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Abstract
Parity encoded redundant disk arrays provide highly reli-
able, cost effective secondary storage with high perfor-
mance for read accesses and large write accesses. Their
performance on small writes, however, is much worse than
mirrored disks — the traditional, highly reliable, but
expensive organization for secondary storage. Unfortu-
nately, small writes are a substantial portion of the I/O
workload of many important, demanding applications such
as on-line transaction processing. This paper presents par-
ity logging, a novel solution to the small write problem for
redundant disk arrays. Parity logging applies journalling
techniques to substantially reduce the cost of small writes.
We provide a detailed analysis of parity logging and com-
peting schemes — mirroring, floating storage, and RAID
level 5 — and verify these models by simulation. Parity
logging provides performance competitive with mirroring,
the best of the alternative single failure tolerating disk
array organizations. However, its overhead cost is close to
the minimum offered by RAID level 5. Finally, parity log-
ging can exploit data caching much more effectively than
all three alternative approaches.

Section 1: Introduction

The market for disk arrays, collections of independent
magnetic disks linked together as a single data store, is
undergoing rapid growth and has been predicted to exceed
7 billion dollars by 1994 [Jones91]. This growth has been
driven by three factors. First, the growth in processor speed
has outstripped the growth in disk data rates, requiring
multiple disks for adequate bandwidth. Second, arrays of
small diameter disks often have substantial cost, power,
and performance advantages over larger drives. Third, low
cost encoding schemes preserve most of these advantages
while providing high data reliability (without redundancy,
large disk arrays have unacceptably low data reliability
because of their large number of component disks). For
these three reasons, redundant disk arrays, also known as
Redundant Arrays of Inexpensive Disks (RAID), are strong
candidates for nearly all on-line secondary storage systems
[Gibson92].

Figure 1 presents an overview of RAID systems consid-
ered in this paper. The most promising variant employs
rotated parity with data striped on a unit that is one or more
disk sectors [Lee91]. This configuration is commonly
known as the RAID level 5 organization [Patterson88].

RAID level 5 arrays exploit the low cost of parity encod-
ing to provide high data reliability [Gibson93]. Data is
striped over all disks so that large files can be fetched with
high bandwidth. By rotating the parity, many small random
blocks can also be accessed in parallel without hot spots on
any disk. While RAID level 5 disk arrays offer perfor-
mance and reliability advantages for a wide variety of
applications, they are commonly thought to possess at least
one critical limitation: their throughput is penalized by a
factor of four over nonredundant arrays for workloads of
mostly small writes. A small write may require prereading
the old value of the user’s data, overwriting this with new
user data, prereading the old value of the corresponding
parity, then overwriting this second disk block with the
updated parity. In contrast, mirrored disks simply write the

RAID level 1: Mirroring

Figure 1 Data Layouts. In nonredundant disk arrays, data
units are simply interleaved across the array. RAID level 1 arrays
duplicate every user data unit. RAID level 4 arrays interleave
user data blocks across all disks except one. Blocks on the final
disk hold the parity (bitwise xor) of the corresponding blocks on
the other disks. RAID level 5 arrays distribute the parity blocks
uniformly across the disk array. Shaded blocks indicate
redundant (parity) information.
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user’s data on two separate disks, and therefore, are only
penalized by a factor of two [Bitton88]. This disparity, four
accesses per small write instead of two, has been termed
the small write problem [Gibson92].

Unfortunately, small write performance is important. The
performance of on-line transaction processing (OLTP) sys-
tems, a substantial segment of the secondary storage mar-
ket, is largely determined by small write performance. The
workload described by Figure 2 is typical of OLTP but
nearly the worst possible for RAID level 5; a read-modify-
write of an account record will require four or five disk
accesses. The same operation would require three accesses
on mirrored disks, and only two on a nonredundant array.
Because of this limitation, many OLTP systems continue to
employ the much more expensive option of mirrored disks.

This paper describes and evaluates a powerful mecha-
nism, parity logging, for eliminating this small write pen-
alty. Parity logging exploits well understood techniques for
logging or journalling events to transform small random
accesses into large sequential accesses. Section 2 of this

TPC Benchmark
get request from terminal
begin transaction
update account record
write history log
update teller record
update branch record

commit transaction
respond to terminal

Scaling to X transactions per
second

X*100k  account records (100 bytes each)
X*10 teller records (100 bytes each)
X branch records (100 bytes each)
X*10 terminals (1/10 TPS each)
X*30K history records (50 bytes each)
>X*11.5 MB total online storage

Figure 2 OLTP Workload Example. The transaction
processing council (TPC) benchmark is an industry standard
benchmark for OLTP systems stressing update-intensive
database services [TPCA89]. It models the computer processing
for customer withdrawals from and deposits to a bank. The
primary metric for TPC benchmarks is transactions per second
(TPS). Systems are required to complete 90% of the transactions
in under 2 seconds and to meet the scaling constraints listed
above. Customer account records are selected at random from
the local branch 85% of the time and 15% of the time from a
different branch. Because history record writes are delayed and
grouped into large sequential writes and teller and branch
records are easily cached, the disk I/O from this benchmark is
dominated by the random account record update. For a 250 TPS
system, at least 3GB of storage must concurrently provide more
than 250 account record reads and writes per second.
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Figure 3 Peak I/O Bandwidth. The figure shows the total
kilobytes per second that can be read from or written to a drive
using random one block (2KB), one track, and one cylinder
access on an IBM 0661 drive (see Figure 12 for disk parameters).
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paper develops the parity logging mechanism. Section 3
introduces a simple model of its performance and cost. Sec-
tion 4 describes alternative disk system organizations,
develops comparable performance models and contrasts
them to parity logging. Section 5 introduces our simulation
system, describes implementations of parity logging and
alternative organizations, and contrasts their performance
on a workload of small random writes. Section 6 discusses
extensions to multiple failure tolerating systems. Section 7
reviews related work by Bhide and Dias [Bhide92]. Section
8 closes with a summary of current and future work in
redundant disk arrays for small write intensive workloads.

Section 2: Parity Logging

 This section evolves the parity logging modification to
RAID level 5. Our approach is motivated by the much
higher disk bandwidth of large accesses over small. A par-
ity logging disk array accumulates small parity updates
until sufficiently large accesses can be used to apply these
updates efficiently. The model is introduced in terms of a
simple, but impractical RAID level 4 scheme, then refined
to the realistic implementation used in the simulations.

A disk access can be broken down into three components:
seek time, rotational positioning time, and data transfer
time. Small disk writes make inefficient use of disk band-
width because their data transfer time is much smaller than
their seek and rotational positioning times. Figure 3 shows
the relative bandwidths of random block, track and cylinder
accesses for a modern small diameter disk [IBM0661]. This
figure largely bears out the lore of disk bandwidth: random
cylinder accesses move data twice as fast as random track
accesses which, in turn, move data ten times faster than
random block accesses. Parity logging exploits this rela-
tionship by replacing many random small parity update
accesses with a few large update accesses to log and parity
blocks.

Logically, our scheme can be developed beginning with
Figure 4. A RAID level 4 disk array (Figure 1) is aug-
mented with one additional disk, a log disk. Initially, this
log disk is considered empty. As in RAID level 4, a small
write prereads the old user data, then overwrites it. How-
ever, instead of similarly updating parity with a preread and
overwrite, the parity update image (the result of XOR’ing
the old and new user data) is held in a fault tolerant buffer1.
When enough (one or more tracks) parity update images
are buffered to allow for an efficient disk transfer, they are
written to the end of the log on the log disk.

When the log disk fills up, the out-of-date parity and the
log of parity update information are read into memory with
large sequential accesses. The logged parity update images
are applied to an in-memory image of the out-of-date par-
ity, and the resulting updated parity is rewritten with large
sequential writes. When this completes, the log disk is

1. The specific characteristics of the fault tolerant buffers depends on the
expected failure modes. If simultaneous controller memory and disk loss
is considered to be a single failure, then the fault tolerant buffers must be
nonvolatile to provide single failure tolerance. If, however, array control-
ler memory loss and disk failure are independent of each other, then the
array can be single failure tolerating without nonvolatile controller buff-
ers. In either case, the software fault tolerance needed to protect these
buffers against corruption resulting from software failures is beyond the
scope of this paper.
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marked empty, and the logging cycle begins again.
It is straightforward to verify that this scheme preserves

data reliability. If a data disk failure occurs, the log disk
(and any records in the fault tolerant memory) are first
applied to the parity disk, which can then be used to recon-
struct the lost data. If the log or parity disk fails, the system
can simply recover by reconstructing parity from its data
and installing a new empty log disk.

The addition of a log disk allows substantially less disk
arm time to be devoted to parity maintenance than in a
comparable RAID level 4 or 5 array. This can be shown by
computing the average disk busy time devoted to parity
updates. Assume there are  blocks on a track,  tracks
per cylinder, and  cylinders on a disk (see the glossary in
Figure 6). First, every  small writes issued to the array
cause one track write to the log to occur. Next, every
small writes issued cause the log disk to fill up, which must
then be emptied by updating the parity. This requires three
full disk accesses, which occur at cylinder data rates. On
average, then, for every  small writes there are
sequential track accesses, and  cylinder accesses for
maintenance of the parity information. Track accesses are

 times larger than a random small write but about 10
times more efficient. Cylinder accesses are twice as fast
and  times larger than track accesses. Thus parity mainte-
nance for  small writes consumes about as much disk
time as

Data Data Data Parity Log

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Figure 4 Basic Parity Logging Model. A RAID level 4 disk
array is augmented with a log disk. Parity update records are
written sequentially to the log disk at track rates. A full log disk
triggers a read of the log and parity disks, computation of the
current parity, and a rewrite of the parity disk.
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Figure 5 Parity Logging Regions. Dividing each disk into
regions dramatically reduces the required amount of controller
buffer space. Each region requires a fault tolerant track buffer to
hold its unwritten log records. When a track buffer fills up, the
track is written into its regions log with a full track write.
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random small accesses. In a standard RAID level 4 or 5
disk array, parity maintenance for  small writes would
consume as much disk time as  pairs of random block
reads and writes. Thus by logging the parity updates, we
have reduced the time consumed by the parity update I/Os
by about a factor of eight.

As stated, however, this scheme is completely impracti-
cal: an entire disk’s capacity of random access memory is
required to hold the parity during the application of the par-
ity updates. Figure 5 shows how this limitation can be over-
come by dividing the array into regions. Each region is a
miniature replica of the array proposed above. Small user
writes for a particular region are journalled into that
region’s log. When a region’s log fills up, only that region’s
log is required to update the region’s parity. This reduces
the size of the controller memory buffer needed during par-
ity reintegration from the size of a disk to a manageable
fraction of a disk. Our models and simulation will use 100
regions per disk (about 3MB per region).

Now, however, each region requires a fault tolerant
buffer. Each buffer holds a track (or a few tracks) of parity
update images. When one of these buffers fills up, the cor-
responding region’s log is appended with an efficient track
(or multitrack) write. Thus the sequential track writes of the
single log scheme are replaced with random track writes in
the multiple region layout. While random track writes are
more expensive than sequential track writes, this more
practical implementation still has dramatically lower parity
maintenance overhead than RAID levels 4 or 5, as will be
shown in the next section.

Similarly to the case of RAID level 4, the log and parity
disks may become performance bottlenecks if there are
many disks in the array. In particular, the disk bandwidth to
all log regions is just the bandwidth of single disk. This
limitation can be overcome by distributing parity and logs
across all the disks in the array, as indicated in Figure 7.
Now the aggregate log bandwidth equals the bandwidth of
the array.

TV D 10⁄( ) 3V T 2⁄ D 10⁄×( )+ TVD 4⁄=

TVD
TVD

S Average seek time
R Average rotational delay

(1/2 disk rotation time)
H Head switch time
M Single track seek time
T Tracks per cylinder
V Cylinders per disk
N Disks in the array
K Tracks buffered per region
C Cylinders per region
D Data units per track
L Log Striping Degree

Figure 6 Model Parameters. The bandwidth utilization
model of Section 3 is presented in terms of these parameters.
The majority of the parameters are based on disk geometry. The
remainder come from the application or array configuration.
The left hand column indicates the symbol used in this text. The
same notation also used in Sections 3 and 4.
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The log and parity bandwidth for a particular region,
however, is still that of a single disk. Following the exam-
ple of RAID level 5, the parity for each region is block
striped across the array to increase bandwidth (Figure 8).
This also decreases the latency of reintegrating parity
updates for a particular region. The log, however, remains a
potential bottleneck.

The log bottleneck may also be eliminated by distributing
the parity log for each region over multiple disks. Figure 9
shows a parity logging array with the log for each region
striped across two disks. Since the parity log is logically
part of the parity, it cannot be placed on the same disks as
the data is protects. Thus log striping reduces the number
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Figure 7 Log and Parity Rotation. Spreading the log and
parity over the entire array increases the parity and log
bandwidth to the entire bandwidth of the array. An individual
region may still be a hot spot.
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Figure 8 Block Parity Striping. Parity and data are
distributed over all but one disk in each region. The remaining
disk contains the parity log. A contiguous layout of parity on
each disk allows efficient cylinder rate transfers, while
distribution reduces the latency of parity reintegration. The inset
shows a detailed layout of a sample region.

of disks on which data for a particular region may be
placed. Since the disk space overhead is proportional to the
number of disks over which data is placed, striping the log
increases the disk space overhead. Figure 10 shows the
dependence of disk space overhead on the striping degree.
As will be shown in Section 5, however, the performance
advantages of striping are substantial. The selection of the
number of disks over which to stripe the log, the striping
degree (L), will also be examined in that section.

The controller memory overhead for this mechanism is
fairly modest. With  regions, the controller requires
track buffers and another buffer that is  tracks large
for the parity reintegration. If a single track is buffered for
each of 100 regions, an array of 22 IBM 0661 disks
requires 5592KB of buffer space. If memory is assumed to
cost 20 times as much as disk per byte, this buffer space
costs the equivalent of about 40% of one disk, or about 2%
of the 22 disk array.

Section 3: Analytical Modeling

In this section we present a utilization-based analytical
model of a disk array. This model predicts sustained array
performance in terms of achieved disk utilization, disk
geometry, and access size. The parameters and symbols
used in this model are listed in Figure 6.

Consider a single small user write in a parity logging
array. The user data must be preread, then overwritten. This
is done in an I/O which seeks to the cylinder with the user’s
data, waits for the data to rotate under the head, reads the
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Figure 9 Distributed Parity Logs. To increase the log
bandwidth for each region, the log for each region is striped. In
this example, each log region is striped over 2 disks. As before,
the parity is still spread over on all disks. To preserve single
fault tolerance, a parity sublog for a region cannot reside on the
same disk as any data for that region. Thus while striping
reduces the time for log application for a given region, it
increases the space overhead. In addition, if the log is striped
over too many disks, the sublogs will become too small and
access to them will be inefficient, decreasing performance.
When the log is not striped, however, many user data requests
queue behind the log reads, which degrades throughput and
response time. Fortunately, a moderate degree of striping is
beneficial to performance with a small cost increase.

r Kr
VT r⁄
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data, waits for the disk to spin around once, then updates
the data2. On average, such an access will take

disk seconds, which may be simplified to

In many cases, it may be possible to predictably avoid
prereading user data. For example, in the TPC benchmark
the updates of a customer account record is a read modify
write operation; a data record is read, modified in memory,
then written back to disk. In these cases, the old data value
is usually known (cached) at the time of the write, and an
additional preread of the data may be skipped. Without pre-
reading, the disk busy time needed for a small write access
is .

Each region has K tracks worth of fault tolerant buffers.
Thus, on average, for every KD small user writes, one
region’s buffers will fill and be written to the region’s log in
a single K track write. The number of disk seconds needed
to do this is

2. This single access could be separated into two accesses each taking
S+R+2R/D for a total of 2S+(2+4/D)R. For most modern disks S is about
twice R, so the single access is more efficient.
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Figure 10 Disk Storage Overheads. While increasing the log
striping degree improves array performance, the storage
overhead increases. Shown above is the percent of the total disk
capacity devoted to storing redundant data in an array with 22
disks. In general, the storage overhead is 2/(N+1-L), where N
is the number of disks and L is striping degree. Thus the
storage overhead depends only on the total number of disks in
the array and the degree of log striping.

In addition to these disk space overheads, parity logging
also requires fault tolerant memory buffer space. With the
example disk array of Figure 12, this amounts to 5592 KB,
roughly equivalent in cost to 2% of the disk array.

(S + R) + 2R/D + (2R - 2R/D) + 2R/D

Seek and
rotational delay

Data preread

Rotational delay
Data write

S 3
2
D

+( ) R+ A0=

S 1 2 D⁄+( ) R+

assuming all K tracks are on the same cylinder3. This may
be rewritten as

.

Finally, on average, for every  small user writes one
region of logged parity must be reintegrated. First, consider
the cast of an array that does not stripe its log (Figure 8).
The reintegration consists of three steps: a sequential read
of C cylinders (one region) from the log, a striped read of
the parity from N-1 disks, and a striped write of the parity
back onto N-1 disks. The sequential log read requires

disk seconds, and may be rewritten as

.

The striped accesses each consist of  sequential
transfers of  cylinders. Each of these transfers
takes

Rewriting, each striped access takes A3 disk seconds:

Thus, on average, every small user write utilizes disks for

.

Figure 11 shows the contributions to disk busy time of
the various terms after  in the above equation for the
example disk array given in Figure 12.

The analysis for a parity logging disk array with a striped
log such as that shown in Figure 9 is similar. When a
region’s fault tolerant buffers fill, the buffers will be written
to one of the regions sublogs in a single K track write. The
cost of this operation is the same as in the unstriped case.

3. Disks that support zero-latency writes [Salem86] can eliminate the ini-
tial rotational positioning delay. If only a single track is buffered (K=1)
this can reduce the I/O time by 26%.

(S+R) + 2RK + (K-1)H

Seek and rotational delay

Data transfer time

Head switch time

S 2K 1+( ) R K 1−( ) H++ A1=

DTC

(S+R) + C (2RT + (T-1)H) + M(C-1)

Seek and rotational delay

Read Time for 1 Cylinder

C-1 single cylinder seeks

2TC 1+( ) R T 1−( ) HC C 1−( ) M+ + + A2=

N 1−
C N 1−( )⁄

(S+R) + (C/(N-1))(2RT+(T-1)H) + (C/(N-1)-1)M.

First seek and rotational delay

Cylinders per subaccess

Read Time for 1 Cylinder

Single track seeks per
subaccess

N 1−( ) S R+( ) C 2RT T 1−( ) H+( ) M C N− 1+( )+ +

A3=

A0
1

KD
A1

1
DTC

A2 2A3+[ ]+ +

A0
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Log reintegration still occurs every  small user writes,
but now consists of three striped I/Os: a striped (over
disks) read of the log, and a striped read and write of the
parity (striped over N disks). The striped log read costs

Figure 11 Parity Logging Overheads. The amortized overhead
cost of extra I/Os done in our example parity logging array is
shown above. The log writes contribute approximately 40% of the
overhead, while the cylinder rate log reads, parity reads and

arity writes each contribute about 20%. In contrast, the extra
/Os done by RAID level 5 cost nearly 35 milliseconds per small

write.

Log Write
Overhead

Log Read
Overhead

Parity Read Parity Write

1 2 3 4 5 60 (ms)

Overhead Overhead

Geometry:  949 cyls, 14 heads, 48 sectors/track
Sector Size: 512 bytes
Revolution Time: 13.9 ms
Seek Time Model: (ms)

2 ms min, 12.5 ms avg, 25 ms max
Track Skew: 4 sectors
Head Switch Time: 1.16 ms

2.0 0.01 dist⋅ 0.46 dist⋅+ +

Disk Parameters

Access size: Fixed at 2 KB
Alignment: Fixed at 2 KB
Write Ratio: 100%
Spatial Distribution: Uniform over all data
Temporal Distribution:  66 closed loop processes

Gaussian think time distribution

Workload Parameters

Stripe Unit: Fixed at 2KB
Number of Disks: 22 spindle synchronized disks.
Head Scheduling: FIFO
Power/Cabling: Disks independently powered/cabled

Array Parameters

Figure 12 Simulation Parameters. The access size alignment
and spatial distribution are typical of OLTP workloads, while a
100% write ratio emphasizes the performance differences of the
various techniques. Since the disks have independent support
hardware, disk failures will be independent, allowing a single
parity group [Gibson92]. Disk parameters are modeled on the
IBM Lightning drive[IBM0661]. Note that the dist term in the
seek time model is the number of cylinders traversed, excluding
the destination. As is traditional, the track skew is chosen to
equal the head switch time, optimizing data layout for sequential
multitrack access. These disks do not support zero latency writes.

DTC
L

(S+R) + (C/L)(2RT+(T-1)H) + (C/L-1)M

First seek and rotational delay

Cylinders per subaccess

Read Time for 1 Cylinder

Single track seeks per
subaccess

for a total of

disk seconds. Similarly, the striped parity reads and writes
will consume

disk seconds. Thus striping introduces an additional over-
head of  disk seconds to the log inte-
gration. This increases the parity maintenance overhead per
small write by

This increase in parity maintenance work is worthwhile
because it reduces long reintegration periods when disk
queues grow until the system becomes underutilized which
causes maximum performance to fall far short of expecta-
tions.

Section 4: Alternative Schemes

Few other authors have addressed the problem of high
performance yet reliable disk storage for small write work-
loads. The most notable of these is floating data and parity
[Menon92]. This section reviews and estimates the perfor-
mance of four configurations: mirrored disks (RAID level
1), nonredundant disk arrays (RAID level 0), distributed
N+1 parity (RAID level 5), and floating data and parity.
The notation and analysis methodology are the same as
used in the previous section.

Small writes in RAID level 5 disk arrays require four
I/O’s: data preread, data write, parity read, parity write.
These can be combined into two read-rotate-write accesses,
each of which takes

disk seconds for a total disk busy time of
. No fault tolerant controller storage is

required.
The traditional solution to reliable disk storage has been

mirroring. In mirrored systems, every data unit is stored on
two disks, and all write requests update both copies. No
preread is required, however, so each access takes

Hence each small user write utilizes disks for
 seconds. While mirrored disks are more

efficient than RAID level 5, half their capacity is devoted to
redundant data, making them expensive. Similarly to RAID
level 5, controllers for mirrored disk arrays do not require

L S R+( ) C 2RT T 1−( ) H+( ) C L−( ) M+ +

N S R+( ) C 2RT T 1−( ) H+( ) C N−( ) M+ +

L 1+( ) S R M−+( )

L 1+( ) S R M−+( )
DTC

(S + R) + 2R/D + (2R - 2R/D) + 2R/D

Seek and
rotational delay

Data preread

Rotational delay
Data write

2S 6 4 D⁄+( ) R+

(S + R) + 2R/D

Seek and rotational delay Data write

2S 2 4 D⁄+( ) R+
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fault tolerant storage.
The floating data and parity modification to RAID level

5 was proposed by Menon and Kasson [Mennon92]. This
technique organizes data and parity into cylinders that con-
tain either data only or parity only. As illustrated in Figure
13, by maintaining a single track of empty space per cylin-
der, floating data and parity effectively eliminates the extra
rotational delay of RAID level 5 read-rotate-write accesses.
Recall that for RAID level 5, the disk busy time for each
data and parity update is

.

With floating data and parity, the rotational term
 is replaced with a head switch and a short

rotational delay. Using disks similar to those in our sample
array Menon and Kasson report an average delay of 0.76
data units. So the expected disk busy time for each access
in a floating data and parity array is

which may be rewritten as .
Hence, the total disk busy time for a small random user
write in a floating data and parity array is

. Note if  is large and  is
small, this is close to the performance of mirroring.

Even with a spare track in every cylinder, floating data
and parity arrays still have excellent storage overheads. For
an N disk array, floating data and parity has a storage over-
head4 of . Floating data and parity
arrays, however, require substantial fault-tolerant storage in
the array controller to keep track of the current location of
data and parity. For each cylinder, an allocation bitmask is
maintained. This requires DT bits per cylinder. In addition,
a table of current block locations for each cylinder is
required. This consumes  bits per
cylinder. Thus a total of
bits of fault-tolerant controller storage are required. For the
disks in Figure 12, this is 1,343,784 bits (164 KB) per disk,

4. Each disk gives up 1/T of its capacity for free space and the array gives
up 1/N of the remaining space for parity. Thus the array storage efficiency
is (T-1)(N-1)/TN and the array storage overhead is 1-(T-1)(N-1)/TN =
(T+N-1)/TN.

Figure 13 Floating Data/Parity. When updating block D2, the
controller searches for a free block within the cylinder that is
rotationally close to block D2. In this case, it finds the block at
offset 3 into track 3. Immediately following the preread of block
D2, the controller writes the new block to the new location, and
updates the mapping tables. The preread of the old information
and the write of the new are thus effectively done in time of one
access.
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roughly comparable to parity logging.
While floating data and parity substantially improves the

performance of small writes, its performance for other
types of accesses is degraded. Within a cylinder, logically
contiguous user data units are not likely to be physically
contiguous. In the worse case, two consecutive data units
may end up at the same rotational position on two different
tracks, requiring a complete disk rotation to read both. In
addition, the average track has only  valid
data units. Thus, even on disks with zero-latency reads, the
maximum sequential read bandwidth is reduced by

.
Figure 14 compares the model’s estimates for maximum

throughput of the example arrays based on Figure 12.
Throughput at lower utilizations may be calculated by scal-
ing the maximum throughput numbers by the disk utiliza-
tion. Figure 14 predicts that parity logging and floating data
and parity will both substantially improve on RAID level 5,
approaching the performance of mirroring, for small ran-
dom writes.

Section 5: Simulation

To validate the models presented above and to explore
response time for these arrays, we simulated the example
array in Figure 12 under five different configurations: non-
redundant, mirroring, RAID level 5, floating data and par-
ity, and parity logging. Parity logging was simulated for
several different degrees of log striping5. The RAIDSIM
package, a disk array simulator derived from the Sprite
operating system disk array driver [Ousterhout88, Lee91],
was extended with implementations of parity logging and
float parity and data.

In each simulation, the request stream was generated by
66 processes (i.e, three per disk). Each process requests a

5. A single track was buffered per region in all parity logging simulations.

D T 1−( ) T⁄

T 1−( ) T⁄

14.5
18.1

24.1

36.2

24.7

48.5

21 22.5

RAID Floating Mirroring Parity
Logging

Nonredundant

Preread User Data
No Preread
Both

Figure 14 Model Estimates. I/Os per second per disk as
predicted by the bandwidth models of Sections 3 and 4. These
predictions assume 100% disk utilization, FIFO disk arm
scheduling and an unbounded number of requestors. Raid level 5
and parity logging disk arrays both benefit substantially from not
having to preread user data. Floating data and parity
substantially reduces the overhead of the user preread and
therefore achieves less benefit from its elimination. Mirroring
and nonredundant disk arrays do not need to preread user data.
The parity logging estimates are insensitive to the degree of
striping.

Data/ParityLevel 5
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small write from a disk selected at random, then waits for
acknowledgment from the disk array. Process think time
has a Gaussian distribution, but the mean is dynamically
adjusted until the desired system throughput is achieved. If
the disk array is unable to sustain the offered load, think
time is driven to zero. Simulations were run until the 90%
confidence interval of the response time is less than 5% of
the mean.

Figure 16 shows peak throughput, response time6 and
response time variance as the degree of log striping (L) is
varied from 1 (unstriped) to 13. When the log is striped
over a small number of disks, performance is substantially
lower than other configurations. This behavior can be
explained in terms of a “convoy effect”. The length of the
sublog read I/Os is the basis of the convoy effect. Figure 15
shows sublog read times for low log striping degrees.
While these long I/O’s are efficient, they completely tie up
a disk for seconds. During this period, any access to the
disk involved in the log read will block, reducing the effec-
tive concurrency in the system. This concurrency reduction
causes other disks in the array to become idle until the log
read completes, reducing peak throughput and utilization.

6.  The simulations reported herein consider a user write in a parity logged
array complete when the user data is on disk and the parity update record
has been committed to fault tolerant storage. The alternatives consider a
user write complete when data and parity are on disk.
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Figure 15 Sublog Read Times. This figure presents the sublog
read time for low degrees of log striping for the example disk
array. When the sublog reads are very long, many user requests
queue behind the read, increasing response time and decreasing
array utilization.
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Figure 16(c): Response Time Variance at Peak Load

This convoy effect also has a substantial impact on
response time. I/O requests that block behind these long
read requests will have very long response times, leading to
an increase both average response time and response time
variance.A modest degree of striping eliminates the convoy
effect. Striping the log over six disks achieves most of the
available performance without greatly increasing disk
space overhead. Figure 17 compares the performance of
this configuration against the alternative organizations pre-
sented in Section 4: nonredundant, mirroring, RAID level
5, and floating data and parity. Figure 17(a)-(b) present
response time statistics as a function of throughput for sim-
ulations that preread user data, and (c) presents the corre-
sponding data for the no preread case.

Because of the relatively small number of simulated pro-

Figure 16(a): Peak User I/Os

Figure 16 Striped Parity Logging. Figure 16(a), (b), and (c)
show the achieved user I/Os per disk per second, average user
response time, and the standard deviation of the response time
under peak load for various degrees of parity log striping. All
metrics improve substantially as the striping degree is increased
from 1 (no striping) to 4. The difference in performance between
striping over 4 to 13 disks is slight, indicating the robustness of
the technique.

The metric with the most dramatic improvement is the
response time standard deviation. When log reads are long (see
Figure 15), many user requests become queued for that disk,
leading to a large variance in the response time. Striping reduces
the length of the log reads, reducing this variance.
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cesses, the array saturates while some disks are less than
fully utilized. That is, because the number of requesting
processes is fixed, one overloaded disk can cause other
disks to be underutilized. The impact of this effect on peak

Figure 17(a): Response Times

Figure 17 Response Times and Utilization. Figure 17(a)-(c)
resent the average user response times and response time

standard deviations as a function of the number of small random
writes achieved per disk per second. Figure 17(a) and (b) present
the results when the user data must be preread, while the results
in Figure 17(c) assume the user data was cached, making the

reread of the user data unnecessary. In addition to reducing the
amount of I/O required, cached user data allows the user write
and parity update to occur concurrently, significantly reducing
response time for RAID level 5 and floating data and parity. The
reported times are in milliseconds. The response time standard
deviation for the no preread case is essentially identical to Figure
17(b).
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Figure 17(b): Response Time Standard Deviation
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disk utilization varies from configuration to configuration.
Figure 18 shows the disk utilization at peak load for the
configurations simulated. Parity logging, floating data and
parity, RAID level 5, and nonredundant disk arrays are
about equally affected since each system presents only one
disk access request at a time per process. Mirroring, on the
other hand, presents two write requests simultaneously and
is therefore impacted the least7. Nonetheless, Figure 19
shows that simulation agreement with the model is good
when the model results (Figure 14) are scaled by the
achieved disk utilizations in Figure 18.

The simulation response time results may be summarized
as follows. Nonredundant disk arrays perform a single disk
access per user write, so they have the lowest and most
slowly growing response time. Mirroring shows a similar

7. In many systems, writes to mirrored disks are serialized. One disk in
each pair is considered primary, and the write to that disk must complete
before the write to the second disk begins. Such serialization would reduce
mirroring’s disk utilization to the same as the nonredundant case while
approximately doubling response time.

Figure 17(c): Response Times without prereads
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Figure 18 Disk Utilization at Peak Load. The figure above
presents the average disk utilization at maximum load for the
array simulated in Figure 17. In every configuration disk
utilization grew linearly with throughput.
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behavior, but is driven into saturation with half as much
load. In contrast, each small user write in RAID level 5, in
the user data preread case, must complete two slow read-
rotate-write accesses sequentially. Unloaded system
response time is thus quite high and queuing effects cause
it to grow quite rapidly with load. While the response time
for parity logging on a lightly loaded system is approxi-
mately 20ms higher than mirroring, the peak sustainable
I/O rate and response time are quite similar. Similar to
RAID level 5, floating data and parity arrays require two
read-rotate-write accesses per user write. But by removing
the rotational delays, floating data and parity achieves peak
IO rates similar to parity logging and mirroring. Response
time, however, is significantly longer.8

Figure 17(c) shows the performance of all configurations
without data preread. As expected, this has no effect on
mirrored or nonredundant systems and the performance of
the other three configurations improves. RAID level 5 ben-
efits substantially from the elimination of the full rotation
delay incurred by the data preread. In addition, the user
data write and parity update can be issued concurrently,
further improving the response time and array utilization.
Floating data and parity achieves a lesser benefit from
elimination of the preread because its preread overhead is
much less. Response time does drop, however, because of
the ability to issue the user write and parity update accesses
simultaneously. The response time of parity logging
improves by a full rotational delay (13.9 ms) due to the
elimination of the preread rotate, providing a unloaded
response time comparable to a nonredundant array. This
also reduces the actuator time per I/O by nearly one third,
and the I/O rate and response time improve proportionately.

The variance in user response time, however, is larger
with parity logging than with mirroring or floating data and
parity, although it is not as large as with RAID level 5. This
results from the basic structure of parity logging. Most
accesses are fast because inefficient work is delayed. How-
ever, some accesses see long response times as delayed
work is efficiently completed. Nonetheless, the response

8. In parity logging arrays that are not driven into saturation, making the
log accesses preemptible by user access should substantially improve
response time and response time variance.

Figure 19 Model errors. The figure shows the percent error
between the models and the simulations. The model predictions
have been scaled by the achieved disk utilizations. In all cases,
the disagreement between the simulation and the models is less
than four percent. Note that the 90% confidence interval of the
simulation response time is % of the mean.5±
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time estimates show that parity logging is a viable and
much lower cost alternative to mirroring for small write
workloads.

Section 6: Multiple failure tolerating arrays

Another significant advantage of parity logging is its effi-
cient extension to multiple failure tolerating arrays. Multi-
ple failure tolerance provides much longer mean time to
data loss and greater tolerance for bad blocks discovered
during reconstruction [Gibson89]. Using codes more pow-
erful than parity, RAID level 5 and its variants, floating
data and parity and parity logging, can all be extended to
tolerate  concurrent failures. Figure 20 gives an example
of one of the more easily understood double failure tolerant
disk array organizations. This paper does not consider the
choice of codes that might be used for  failure protection,
except to note that these codes all have one property impor-
tant to small random write performance [Gibson89]: each
small write updates  disks —  disks containing check
information (generalized parity) and the disk containing the
user’s data. This check maintenance work, which scales up
with the number of failures tolerated, is exactly the work
that parity logging is designed to handle more efficiently.

In an  failure tolerating array using parity logging, the
single striped log per region is replaced with  striped logs
per region, each on a separate set of disks. When a region’s
fault tolerant buffers fill up, the corresponding parity
update records are written to all logs for that region. When
a region’s logs fill up, one copy of the log is read in, all
check data for the region is read in, updated in memory, and
rewritten9.

The other configurations also extend straightforwardly.
Mirroring becomes -copy shadowing. RAID level 5 and

9. Instead of reading all the parity updates from one of the logs, a different
subset of the parity update records could be read from each log, effectively
further striping the parity update record read.

f

f

f 1+ f

Disk 0

Disk 5

Disk 3

Disk 2

Disk 7

Disk 5

Disk 1

Disk 6

Disk 4

Parity

Parity

Parity

Row 0

Row 1

Row 2

Parity
Column 2

Parity
Column 1

Parity
Column 0

Figure 20 Two dimensional parity. One disk array
organization that achieves double failure tolerance is two
dimensional parity. Parity disks hold the parity for the
corresponding row or column. In the example above, the parity
disk for column 0 holds the parity of disks 0, 3 and 5. Whenever
a data disk is written, the corresponding row and column parity
disks are also updated. Thus a write to disk 1, in the example
above, would require updating the parity on the shaded parity
disks.
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its floating data and parity version simply store more parity
and issue read-modify-write updates to  check blocks with
every small write.

Relative to these other schemes, parity logging has better
performance because of its lower nonpreread overhead.
The overhead associated with maintaining check informa-
tion can be divided into two components: preread band-
width overhead and nonpreread bandwidth overhead. The
bandwidth needed to preread the old copy of the user’s data
is independent of the number of failures to be tolerated.
Nonpreread bandwidth, the disk work done to update the
check information given a data change, grows linearly with
the number of failures to be tolerated. Parity logging has
the smallest cost for this latter, linearly growing component
of check maintenance overhead because all check informa-
tion access (log and generalized parity) are done efficiently.

Figure 21 shows the total disk time required per small
random write in zero, single, double, and triple failure tol-
erating arrays using mirroring, RAID level 5, floating data
and parity and parity logging. This data is derived from the
models of Sections 3 and 4 and applied to the example disk
array of Figure 12.

The maximum I/O rate of the parity logging array
declines much more slowly than the other configurations
because parity logging has a substantially lower nonpre-
read overhead. For example, while triple failure tolerating
parity logging arrays should sustain about 35% of the I/O
rate of nonredundant arrays for random small writes, qua-
druplicated storage (triple failure tolerating mirroring disk
arrays) will sustain only 25%.

f

Figure 21 Small write costs. This figure shows the amortized
disk arm time consumed by a small write for each of the modeled
techniques in arrays that tolerate zero, one, two or three failures.
Parity logging is competitive with mirroring in the single failure
tolerating case and is substantially better than the other methods
in arrays that tolerate two or more failures.
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Section 7: Related Work

 Bhide and Dias [Bhide92] have independently developed
a scheme similar to parity logging. Their LRAID-X4 orga-
nization maintains separate parity and parity update log
disks, and periodically applies the logged updates to the
parity disk. In order to allow writes from the user to occur
in parallel with log reintegration, they double buffer both
the parity and the parity log for a total of four overhead
disks. This double buffering scheme, while expensive in
disks, can support a fairly large number of data disks with-
out saturating the parity and log disks, so LRAID-X4 does
not distribute parity or log information. Instead of breaking
down the log disk into regions to reduce the required stor-
age in the controller, LRAID-X4 sorts parity updates in
memory according to the parity block to which they apply.
This allows LRAID-X4 to write a “run” of updates for
ascending parity blocks to a log disk. When this log disk is
full, further updates are sorted and written to the second log
disk while the first log disk reintegrates its updates with the
parity by reading from one parity disk and writing to the
other. The reintegration of a full log disk uses an external
sorting algorithm to collect subsequences applying to one
area of parity from each run on the log disk. If this area is
large, all log reads and parity reads and writes will be effi-
cient.

The model derived by Bhide and Dias assumes user data
does not need to be preread. It shows that throughput is lim-
ited by the rate at which subsequences of runs are collected
for integration with the parity. In a 100% write workload,
the peak throughput is , where  is the amor-
tized time taken to read a block in a subsequence of a run
on the log disk. Bhide and Dias approximate this by

where  is the time to seek across 5 to 10
tracks and  is the average size in tracks of a subse-
quence (constrained to one cylinder). While  is
dependent on the amount of controller memory, their array
achieves about 80% of its maximum throughput with the
about 2% of a disk’s worth of memory. With this much
memory,  is 2.4. Using the array parameters in Fig-
ure 12 and taking  to be the time of a 5 track
seek, one obtains a peak throughput of 624 accesses per
second, or an average of 28.4 I/Os per disk per second.
With 5% of a disk’s worth of memory, LRAID-X4 achieves
its maximum of 760 I/Os, or 34.5 I/Os per disk per second.
However, LRAID-X4 reaches this performance maximum
with 20 disks (16 data, 2 parity, 2 log) for a 100% write
workload. Additional disks do not increase performance. In
comparison, the parity logging disk array simulated in Sec-
tion 5, whose controller requires about 2% of a disk’s worth
of memory, is predicted to achieve 36.2 I/Os per disk per
second on the same workload and its performance increases
with increasing numbers of disks.

Section 8: Concluding Remarks

This paper presents a novel solution to the small write
problem in redundant disk arrays based on a distributed
(and possibly replicated) log. Analytical models of the peak
bandwidth of this scheme and alternatives from the litera-
ture were derived and validated by simulation. The pro-
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Tfewtrackseek R tracksr 2R H+( )+ +( ) tracksr D×( )⁄
Tfewtrackseek

tracksr
tracksr

tracksr
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posed technique achieves substantially better performance
than RAID level 5 arrays. When data must be preread
before being overwritten, parity logging achieves perfor-
mance comparable to floating parity and data without com-
promising sequential access performance or application
control of data placement. Performance is superior to mir-
roring and floating parity and data when the data to be
overwritten is cached. This performance is obtained with-
out the 50% disk storage space overhead of mirroring. For
extremely reliable environments, the advantage of parity
logging systems is shown to be even more pronounced.

While the parity logging scheme presented in this paper
is effective, several optimizations should be explored. The
effects of log length on on-line reconstruction performance
should be investigated and detailed simulations of multiple
failure tolerating configurations should be undertaken.
More dynamic assignment of fault tolerant controller mem-
ory should allow higher performance to be achieved or a
substantial reduction in the amount of memory required.
Application of data compression to the parity log should be
very profitable. A comparison of the log structured filesys-
tem [Rosenblum 91], which completely avoids small
writes, and parity logging should be undertaken. The inter-
action of parity logging and parity declustering [Hol-
land92] merits particular exploration. Parity declustering
provides high performance during reconstruction while
parity logging provides high performance during fault free
operation. The combination of the two should provide a
particularly attractive system for OLTP environments.
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