
 1

Summary: Shingled-writing and two-dimensional
magnetic recording, TDMR, will change core
characteristics of magnetic disk operation and require
systems software be adapted appropriately. Because a
band of adjacent tracks overlap one another, they must
be written in a specific order. Once overlapped, a
track cannot be updated in place, because the tracks
overlapping it will be overwritten by the update. If this
behavior is exposed to operating systems directly, there
will be very low acceptance of these products.
However, disk controller software can emulate full
compliance with existing interfaces, and may be able to
mask almost all performance implications as well.

The number of tracks shingled together is a key
parameter of shingled-writing. With a shingle spacing
of 10% of the write width, 90% of the final shingle is
wasted. If capacity overhead is to be limited to 10%,
each band will contain about 100 shingles, as shown in
Figure 1. Appending a sector to an incomplete band
may have conventional performance, but updating an
existing sector could require rewriting as many as 100
adjacent tracks. The system model for
shingled-writing will be two operations: “append a
sector to a partially written band” and “delete a band
and write its first sector”.

Reading a sector from a shingle-written surface may
have conventional performance, but, in the case of
TDMR, 1 or 2 sectors in adjacent tracks on both sides
may also need to be read to resolve inter-track
interference. Accordingly, reading a single sector
might require 3 to 5 rotations, 10 times conventional
rotational positioning time.

In summary, sequential reading and writing of 1000s of
tracks on a TDMR disk is likely to be similar to today’s
disks; random reading of smaller amounts of data may
have as little as three to five times lower throughput;
random rewriting of small amounts of data will
probably not be supported; and random appending to
previously deleted and partially written bands may be

as fast as random writing today, or faster as an append
write may not need repositioning. Unfortunately,
existing system software almost never reads or writes
100s of tracks at a time, it is just now starting to
entertain proposals for a storage “delete” (TRIM)
command and small random reading and re-writing
operations are key application performance
parameters.

Log-based System Model: Shingled-write disks may
be best understood as a collection of append-only
“logs”. Software designers have extensive experience
with logs. Databases write every change to a “log” on
disk to get sequential performance while making the
change durable, then more leisurely update all
associated read-optimized data structures. File systems
technology based on logs was developed in the 1990s
because RAID systems execute large writes far more
efficiently than small random writes [1, 2]. However
even log-based file systems execute random writes in
some cases, and generally do not prefetch three or more
tracks with each read. Moreover, the vast majority of
disk management software is not log-based, and
depends heavily on fast small random reads and writes.
Effecting a rapid deployment of new technology will
depend on achieving as little change as possible in
operating systems software.

 Figure 1: Band size as a function of shingle width and
 capacity overhead per band.

Directions for Shingled-Write and Two-Dimensional Magnetic Recording
System Architectures: Synergies with Solid-State Disks

Garth Gibson, Milo Polte,
Carnegie Mellon University

Carnegie Mellon University Parallel Data Lab Technical Report CMU-PDL-09-104
May 2009

 2

Synergy with Solid-State Disks: A similar problem
faces flash-based solid-state disks (SSDs). SSDs are
organized into “pages” that are erased before being
written, and erase is relatively slow. While small
random reads of SSDs are about 100 times faster than
today’s magnetic disks, simple SSDs (ie., Memoright,
MTron) that read-erase-write each modified page
deliver small random write performance no better than
magnetic disks, as shown in Figure 2 [3]. More
sophisticated SSDs (ie., X25m/e, ioDrive) overcome
the read-erase-write problem by dynamically
remapping every written sector, logging these
potentially disparate sectors onto consecutive physical
locations on one SSD page [5, 6], allowing apparently
random small writes to be about 100 times faster than
magnetic disks [3, 4].

The key point is that by employing similar firmware
TDMR disks should be able to offer a fully compliant
standard disk interface, supporting small random
writes and, by dynamically remapping written sectors
to append to the most convenient band of shingles,
deliver write performance comparable to today’s
magnetic disks.

Reading TDMR disks, if multiple adjacent tracks must
be read to recover a sector, is more problematic. To
mask the large latency of such reads, if possible at all,
very effective buffer caching will be needed, and may
impact the design of software layers managing these
disks [4]. Moreover the address mapping data
structures needed for dynamically remapping writes to
the end of a log will need to be maintained in a
non-volatile random access memory, pushing up the
cost of the disk controller, requiring some tracks on the
disk to be non-shingled, requiring a complex scheme to
find the last written contents of the log on disk.

It is also possible that SSD technology, in addition to
being an example of how to overcome the lack of
update-in-place writes, will be a good choice for
embedded disk cache technology, enabling hybrid
solutions that have the cost-effective capacity of
shingled-writes and the cost-effective small random
read and write performance of sophisticated SSDs.

Closing: Shingled-writing imposes serious change on
the order that sectors must be written, but this can be
masked with software in the disk controller in much the
same manner as SSDs mask the need to erase a block

before writing any part of it. The three to five rotations
needed to do a small read in TDMR is a more difficult
performance problem. It would facilitate rapid
deployment much better if TDMR was able to read a
random sector in one rotation.

Acknowledgements: This work was supported the
DOE Petascale Data Storage Institute (PDSI),
DE-FC02-06ER25767, and the Institute for Reliable
High-Performance Information Technology (IRHPIT),
Los Alamos Award 54515-001-07.

References:
[1] Patterson, D., G. Gibson, R. Katz, “A Case for
Redundant Arrays of Inexpensive Disks (RAID),”
ACM SIGMOD Conf. on Management of Data, 1988.
[2] Rosenblum, M., J. Ousterhout, “The Design and
Implementation of a Log-Structured File System,”
ACM Trans. on Computer Systems, v10, n1, 1992.
[3] Polte, M., J. Simsa, G. Gibson, “Comparing
Performance of Solid State Devices & Mechanical
Disks,” 3rd Petascale Data Storage Workshop
(PDSW08), 2008.
[4] Polte, M., J. Simsa, “Enabling Enterprise Solid
State Disk Performance,” Integrating Solid-state
Memory into the Storage Hierarchy (WISH09), 2009.
[5] Gal, E., Toledo, S., “Algorithms and data structures
for flash memories,” ACM Computing Surveys, v37,
n2, June 2005.
[6] Agrawal, N., Prabhakaran, V., Wobber, T., Davis,
J. D., Manasse, M., Panigrahy, R., “Design tradeoffs
for SSD performance,” USENIX 2008 Annual
Technical Conference, Boston MA, June 2008.

Figure 2: Random small write performance for commercial
solid-state and magnetic disks.

	References:

