
Appears in the Proceedings of the International Conference on Dependable Systems and Networks, June 2004.

Efficient Byzantine-tolerant erasure-coded storage

Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, Michael K. Reiter
Carnegie Mellon University

Abstract

This paper describes a decentralized consistency proto-
col for survivable storage that exploits local data versioning
within each storage-node. Such versioning enables the pro-
tocol to efficiently provide linearizability and wait-freedom
of read and write operations to erasure-coded data in asyn-
chronous environments with Byzantine failures of clients
and servers. By exploiting versioning storage-nodes, the
protocol shifts most work to clients and allows highly op-
timistic operation: reads occur in a single round-trip un-
less clients observe concurrency or write failures. Mea-
surements of a storage system prototype using this proto-
col show that it scales well with the number of failures tol-
erated, and its performance compares favorably with an ef-
ficient implementation of Byzantine-tolerant state machine
replication.

1. Introduction

Survivable storage systems spread data redundantly
across a set of distributed storage-nodes in an effort to en-
sure its availability despite the failure or compromise
of storage-nodes. Such systems require some proto-
col to maintain data consistency in the presence of failures
and concurrency.

This paper describes and evaluates a new consistency
protocol that operates in an asynchronous environment and
tolerates Byzantine failures of clients and storage-nodes.
The protocol supports a hybrid failure model in which up
to t storage-nodes may fail: b ≤ t of these failures can be
Byzantine and the remainder can be crash. The protocol also

We thank the members and companies of the PDL Consortium (including
EMC, Hewlett-Packard, Hitachi, IBM, Intel, Microsoft, Network Appli-
ance, Oracle, Panasas, Seagate, Sun, and Veritas) for their interest, insights,
feedback, and support. We thank IBM and Intel for hardware grants sup-
porting our research efforts. This material is based on research sponsored
by the Air Force Research Laboratory, under agreement number F49620-
01-1-0433, and by DARPA/ITO’s OASIS program, under Air Force con-
tract number F30602-99-2-0539-AFRL. This work is also supported by
the Army Research Office through grant number DAAD19-02-1-0389 to
CyLab at Carnegie Mellon University.

supports the use of m-of-n erasure codes (i.e., m-of-n frag-
ments are needed to reconstruct the data), which usually re-
quire less network bandwidth (and storage space) than full
replication.

Briefly, the protocol works as follows. To perform a
write, a client erasure codes a data-item into a set of frag-
ments, determines the current logical time and then writes
the time-stamped fragments to at least a threshold set of
storage-nodes. Storage-nodes keep all versions of the frag-
ments they are sent (in practice, until garbage collection
frees them). To perform a read, a client fetches the latest
fragment versions from a subset of storage-nodes and de-
termines whether they comprise a completed write; usually,
they do. If they do not, additional and historical fragments
are fetched, and repair may be performed, until a completed
write is observed. The fragments are then decoded and the
data-item is returned.

The protocol gains efficiency from five features.
First, it supports the use of space-efficient m-of-n era-
sure codes that can substantially reduce communication
overheads. Second, most read operations complete in a sin-
gle round trip: reads that observe write concurrency
or failures (of storage-nodes or a client write) may in-
cur additional work. Most studies of distributed storage
systems (e.g., [1, 25]) indicate that concurrency is uncom-
mon (i.e., writer-writer and writer-reader sharing occurs
in well under 1% of operations). Failures, although tol-
erated, ought to be rare. Third, incomplete writes are
replaced by subsequent writes or reads (that perform re-
pair), thus preventing future reads from incurring any
additional cost; when subsequent writes do the fixing, addi-
tional overheads are never incurred. Fourth, most protocol
processing is performed by clients, increasing scalabil-
ity via the well-known principle of shifting work from
servers to clients [17]. Fifth, the protocol only requires
the use of cryptographic hashes, rather than more expen-
sive digital signatures.

This paper describes the protocol in detail and develops
bounds for thresholds in terms of the number of failures tol-
erated (i.e., the protocol requires at least 2t+2b+1 storage-
nodes). It also describes and evaluates its use in a prototype
storage system called PASIS [32]. To demonstrate that our
protocol is efficient in practice, we compare its performance

1

to BFT [3, 4], the Byzantine fault-tolerant replicated state
machine implementation that Castro and Rodrigues have
made available [5]. Experiments show that PASIS scales
better than BFT in terms of server network utilization and
in terms of work performed by the server. Experiments also
show that response times of BFT (using multicast) and PA-
SIS are comparable.

This protocol is timely because many research storage
systems are investigating practical means of achieving high
fault tolerance and scalability of which some are consider-
ing the support of erasure-coded data (e.g., [8, 10, 19, 24]).
Our protocol for Byzantine-tolerant erasure-coded storage
can provide an efficient, scalable, highly fault-tolerant foun-
dation for such storage systems.

2. Background and related work

In a fault-tolerant, or survivable, distributed storage sys-
tem, clients write and (usually) read data from multiple
storage-nodes. This scheme provides access to data-items
even when subsets of the storage-nodes have failed. One dif-
ficulty created by this architecture is the need for a consis-
tent view, across storage-nodes, of the most recent update.
Without such consistency, data loss is possible. To provide
reasonable semantics, storage systems must guarantee that
readers see consistent data-item values. Specifically, the lin-
earizability [16] of operations is desirable for a shared stor-
age system.

A common data distribution scheme used in such sys-
tems is replication. Since each storage-node has a com-
plete instance of the data-item, the main difficulty is iden-
tifying and retaining the most recent instance. Alternately,
more space-efficient erasure coding schemes can be used
to reduce network load and storage consumption. With era-
sure coding schemes, reads require fragments from multiple
servers. Moreover, to decode the data-item, the set of frag-
ments read must correspond to the same write operation.

Most prior systems implementing Byzantine fault-
tolerant services adopt the replicated state machine ap-
proach [27], whereby all operations are processed by
server replicas in the same order (atomic broadcast).
While this approach supports a linearizable, Byzan-
tine fault-tolerant implementation of any deterministic
object, such an approach cannot be wait-free [7, 14, 18]. In-
stead, such systems achieve liveness only under stronger
timing assumptions. An alternative to state machine repli-
cation is a Byzantine quorum system [21], from which our
protocol inherits techniques (i.e., our protocol can be con-
sidered a Byzantine quorum system that uses the threshold
quorum construction). Protocols for supporting a lin-
earizable implementation of any deterministic object us-
ing Byzantine quorums have been developed (e.g., [22]),
but also necessarily forsake wait-freedom to do so. Ad-

ditionally, most protocols accessing Byzantine quorum
systems utilize computationally expensive digital signa-
tures.

Byzantine fault-tolerant protocols for implement-
ing read-write objects using quorums are described
in [15, 21, 23]. Of these related quorum systems, only Mar-
tin et al. [23] achieve linearizability in our fault model.
This work is also closest to ours in that it uses a type of ver-
sioning. In our protocol, a reader may retrieve fragments
for several versions of the data-item in the course of iden-
tifying the return value of a read. Similarly, readers in [23]
“listen” for updates (versions) from storage-nodes un-
til a complete write is observed. Conceptually, our ap-
proach differs in that clients read past versions, versus lis-
tening for future versions broadcast by servers. In our fault
model, especially in consideration of faulty clients, our pro-
tocol has several advantages. First, our protocol works
for erasure-coded data, whereas extending [23] to era-
sure coded data appears nontrivial. Second, ours provides
better message efficiency. Third, ours requires less com-
putation, in that we do not require the use of expensive
digital signatures. Advantages of [23] are that it toler-
ates a higher fraction of faulty servers than our protocol,
and does not require servers to store a potentially un-
bounded number of data-item versions. Our prior analysis
of versioning storage, however, suggests that the lat-
ter is a non-issue in practice [30], and even under attack
this can be managed using the garbage collection mecha-
nism we describe in Section 5.1.1.

Frølund et al. [9] have developed a decentralized access
protocol for erasure-coded data under the crash-recovery
storage-node failure model. We develop our protocol for a
hybrid failure model of storage-nodes (i.e., a mix of crash
and Byzantine failures). The concept of hybrid failure mod-
els was introduced by Thambidurai and Park [31].

3. System model

We describe the system infrastructure in terms of clients
and storage-nodes. There are N storage-nodes and an arbi-
trary number of clients in the system.

A client or storage-node is correct in an execution if it
satisfies its specification throughout the execution. A client
or storage-node that deviates from its specification fails. We
assume a hybrid failure model for storage-nodes. Up to t

storage-nodes may fail, b ≤ t of which may be Byzantine
faults [20]; the remainder are assumed to crash. We make no
assumptions about the behavior of Byzantine storage-nodes
and Byzantine clients. A client or storage-node that does not
exhibit a Byzantine failure (it is either correct or crashes) is
benign.

Our protocol tolerates Byzantine faults in any num-
ber of clients and a limited number of storage nodes while

2

implementing linearizable and wait-free read-write ob-
jects. Linearizability is adapted appropriately for Byzan-
tine clients (we discuss the necessary adaptations in [13]).
Wait-freedom functions as in the model of Jayanti et
al. [18] and assumes no storage exhaustion.

The protocol tolerates crash and Byzantine clients. As in
any practical storage system, an authorized Byzantine client
can write arbitrary values to storage, which affects the value
of the data, but not its consistency. We assume that Byzan-
tine clients and storage-nodes are computationally bounded
so that we can benefit from cryptographic primitives.

We assume an asynchronous model of time (i.e., we
make no assumptions about message transmission delays or
the execution rates of clients and storage-nodes, except that
it is non-zero). We assume that communication between a
client and a storage-node is point-to-point, reliable, and au-
thenticated: a correct storage-node (client) receives a mes-
sage from a correct client (storage-node) if and only if that
client (storage-node) sent it.

There are two types of operations in the protocol —
read operations and write operations — both of which op-
erate on data-items. Clients perform read/write operations
that issue multiple read/write requests to storage-nodes. A
read/write request operates on a data-fragment. A data-item
is encoded into data-fragments. Clients may encode data-
items in an erasure-tolerant manner; thus the distinction
between data-items and data-fragments. Requests are exe-
cuted by storage-nodes; a correct storage-node that executes
a write request hosts that write operation.

Storage-nodes provide fine-grained versioning; correct
storage-nodes host a version of the data-fragment for each
write request they execute. There is a well known zero time,
0, and null value, ⊥, which storage-nodes can return in re-
sponse to read requests. Implicitly, all stored data is initial-
ized to ⊥ at time 0.

4. Protocol

This section describes our Byzantine fault-tolerant con-
sistency protocol, which efficiently supports erasure-coded
data-items by taking advantage of versioning storage-nodes.
It presents the mechanisms employed to encode and decode
data, and to protect data integrity from Byzantine storage-
nodes and clients. It then describes, in detail, the protocol in
pseudo-code form. Finally, it develops constraints on proto-
col parameters to ensure linearizability and wait-freedom.

4.1. Overview

At a high level, the protocol proceeds as follows. Logical
timestamps are used to totally order all write operations and
to identify data-fragments pertaining to the same write op-
eration across the set of storage-nodes. Data-fragments are

generated by erasure-coding data-items. For each write, a
logical timestamp is constructed by the client that is guaran-
teed to be unique and greater than that of the latest complete
write (the complete write with the highest timestamp). This
is accomplished by querying storage-nodes for the greatest
timestamp they host, and then incrementing the greatest re-
sponse. In order to verify the integrity of the data, a hash
that can verify data-fragment correctness is appended to the
logical timestamp.

To perform a read operation, clients issue read requests
to a subset of storage-nodes. Once at least a read thresh-
old of storage-nodes reply, the client identifies the candi-
date—the response with the greatest logical timestamp. The
set of read responses that share the timestamp of the candi-
date comprise the candidate set. The read operation classi-
fies the candidate as complete, repairable, or incomplete. If
the candidate is classified as complete, the data-fragments,
timestamp, and return value are validated. If validation is
successful, the candidate’s value is decoded and returned;
the read operation is complete. Otherwise, the candidate is
reclassified as incomplete. If the candidate is classified as
repairable, it is repaired by writing data-fragments back to
the original set of storage-nodes. Prior to performing repair,
data-fragments are validated in the same manner as for a
complete candidate. If the candidate is classified as incom-
plete, the candidate is discarded, previous data-fragment
versions are requested, and classification begins anew. All
candidates fall into one of the three classifications, even
those corresponding to concurrent or failed write opera-
tions.

4.2. Mechanisms

Several mechanisms are used in our protocol to achieve
linearizability in the presence of Byzantine faults.

4.2.1. Erasure codes We use threshold erasure coding
schemes, in which N data-fragments are generated during
a write (one for each storage-node), and any m of those
data-fragments can be used to decode the original data-item.
Moreover, any m of the data-fragments can deterministi-
cally generate the other N − m data-fragments.

4.2.2. Data-fragment integrity Byzantine storage-nodes
can corrupt their data-fragments. As such, it must be possi-
ble to detect and mask up to b storage-node integrity faults.
CROSS CHECKSUMS: Cross checksums [11] are used to
detect corrupt data-fragments. A cryptographic hash of each
data-fragment is computed. The set of N hashes are con-
catenated to form the cross checksum of the data-item. The
cross checksum is stored with each data-fragment (i.e., it
is replicated N times). Cross checksums enable read oper-
ations to detect data-fragments that have been modified by
storage-nodes.

3

4.2.3. Write operation integrity Mechanisms are re-
quired to prevent Byzantine clients from performing a write
operation that lacks integrity. If a Byzantine client gen-
erates random data-fragments (rather than erasure cod-
ing a data-item correctly), then each of the

(

N
m

)

per-
mutations of data-fragments could “recover” a distinct
data-item. These attacks are similar to poisonous writes
for replication as described by Martin et al. [23]. To pro-
tect against Byzantine clients, the protocol must ensure
that read operations only return values that are written cor-
rectly (i.e., that are single-valued). To achieve this, the
cross checksum mechanism is extended in three ways: vali-
dating timestamps, storage-node verification, and validated
cross checksums.

VALIDATING TIMESTAMPS: To ensure that only a single
set of data-fragments can be written at any logical time,
the hash of the cross checksum is placed in the low order
bits of the logical timestamp. Note, the hash is used for
space-efficiency; instead, the entire cross checksum could
be placed in the low bits of the timestamp.

STORAGE-NODE VERIFICATION: On a write, each
storage-node verifies its data-fragment against its hash in
the cross checksum. The storage-node also verifies the
cross checksum against the hash in the timestamp. A cor-
rect storage-node only executes write requests for which
both checks pass. Via this approach, a Byzantine client can-
not make a correct storage-node appear Byzantine. It
follows that only Byzantine storage-nodes can return
data-fragments that do not verify against the cross check-
sum.

VALIDATED CROSS CHECKSUMS: To ensure that
the client that performed a write operation acted cor-
rectly, the reader must validate the cross checksum. To
validate the cross checksum, all N data-fragments are re-
quired. Given any m data-fragments, the full set of N

data-fragments a correct client should have written can be
generated. The “correct” cross checksum can then be com-
puted from the regenerated set of data-fragments. If
the generated cross checksum does not match the veri-
fied cross checksum, then a Byzantine client performed
the write operation. Only a single-valued write opera-
tion can generate a cross checksum that verifies against the
validating timestamp.

4.2.4. Authentication Clients and storage-nodes must be
able to validate the authenticity of messages. We use an au-
thentication scheme based on pair-wise shared secrets (e.g.,
between clients and storage-nodes), in which RPC argu-
ments and replies are accompanied by an HMAC [2] (us-
ing the shared secret as the key). We assume an infrastruc-
ture is in place to distribute shared secrets. Our implemen-
tation uses an existing Kerberos [29] infrastructure.

WRITE(Data) :

1: Time := READ TIMESTAMP()
2: {D1, . . . , DN} := ENCODE(Data)
3: CC := MAKE CROSS CHECKSUM({D1, . . . , DN})
4: LT := MAKE TIMESTAMP(Time, CC)
5: DO WRITE({D1, . . . , DN}, LT , CC)

READ TIMESTAMP() :

1: for all Si ∈ {S1, . . . , SN} do
2: SEND(Si, TIME REQUEST)
3: end for
4: ResponseSet := ∅
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE(S , TIME RESPONSE)
7: until (UNIQUE SERVERS(ResponseSet) = N − t)
8: Time := MAX[ResponseSet.LT .Time]
9: RETURN(Time)

MAKE CROSS CHECKSUM({D1, . . . , DN}) :

1: for all Di ∈ {D1, . . . , DN} do
2: Hi := HASH(Di)
3: end for
4: CC := H1| . . . |HN

5: RETURN(CC)

MAKE TIMESTAMP(LTmax, CC) :

1: LT .Time := LTmax.Time + 1
2: LT .Verifier := HASH(CC)
3: RETURN(LT)

DO WRITE({D1, . . . , DN}, LT , CC) :

1: for all Si ∈ {S1, . . . , SN} do
2: SEND(Si, WRITE REQUEST, LT , Di, CC)
3: end for
4: ResponseSet := ∅
5: repeat
6: ResponseSet := ResponseSet ∪ RECEIVE(S , WRITE RESPONSE)
7: until (UNIQUE SERVERS(ResponseSet) = N − t)

Figure 1. Write operation pseudo-code.

4.3. Pseudo-code

The pseudo-code for the protocol is shown in Fig-
ures 1 and 2. The symbol LT denotes logical time and
LTcandidate denotes the logical time of the candidate. The
set {D1, . . . , DN} denotes the N data-fragments; like-
wise, {S1, . . . , SN} denotes the set of N storage-nodes. In
the pseudo-code, the binary operator ‘|’ denotes string con-
catenation. Simplicity and clarity in the presentation
of the pseudo-code was chosen over obvious optimiza-
tions that are in the actual implementation.

4.3.1. Storage-node interface Storage-nodes offer inter-
faces to: write a data-fragment with a specific logical time
(WRITE); query the greatest logical time of a hosted data-
fragment (TIME REQUEST); read the hosted data-fragment
with the greatest logical time (READ LATEST); and read the
hosted data-fragment with the greatest logical time at or be-
fore some logical time (READ PREV). Due to its simplicity,
storage-node pseudo-code is omitted.

4.3.2. Write operation The WRITE operation consists of
determining the greatest logical timestamp, constructing

4

READ() :

1: ResponseSet := DO READ(READ LATEST REQUEST, ⊥)
2: loop
3: 〈CandidateSet, LTcandidate〉 :=

CHOOSE CANDIDATE(ResponseSet)
4: if (|CandidateSet| ≥ INCOMPLETE then
5: /∗ Complete or repairable write found ∗/
6: {D1, . . . , DN} := GENERATE FRAGMENTS(CandidateSet)
7: CCvalid := MAKE CROSS CHECKSUM({D1, . . . , DN})
8: if (CCvalid = CandidateSet.CC) then
9: /∗ Cross checksum is validated */

10: if (|CandidateSet| < COMPLETE) then
11: /∗ Repair is necessary ∗/
12: DO WRITE({D1, . . . , DN}, LTcandidate, CCvalid)
13: end if
14: Data := DECODE({D1, . . . , DN})
15: RETURN(Data)
16: end if
17: end if
18: /∗ Incomplete or cross checksum did not validate, loop again ∗/
19: ResponseSet := DO READ(READ PREV REQUEST, LTcandidate)
20: end loop

DO READ(READ COMMAND, LT) :

1: for all Si ∈ {S1, . . . , SN} do
2: SEND(Si, READ COMMAND, LT)
3: end for
4: ResponseSet := ∅
5: repeat
6: Resp := RECEIVE(S , READ RESPONSE)
7: if (VALIDATE(Resp.D, Resp.CC , Resp.LT , S) = TRUE) then
8: ResponseSet := ResponseSet ∪ Resp

9: end if
10: until (UNIQUE SERVERS(ResponseSet) = N − t)
11: RETURN(ResponseSet)

VALIDATE(D, CC , LT , S) :

1: if ((HASH(CC) 6= LT .Verifier) OR (HASH(D) 6= CC [S])) then
2: RETURN(FALSE)
3: end if
4: RETURN(TRUE)

Figure 2. Read operation pseudo-code.

write requests, and issuing the requests to the storage-nodes.
First, a timestamp greater than, or equal to, that of the lat-
est complete write must be determined. Collecting N−t re-
sponses, on line 7 of READ TIMESTAMP, ensures that the re-
sponse set intersects a complete write at a correct storage-
node. In practice, the timestamp of the latest complete write
can be observed with fewer responses.

Next, the ENCODE function, on line 2 of WRITE, encodes
the data-item into N data-fragments. The data-fragments
are used to construct a cross checksum from the concate-
nation of the hash of each data-fragment (line 3). The func-
tion MAKE TIMESTAMP, called on line 4, generates a logical
timestamp to be used for the current write operation. This
is done by incrementing the high order bits of the great-
est observed logical timestamp from the ResponseSet (i.e.,
LT .TIME) and appending the Verifier . The Verifier is
just the hash of the cross checksum.

Finally, write requests are issued to all storage-nodes.
Each storage-node is sent a specific data-fragment, the logi-
cal timestamp, and the cross checksum. A storage-node val-
idates the cross checksum with the verifier and validates the

data-fragment with the cross checksum before executing a
write request (i.e., storage-nodes call VALIDATE listed in the
read operation pseudo-code). The write operation returns to
the issuing client once WRITE RESPONSE messages are re-
ceived from N−t storage-nodes (line 7 of DO WRITE). Since
the environment is asynchronous, a client can wait for no
more than N − t responses. The function UNIQUE SERVERS

determines how many unique servers are present in the can-
didate set; it ensures that only a single response from each
Byzantine storage-node is counted.

4.3.3. Read operation The read operation iteratively
identifies and classifies candidates, until a repairable or
complete candidate is found. Once a repairable or com-
plete candidate is found, the read operation validates its
correctness and returns the data.

The read operation begins by issuing READ LATEST re-
quests to all storage-nodes (via the DO READ function). Each
storage-node responds with the data-fragment, logical time-
stamp, and cross checksum corresponding to the greatest
timestamp it has executed. The integrity of each response
is individually validated through the VALIDATE function,
called on line 7 of DO READ. This function checks the cross
checksum against the Verifier found in the logical time-
stamp and the data-fragment against the appropriate hash
in the cross checksum. Although not shown in the pseudo-
code, the client only considers responses from storage-
nodes to READ PREV requests that have timestamps strictly
less than that given in the request.

Since, in an asynchronous system, slow storage-nodes
cannot be differentiated from crashed storage-nodes, only
N − t read responses can be collected (line 10 of DO READ).
Since correct storage-nodes perform the same validation
before executing write requests, the only responses that
can fail the client’s validation are those from Byzantine
storage-nodes. For every discarded Byzantine storage-node
response, an additional response can be awaited.

After sufficient responses have been received, a
candidate for classification is chosen. The function
CHOOSE CANDIDATE, called on line 3 of READ, deter-
mines the candidate timestamp, denoted LTcandidate,
which is the greatest timestamp found in the response
set. All data-fragments that share LTcandidate are identi-
fied and returned as the CandidateSet . The candidate set
contains a set of validated data-fragments that share a com-
mon cross checksum and logical timestamp.

Once a candidate has been chosen, it is classified as ei-
ther complete, repairable, or incomplete based on the size
of the candidate set. The definitions of INCOMPLETE and
COMPLETE are given in the following subsection. If the can-
didate is classified as incomplete, a READ PREV request is
sent to each storage-node with its timestamp. Candidate
classification begins again with the new response set.

5

If the candidate is classified as either complete or
repairable, the candidate set contains sufficient data-
fragments written by the client to decode the origi-
nal data-item. To validate the observed write’s integrity, the
candidate set is used to generate a new set of data-fragments
(line 6 of READ). A validated cross checksum, CCvalid, is
computed from the generated data-fragments. The vali-
dated cross checksum is compared to the cross checksum of
the candidate set (line 8 of READ). If the check fails, the can-
didate was written by a Byzantine client; the candidate is
then reclassified as incomplete and the read operation con-
tinues. If the check succeeds, the candidate was written by
a correct client and the read enters its final phase. Note
that for a candidate set classified as complete this check ei-
ther succeeds or fails for all correct clients regardless of
which storage-nodes are represented within the candi-
date set.

If necessary, repair is performed: write requests are is-
sued with the generated data-fragments, the validated cross
checksum, and the logical timestamp (line 10 of READ).
Storage-nodes not hosting the write execute the write at
the given logical time; those already hosting the write are
safe to ignore it. Finally, the function DECODE, on line 14 of
READ, decodes m data-fragments, returning the data-item.

4.4. Protocol constraints

The symbol QC denotes a complete write operation: the
threshold number of benign storage-nodes that must exe-
cute write requests for a write operation to be complete. To
ensure that linearizability and wait-freedom are achieved,
QC and N must be constrained with regard to b, t, and each
other. As well, the parameter m, used in DECODE, must be
constrained. We present safety and liveness proofs for the
protocol and discuss the concept of linearizability in the
presence of Byzantine clients in [13].
WRITE COMPLETION: To ensure that a correct client can
complete a write operation,

QC ≤ N − t − b. (1)

Since slow storage-nodes cannot be differentiated from
crashed storage-nodes, only N−t responses can be awaited.
As well, up to b responses received may be from Byzantine
storage-nodes.
READ CLASSIFICATION: To classify a candidate as com-
plete, a candidate set of at least QC benign storage-nodes
must be observed. In the worst case, at most b members of
the candidate set may be Byzantine, thus,

|CandidateSet | − b ≥ QC, so COMPLETE = QC + b. (2)

To classify a candidate as incomplete a client must de-
termine that a complete write does not exist in the system
(i.e., fewer than QC benign storage-nodes host the write).
For this to be the case, the client must have queried all pos-

sible storage-nodes (N−t), and must assume that nodes not
queried host the candidate in consideration. So,

|CandidateSet |+t < QC, so INCOMPLETE = QC−t. (3)

REAL REPAIRABLE CANDIDATES: To ensure that Byzan-
tine storage-nodes cannot fabricate a repairable candidate,
a candidate set of size b must be classifiable as incomplete.
Substituting b into (3),

b + t < QC. (4)

DECODABLE REPAIRABLE CANDIDATES: Any re-
pairable candidate must be decodable. The lower bound on
candidate sets that are repairable follows from (3) (since the
upper bound on classifying a candidate as incomplete coin-
cides with the lower bound on repairable):

1 ≤ m ≤ QC − t. (5)

CONSTRAINT SUMMARY:

t + b + 1 ≤ QC ≤ N − t − b;

2t + 2b + 1 ≤ N ;

1 ≤ m ≤ QC − t.

5. Evaluation

This section evaluates the performance and scalability
of the consistency protocol in the context of a prototype
storage system called PASIS [32]. We compare the PASIS
implementation of our protocol with the BFT library im-
plementation [5] of Byzantine fault-tolerant replicated state
machines [4], since it is generally regarded as efficient.

5.1. PASIS implementation

PASIS consists of clients and storage-nodes. Storage-
nodes store data-fragments and their versions. Clients ex-
ecute the protocol to read and write data-items.

5.1.1. Storage-node implementation PASIS storage-
nodes use the Comprehensive Versioning File System
(CVFS) [28] to retain data-fragments and their ver-
sions. CVFS uses a log-structured data organization to re-
duce the cost of data versioning. Experience indicates that
retaining every version and performing local garbage col-
lection comes with minimal performance cost (a few
percent) and that it is feasible to retain complete ver-
sion histories for several days [28, 30].

We extended CVFS to provide an interface for retriev-
ing the logical timestamp of a data-fragment. Each write re-
quest contains a data-fragment, a logical timestamp, and a
cross checksum. To improve performance, read responses
contain a limited version history containing logical times-
tamps of previously executed write requests. The version

6

history allows clients to identify and classify additional can-
didates without issuing extra read requests. Storage-nodes
can also return read responses that contain no data other
than version histories, which makes candidate classification
more network-efficient.

Pruning old versions, or garbage collection, is necessary
to prevent capacity exhaustion of storage-nodes. A storage-
node in isolation, by the nature of the protocol, cannot de-
termine which local data-fragment versions are safe to re-
move. An individual storage-node can garbage collect a
data-fragment version if there exists a later complete write
for the corresponding data-item. Storage-nodes are able to
classify writes by executing the read consistency protocol
in the same manner as the client. We discuss garbage col-
lection more fully in [12].

5.1.2. Client implementation The client module pro-
vides a block-level interface to higher level software,
and uses a simple RPC interface to communicate with
storage-nodes. The RPC mechanism uses TCP/IP. The
client module is responsible for the execution of the consis-
tency protocol.

Initially, read requests are issued to QC + b storage-
nodes. PASIS utilizes read witnesses to make read opera-
tions more network efficient; only m of the initial requests
request the data-fragment, while all request version histo-
ries. If the read responses do not yield a candidate that is
classified as complete, read requests are issued to the re-
maining storage-nodes (and a total of up to N − t responses
are awaited). If the initial candidate is classified as incom-
plete, subsequent rounds of read requests fetch only version
histories until a candidate is classified as either repairable
or complete. If necessary, after classification, extra data-
fragments are fetched according to the candidate timestamp.
Once the data-item is successfully validated and decoded, it
is returned to the client.

5.1.3. Mechanism implementation We measure the
space-efficiency of an erasure code in terms of blowup—
the total amount of data stored over the size of the
data-item. We use an information dispersal algorithm [26]
which has a blowup of N

m . Our information dispersal im-
plementation stripes the data-item across the first m

data-fragments (i.e., each data-fragment is 1
m of the orig-

inal data-item’s size). These stripe-fragments are used to
generate the code-fragments via polynomial interpola-
tion within a Galois Field. Our implementation of poly-
nomial interpolation was originally based on publicly
available code [6] for information dispersal [26]. We mod-
ified the source to make use of stripe-fragments and
added an implementation of Galois Fields of size 28

that use lookup tables for multiplication. Our implemen-
tation of cross checksums closely follows Gong [11].
We use MD5 for all hashes; thus, each cross check-

sum is N × 16 bytes long. Note, that if very small blocks
are used with a large N , then the overhead due to size of
the cross checksum could be substantial.

5.2. Experimental setup

We use a cluster of 20 machines to perform our exper-
iments. Each machine is a dual 1 GHz Pentium III ma-
chine with 384 MB of memory. Storage-nodes use a 9 GB
Quantum Atlas 10K as the storage device. The machines are
connected through a 100 Mb switch. All machines run the
Linux 2.4.20 SMP kernel.

In all experiments, clients keep a single read or write op-
eration for a random 16 KB block outstanding. Once an op-
eration completes, a new operation is issued (there is no
think time). For all experiments, the working set fits into
memory and all caches are warmed up beforehand.

5.2.1. PASIS configuration Each storage-node is config-
ured with 128 MB of data cache, and no caching is done
on the clients. All experiments show results using write-
back caching at the storage nodes, mimicking availability
of 16 MB of non-volatile RAM. This allows us to focus ex-
periments on the overheads introduced by the protocol and
not those introduced by the disk subsystem. All messages
are authenticated using HMACs; pair-wise symmetric keys
are distributed prior to each experiment.

5.2.2. BFT configuration Operations in BFT [4] require
agreement among the replicas (storage-nodes in PASIS).
BFT requires N = 3b + 1 replicas to achieve agreement.
Agreement is performed in four steps: (i) the client broad-
casts requests to all replicas; (ii) the primary broadcasts
pre-prepare messages to all replicas; (iii) all replicas broad-
cast prepare messages to all replicas; and, (iv) all replicas
send replies back to the client and then broadcast commit
messages to all other replicas. Commit messages are piggy-
backed on the next pre-prepare or prepare message to re-
duce the number of messages on the network. Authentica-
tors, lists of MACs, are used to ensure that broadcast mes-
sages from clients and replicas cannot be modified by a
Byzantine replica. All clients and replicas have public and
private keys that enable them to exchange symmetric cryp-
tographic keys used to create MACs. Logs of commit mes-
sages are checkpointed (garbage collected) periodically.

An optimistic fast path for read-only operations is imple-
mented in BFT. The client broadcasts its request to all repli-
cas. Each replica replies once all previous requests have
committed. Only one replica sends the full reply (i.e., the
data and digest), and the remainder just send digests that
can verify the correctness of the data returned. If the replies
from replicas do not agree, the client re-issues the read op-
eration. Re-issued read operations perform agreement using
the base BFT algorithm.

7

b=1 b=2 b=3 b=4

Erasure coding 1250 1500 1730 1990
Cross checksum 360 440 480 510
Validate 82 58 48 40
Verifier 1.6 2.3 3.6 4.3
Authenticate 1.5 1.5 2.1 2.1

Table 1. Computation costs in PASIS in µs.

The BFT configuration does not store data to disk, in-
stead it stores all data in memory and accesses it via mem-
ory offsets. For all experiments, BFT view changes are sup-
pressed. BFT uses UDP rather than TCP. The BFT imple-
mentation defaults to using IP multicast. In our environ-
ment, like many, IP multicast broadcasts to the entire sub-
net, thus making it unsuitable for shared environments. We
found that the BFT implementation code is fairly fragile
when using IP multicast in our environment, making it nec-
essary to disable IP multicast in some cases (where stated
explicitly). The BFT implementation authenticates broad-
cast messages via authenticators, and point-to-point mes-
sages with MACs.

5.3. Mechanism costs

Client and storage-node computation costs for opera-
tions on a 16 KB block in PASIS are listed in Table 1.
For every read and write operation, clients perform erasure
coding (i.e., they compute N − m data-fragments given
m data-fragments), generate a cross checksum, and gener-
ate a verifier. Recall that writes generate the first m data-
fragments by striping the data-item into m fragments. Sim-
ilarly, reads must generate N − m fragments, from the m

they have, in order to verify the cross checksum.
Storage-nodes validate each write request they re-

ceive. This validation requires a comparison of the
data-fragment’s hash to the hash within the cross check-
sum, and a comparison of the cross checksum’s hash to the
verifier within the timestamp.

All requests and responses are authenticated via
HMACS. The cost of authenticating write requests,
listed in the table, is very small. The cost of authenti-
cating read requests and timestamp requests are simi-
lar.

5.4. Performance and scalability

5.4.1. Response time Figure 3 shows the mean response
time of a single request from a single client as a function
of the tolerated number of storage-node failures. Due to the
fragility of the BFT implementation with b > 1, IP multi-
cast was disabled for BFT during this experiment. The fo-

cus in this plot is the slopes of the response time lines: the
flatter the line the more scalable the protocol is with regard
to the number of faults tolerated. In our environment, a key
contributor to response time is network cost, which is dic-
tated by the space-efficiency of the protocol.

Figure 4 breaks down the mean response times of read
and write operations, from Figure 3, into the costs at the
client, on the network, and at the storage-node for b = 1

and b = 4. Since measurements are taken at the user-level,
kernel-level timings for host network protocol processing
(including network system calls) are attributed to the “net-
work” cost of the breakdowns. To understand the response
time measurements and scalability of these protocols, it is
important to understand these breakdowns.

PASIS has better response times than BFT for write op-
erations due to the space-efficiency of erasure codes and
the nominal amount of work storage-nodes perform to ex-
ecute write requests. For b = 4, BFT has a blowup of 13×
on the network (due to replication), whereas our protocol
has a blowup of 17

5 = 3.4× on the network. With IP multi-
cast the response time of the BFT write operation would im-
prove significantly, since the client would not need to serial-
ize 13 replicas over its link. However, IP multicast does not
reduce the aggregate server network utilization of BFT—for
b = 4, 13 replicas must be delivered.

PASIS has longer response times than BFT for read oper-
ations. This can be attributed to two main factors: First, the
PASIS storage-nodes store data in a real file system; since
the BFT-based block store keeps all data in memory and ac-
cesses blocks via memory offsets, it incurs almost no server
storage costs. We expect that a BFT implementation with
actual data storage would incur server storage costs simi-
lar to PASIS (e.g., around 0.7 ms for a write and 0.4 ms for
a read operation, as is shown for PASIS with b = 1 in Fig-
ure 4). Indeed, the difference in read response time between
PASIS and BFT at b = 1 is mostly accounted for by server
storage costs. Second, for our protocol, the client computa-
tion cost grows as t increases because the cost of generating
data-fragments grows as N increases.

In addition to the b = t case, Figure 3 shows one in-
stance of PASIS assuming a hybrid fault model with b = 1.
For space-efficiency, we set m = t + 1. Consequently,
QC = 2t + 1 and N = 3t + 2. At t = 1, this configu-
ration is identical to the Byzantine-only configuration. As t

increases, this configuration is more space-efficient than the
Byzantine-only configuration, since it requires t − 1 fewer
storage-nodes. As such, the response times of read and write
operations scale better.

5.4.2. Throughput Figure 5 shows the throughput in
16 KB requests per second as a function of the num-
ber of clients (one request per client) for b = 1. In
this experiment, BFT uses multicast, which greatly im-
proves its network efficiency (BFT with multicast is sta-

8

1 2 3 4
0

2

4

6

8

10

12

14

16

18

20

M
ea

n
re

sp
on

se
 ti

m
e

(m
s)

Total failures tolerated (t)

PASIS reads (b=t)
PASIS writes (b=t)
PASIS reads hybrid (b=1)
PASIS writes hybrid (b=1)
BFT reads w/o mcast (b=t)
BFT writes w/o mcast (b=t)

Figure 3. Mean response time. Figure 4. Response breakdown.

1 2 3 4 5 6 7 8
0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t (

re
q/

s)

Clients

PASIS reads (m=2)
PASIS writes (m=2)
PASIS reads (m=3)
PASIS writes (m=3)
BFT reads w/mcast
BFT writes w/mcast

Figure 5. Throughput (b = 1).

ble for b = 1). PASIS was run in two configurations,
one with the thresholds set to that of the minimum sys-
tem with m = 2, N = 5 (write blowup of 2.5×), and
one, more space-efficient, with m = 3, N = 6 (write
blowup of 2×). Results show that throughput is lim-
ited by the server network bandwidth.

At high load, PASIS has greater write throughput than
BFT. BFT’s write throughput flattens out at 456 requests
per second. We observed BFT’s write throughput drop off
as client load increased; likewise, we observed a large in-
crease in request retransmissions. We believe that this is due
to the use of UDP and a coarse grained retransmit policy
in BFT’s implementation. The write throughput of PASIS
flattens out at 733 requests per second, significantly outper-
forming BFT. This is because of the network-efficiency of
PASIS. Even with multicast enabled, each BFT server link
sees a full 16 KB replica, whereas each PASIS server link
sees 16

m KB. Similarly, due to network space-efficiency, the
PASIS configuration using m = 3 outperforms the mini-
mal PASIS configuration (954 requests per second).

Both PASIS and BFT have roughly the same network
utilization per read operation (16 KB per operation). To be
network-efficient, PASIS uses read witnesses and BFT uses
“fast path” read operations. However, PASIS makes use of
more storage-nodes than BFT does servers. As such, the ag-
gregate bandwidth available for reads is greater for PASIS
than for BFT, and consequently PASIS has a greater read
throughput than BFT. Although BFT could add servers to
increase its read throughput, doing so would not increase
its write throughput (indeed, write throughput would likely
drop due to the extra inter-server communication).

5.4.3. Scalability summary For PASIS and BFT, scala-
bility is limited by either the server network utilization or
server CPU utilization. Figure 4 shows that PASIS scales
better than BFT in both. Consider write operations. Each
BFT server receives an entire replica of the data, whereas
each PASIS storage-node receives a data-fragment 1

m the
size of a replica. The work performed by BFT servers for
each write request grows with b. In PASIS, the server proto-

col cost decreases from 90 µs for b = 1 to 57 µs for b = 4,
whereas in BFT it increases from 0.80 ms to 2.1 ms. The
cost in PASIS decreases because m increases as b increases,
reducing the size of the data-fragment that is validated. We
believe that the server cost for BFT increases because the
number of messages that must be sent increases.

5.5. Concurrency

To measure the effect of concurrency on the system, we
measure multi-client throughput of PASIS when accessing
overlapping block sets. The experiment makes use of four
clients, each with four operations outstanding. Each client
accesses a range of eight data blocks, with no outstanding
requests from the same client going to the same block.

At the highest concurrency level (all eight blocks in con-
tention by all clients), we observed neither significant drops
in bandwidth nor significant increases in mean response
time. Even at this high concurrency level, the initial can-
didate was classified as complete 89% of the time, other-
wise classification required the traversal of history informa-
tion. Of these history traversals, repair was only necessary
a quarter of the time (i.e., 3% of all reads required repair).
Since repair occurs so seldom, the effect on response time
and throughput is minimal.

6. Summary

We have developed an efficient Byzantine-tolerant pro-
tocol for reading and writing blocks of data. Experiments
demonstrate that PASIS, a prototype storage system that
uses our protocol, scales well in the number of faults toler-
ated, supports 60% greater write throughput than BFT, and
requires significantly less server computation than BFT.

Further evaluation, a proof sketch of the correctness
of the protocol, and discussion of additional issues (e.g.,
garbage collection) can be found in the full technical re-
port [12]. This protocol also extends into a protocol family
that includes members for other system models (e.g., asyn-

9

chronous or synchronous timing model, and crash-recovery
failures) [13].

ACKNOWLEDGEMENTS: We would like to thank Craig
Soules, Carla Geisser, and Terrence Wong for assistance
with the code and experiments. We thank Miguel Castro and
Rodrigo Rodrigues for the public implementation of BFT.

References

[1] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a distributed file
system. ACM Symposium on Operating System Principles.
Published as Operating Systems Review, 25(5):198–212, 13–
16 October 1991.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash func-
tions for message authentication. Advances in Cryptology -
CRYPTO, pages 1–15. Springer-Verlag, 1996.

[3] M. Castro and B. Liskov. Byzantine fault tolerance can be
fast. Dependable Systems and Networks, pages 513–518,
2001.

[4] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Sys-
tems, 20(4):398–461. IEEE, November 2002.

[5] M. Castro and R. Rodrigues. BFT library implementation.
http://www.pmg.lcs.mit.edu/bft/#sw.

[6] W. Dai. Crypto++. http://cryptopp.sourceforge.net/docs/ref/.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal
of the ACM, 32(2):374–382. ACM Press, April 1985.

[8] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
FAB: enterprise storage systems on a shoestring. Hot Top-
ics in Operating Systems, pages 133–138. USENIX Associ-
ation, 2003.

[9] S. Frølund, A. Merchant, Y. Saito, S. Spence, and A. Veitch.
A de-centralized algorithm for erasure-coded virtual disks.
Dependable Systems and Networks, June 2004.

[10] G. R. Ganger, J. D. Strunk, and A. J. Klosterman. Self-*
Storage: brick-based storage with automated administration.
Technical Report CMU-CS-03-178. Carnegie Mellon Uni-
versity, August 2003.

[11] L. Gong. Securely replicating authentication services. In-
ternational Conference on Distributed Computing Systems,
pages 85–91. IEEE Computer Society Press, 1989.

[12] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Reiter.
Efficient Byzantine-tolerant erasure-coded storage. Techni-
cal report CMU-PDL-03-104. CMU, December 2003.

[13] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K. Re-
iter. The safety and liveness properties of a protocol family
for versatile survivable storage infrastructures. CMU–PDL–
03–105. Parallel Data Laboratory, Carnegie Mellon Univer-
sity, Pittsburgh, PA, March 2004.

[14] M. Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages, 13(1):124–149. ACM Press,
1991.

[15] M. P. Herlihy and J. D. Tygar. How to make replicated data
secure. Advances in Cryptology - CRYPTO, pages 379–391.
Springer-Verlag, 1987.

[16] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages and Systems, 12(3):463–492. ACM,
July 1990.

[17] J. H. Howard et al. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[18] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-
free shared objects. Journal of the ACM, 45(3):451–500.
ACM Press, May 1998.

[19] J. Kubiatowicz et al. OceanStore: an architecture for global-
scale persistent storage. Architectural Support for Program-
ming Languages and Operating Systems, 2000.

[20] L. Lamport, R. Shostak, and M. Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages
and Systems, 4(3):382–401. ACM, July 1982.

[21] D. Malkhi and M. Reiter. Byzantine quorum systems.
ACM Symposium on Theory of Computing, pages 569–578.
ACM, 1997.

[22] D. Malkhi, M. K. Reiter, D. Tulone, and E. Ziskind. Per-
sistent objects in the Fleet system. DARPA Information Sur-
vivability Conference and Exposition, pages 126–136. IEEE,
2001.

[23] J.-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
storage. International Symposium on Distributed Comput-
ing, 2002.

[24] R. Morris. Storage: from atoms to people. Keynote address at
Conference on File and Storage Technologies, January 2002.

[25] B. D. Noble and M. Satyanarayanan. An empirical study of
a highly available file system. Technical Report CMU–CS–
94–120. Carnegie Mellon University, February 1994.

[26] M. O. Rabin. Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance. Journal of the ACM,
36(2):335–348. ACM, April 1989.

[27] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM Computing Sur-
veys, 22(4):299–319, December 1990.

[28] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger. Metadata efficiency in versioning file systems.
Conference on File and Storage Technologies, pages 43–58.
USENIX Association, 2003.

[29] J. G. Steiner, J. I. Schiller, and C. Neuman. Kerberos:
an authentication service for open network systems. Win-
ter USENIX Technical Conference, pages 191–202, 9–12
February 1988.

[30] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-securing storage: protect-
ing data in compromised systems. Symposium on Oper-
ating Systems Design and Implementation, pages 165–180.
USENIX Association, 2000.

[31] P. Thambidurai and Y.-K. Park. Interactive consistency with
multiple failure modes. Symposium on Reliable Distributed
Systems, pages 93–100. IEEE, 1988.

[32] J. J. Wylie et al. Survivable information storage systems.
IEEE Computer, 33(8):61–68. IEEE, August 2000.

10

