GPUs,
by often stalling hundreds of threads at once. To alleviate these
problems, we propose MASK , a new memory hierarchy designed
carefully to support multi-application concurrency at low overhead.
MASK consists of three major components in different parts of
the memory hierarchy, all of which incorporate address transla-
tion request awareness. These three components work together
to lower inter-application interference during address translation,
and improve L2 cache utilization and memory latency for address
translation requests. MASK improves performance by 57.8%, on
average across a wide range of multiprogrammed workloads, over
the state-of-the-art. We conclude that MASK provides a promising
and effective substrate for multi-application execution on GPUs,
and hope future work builds on the mechanism we provide and
open source [115].

Acknowledgments
We thank the anonymous reviewers from ASPLOS 2017/2018, MI-
CRO 2016/2017, and ISCA 2017. We gratefully acknowledge SAFARI
and SCEA group members for their feedback. We acknowledge the
support of our industrial partners, especially Google, Intel, Mi-
crosoft, NVIDIA, and VMware. This research was partially sup-
ported by the NSF (grants 1409723, 1618563, 1657336, and 1750667)
and the Semiconductor Research Corporation. An earlier version
of this paper was placed on arXiv.org in August 2017 [19].

13

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Distributed Systems,”
http://download.tensorflow.org/paper/whitepaper2015.pdf, 2015.

[2] J. Adriaens, K. Compton, N. S. Kim, and M. Schulte, “The Case for GPGPU
Spatial Multitasking,” in HPCA, 2012.

[3] Advanced Micro Devices, Inc., “AMD Accelerated Processing Units,” http://
www.amd.com/us/products/technologies/apu/Pages/apu.aspx.

[4] Advanced Micro Devices, Inc., “AMD Radeon R9 290X,” http://www.amd.com/
us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx.

[5] Advanced Micro Devices, Inc., “ATI Radeon GPGPUs,” http://www.amd.com/us/
products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.
aspx.

[6] Advanced Micro Devices, Inc., “OpenCL: The Future of Accelerated Applica-
tion Performance Is Now,” https://www.amd.com/Documents/FirePro_OpenCL_
Whitepaper.pdf.

[7] Advanced Micro Devices, Inc., AMD-V Nested Paging, 2010, http://developer.
amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf.

[8] Advanced Micro Devices, Inc., “Heterogeneous System Architecture: A Techni-
cal Review,” http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/
10/hsa10.pdf, 2012.

[9] Advanced Micro Devices, Inc., “AMD I/O Virtualization Technology (IOMMU)
Specification,” http://support.amd.com/TechDocs/48882_IOMMU.pdf, 2016.

[10] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch, “Unlock-
ing Bandwidth for GPUs in CC-NUMA Systems,” in HPCA, 2015.

[11] J. B. Alex Chen and X. Amatriain, “Distributed Neural Networks
with GPUs in the AWS Cloud,” http://techblog.netflix.com/2014/02/
distributed-neural-networks-with-gpus.html, 2014.

[12] ARM Holdings PLC, “Take GPU Processing Power Beyond Graphics with Mali
GPU Computing,” 2012.

[13] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa, A. Jaleel, and
C.-J. Wu, “MCM-GPU: Multi-Chip-Module GPUs for Continued Performance
Scalability,” in ISCA, 2017.

[14] R. Ausavarungnirun, “Techniques for Shared Resource Management in Systems
with Throughput Processors,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

[15] R. Ausavarungnirun, K. Chang, L. Subramanian, G. Loh, and O. Mutlu, “Staged
Memory Scheduling: Achieving High Performance and Scalability in Heteroge-
neous Systems,” in ISCA, 2012.

[16] R. Ausavarungnirun, S. Ghose, O. Kayiran, G. H. Loh, C. R. Das, M. T. Kan-
demir, and O. Mutlu, “Exploiting Inter-Warp Heterogeneity to Improve GPGPU
Performance,” in PACT, 2015.

[17] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Rossbach,
and O. Mutlu, “Mosaic: A GPU Memory Manager with Application-Transparent
Support for Multiple Page Sizes,” in MICRO, 2017.

[18] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog, C. J.
Rossbach, and O. Mutlu, “Spatial Multiplexing Support for Multi-Application
Concurrency in GPUs,” Carnegie Mellon Univ., SAFARI Research Group, Tech.
Rep. TR-2018-002, 2018.

[19] R. Ausavarungnirun, C. J. Rossbach, V. Miller, J. Landgraf, S. Ghose, J. Gandhi,
A. Jog, and O. Mutlu, “Improving Multi-Application Concurrency Support
Within the GPU Memory System,” arXiv:1708.04911 [cs.AR], 2017.

[20] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing CUDA
Workloads Using a Detailed GPU Simulator,” in ISPASS, 2009.

[21] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for Speculative
Address Translation,” in ISCA, 2011.

[22] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient Virtual
Memory for Big Memory Servers,” in ISCA, 2013.

[23] A. Bhattacharjee, “Large-Reach Memory Management Unit Caches,” in MICRO,
2013.

[24] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared Last-Level TLBs for Chip
Multiprocessors,” in HPCA, 2011.

[25] A. Bhattacharjee and M. Martonosi, “Inter-Core Cooperative TLB for Chip
Multiprocessors,” in ASPLOS, 2010.

[26] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill, “Translation Lookaside
Buffer Consistency: A Software Approach,” in ASPLOS, 1989.

[27] D. Bouvier and B. Sander, “Applying AMD’s Kaveri APU for Heterogeneous
Computing,” in Hot Chips, 2014.

[28] M. Burtscher, R. Nasre, and K. Pingali, “A Quantitative Study of Irregular Pro-
grams on GPUs,” in IISWC, 2012.

[29] N. Chatterjee, M. O’Connor, D. Lee, D. R. Johnson, S. W. Keckler, M. Rhu, and
W. J. Dally, “Architecting an Energy-Efficient DRAM System for GPUs,” inHPCA,
2017.

[30] N. Chatterjee, M. O’Connor, G. H. Loh, N. Jayasena, and R. Balasubramonian,
“Managing DRAM Latency Divergence in Irregular GPGPU Applications,” in SC,
2014.

[31] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron,
“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in IISWC, 2009.

[32] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W. W. Hwu, “Adaptive
Cache Management for Energy-Efficient GPU Computing,” in MICRO, 2014.

[33] X. Chen, S. Wu, L.-W. Chang, W.-S. Huang, C. Pearson, Z. Wang, and W. W.
Hwu, “Adaptive Cache Bypass and Insertion for Many-Core Accelerators,” in
MES, 2014.

[34] M. Clark, “A New Xc6 Core Architecture for the Next Generation of Computing,”
in Hot Chips, 2016.

[35] J. Cong, Z. Fang, Y. Hao, and G. Reinman, “Supporting Address Translation for
Accelerator-Centric Architectures,” in HPCA, 2017.

[36] G. Cox and A. Bhattacharjee, “Efficient Address Translation with Multiple Page
Sizes,” in ASPLOS, 2016.

[37] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tip-
paraju, and J. S. Vetter, “The Scalable Heterogeneous Computing (SHOC) Bench-
mark Suite,” in GPGPU, 2010.

[38] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-Aware Prioritization
Mechanisms for On-Chip Networks,” in MICRO, 2009.

[39] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aérgia: Exploiting Packet
Latency Slack in On-Chip Networks,” in ISCA, 2010.

[40] J. Duato, A. Pena, F. Silla, R. Mayo, and E. Quintana-Orti, “rCUDA: Reducing the
Number of GPU-Based Accelerators in High Performance Clusters,” in HPCS,
2010.

[41] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, “Coordinated Control of Multiple
Prefetchers in Multi-core Systems,” in MICRO, 2009.

[42] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multipro-
gram Workloads,” IEEE Micro, 2008.

[43] S. Eyerman and L. Eeckhout, “Restating the Case for Weighted-IPC Metrics to
Evaluate Multiprogram Workload Performance,” CAL, 2014.

[44] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally, E. Lindholm,
and K. Skadron, “Energy-Efficient Mechanisms for Managing Thread Context
in Throughput Processors,” in ISCA, 2011.

[45] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A MapReduce
Framework on Graphics Processors,” in PACT, 2008.

[46] A. Herrera, “NVIDIA GRID: Graphics Accelerated VDI with the Visual Perfor-
mance of a Workstation,” NVIDIA White Paper, 2014.

[47] Intel Corp., “Intel® Microarchitecture Codename Sandy Bridge,”
http://www.intel.com/technology/architecture-silicon/2ndgen/.

[48] Intel Corp., “Product Speficiations: Products Formerly Ivy Bridge,” http://ark.
intel.com/products/codename/29902/, 2012.

[49] Intel Corp., “Introduction to Intel Architecture,” http://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/
ia-introduction-basics-paper.pdf, 2014.

[50] Intel Corp., “Intel 64 and IA-32 Architectures Software Developers Manual,”
2016, https://www-ssl.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[51] Intel Corp., “Intel Virtualization Technology for Directed I/O,”
http://www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf, 2016.

[52] Intel Corp., “Intel® 64 and IA-32 Architectures Optimization Reference Manual,”
2016.

[53] Intel Corp., “6th Generation Intel Core Processor Family Datasheet,
Vol. 1,” http://www.intel.com/content/dam/www/public/us/en/documents/
datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf, 2017.

[54] B. Jacob and T. Mudge, “Virtual Memory in Contemporary Microprocessors,” in
IEEE Micro, 1998.

[55] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, Jr., and J. Emer, “Adap-
tive Insertion Policies for Managing Shared Caches,” in PACT, 2008.

[56] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer, “High Performance Cache
Replacement Using Re-reference Interval Prediction (RRIP),” in ISCA, 2010.

[57] M. K. Jeong, M. Erez, C. Sudanthi, and N. Paver, “A QoS-Aware Memory Con-
troller for Dynamically Balancing GPU and CPU Bandwidth Use in an MPSoC,”
in DAC, 2012.

[58] W. Jia, K. A. Shaw, and M. Martonosi, “MRPB: Memory Request Prioritization
for Massively Parallel Processors,” in HPCA, 2014.

[59] A. Jog, “Design and Analysis of Scheduling Techniques for Throughput Proces-
sors,” Ph.D. dissertation, Pennsylvania State Univ., 2015.

[60] A. Jog, O. Kayiran, T. Kesten, A. Pattnaik, E. Bolotin, N. Chatterjee, S. W. Keckler,
M. T. Kandemir, and C. R. Das, “Anatomy of GPU Memory System for Multi-
Application Execution,” in MEMSYS, 2015.

[61] A. Jog, O. Kayıran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R.
Das, “Orchestrated Scheduling and Prefetching for GPGPUs,” in ISCA, 2013.

[62] A. Jog, O. Kayıran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu,
R. Iyer, and C. R. Das, “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.

[63] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das,
“Exploiting Core Criticality for Enhanced GPU Performance,” in SIGMETRICS,
2016.

[64] V. Karakostas, J. Gandhi, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-
mirovsky, M. M. Swift, and O. Ünsal, “Redundant Memory Mappings for Fast
Access to Large Memories,” in ISCA, 2015.

14

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://www.amd.com/us/products/technologies/apu/Pages/apu.aspx
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
http://www.amd.com/us/press-releases/Pages/amd-radeon-r9-290x-2013oct24.aspx
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx
http://www.amd.com/us/products/desktop/graphics/amd-radeon-hd-6000/Pages/amd-radeon-hd-6000.aspx
https://www.amd.com/Documents/FirePro_OpenCL_Whitepaper.pdf
https://www.amd.com/Documents/FirePro_OpenCL_Whitepaper.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
http://support.amd.com/TechDocs/48882_IOMMU.pdf
http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
http://techblog.netflix.com/2014/02/distributed-neural-networks-with-gpus.html
http://ark.intel.com/products/codename/29902/
http://ark.intel.com/products/codename/29902/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf

[65] I. Karlin, A. Bhatele, J. Keasler, B. Chamberlain, J. Cohen, Z. DeVito, R. Haque,
D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. Still, “Exploring Tra-
ditional and Emerging Parallel Programming Models using a Proxy Application,”
in IPDPS, 2013.

[66] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,” 2013.
[67] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-Class GPU

Resource Management in the Operating System,” in USENIX ATC, 2012.
[68] O. Kayiran, N. Chidambaram, A. Jog, R. Ausavarungnirun, M. Kandemir, G. Loh,

O. Mutlu, and C. Das, “Managing GPU Concurrency in Heterogeneous Archi-
tectures,” in MICRO, 2014.

[69] O. Kayıran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither More Nor Less:
Optimizing Thread-Level Parallelism for GPGPUs,” in PACT, 2013.

[70] O. Kayıran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun, M. T. Kandemir, G. H.
Loh, O. Mutlu, and C. R. Das, “Managing GPU Concurrency in Heterogeneous
Architectures,” in MICRO, 2014.

[71] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers,” in HPCA,
2010.

[72] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread Cluster
Memory Scheduling: Exploiting Differences in Memory Access Behavior,” in
MICRO, 2010.

[73] B. Langmead and S. L. Salzberg, “Fast Gapped-Read Alignment with Bowtie 2,”
Nature Methods, 2012.

[74] J. Lee and H. Kim, “TAP: A TLP-Aware Cache Management Policy for a CPU–
GPU Heterogeneous Architecture,” in HPCA, 2012.

[75] J. Lee, M. Samadi, and S. Mahlke, “VAST: The Illusion of a Large Memory Space
for GPUs,” in PACT, 2014.

[76] C. Li, S. L. Song, H. Dai, A. Sidelnik, S. K. S. Hari, and H. Zhou, “Locality-Driven
Dynamic GPU Cache Bypassing,” in ICS, 2015.

[77] D. Li, M. Rhu, D. Johnson, M. O’Connor, M. Erez, D. Burger, D. Fussell, and
S. Redder, “Priority-Based Cache Allocation in Throughput Processors,” inHPCA,
2015.

[78] T. Li, V. K. Narayana, and T. El-Ghazawi, “Symbiotic Scheduling of Concurrent
GPU Kernels for Performance and Energy Optimizations,” in CF, 2014.

[79] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A Unified
Graphics and Computing Architecture,” IEEE Micro, 2008.

[80] W. Liu, B. Schmidt, G. Voss, and W. Muller-Wittig, “Accelerating Molecular
Dynamics Simulations using Graphics Processing Units with CUDA,” Computer
Physics Communications, vol. 179, no. 9, pp. 634–641, 2008.

[81] D. Lustig, A. Bhattacharjee, and M. Martonosi, “TLB Improvements for Chip
Multiprocessors: Inter-Core Cooperative Prefetchers and Shared Last-Level
TLBs,” in TACO, 2013.

[82] T. Mashimo, Y. Fukunishi, N. Kamiya, Y. Takano, I. Fukuda, and H. Nakamura,
“Molecular Dynamics Simulations Accelerated by GPU for Biological Macro-
molecules with a Non-Ewald Scheme for Electrostatic Interactions,” Journal of
Chemical Theory and Computation, 2013.

[83] J. Menon, M. de Kruijf, and K. Sankaralingam, “iGPU: Exception Support and
Speculative Execution on GPUs,” in ISCA, 2012.

[84] T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of Memory
Service in Multi-Core Systems,” in USENIX Security, 2007.

[85] D. Mrozek, M. Brozek, and B. Malysiak-Mrozek, “Parallel Implementation of 3D
Protein Structure Similarity Searches Using a GPU and the CUDA,” Journal of
Molecular Modeling, 2014.

[86] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda,
“Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning,” in MICRO, 2011.

[87] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0,” in
MICRO, 2007.

[88] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” in MICRO, 2007.

[89] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Scheduling: Enhancing
Both Performance and Fairness of Shared DRAM Systems,” in ISCA, 2008.

[90] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt,
“Improving GPU Performance via LargeWarps and Two-LevelWarp Scheduling,”
in MICRO, 2011.

[91] M. S. Nobile, P. Cazzaniga, A. Tangherloni, and D. Besozzi, “Graphics Processing
Units in Bioinformatics, Computational Biology and Systems Biology,” Briefings
in Bioinformatics, 2016.

[92] NVIDIA Corp., “NVIDIA Tegra K1,” http://www.nvidia.com/content/pdf/tegra_
white_papers/tegra-k1-whitepaper-v1.0.pdf.

[93] NVIDIA Corp., “NVIDIA Tegra X1,” https://international.download.nvidia.com/
pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf.

[94] NVIDIA Corp., “CUDA C/C++ SDK Code Samples,” http://developer.nvidia.com/
cuda-cc-sdk-code-samples, 2011.

[95] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi,” http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_
compute_architecture_whitepaper.pdf, 2011.

[96] NVIDIA Corp., “NVIDIA’s Next Generation CUDA Compute Archi-
tecture: Kepler GK110,” http://www.nvidia.com/content/PDF/kepler/
NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf, 2012.

[97] NVIDIA Corp., “Tesla K40 GPU Active Accelerator,” https://www.nvidia.com/
content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf,
2013.

[98] NVIDIA Corp., “NVIDIA GeForce GTX 750 Ti,” http://
international.download.nvidia.com/geforce-com/international/pdfs/
GeForce-GTX-750-Ti-Whitepaper.pdf, 2014.

[99] NVIDIA Corp., “Multi-Process Service,” https://docs.nvidia.com/deploy/pdf/
CUDA_Multi_Process_Service_Overview.pdf, 2015.

[100] NVIDIA Corp., “NVIDIA GeForce GTX 1080,” https://international.
download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_
1080_Whitepaper_FINAL.pdf, 2016.

[101] NVIDIA Corp., “NVIDIA Tesla P100,” https://images.nvidia.com/content/pdf/
tesla/whitepaper/pascal-architecture-whitepaper.pdf, 2016.

[102] NVIDIA Corp., “CUDA Toolkit Documentation,” http://docs.nvidia.com/cuda/
cuda-runtime-api/stream-sync-behavior.html, 2017.

[103] S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan, “Improving GPGPU Concur-
rency with Elastic Kernels,” in ASPLOS, 2013.

[104] G. Pekhimenko, E. Bolotin, N. Vijaykumar, O. Mutlu, T. C. Mowry, and S. W.
Keckler, “A Case for Toggle-Aware Compression for GPU Systems,” in HPCA,
2016.

[105] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for Address
Translation on GPUs: Designing Memory Management Units for CPU/GPUs
with Unified Address Spaces,” in ASPLOS, 2014.

[106] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 Address Translation
for 100s of GPU Lanes,” in HPCA, 2014.

[107] PowerVR, “PowerVR Hardware Architecture Overview for Develop-
ers,” http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.
Architecture+Overview+for+Developers.pdf, 2016.

[108] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive Insertion
Policies for High Performance Caching,” in ISCA, 2007.

[109] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches,” in MICRO,
2006.

[110] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory Access
Scheduling,” in ISCA, 2000.

[111] T. G. Rogers, “Locality and Scheduling in the Massively Multithreaded Era,”
Ph.D. dissertation, Univ. of British Columbia, 2015.

[112] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious Wavefront
Scheduling,” in MICRO, 2012.

[113] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy, “UNified Instruc-
tion/Translation/Data (UNITD) Coherence: One Protocol to Rule them All,” in
HPCA, 2010.

[114] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E.Witchel, “PTask: Operating
System Abstractions to Manage GPUs as Compute Devices,” in SOSP, 2011.

[115] SAFARI Research Group, “Mosaic – GitHub Repository,” https://github.com/
CMU-SAFARI/Mosaic/.

[116] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The Evicted-Address
Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,”
in PACT, 2012.

[117] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry, “Mitigating Prefetcher-Caused Pollution Using Informed Caching
Policies for Prefetched Blocks,” in TACO, 2015.

[118] SK Hynix Inc., “Hynix GDDR5 SGRAM Part H5GQ1H24AFR Revision 1.0,” http:
//www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf.

[119] B. Smith, “Architecture and Applications of the HEP Multiprocessor Computer
System,” SPIE, 1981.

[120] B. J. Smith, “A Pipelined, Shared Resource MIMD Computer,” in ICPP, 1978.
[121] J. A. Stratton, C. Rodrigues, I. J. Sung, N. Obeid, L. W. Chang, N. Anssari, G. D.

Liu, and W. W. Hwu, “Parboil: A Revised Benchmark Suite for Scientific and
Commercial Throughput Computing,” Univ. of Illinois at Urbana-Champaign,
Tech. Rep. IMPACT-12-01, March 2012.

[122] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “BLISS: Balancing
Performance, Fairness and Complexity in Memory Access Scheduling,” in TPDS,
2016.

[123] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, “The Blacklisting
Memory Scheduler: Achieving High Performance and Fairness at Low Cost,” in
ICCD, 2014.

[124] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, “The Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-Application
Interference at Shared Caches and Main Memory,” in MICRO, 2015.

[125] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE: Providing
Performance Predictability and Improving Fairness in Shared Main Memory
Systems,” in HPCA, 2013.

[126] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: Why Not Virtualizing
GPUs at the Hypervisor?” in USENIX ATC, 2014.

[127] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, andM. Valero, “Enabling
Preemptive Multiprogramming on GPUs,” in ISCA, 2014.

[128] J. E. Thornton, “Parallel Operation in the Control Data 6600,” AFIPS FJCC, 1964.
[129] J. E. Thornton, Design of a Computer: The Control Data 6600. Scott Foresman

& Co, 1970.

15

http://www.nvidia.com/content/pdf/tegra_white_papers/tegra-k1-whitepaper-v1.0.pdf
http://www.nvidia.com/content/pdf/tegra_white_papers/tegra-k1-whitepaper-v1.0.pdf
https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
https://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K40-Active-Board-Spec-BD-06949-001_v03.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html
http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
http://cdn.imgtec.com/sdk-documentation/PowerVR+Hardware.Architecture+Overview+for+Developers.pdf
https://github.com/CMU-SAFARI/Mosaic/
https://github.com/CMU-SAFARI/Mosaic/
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf

[130] K. Tian, Y. Dong, and D. Cowperthwaite, “A Full GPU Virtualization Solution
with Mediated Pass-Through,” in USENIX ATC, 2014.

[131] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “SQUASH: Simple QoS-
Aware High-Performance Memory Scheduler for Heterogeneous Systems with
Hardware Accelerators,” arXiv:1505.07502 [cs.AR], 2015.

[132] H. Usui, L. Subramanian, K. Chang, and O. Mutlu, “DASH: Deadline-Aware High-
Performance Memory Scheduler for Heterogeneous Systems with Hardware
Accelerators,” in TACO, 2016.

[133] H. Vandierendonck and A. Seznec, “Fairness Metrics for Multi-Threaded Pro-
cessors,” CAL, 2011.

[134] J. Vesely, A. Basu, M. Oskin, G. H. Loh, and A. Bhattacharjee, “Observations
and Opportunities in Architecting Shared Virtual Memory for Heterogeneous
Systems,” in ISPASS, 2016.

[135] T. Vijayaraghavany, Y. Eckert, G. H. Loh, M. J. Schulte, M. Ignatowski, B. M.
Beckmann, W. C. Brantley, J. L. Greathouse, W. Huang, A. Karunanithi, O. Kayi-
ran, M. Meswani, I. Paul, M. Poremba, S. Raasch, S. K. Reinhardt, G. Sadowski,
and V. Sridharan, “Design and Analysis of an APU for Exascale Computing,” in
HPCA, 2017.

[136] N. Vijaykumar, K. Hsieh, G. Pekhimenko, S. Khan, A. Shrestha, S. Ghose, A. Jog,
P. B. Gibbons, and O. Mutlu, “Zorua: A Holistic Approach to Resource Virtual-
ization in GPUs,” in MICRO, 2016.

[137] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun,
C. Das, M. Kandemir, T. C. Mowry, and O. Mutlu, “A Case for Core-Assisted
Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with
Assist Warps,” in ISCA, 2015.

[138] N. Vijaykumar, G. Pekhimenko, A. Jog, S. Ghose, A. Bhowmick, R. Ausavarung-
nirun, C. R. Das, M. T. Kandemir, T. C. Mowry, and O. Mutlu, “A Frame-
work for Accelerating Bottlenecks in GPU Execution with Assist Warps,”
arXiv:1602.01348 [cs.AR], 2016.

[139] Vivante, “Vivante Vega GPGPU Technology,” http://www.vivantecorp.com/
index.php/en/technology/gpgpu.html, 2016.

[140] L. Vu, H. Sivaraman, and R. Bidarkar, “GPU Virtualization for High Performance
General Purpose Computing on the ESX Hypervisor,” in HPC, 2014.

[141] Z. Wang, J. Yang, R. Melhem, B. R. Childers, Y. Zhang, and M. Guo, “Simultane-
ous Multikernel GPU: Multi-Tasking Throughput Processors via Fine-Grained
Sharing,” in HPCA, 2016.

[142] S. Wasson, “AMD’s A8-3800 Fusion APU,” http://techreport.com/articles.x/
21730, 2011.

[143] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “De-
mystifying GPU Microarchitecture Through Microbenchmarking,” in ISPASS,
2010.

[144] C.-J. Wu and M. Martonosi, “Characterization and Dynamic Mitigation of Intra-
application Cache Interference,” in ISPASS, 2011.

[145] X. Xie, Y. Liang, G. Sun, and D. Chen, “An Efficient Compiler Framework for
Cache Bypassing on GPUs,” in ICCAD, 2013.

[146] X. Xie, Y. Liang, Y. Wang, G. Sun, and T. Wang, “Coordinated Static and Dynamic
Cache Bypassing for GPUs,” in HPCA, 2015.

[147] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-Slicer: Efficient
Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multipro-
gramming,” in ISCA, 2016.

[148] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G. Rogers, “Pagoda:
Fine-Grained GPU Resource Virtualization for Narrow Tasks,” in PPoPP, 2017.

[149] X. Yu, C. J. Hughes, N. Satish, O. Mutlu, and S. Devadas, “Banshee: Bandwidth-
Efficient DRAM Caching via Software/Hardware Cooperation,” in MICRO, 2017.

[150] G. Yuan, A. Bakhoda, and T. Aamodt, “Complexity Effective Memory Access
Scheduling for Many-Core Accelerator Architectures,” in MICRO, 2009.

[151] T. Zheng, D. Nellans, A. Zulfiqar, M. Stephenson, and S. W. Keckler, “Towards
High Performance Paged Memory for GPUs,” in HPCA, 2016.

[152] W. K. Zuravleff and T. Robinson, “Controller for a Synchronous DRAM That
Maximizes Throughput by Allowing Memory Requests and Commands to Be
Issued Out of Order,” U.S. Patent Number 5,630,096, 1997.

16

http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://www.vivantecorp.com/index.php/en/technology/gpgpu.html
http://techreport.com/articles.x/21730
http://techreport.com/articles.x/21730

	Abstract
	1 Introduction
	2 Background
	2.1 Time Multiplexing
	2.2 Spatial Multiplexing

	3 Baseline Design
	4 Design Space Analysis
	4.1 Effect of TLB Misses on GPU Performance
	4.2 Interference at the Shared TLB
	4.3 Interference Throughout the Memory Hierarchy
	4.4 Summary and Our Goal

	5 Design of MASK
	5.1 Enforcing Memory Protection
	5.2 Reducing L2 TLB Interference
	5.3 Minimizing Shared L2 Cache Interference
	5.4 Minimizing Interference at Main Memory
	5.5 Page Faults and TLB Shootdowns

	6 Methodology
	7 Evaluation
	7.1 Multiprogrammed Performance
	7.2 Component-by-Component Analysis
	7.3 Scalability and Generality
	7.4 Storage Cost
	7.5 Chip Area and Power Consumption

	8 Related Work
	8.1 Techniques to Enable GPU Sharing
	8.2 TLB Design
	8.3 Techniques to Reduce Inter-Application Interference

	9 Conclusion
	References

