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Abstract—In this paper, we examine two modern enterprise
Flash-based solid state devices and how varying usage patterns
influence the performance one observes from the device. We
observe that in order to achieve peak sequential and random
performance of an SSD, a workload needs to meet certain criteria
such as high degree of concurrency. We measure the performance
effects of intermediate operating system software layers between
the application and device, varying the filesystem, I/O Scheduler,
and whether or not the device is accessed in direct mode. Finally,
we measure and discuss how device performance may degrade
under sustained random write access across an SSD’s full address
space.

I. INTRODUCTION

Flash storage devices are a promising new technology which
have engendered much excitement for their potential to fill the
memory hierarchy gap between the access times of DRAM and
mechanical disks [1]. However, how well they work in real
system with complex workloads is not so clear. In addition,
the performance of Flash devices and their pice is changing
rapidly, sometimes monthly [2] [3], yet accurate assumptions
about Flash behavior, including price and performance, is im-
portant to correctly design a hybrid system. For example, some
authors assume Flash has poor random write performance [4].

A Flash device is made out of memory cells that can be read
anytime, but before a non-empty cell can be written it must be
first erased. The write and erase operations are considerably
slower than reading. In addition, the erase operation is de-
structive and, based on the particular Flash technology, a cell
can sustain between 10,000 to 1,000,000 erase cycles before
wearing out. Flash cells are grouped into pages (typically 4
KB), which are the atomic units of access. Pages are grouped
a block (typically 256 KB), which is the atomic unit of erasing
[5].

Although the read and write operations take in the order of
tens of microseconds, the erase operations take milliseconds.
Therefore, using Flash naively would not provide for high
random write performance.

As Flash technology matures, techniques such as log-based
writing with background cleaning and wear-leveling, over-
provisioning and multiple data and control channels were
adopted to enable high random I/O performance.

In this paper, we examine two modern enterprise Flash solid
state devices and how varying usage patterns influence the
performance one observes from the device. We consider the
effects of specific operating system storage software on top
of the devices, the role of parallelism, and the consequences
of sustained random write access on device performance. We

chose to measure these specific devices as they represent
current state-of-the-art Flash-based solid state devices with fast
random write performance. Measurements for older devices
and magnetic disks can be found in [2].

The following section describes our experimental setup.
Section III presents performance measurements. Finally, this
study is concluded in Section IV.

II. EXPERIMENTAL SETUP

All experiments were run on a server with 4 GB of RAM
and an Intel Pentium D Dual Core 3.0GHz processor with an
8x PCIe slot and 3 Gb/s SATA interconnect. The operating
system used for these experiments was the Ubuntu Linux
Distribution (version 8.04) [6] running the default 2.6.24-19-
generic Linux kernel. In this paper, all filesystem and I/O
scheduler versions correspond to those included in this kernel.

We examined two different Flash based solid state devices
(SSDs) for these experiments. Their interconnect types and
advertised performance characteristics are summarized in Ta-
ble I. Both of these devices were released in 2008 and display
superior performance to previous generation SSDs, especially
in the area of random writes [2].

Results were obtained from two benchmarking tools: IO-
Zone version 3.279 [7] and the Flexible IO Tester (fio)
version 1.22 [8]. IOZone is a filesystem benchmark generally
used to write to a single file on top of a filesystem using read()
and write() calls, although it is configurable for different access
patterns and concurrency. The Flexible IO Tester is another
highly configurable benchmark program, recommended to us
by an SSD vendor, that allows the user to control the number
of I/O jobs to be run concurrently on top of files or raw
devices. Although both tools are configurable for a variety
of access patterns, we found it more straightforward to use
IOZone for our benchmarks that worked through the filesystem
and the Flexible IO Tester for benchmarks that accessed the
raw device. The configurations of these benchmarks for each
test appear in the relevent result subsections below. In figures
where error bars are shown, the results represent the average
of 5 runs unless stated otherwise.

III. MEASUREMENTS

A. Impact Of Queue Depth

Consider a simple model of a Flash SSD as a disk with zero
legnth “seeks”. Such a device would achieve its maximum I/O
accesses per second (IOPS) for a random workload regardless
of whether those requests are issued serially or many at once.
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FIGURE 1. Queue Depth Effect
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Label Device A Device B
Interface Type PCIe SSD SATA SSD
User Capacity 80 GB 32 GB

List Price $2400 $810
$/GB $30 $25.31

Access Time 0.05 msec 0.085 msec
Advertised 700 MB/s read 250 MB/s read
Bandwidth 550 MB/s write 170 MB/s write
Advertised 102k IOPS read 35k IOPS read
Peak IOPS 91k IOPS write 3.3k IOPS write

TABLE I
SUMMARY OF SOLID STATE DISKS

In practice, however, modern Flash devices can consist of
multiple concurrently addressable banks, all of which would
have to be busy in parallel to achieve peak performance.

To describe the impact of parallel access, we configured the
fio benchmark to maintain a variety of queue depths (number
of outstanding I/O requests that are active at the device at a
given time) for three different access patterns (direct random
reading from the entire device address space, direct random
writing to the entire device address space, and a 50/50 mix
of the two). In all cases, the raw device is accessed “directly”
rather than through a mounted filesystem on the device. All
accesses were for 4 KB blocks. The experiment was run for
10 minutes for each configuration and IOPS measured. Results
are shown in Figure 1.

On random reads, Device A achieves high performance once
the I/O queue depth reaches 4 concurrent requests and on
Device B, we see IOPS throughput increasing with deeper
queue depths from 1 to 32. We hypothesize that the devices
have different numbers of banks for performing parallel opera-
tions. Our understanding is that Device A has 4 banks whereas
Device B has 10 banks, consistent with our hypothesis.

On random writes, performance does not vary widely with
queue depth. We speculate that written data is experiencing
less queue depth dependency because the device is delaying
the actual write and doing it in the background, and remapping
a location of its choice, allowing it to fully utilize all banks.
The performance of the writes is rather low compared to
the reads, which is a characteristic of Flash as mentioned
in Section I. Later in Section III-F we will also discuss

the negative performance impact of writing randomly to the
entire address space of a Flash device for long periods of
time. In the mix workload of reads and writes, we see some
improvements in performance with more queue depth, because
of the dependence of queue depth for reads.

In order to achieve the best performance for random reads
of small request sizes, a system must maintain a queue of
outstanding requests that fully utilizes the device, the depth of
which may vary from device to device. This may not always
be possible for a workload that issues small read requests from
a small number of threads.

It is noteworthy for designers of hybrid systems that we
did not initially see the performance of Device B increasing
with queue depth. We had to update operating system software
and explore configurations until the correct kernel module was
loaded, the device’s Native Command Queueing was enabled,
and the server’s BIOS configured to treat SATA devices in
“native” rather than “compatible” mode. Significant end user
tuning may be required in order to get high performance from
rapidly evolving Flash devices.

B. Storage Software Layers

Next, we evaluate the effect of using different storage
software to issue I/O requests to the device. To this end we
consider three attributes to vary—the file system, the I/O block
request scheduler, and the I/O mode (between non-direct—that
is, allowing prefetching and write behind in the filesystem’s
buffer cache—and direct). A file system is a software layer
between an application and the storage device that accesses
and manages persistent data. The file systems considered in
this study are:

1) XFS – a high performance journaling file system
2) ReiserFS – the first journaling file system in Linux
3) ext3 – the standard journaling Linux file system
4) ext2 – the standard pre-journaling Linux file system
All file system versions are those contained in kernel version

2.6.24-19-generic from Ubuntu Linux.
An I/O scheduler is an algorithm used inside the block layer

of an operating system to issue requests to a block device. The
I/O schedulers considered are:

1) noop – a single FIFO queue for all requests with minimal
coalescing. As long as it has pending I/O requests, the
noop scheduler issues requests as fast as the operating
system and device allows.
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FIGURE 2. Impact on Performance of Varying I/O Modes
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2) anticipatory – reorders requests based on patterns ob-
served in the past. The anticipatory scheduler may pause
before issuing a pending request if it ‘anticipates’ that
a new request that is more sequential to the previously
completed request will arrive within a few milliseconds.

3) cfq – keeps per-process FIFO queue and allocates time-
slices to each process based on their priority.

Further discussion of these schedulers and their performance
characteristics on disks is found in [9].

An I/O mode is simply a path through the operating system
that an I/O request takes. The I/O modes considered are:

1) non-direct – requests go through the buffer cache, which
enables read-prefetching or write-behind, time shifting
when device accesses occur

2) direct – requests bypass buffer cache and thus use neither
read-prefetching nor write-behind on the way to the
device

To evaluate the effects of varying each software layer option,
we vary it while keeping the other layer options fixed and use
the IOZone benchmark to measure performance for sequential
and random I/O. For each experiment the iozone benchmark
is run with the following parameters:

• -R generate a report for all specified request sizes
• -r 1k -r 4k -r 16k -r 64k -r 1m

use 1KB, 4KB, 16KB, 64KB and 1MB request sizes
• -i 0 run sequential read and write test
• -i 1 run random read test
• -i 2 run random write test
• -s 4g use 4GB for the size of the test file
• -U remount the filesystem before each test

In particular, every test is performed repeatedly for request
sizes specified above, and the file system was remounted with
no special options before every test. Note that run in this

3



FIGURE 3. Impact on Performance of Varying the File System
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fashion, IOZone issues a single request at a time, similar to
the behavior of a queue depth of one in Section III-A above.

In the following subsections we discuss the impact on
performance of varying each software layer.

C. I/O Modes

For comparing performance across different I/O modes, the
XFS file system and the cfq I/O scheduler are used, because
these are the best in general in other tests. The outcomes of
the measurements are summarized in the Figure 2.

For sequential I/O, the non-direct mode achieves flat per-
formance across most of the request sizes for both reads and
writes. This phenomenon can be attributed to read-prefetching
and write-behind for reads and writes respectively, filesystem
mechanisms that convert many small accesses into a few
larger accesses. On the other hand, in the direct mode the
observed bandwidth increases with increasing request size

until saturated at the peak performance, meeting or even
surpassing—for Device A writes—the bandwidth achieved by
the non-direct mode. The advantage and limitation of direct
mode is that aplication controls the parallelism provided by
wide accesses; it does too little, performance suffers compared
to non-direct mode, but it can improve on the non-direct mode
if its access sizes exceed non-direct sizes (in terms of useful
data for the application) and the device can service the extra
size.

For random I/O, the non-direct mode again achieves supe-
rior performance to the direct mode. Given that the benchmark
issues requests to a 4 GB file and the server contains 4 GB
of memory, this phenomenon can be mostly explained by
caching; that is, after a startup time, most of the file will be
in cache and reads will not go to the device. For writes, the
non-direct mode can still benefit from write-behind. Notably,
for random writes on Device A the direct mode outperforms

4



FIGURE 4. Impact on Performance of Varying I/O Schedulers
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the indirect mode. This suggests that internally Device A is
optimized for modifications smaller than 4 KB, perhaps using
smaller page sizes or buffering internally, while Device B may
be forced to do a 4 KB read-modify-write when issuing a 1
KB write.

In Section III-A above, we saw the importance of paral-
lelism for random I/O performance. With larger request sizes,
however, parallelism may be less important if the device stripes
data across multiple banks. In Figure 2, looking at the “direct”
mode of accessing file data through a filesystem but not
allowing the filesystem to prefetch or write behind data in
its cache, random read access of Device A on 16 KB requests
achieves about 80% of the throughput in terms of IOPS as 4
KB requests (meaning we’re able to randomly read almost 4
times faster with random reads of size 16 KB) despite IOZone
running with concurrency of one. In a simplified model of
Flash this doesn’t make sense. However, it can be explained

by the more complicated model of a Flash device that maps
its logical address space to physical Flash striped on 4 KB
blocks. Each four 4 KB direct request may be issued to only
a single bank (achieveing the same IOPS as the random reader
of queue depth one on Device A in Figure 1), whereas a 16
KB request can be striped across four banks (achieving the
same bandwidth–in terms of bytes per second–as the random
reader of queue depth four on Device A in Figure 1).

D. Filesystems

For comparing performance across different file systems, the
I/O mode is set to “non-direct” and I/O scheduler to “cfq”. We
use “non-direct” access because we want to measure the affect
of the filesystem’s read ahead and write behind decisions.
We use the “cfq” scheduler as it is the default I/O scheduler
in our Linux kernel. The outcomes of the measurements are
summarized in the Figure 3.
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For sequential I/O, different file systems exhibit quite a
range of behavior. This variability is present across all request
sizes for the Device A and small writes for the Device B. In
general both ReiserFS and ext3 underperform relative to ext2
and XFS. Also XFS and ext2 tend to achieve the advertised
bandwidth, except for sequential writes on the Device A,
which seems to have significantly more trouble with sequential
writes, especially in 4 KB request sizes.

For random I/O, one can observe less variability in the
behavior across different file system. The exception being that
ext3 tends to perform poorly on writes on Device A. It is worth
noting that the IOPS achieved for 1 KB writes is smaller than
that for 4 KB, breaking a trend of smaller accesses achieving
higher IOPS. We conjecture that this is caused by the file
system managing its buffer cache in 4 KB pages. Thus every 1
KB writes requires a read-modify-write sequence, which hurts
performance.

For random reads in Device B, the IOPS generally halves
with our increasing sizes. However, the size of our requests,
and hence the amount transferred per IOP, quadruples. Despite
their the intuition of SSDs as seekless devices, they still
manifest higher read bandwidth with larger request sizes.
On the other hand, for writes, going from 4 KB to 16 KB
and 64 KB does not change the amount of data transfered
significantly. For Device B it is actually very close to the
peak bandwidth. We conjecture that for random writes, the
throughput is dominated by the rate at which 256 KB erase
blocks may be cleared rather than the time to write the data.

E. I/O Schedulers

For comparing performance across different I/O schedulers,
the direct I/O mode is enabled and the XFS file system
is used. XFS was chosen as the filesystem due to its high
performance in Section III-D. We ran the experiments in direct
mode, however, as we wanted to the scheduler, rather than the
filesystem to be the only layer influencing the ordering and
timing of requests. The outcomes of the measurements are
summarized in the Figure 4. Note that we see performance
numbers consistent with the direct mode results of Figure 2.
For example, Device A performs relatively well on 1 KB
random writes in terms of IOPS compared to Device B where
we suspect that 1 KB random writes are slower than 4 KB
random writes due to the necessity to perform read-modify-
write operations in the device.

The performance observed for different access patterns and
request sizes in our measurements varies at most by 5% be-
tween different I/O schedulers. This is very different from the
performance on magnetic disks as described in [9]. Although
one might expect that reordering or delaying the requests
before issuing them to the device might matter, our findings
speak otherwise. In short, unlike for mechanical disks, the
choice of I/O schedulers has little impact on the performance
of SSDs.

F. Sustained Random Write Performance

The principle special property of SSD design is the need
to erase a large block before writing it. In addition to erase
being a relatively slow operation, erase block sizes are usually
relatively large (256 kilobytes on a typical NAND device
[5]). With sufficient numbers of free pre-erased blocks, the
cost of an erase cycle can be hidden in the response time
of the write requests. So achieving consistently high write
performance relies upon maintaining a pool of free erased
blocks, an analogous problem to background cleaning in log
structured filesystems [10].

In this experiment, we examine how a sustained random
write workload across the devices affects the bandwidth over
time by depleting this pool of free erased blocks. We con-
figured the fio benchmark to run four threads each writing
randomly in 4 KB requests across the entire address space of
the device. Figure 5 shows the aggregate IOPS seen by the
four threads averaged over 25 second windows across a 10
minute run.

Figure 5 shows the performance is initially high at the start
of the run, but quickly degrades at the point at which writes
can no longer be issued without synchronously performing an
erase. Device A actually lets us access the number of free
erase blocks on the device, and we have shown this over the
course of the experiment in the left figure. Once the free erase
block count hits a certain low watermark, performance begins
to level off. Although we have no way to access the count of
free erase blocks on Device B, we expect that it is internally
experiencing a similar situation.

This behavior could have consequences for any long run-
ning, large workload. For example, the queue depth experiment
in Section III-A wrote to the entire devices for ten minutes for
its random write bars, meaning the IOPS shown in Figure 1
is the aggregate performance including both an initial period
of fast access and a longer, slower access period.

In order to maintain high sustained write speeds one must
find ways to avoid running out of free erase blocks while
servicing writes. For example, writing to only a subsection of
the device address space (over provisioning the Flash storage)
would allow the cleaner to more easily maintain a pool of
free erased blocks. Arguably, this is a common usage scenario
and an application which writes randomly to the entire address
space of the device is an unsual or even pathological workload.
However, we found that even if we repeated the experiments
shown in Figure 5 over only 10% of the address space,
after having written the entire address space once, there was
still an identical falloff. The problem arises because although
only a small portion of the address space is being used by
the current workload, the contents of the other 90% of the
address space is still being maintained even if there is no
useful data in these blocks. In this case, the device was still
responsible for the integrity all data written to it from previous
experiments, including the experiments that issued random
writes across its entire address space. If the device were not
responsible for maintaining the contents of all blocks, but only
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FIGURE 5. Sustained Random Write Performance
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“in-use” blocks, it could more aggressively erase blocks in
the background or overwrite a block without first copying the
contents out of the way.

In order to benefit from writing a smaller portion of the
address space, the filesystem could use a SATA command to
inform the device that it no longer needs to maintain the data
stored in a block range. Such a command, called ’trim’, has
been proposed [11] . We believe that such operations will be
important to achieving high performance in SSDs in the future.

IV. CONCLUSION

In this study we have examined a number of different
influences on the performance of two enterprise Flash-based
solid state devices. We have seen how the choice of filesystem
can have a surprisingly large effect on I/O performance and
that the choice of accessing a device through the filesystem
versus directly has consequences for throughput—especially
with regards to sequential access. We have seen how high
parallelism is important to achieving the best random access
on the devices and how certain write patterns can hurt perfor-
mance by exhausting the supply of free erase blocks.

The design of a storage system including Flash-based solid
state devices must take into account questions of how it will
write to the SSD (how randomly and to how much of the
address space), what level of concurrency the workload can
expect to achieve, and through what storage software layers
will the devices be accessed.

In order to achieve peak sequential performance of an SSD,
a workload needs to read and writes in large chunks—either
directly or leveraging read-ahead and write-behind through a
file system layer. This is the same advice as for magnetic disks.

To achieve peak random performance proves to be much
harder. A workload has to exhibit a high degree of concurrent
I/O to keep all independent banks of an SSD busy. At the same
time, one must refrain from an access pattern that would result
in depleting the pool of pre-erased blocks that would in turn
detoriate the performance.
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