
Consistent, Durable, and Safe Memory Management
for Byte-addressable Non Volatile Main Memory

Iulian Moraru, David G. Andersen, Michael Kaminsky◦, Niraj Tolia‡∗,
Parthasarathy Ranganathan†∗, Nathan Binkert\∗

Carnegie Mellon University, Intel Labs◦, Maginatics‡, Google†, Amiato\

Abstract
This paper presents three building blocks for enabling
the efficient and safe design of persistent data stores for
emerging non-volatile memory technologies. Taking the
fullest advantage of the low latency and high bandwidths
of emerging memories such as phase change memory
(PCM), spin torque, and memristor necessitates a seri-
ous look at placing these persistent storage technologies
on the main memory bus. Doing so, however, introduces
critical challenges of not sacrificing the data reliability
and consistency that users demand from storage. This
paper introduces techniques for (1) robust wear-aware
memory allocation, (2) preventing of erroneous writes,
and (3) consistency-preserving updates that are cache-
efficient. We show through our evaluation that these
techniques are efficiently implementable and effective
by demonstrating a B+-tree implementation modified to
make full use of our toolkit.

1 Introduction
For decades, with a few niche, expensive exceptions,
fast memory has been volatile, and persistent storage has
been slow. The advent of non-volatile, byte-addressable
memories may force an overhaul of program and op-
erating system structure comparable to that required to
deal with multicore. There are multiple competing tech-
nologies (Phase Change Memory, Spin Torque Transfer,
memristor) but the end result is the same: a non-volatile,

∗ This work was done while the author was at HP Labs.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
TRIOS’13, Nov 03 - November 03 2013, Farmington, USA.
ACM 978-1-4503-2463-2/13/11.
http://dx.doi.org/10.1145/2524211.2524216

byte-addressable memory (we refer to it as NVRAM) that,
when placed directly on the memory bus, will be almost
as fast to access as DRAM.

We expect that uses for fast persistent memory will
range from easy to program but low-performance (e.g.,
using it as a replacement for Flash memory), to complex
and challenging setups meant to benefit performance-
critical applications. In this paper we focus on the latter
category. For reasons outlined in Section 2.2, we argue
that performance-critical applications will require plac-
ing fast non-volatile memory on the memory bus along-
side DRAM, and accessing both through CPU loads and
stores (see diagram below):

Main memory
DRAM + NVRAM

Applications

 OS Persistence
Library

Furthermore, we argue that harnessing this perfor-
mance can best be achieved through combined hardware-
software designs—as opposed to exclusively hardware or
exclusively software solutions.

The fundamental challenge when using non-volatile
main memory is to attain high throughput while pro-
viding strong durability guarantees. Many more things
can go wrong when using the main memory bus to ac-
cess persistent storage. One challenge is wear-out: some
non-volatile memories degrade with writes. (e.g. exces-
sive writes to a phase change memory cell can rapidly
destroy it). A second challenge comes from the interface
presented to the application writer with respect to dura-
bility and safety. Today’s storage interfaces are narrow
and explicit: Writes to storage can only affect data; only
the kernel can change filesystem metadata. A write()
makes data durable (in theory, depending on the imple-
mentation), and writes to hard disks typically succeed or
fail atomically on a page or sector granularity, enforced
by hardware sector checksums. With non-volatile mem-
ory, however, erroneous writes can affect persistent data
or metadata. The order of writes is unknown unless spe-
cial attention is taken to flush writes, due to interactions
with processor caches.

Decades of experience with filesystems and databases

have shown that developing safe and fast persistent data
stores is challenging, and we do not believe that emerg-
ing memory technologies will change this. This paper
describes three building blocks to ease the task of the per-
sistent data structure designer (née filesystem or database
designer), who develops libraries that would be linked
against by application developers. These building blocks
help address some of the primary potential sources of
data loss and corruption when using non-volatile mem-
ory, while imposing minimal performance overhead. All
three are designed across hardware-software boundaries,
leveraging minimal hardware support: functionality al-
ready widely available but used sparingly, functionality
previously proposed by other researchers, and new func-
tionality that we propose in this paper:

Wear-aware memory allocation that is robust to er-
roneous writes. Hardware wear leveling [30, 31, 36]
is necessary, but does not provide a complete solution.
In particular, coping with frequent writes to the same
or neighboring locations imposes overheads when writ-
ing (e.g., higher than 100% [31]), as the hardware con-
stantly shifts the data to new locations. Maintaining
maximal throughput therefore requires software to avoid
these pathological patterns. Traditional memory alloca-
tors do not avoid these pitfalls. At the same time, corrup-
tion of memory allocator metadata can lead to permanent
data loss and unrecoverable memory leaks. To address
these problems, we introduce a new memory allocator
that complements hardware wear leveling for NVRAM.
Our allocator prevents the frequent reuse of memory lo-
cations, and stores its frequently-changing metadata in
DRAM. It adds checksums to detect and recover from
metadata corruption.

A low overhead mechanism for containing erroneous
writes. With DRAM, the consequence of bugs or mem-
ory corruption is typically an application crash. With
NVRAM, however, erroneous writes can cause perma-
nent data loss. The larger the persistent memory area
exposed to the application for direct access, the higher
the risk of corruption through erroneous writes. Using
virtual memory protection to contain this threat has been
proposed previously in the context of databases [38] and
reliable file system caches [8]. In this paper, we show
how to implement a similar scheme in a way that avoids
the overhead of system calls and mode switches. This
scheme complements the protection provided by our ro-
bust memory allocator: VM protection prevents “long-
range” erroneous writes to locations that clearly should
not be written to; the robust allocator protects against far-
reaching consequences from “short-range” off-by-one
errors or buffer overflows.

Cache-efficient, consistency-preserving updates. Ef-
fective CPU caching is critical for speed. However, en-

Parameter PCM DRAM
Read Latency 50 ns 20-50 ns
Write Latency 150 ns 20-50 ns
Read Bandwidth 1 GB/s/die 2 GB/s/die
Write Bandwidth 200 MB/s/die 2 GB/s/die
Write cycles 108 cycles ∞

Table 1: Predicted PCM and DRAM characteris-
tics [1, 3, 28, 29].

suring the consistency of persistent data in the face of
application crashes and power failures requires careful
control over the order of writes to persistent memory. To-
day’s CPUs provide only coarse controls, e.g., by mark-
ing memory non-cacheable or by flushing the cache, but
these methods impose high costs. We propose a novel
mechanism for implementing consistency-preserving up-
dates without sacrificing performance: make applica-
tions aware of where their data is at any time—in cache
or in persistent memory. Our solution requires applica-
tion support, as well as lightweight hardware modifica-
tions.

2 Background and Assumptions

This section briefly overviews non-volatile, byte address-
able memories and enumerates the assumptions we make
about future system support for these memories.

2.1 Non-Volatile RAM
Three emerging technologies hope to provide fast, per-
sistent, byte addressable memories: phase change, mem-
ristor, and spin torque transfer. We collectively refer
to these memories as non-volatile RAM (NVRAM). We
focus primarily on phase-change memory, because it is
now becoming commercially available and is better char-
acterized, to understand how these memories differ from
conventional DRAM.

Phase Change Memory (PCM) is a non-volatile,
random-access memory that stores bits by heating a
nanoscale piece of chalcogenide glass and allowing it to
cool into either a crystalline (1) or an amorphous state
(0), each of which has a different electrical resistance.
Heating is performed by injecting current through the
memory cell. Several of PCM’s most important char-
acteristics can be derived from this method of operation:
programmable at byte granularity, fast reads but limited
write bandwidth, wear-out.

Table 1 presents the PCM parameters that we assume.
Two alternative technologies, memristor-based mem-

ory and spin-torque transfer memories are also compet-
ing to be the next persistent storage technology. These
technologies are further from production, but may offer

improvements in writing: memristor could have an or-
der of magnitude better endurance, and spin-torque may
have unlimited endurance. Both would benefit from the
memory protection and consistency provided by our tool-
box.

2.2 NVRAM on the Memory Bus
The latency of today’s external buses—PCI at a few
hundred nanoseconds [17] and SATA and SAS even
slower—dominates that of NVRAM. In contrast, the
40 ms access time of Flash memory dominates bus la-
tency. Similarly, accessing NVRAM through a file sys-
tem or system call interface incurs mode switch and data
copy overhead, potentially doubling the access latency.

Systems are unlikely to abandon DRAM: Because of
the wear-out and slower writes of NVRAM, we assume
that at least for write-intensive workloads, systems will
instead use a combination of DRAM and NVRAM, har-
nessing the best properties of each.

As prior work did [11], we assume that NVRAM de-
vices will provide atomic writes at some granularity—
here, a cache line (64 B), because CPUs are optimized to
access DRAM at this granularity.

2.3 Hardware Wear Leveling Limitations
There are at least two reasons why software will be re-
quired to complement hardware solutions for avoiding
NVRAM wear out.

First, hardware wear leveling can reduce perfor-
mance. These solutions transparently remap the physical
NVRAM locations and the logical addresses exposed to
the memory controller [30, 31, 36]. To do so, they must
copy content between physical locations, reducing write
bandwidth and increasing overall wear. This overhead is
small for well-behaved workloads [30], but wear leveling
must also handle high write traffic to one or a small set of
locations [36]. Doing so requires data to be moved as of-
ten as once per every application write [31]. The newest
adaptive schemes penalize only those applications that
concentrate many writes to few locations [31]. This
solution is effective for applications using NVRAM as
volatile memory, because most writes with high locality
can be absorbed by a large DRAM cache, but not for ap-
plications using NVRAM persistently, where NVRAM
sits only behind a small CPU cache. In this case, ap-
plications that desire high performance must avoid bad
write patterns.

Second, software should avoid unnecessary writes
even with wear-leveling: each write reduces the memory
lifetime. As we show in Section 8, existing malloc im-
plementations, designed for DRAM, generate excessive
writes when used for NVRAM.

2.4 Operating System Support

We expect that existing virtual memory mechanisms
will be used to map both volatile and non-volatile mem-
ory into the processes address space. Processes will be
able to request NVRAM pages from the operating sys-
tem, using an extension to the mmap system call. We
assume that the basic unit for NVRAM in operating sys-
tems will be the 4 KB page, with continuing CPU and
operating system support for large pages for efficiency.

To restore persistent application state, a process must
be able to map the same NV memory pages across ma-
chine reboots. Therefore, operating systems must pro-
vide a way to identify groups of pages under a persis-
tent namespace. There are multiple satisfactory propos-
als [10, 34, 43]. We assume that (1) it will be possible
to map the same NVRAM pages in different, not neces-
sarily concurrent processes; and (2) the OS will provide
access control to regions of NVRAM, perhaps akin to
access control in file systems.

We do not address the concern of persistent memory
pointers. There exist various solutions: making map-
pings fixed [43], or using pointer swizzling [10, 44]. An-
other simple solution could be using the CPU support for
segmentation (still present on x86 processors): map each
logical group of NVRAM pages in its own segment and
make every pointer relative to that segment.

3 Memory Allocation for NVRAM

The NVMalloc allocator helps address two of our three
challenges for using NVRAM: preventing wear-out, by
minimizing writes and helping with wear-leveling, and
increasing the allocator’s robustness to erroneous writes.

3.1 Wear-Aware Memory Allocation

Not only are today’s memory allocators not optimized
for NVRAM, they may actually contribute to wear-out or
performance degradation when used for NVRAM. Con-
sider as a representative example GNU malloc version
2.12.1. Malloc and several other allocators [45] cache
and reuse small allocations (“blocks”) in LIFO order af-
ter they are freed. This concentrates writes in a few loca-
tions, which we verify experimentally in Section 8.1.1.
Malloc furthermore maintains metadata in headers and
footers of each allocated (or freed) memory block, con-
taining the size of that block. This metadata is updated
for every merge and split of free blocks, which can hap-
pen for any allocation or deallocation that is not small
enough to be cached. As a result, simple patterns such
as a sequence of allocations followed by deallocations
in the same order can cause multiple writes to the first

header and the last footer of a series of contiguous re-
gions. Finally, these in-place metadata updates, while
memory efficient, cause additional writes that increase
NVRAM wear-out; we show in Section 8.1.1 that malloc
may cause 50% more writes than our allocator. Note that
these malloc design decisions make sense for DRAM,
providing memory efficiency and performance, but they
have unintended results when applied to NVRAM.

NVMalloc is a robust, wear-aware memory allocator
that avoids these problems. NVMalloc is based on two
ideas: (1) limit the frequency with which any particular
block of memory can be allocated, and (2) maintain fre-
quently changing metadata in DRAM, separate from the
managed blocks of non-volatile memory.

Allocator wear-leveling. NVMalloc will not reallocate
a block as soon as it is freed. Instead, it timestamps
the block and adds it to a FIFO queue of recently freed
blocks—the don’t-allocate list. On every allocation or
release, the allocator examines the block at the head of
the queue; if it has been in the queue for at least time T ,
it removes the block from the queue and marks it eligible
for reallocation. Blocks will not be allocated with a fre-
quency higher than 1/T . Assuming that the sizes of allo-
cation requests are smaller than the available amount of
non-volatile memory in the system, we can improve wear
leveling by increasing T . To avoid using extra space, the
don’t-allocate list is implemented as a simple linked list,
with the pointers and the timestamps stored inside the
free memory blocks themselves.

Reducing allocator metadata writes. The first and eas-
iest step that NVMalloc takes to reduce writes is using
a minimum allocation size of 64 bytes—the minimum
NVRAM write size. Smaller blocks cause write ampli-
fication because writes perturb the other bits in the write
unit.

The second optimization reduces writes due to manag-
ing free space. Allocators reduce address space fragmen-
tation by satisfying allocations from appropriately sized
individual free blocks. For example, to allocate a 256
byte block, the allocator would only allocate from a new
4KB page if it could not find a 256 byte “hole” in other-
wise allocated regions. To accomplish this, NVMalloc,
like malloc and its predecessor dlmalloc [22], uses segre-
gated free lists—a free list for different size free blocks,
with a common list for large blocks.

NVMalloc reduces the number of writes to persis-
tent memory by observing that tracking the informa-
tion needed to minimize fragmentation is an optimiza-
tion, not something required for correctness. NVMal-
loc persistently stores the correct allocated/free state of
every block, but relegates fragmentation information to
DRAM, rebuilding this information if needed after a
crash.

DRAM

NVRAM

header:
state, size, checksum

...

...

NVRAM

...

010001...

bitmap

free lists

...

1 bl:

2 bl:

3 bl:

Figure 1: Memory allocator metadata example. Two
of the total six basic memory blocks depicted in the
diagram are allocated.

Traditional allocators store list pointers inside the
headers and footers of freed blocks. When they merge
adjacent free blocks into a larger free region, they update
those in-place pointers. NVMalloc instead tracks the al-
located/free state of each basic memory block using a
DRAM bitmap (see Figure 1). To persist allocation state
across reboots, each memory block has a header with its
size and allocation state. When mapping a new NVRAM
region, the allocator can rebuild the bitmap by scanning
these headers plus the free lists described below. Unlike
malloc, however, NVMalloc does not update the headers
when merging free blocks, and no longer requires foot-
ers.

NVMalloc maintains its segregated free lists in
DRAM. These lists may become inconsistent with the
real allocation state, potentially requiring a few extra
reads during allocation, but substantially reducing the
number of writes. Upon freeing a block, the allocator
examines the bitmap to find the maximal free region that
includes that block, updates the bitmap, and adds an en-
try to the list corresponding to the region’s size. A new
allocation request is satisfied by searching through the
free list with blocks of the corresponding size for the first
entry that is still consistent with the information in the
bitmap. If none is found, a larger free block will be split,
or the allocator will request more NVRAM pages from
the operating system.

NVMalloc only updates memory block headers when
the block is the start of a memory region that is being
allocated or when the block is freed by the application.
The pointer and timestamp required for adding the block
to the don’t-allocate list are added in the same cache-line
write as the header update (they are part of the header).
As a result, NVMalloc guarantees that it will write each
location at most twice per T seconds.

3.2 Robust Memory Allocation
Bugs such as off-by-one errors, uninitialized pointers,
buffer overflows or buffer underflows can corrupt mem-

ory allocator metadata. With non-volatile memory, cor-
rupted allocator metadata can cause permanent data loss
or unrecoverable memory leaks. Consider for example
a buffer underflow error that overwrites the header of an
allocated memory block. When the buffer is freed, the al-
locator may reclaim more memory than it should, and a
subsequent allocation will result in persistent application
data and other block headers being overwritten, etc.

Previous approaches protect allocator metadata by
storing it separately from allocated space [23, 43]. While
less likely, metadata corruption could still occur (e.g.,
because of an uninitialized pointer that uses the data of
an old stack frame corresponding to a memory allocator
call). Because NVRAM corruption can lead to data loss,
NVMalloc uses stronger techniques.

First, NVMalloc’s design is robust to errors in its
DRAM-based data structures: they only optimize alloca-
tion, their information is checked against the in-NVRAM
metadata at allocation time, and they can be rebuilt if
needed. Second, every NVMalloc block header contains
a checksum over the size of the block, its state (allo-
cated / free), and the position of the block relative to the
beginning of the current NVRAM mapping. The latter
helps detect accidental copying of whole blocks, headers
included, over other blocks. The allocator can thus de-
tect incorrect headers when allocating or freeing a block,
or when scanning the block headers of a newly mapped
NVRAM region. The allocator then isolates the corrup-
tion to the one or few affected blocks by scanning for-
ward through every subsequent basic memory block (64
bytes) until it finds a new sequence of correct headers. It
marks the corrupt header and notifies the application of
the corruption. A side benefit of this scheme is that the
allocator can also detect some erroneous writes to persis-
tent data, something that cannot be achieved by simply
separating the metadata from the data.

NVMalloc provides containment, not prevention: It
limits the extent of data loss to the directly modified
memory locations. It assumes that the application itself
is not malicious, so the corruption is accidental. The next
section presents a safety mechanism to further reduce the
possibility of accidental data corruption. Our memory al-
location optimizations also do not prevent memory leaks;
garbage collection to ameliorate this problem is comple-
mentary to our techniques.

4 Low-Overhead VM Protection

For speed, applications are likely to map NVRAM stor-
age (potentially tens or hundreds of gigabytes) into their
process address spaces. Doing so, however, eliminates
many traditional safety mechanisms that filesystems and
databases offer. Erroneous writes by the process can

corrupt not only data, but also metadata, where errors
can potentially cause massive data loss. The interface
through which errors can affect persistent data is now
much wider: instead of writing to a buffer and invoking
an explicit system call to persist it, any stray store could
corrupt data.1

Concerns about the vulnerability of persistent data
mapped into process address spaces date back decades,
in the context of databases [38, 12] and reliable file sys-
tem caches on battery-backed DRAM [8]. Today, OS-
mediated, CPU-enforced memory protection is widely
used to protect parts of the address space from corruption
in JVMs [18], databases [33], and garbage collection [6].
Designers of persistent data structures for NVRAM can
follow this lead, but to enable them to do so, we must
make this capability low-overhead enough to use in the
context of hyper-fast persistent storage.

The simplest way to write-protect virtual memory on
a POSIX-compliant system is to call mprotect after
writing to a page. Subsequent (erroneous) writes to this
page will then trigger an exception. Applications might
then repair the error transparently, gracefully exit and
restart, and/or simply generate a bug report noting the
software bug or faulty hardware component. Unfortu-
nately, frequent virtual memory protection changes have
traditionally had a very high overhead: a page protec-
tion change involves a system call (so therefore a mode
switch), acquiring locks on the page table of the process,
and finally, a TLB invalidation which slows down all
threads sharing the address space, not just the one issuing
the system call. As a result, performance sensitive appli-
cations avoid using memory protection—e.g., database
software vendors recommend turning virtual memory
protection off when performance is important [42].

We improve upon the mprotect approach by (1) avoid-
ing the system call mode switch; (2) servicing page pro-
tection requests in batches to amortize some of their
costs; and (3) coalescing redundant requests such as pro-
tection and unprotecting the same page. Figure 2 depicts
the high-level organization of our approach.

To protect pages, the kernel and process share a
memory buffer used as a lockless producer-consumer
queue [21]. The process inserts the addresses of the non-
volatile memory pages that require protection against
writes, and a kernel thread periodically removes these re-
quests from the queue to protect them. The kernel thread

1The decreasing cost of switching to kernel mode [40]
makes it attractive to map persistent data in user space as read-
only, and make syscalls to modify it (the data would be mapped
read-write in kernel space). However, this would make applica-
tion data vulnerable to stray memory accesses by device driver
code. Given the large variety of third-party device drivers, we
believe this would be even more difficult to control than stray
accesses by the application itself.

async_mprotect() load/store

Application

Kernel

MMUprotection fault

immediate poll
periodic poll

pull

Figure 2: High-level operation of batched asyn-
chronous memory protection.

sorts the requests and performs protection changes on
ranges of pages. This approach confers two advantages:

• Changing the protection on ranges of pages and
consolidating multiple requests to the same pages
amortizes the cost of modifying the structures asso-
ciated with the address space of the process (an ex-
pensive operation in Linux, as detailed in the next
section);

• Batch processing requests means that the kernel
only flushes the TLB once per batch, instead of
once per protection operation, reducing slowdown
imposed by frequent TLB invalidations.

This approach substantially reduces the overhead of
protecting pages from writes.2 Batched asynchronous
protection does not hinder the normal operation of an ap-
plication because write-protecting a page does not need
to happen immediately (at least not in the common case,
where erroneous writes are the exception, not the rule).

Un-protecting pages that the application needs to write
can follow one of two different paths, depending on the
semantics that the application requires:

1) Applications, such as garbage collectors, that can
predict beforehand where they will write can issue asyn-
chronous unprotect requests early. The same approach
used for protecting is used to un-protect pages before
the application writes: the application puts a request in
the same queue used for protect requests. When the ker-
nel asynchronously processes a batch of requests, it first
sorts the requests using a stable sorting algorithm—so
that relative ordering of protect and unprotect requests
for the same page is preserved. Finally, the kernel coa-
lesces requests for the same page and performs the most
recent protection change for each page in the queue.

Most applications, however, cannot predict far enough
in advance which memory regions they will update. For
those applications we use the second approach.

2Some potential applications require a notification queue
to tell the process when the protection request was complete.
This is a simple extension, but we have not yet implemented it.
Applications can, however, wait for all the pending requests to
be processed.

2) Applications that cannot foresee which page they
will have to update next, use a separate unprotect queue
where they write the page address/addresses of the mem-
ory object they are about to modify. They then access
those pages, optimistically assuming that the page is al-
ready writable (or has become writable because of a
previous asynchronous request). If the page is indeed
writable, the access succeeds. If not, and the page is still
protected (unwritable), the MMU generates a page fault
exception.

The kernel exception handler checks the special un-
protect queue, finds the unprotect request and changes
the protection of the page, transparently to the applica-
tion. Putting the exception handler in the kernel saves
additional mode switches. This mechanism works well
for applications with some access locality: a protect fol-
lowed soon by an unprotect will result in no protection
changes or page faults. For erroneous writes, the kernel
exception handler will not find any unprotect requests,
and will send the appropriate signal to the application
generating that write.

5 Cache-Efficient Updates to
Persistent Main Memory

Caching has been the primary way of bridging the gap
between the speed of the CPU and that of the memory.
Making an application run faster often comes down to
improving its use of the caches. We expect the CPU
caches to continue to play a critical role for main mem-
ory, volatile and non-volatile alike. Unfortunately, main-
taining consistency in the face of crashes or power fail-
ures becomes more difficult when accessing persistent
main memory through CPU caches that themselves con-
trol the order of writes to memory.

Continuously flushing cache lines introduces high
overhead (e.g., more than 4× —see Section 8.3). On
the other hand, bypassing the caches altogether is effi-
cient only for those applications that write only once to
a location and do not read after write (as counterexam-
ples, consider frequent updates to a global counter—e.g.,
the global version of a multi-versioned data structure—or
inserting ranges of keys into a B tree), and presents addi-
tional concerns with respect to the wear-out and write
bandwidth limitations of NV memories. Furthermore,
modern processors and memory controllers have been
highly optimized for working with the CPU caches. We
would like to use the CPU caches as normal, without
flushing, but still guarantee update consistency.

The solution that we propose follows logically from
our goal: make applications aware of the state of their
writes in the cache so that they can make the appropri-
ate adjustments in software. For this, we require hard-

CPU cache

Cache line Tag

Counter

1st store to line (Counter ++) […] Poll

NVRAM Write-back (Counter --)

Figure 3: High-level cache line counters overview.

ware support. Given a logical group of updates, an ap-
plication can check whether all the updates belonging to
that group have been written out to memory—as a re-
sult of normal cache line replacement—or if some are
still in the caches. Applications can use this capability
in many implementations of failure atomicity: when per-
forming shadowing, the software application will replace
the original pointer with a pointer to the shadow copy
after all the updates to the shadow have reached mem-
ory; when working with multi-versioned data structures,
the application will increment the global version number
only after the new version has been completely flushed
out of the CPU caches; when updating a log, it will incre-
ment the log size only after the new record has entirely
reached persistent memory, etc.

5.1 Cache Line Counters

To allow applications to check whether their writes have
been flushed from cache, we propose light-weight hard-
ware changes: The CPU caches are augmented with a
set of counters, where each counter keeps track of how
many cache lines dirtied during one atomic logical up-
date have yet to be written back to NVRAM. An ap-
plication marks the beginning of a logical update group
by calling a special sgroup instruction, which tells the
CPU to (1) choose a free counter, and (2) increment
that counter whenever subsequent store instructions dirty
new cache lines (an sgroup instruction must therefore
also order stores to memory, just like the x86 sfence
instruction). The high-level functionality of cache line
counters is illustrated in Figure 3.

A counter is incremented automatically when a store
dirties a cache line, and decremented when a cache line
tagged with its ID is cleaned (either by normal write-
back during cache line replacement, or as a result of a
clflush call). A subsequent sgroup call ends the
current update group.

Applications retrieve the counter ID from a CPU reg-
ister and use it later with the scheck instruction to poll
the value of the counter. When scheck returns zero, the
corresponding logical update group can be considered
safe in NVRAM, and the counter is internally marked as
free. Minor OS modifications are required to save and re-
store the register containing the current counter ID when
a thread is preempted and re-scheduled for execution.

A store to a cache line tagged with the ID of a counter
other than the current counter forces that cache line to be
flushed (and the previous counter decremented) and then
tagged with the ID of the current counter. This behavior
is safe when multiple transactions (i.e., update groups)
access the same cache lines concurrently, but may cause
unnecessary cache line flushes. For improved perfor-
mance, it can be changed such that a store to a cache
line tagged with the ID of a counter other than the cur-
rent counter does not force flushes and does not modify
any counter values. However, this puts the burden to en-
sure safety on software: applications must track transac-
tions that update the same cache lines concurrently and
either commit them atomically (i.e., either all are com-
mitted, or none is), or in a serializable order. The latter
is straightforward for applications that already serialize
transactions: applications simply commit transactions in
the order they were started (indifferent of the order their
updates finished reaching NVRAM).

In conclusion, the interface to the cache line counter
functionality consists of two new instructions (sgroup
and scheck), and a new CPU register to read/write the
counter ID for the current logical update group.

Unlike previous proposals for hardware support for
NVRAM (the BPFS epoch barriers mechanism [11]), the
modifications that we propose do not necessitate changes
to the cache line replacement algorithm. This is impor-
tant because forcing cache line flushes goes against the
trend of enhancing the behavior of the CPU cache hierar-
chy with complex heuristics. Section 9 contains a more
detailed comparison with BPFS.

One important implementation decision is how many
counters to use. At the extreme, each cache line could
be associated with a different counter, which would re-
quire as many counters as there are cache lines in the
CPU caches. Die space limitations could make so many
counters prohibitive. Provisioning fewer counters risks
running out of counters if many applications perform
many small atomic groups of updates. To solve this prob-
lem, we add a special virtual counter (we will call it C0)
whose value is always zero. When there are no more
free counters, the CPU will use C0. A store when C0 is
the current counter will behave like a non-temporal write
that bypasses the CPU caches. Running out of counters
may affect performance, but not correctness.3

5.2 Implementing Cache Line Counters
Augmenting CPU caches has previously been proposed
for improving cache performance [20], implementing

3This scheme has the drawback that one application might
intentionally or unintentionally monopolize all the counters.
Note, however, that the same is true for the CPU caches them-
selves.

transactional memory [2, 26, 32], and even for ensur-
ing update consistency in persistent main memory [11]
(i.e., the same problem we are addressing). While we
have not implemented in hardware the cache line counter
mechanism, we describe here one possible implementa-
tion path. Because the counters keep track of dirty cache
lines, the implementation consists mainly of a straight-
forward bookkeeping mechanism and a few additions to
the cache coherence protocol.

Cache line tags are extended with space for a counter
ID. Dirtying a cache line causes the CPU to increment
the current counter and annotate the cache line with its
ID. Cleaning a line decrements the counter correspond-
ing to the ID stored in the cache line’s tag (the decrement
is done only after the write-back is acknowledged).

For processors with inclusive shared last level caches,
like the modern Intel Core i7 CPU, it is sufficient for
counters to track only the lines in the last level of the
cache. This design has the advantages of avoiding the
high churn in smaller caches, the counter namespace is
global, and the counters are only stored in the larger
cache. Reading counter values will have higher latency
than if counters were stored in the smaller caches, but
since applications using counters are likely to be data in-
tensive, this latency would be dwarfed by the latencies of
frequent memory accesses.

On a CPU where the last level caches are not inclu-
sive, each core maintains a separate set of counters in
its L1 cache, in a direct-mapped structure. Cache tags
in shared caches store both a counter ID and a core ID.
If the line cleaning/dirtying happens in a level of cache
other than L1, the counter decrement/increment message
must be sent up to the core that owns the counter as-
sociated with that line.4 When an application reads the
value of a counter maintained by a core other than the
one on which it is running, that counter value is brought
in through the cache subsystem, just like normal memory

4A special case for processors with non-inclusive caches
occurs when a cache line is pulled into the private cache of
a core (e.g., core B) other than the one that owns the counter
associated with that line (e.g., core A). In this case, the line
is cleaned from all the caches accessible to core A, and sent
clean to core B. Thus, core A no longer keeps track of that line.
Although flushing the cache line from the first core may cause
overheads for applications with this access pattern, this is not
a new problem, as applications already try to avoid expensive
cache line “ping-pong-ing.” If, however, this occurs as a result
of a thread moving to a different core, the operating system
notifies the application through a signal so that it can track a
new counter on the new core in addition the old counter on the
previous core until those lines are cleared. This mechanism
introduces some awkwardness for programmers working with
counters, but we don’t expect this situation to be common since
operating system schedulers try to maintain core affinity (and
applications can even ask that this be enforced).

content—the counters are memory mapped read-only.
As a concrete example of a possible instantiation of

cache line counters, consider a CPU like the Core i7: a
quad core CPU with 32KB private L1-D and L1-I caches,
256 KB private L2, and an 8 MB inclusive L3 cache.
Such a CPU could provide 8192 one byte wide coun-
ters.5 Each counter can count up to 255 cache lines, but
special counters can combine the space of two or more
normal counters to be able to count up to the total num-
ber of lines. When a counter reaches its limit, the CPU
can either automatically upgrade it, or treat subsequent
stores as non-cacheable. For 8192 counters, the cache
line tags are extended by 13 bits. Overall, this amounts to
a 216 KB space overhead (2.28%), incurred exclusively
in the L3 cache.

6 A B+ Tree Example

This section describes how the proposed techniques can
be used to implement a modified B+ tree data structure,
including the algorithmic changes that are required. To
hide their complexity, we expect that data structures such
as this would be implemented in a “persistent storage”
library for NVRAM, not necessarily by individual appli-
cation developers. We have applied these changes to an
existing main-memory B+ tree [5].

Using NVMalloc. NVMalloc can be used as any other
memory allocator, requiring no program modifications
to function correctly. However, applications can take ad-
vantage of NVMalloc’s wear leveling by making small
adjustments. In our B+ tree, for example, whenever a
node requires splitting, we allocate two new nodes and
free the original—otherwise the same memory location
risks getting heavy write traffic (see the experimental re-
sults in section 8.1.1). This simple modification is also
necessary for guaranteeing consistency with cache line
counters, as explained below.

Using cache line counters. First, we define what consis-
tency properties we want for our B+ tree: (1) after a crash
or power failure, we want the B+ tree to be consistent
(i.e., no dangling pointers, no partially written data), and
(2) the B+ tree must be monotonic—that is, if a power
failure occurred at time t1, the recovered data would be a
subset of the data that would be recovered if the failure
occurred at time t2 > t1. This condition means the B tree
behaves intuitively: once data becomes “persistent” (i.e.,
recoverable), it cannot be lost. To improve performance
(achieve a higher insert throughput), we do not require
data to be made persistent right away. These consistency

5For 1 KB average update group sizes, this many counters
would ensure that running out of counters is rare.

parent

old node

top halfbottom half

Figure 4: Transient B+-tree state after a node split.
The dots mark the only pointers updated at this stage.

guarantees are reminiscent of soft updates for file sys-
tems [15].

We start by focusing on inserts. The changes that we
make to the B+ tree are to ensure consistent updates with-
out having to flush CPU caches.

Change 1: Inserting at the end of nodes instead of
keeping nodes internally sorted. In a typical B+ tree, new
pointers to nodes or values are inserted into the node in
sorted order, which may shift some of the existing en-
tries. Because some entries will cross cache line bound-
aries, even if the algorithm is correct—it writes an entry
in its new slot before overwriting the old slot—the un-
predictability of cache line write-back can still cause data
loss on a power failure if the update to the old slot of the
entry reaches NVRAM before the update to the entry’s
new slot. Therefore, we append entries in log fashion, at
the end of each node’s list of child pointers.

A consequence of this change is that searching within
a node is linear instead of a logarithmic time for a binary
search, but this represents only a small penalty because
nodes have few entries, and it could also be mitigated:
we could maintain internally sorted read-only copies of
upper-level nodes (which are read frequently and modi-
fied infrequently).

Change 2: Using cache line counters to distin-
guish between data that has been written completely to
NVRAM and data that is not yet entirely durable. A
counter tracks the cache lines dirtied by the data being
written (i.e., the new inserted value). After the counter
reaches zero, we mark the data as valid by writing the
corresponding key in the header of the data portion (us-
ing a normal cached write)—making it easy to distin-
guish valid data entries from invalid ones after a power
failure.6

Change 3: Ensuring that the B+ tree is always con-
sistent in NVRAM during node splits. Figure 4 depicts
the modified node-splitting process. A node is not im-
mediately deleted after being split. Its parent maintains
its pointer to it, and the node itself is augmented with a
pointer to the new node that contains the top half of its
keys (the ones larger than the median key). The bottom

6No change is needed to validate the B+ tree metadata after
recovering from a crash: the keys in a valid node will match the
corresponding key range in its parent.

half is inserted in the parent node as usual (at the end).
All subsequent inserts and searches will be performed on
the new nodes. After the old keys and pointers become
persistent in the new nodes, and after the pointer to the
bottom half becomes persistent in the parent node (we
keep track of all this using one cache line counter), the
pointer to the new top half node replaces the pointer to
the old node in the parent. We do not need to force this
pointer update to NVRAM—because we assume cache
line-sized atomic writes, a pointer will either point to the
new or the old version of a node; either way, the B+ tree
will be consistent by our definition. The only provision
we make is to not free the old node until the pointer up-
date has been persisted, and we can do that either with
cache line counters or by relying on the delay with which
our allocator reclaims space. To prevent pointer chains, if
the top half is split while in the transient state, we simply
replace the pointer to it with a pointer to its top half (i.e.,
the top half of the top half) in the old node. In summary,
by keeping pointers to old versions until the new versions
become persistent, we ensure we do not lose data.

For deletes, we simply invalidate the pointer (we make
it NULL) to a node that is to be removed, and allow sub-
sequent inserts to overwrite it. Moving entries from one
leaf node to a neighbor and merging nodes can be han-
dled in one of two ways: (1) lazily, when the insert load
is low, by forcing cache flushes, or (2) using cache line
counters (e.g., copying entries to their new node and in-
validating the old one but without removing it until the
entries become persistent).

Using cache line counters in implementing our B+
tree algorithm required only small modifications to the
program structure. We use a circular buffer to store
“counter-action” pairs. Along with every B+ tree opera-
tion, we also check the value of the counter at the head
of the buffer, and if 0, we perform the action, which con-
sists in updating a pointer, or writing a key to the header
of a data record. If counter demand is high, we can check
(and thus free) multiple counters in each round.

Using asynchronous memory protection required no
modifications to the B+ tree algorithm. We simply write
the page address (or addresses) of the node (or data
region) that we are about to update into the unprotect
buffer, and then into the protect buffer once the update
is complete.

7 Implementation

7.1 NVMalloc

NVMalloc is implemented in 735 lines of C, and is drop-
in compatible with GNUMalloc.

Allocation granularity. NVMalloc maintains a separate
free list for each allocation size that is a multiple of
64 B (one cache line, the minimum allocation size), up
to 4 KB; recall that these lists are hints pointing to free
regions of NVRAM of that size. Hints for free regions
larger than 4 KB are placed on a common list. NVMal-
loc does not handle large allocations as a special case, al-
though extending it to do so is straightforward and would
reduce metadata (bitmap) overhead.

Header checksum. NVMalloc uses the CRC instruc-
tion, if available, to checksum the header. Otherwise,
it XORs the block size and position into a single byte.

Failures. To ensure that allocated memory is not lost be-
cause of a power failure, a program can either (a) request
that the allocator write the header of the allocated region
to NVRAM before it returns, or (b) with cache line coun-
ters, simply call sgroup before making the allocation
request instead of after.

7.2 Asynchronous Memory Protection
We implemented the async memory protection mecha-
nism described in the previous section as a 625 line ker-
nel module for Linux kernel version 2.6.37. Addition-
ally, we had to make small modifications to six kernel
source files (mostly for accessing functionality already
in the kernel). Applications do not access the request
queues directly. Instead, they use a small user-space li-
brary as the interface with the in-kernel functionality.

Batching. To control the size of request batches, we set
the maximum amount of time that the kernel thread that
processes requests can sleep between two subsequent
batches. The actual sleep time is dynamically set to be
inversely proportional to the number of new requests en-
queued while a batch was being processed.

Besides coalescing requests and amortizing the cost of
TLB invalidations, another benefit derived from batch-
ing is the ability to change the protection of contiguous
ranges of pages instead of individual pages. In the Linux
kernel, a contiguous range of pages with the same ac-
cess protection is associated with a vm_area_struct
structure. vm_area_struct’s are chained in a dou-
bly linked list, and also inserted into a red-black tree to
ensure quick access to a structure given an address. As
a consequence, changing the protection of a single page
entails splitting one vm_area_struct into as many
as three new structs, and then performing relatively ex-
pensive tree deletions and insertions. Furthermore, this is
needless in those situations when the protection of neigh-
boring pages would subsequently be changed anyway.

Although our implementation targeted the Linux ker-
nel, we believe that batching memory protection change
requests would benefit any operating system: any syn-

chronous implementation of mprotect will have to deal
with the cost of TLB invalidations and will miss the
chance to coalesce multiple requests for the same page.

Lock contention. In Linux, a single lock controls access
to the mm_struct of a process (the root data structure
with information about the virtual address space of a pro-
cess). We observed large performance penalties caused
by contention for this lock: our kernel thread acquires
the lock to perform page protection changes, and ker-
nel exception handlers acquire the lock to fault-in new
pages. To mitigate this slowdown, our module takes this
lock only once for all the requests in a batch. Particularly
performance-conscious applications can eliminate nearly
all of this overhead by requesting memory from the op-
erating system in large blocks and then touching most
of the pages in advance to fault them in and prevent the
cache line ping-ponging associated with different threads
running on different cores contending for a lock. A more
general solution would be RadixVM [9] for Linux.

7.3 Simulating Cache Line Counters
To understand the benefits and overheads of cache line
counters, we simulate their effects in software:

Reading the cache-line counters: We simulate this in
the B+-tree implementation by maintaining a 8,192 entry
table of pointers to B+ tree nodes and values (the “vir-
tual” counters) that the tree code reads and updates along
with every insert operation. This corresponds to the ap-
plication checking the value of the earliest-allocated still-
active counter and performing the associated action (i.e.,
copying a pointer or a key) if the counter value is 0.

Counter allocation overhead (the sgroup instruc-
tion) is emulated using sfence, because the major over-
head of sgroup is that it implies a barrier for stores.

We do not model running out of counters because
applications that access gigabytes of data per second
cause frequent cache line evictions, and for large groups
of updates (on the order of kilobytes) the provisioned
8000 counters (see Section 5.2) are sufficient, while for
smaller inserts it is easy to save counters by associat-
ing multiple consecutive inserts to one counter. Even if
the counters are exhausted, the fall-back behavior (non-
cacheable writes) ensures correctness, as explained in
Section 5.

We do not model the counter logic overhead; we be-
lieve that counter operations are simple enough that effi-
cient implementations can hide the overhead.

8 Evaluation

We evaluate the techniques proposed in this paper on a
desktop machine with an Intel Core i7 860 2.8 GHz CPU,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50000 100000 150000

To
ta

l w
rit

es
 /

 6
4B

 b
lo

ck

Block number

malloc
NVMalloc

Figure 5: Writes per 64 B block for malloc and
NVMalloc under the random alloc/free test (50K al-
locations and 50K random deallocations with 10 B to
4 KB uniformly distributed sizes).

8 GB of DRAM memory, running Ubuntu Linux, kernel
version 2.6.37, and glibc version 2.13. Since NVRAM
devices for the memory bus are not yet available, we use
DRAM as a proxy (Section 8.4 discusses how our results
would change with NVRAM). For each performance test
we report the mean (and standard error, if significant) of
one hundred runs. All the applications tested run single
threaded, except for the kernel thread that performs async
memory protection.

8.1 NVMalloc

This section evaluates NVMalloc’s wear leveling, frag-
mentation, and the overhead that it imposes on memory
intensive applications.

8.1.1 Wear Leveling

First, we evaluate the ability of our allocator to avoid
NVRAM wear-out using a simple test program that per-
forms 100,000 random memory allocation and dealloca-
tion operations (50% each). The sizes are uniformly-
distributed between 10 B and 4 KB. For every allocation,
the program writes the entire allocated block once. We
instrument the program using Pin [24] to record stores to
memory, both when using glibc malloc and when using
NVMalloc. We record the number of accesses to each 64
byte block of memory (the size of a cache line), coalesc-
ing consecutive stores to a single block (Figure 5). These
stores approximate writes to NVRAM.

NVMalloc distributes writes much more evenly than
(glibc) malloc. Increasing the time blocks spend on the
don’t-allocate list spreads the writes further. The current
implementation sets this value to roughly 100 ms of real
time; when running under Pin, we approximate this tar-
get range by waiting 2 seconds of real time to compen-
sate for the overhead of using binary instrumentation.

 99

 100

 1 10 100 1000

 0

 20

 40

 60

 80

 100

 1 10 100 1000

Pe
rc

en
ta

ge
 o

f
ca

ch
e

lin
es

Number of writes per 64 byte block

NVMalloc, modified B+ tree
malloc, modified B+ tree
malloc, original B+ tree

Figure 6: CDF of writes per block in B+ tree meta-
data, for 106 inserts (8 B keys). Original is the classic
B+ tree implementation, modified uses NVMalloc and
cache line counters. The top graph expands the 99%-
100% interval. The X axis is log-scale.

Without hardware wear leveling, NVMalloc’s im-
proved distribution is critical for avoiding wear-out. With
hardware wear leveling, malloc’s concentrated writes
may require more internal remapping in the NVRAM de-
vice, degrading throughput and increasing overall wear
as explained in Section 3.1.

Second, we evaluate the total number of writes. Mal-
loc performs 1.3 times more writes to NVRAM than
NVMalloc (2.39 million versus 1.83 million), because
malloc maintains frequently changing metadata inside
free blocks. With smaller allocation sizes (10 bytes to
256 bytes), malloc performs 1.5 times more writes. Even
if perfect hardware wear leveling was possible, NVMal-
loc would increase NVRAM lifetime by 30% to 50% for
this microbenchmark.

We repeat the wear leveling test for our modified B+
tree. Figure 6 presents the cumulative distribution of
writes per cache line-sized block of memory in the meta-
data portion of the B+ tree (inner nodes and leaf nodes)
for one million insert operations.7

Finally, we run the same experiment for Mem-
cached [25] version 1.4.7, for a workload composed of
60K inserts and 40K random deletes—10 B keys and
256 B values. We compare NVMalloc, glibc malloc,
and two other popular allocators: jemalloc [14] and
Hoard [4]. The results are presented in Figure 7. NVMal-
loc causes orders of magnitude fewer writes to the most
accessed lines than the other allocators. Overall, glibc
malloc causes 8% more writes than NVMalloc, jemalloc
5%, and Hoard 25%.

8.1.2 Fragmentation and Overhead

To compare the address space fragmentation of NVMal-
loc and malloc, we perform one million allocations and

7This is a realistic scenario, since most allocators perform
large allocations in a separate part of the address space than
small allocations (for speed and fragmentation considerations).

 99.99

 100

 1 10 100 1000 10000 1e+06

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 1e+06

P
e

rc
e

n
ta

g
e

 o
f

c
a

c
h

e
 l
in

e
s

Number of writes per 64 byte block

NVMalloc
glibc malloc

jemalloc
hoard

Figure 7: CDF of writes per block in Memcached
(60K puts, 40K deletes, 10 B keys with 256 B val-
ues). The top graph expands the 99.99%-100% in-
terval. The X axis is log-scale.

Free:Alloc malloc frag. NVMalloc frag. Slow-
Ratio total (external) total (external) down

1/3 1.10% (0.33%) 2.14% (0.26%) 1.10
1/2 1.30% (0.52%) 2.29% (0.41%) 1.12
1/1 14.34% (13.61%) 12.76% (11.11%) 1.10

Table 2: Fragmentation and slowdown for 106 opera-
tions.

deallocations (in various ratios) of random, uniformly
distributed sizes between 10 B and 4 KB, recording
the total and external fragmentation (see Table 2). The
results confirm that NVMalloc produces fragmentation
comparable to glibc malloc.

Table 2 also shows the slowdown that NVMalloc
imposes relative to malloc. Malloc is faster for sev-
eral reasons: most importantly, NVMalloc cannot cache
allocations—this contravenes our wear leveling goals.

For a more realistic assessment of overhead, Table 3
compares Memcached using (a) its own slab allocator,
(b) malloc, and (c) NVMalloc. The experiment sends put
and delete requests in a loop embedded within the Mem-
cached code to avoid measuring RPC overhead. There
are two sets of experiments: (1) requests of random, uni-
formly distributed value sizes between 10 B and 4 KB,
and (2) fixed 1 KB values (10 B keys in both cases). Set-
ting the don’t-allocate time to one second (from zero) in-
fluences results by at most 1.5%. The testing overhead is
1.4%. NVMalloc causes little time overhead for memory
intensive applications.

The space overhead equals the rate of deallocations
multiplied by the time deallocated blocks spend on the
don’t-allocate list. For example, when making T one
second in the Memcached experiment with 1 KB values,
the space overhead is 162 MB (considering that approxi-
mately 20% of requests are misses and prompt dealloca-
tions).

Allocator Allocation size Avg. time (std. err.) [ms]

Memcached slab 10 B - 4 KB 1768 (5)
malloc 10 B - 4 KB 1956 (9)
NVMalloc 10 B - 4 KB 1883 (5)

Memcached slab 1 KB 1149 (4)
malloc 1 KB 1278 (7)
NVMalloc 1 KB 1289 (5)

Table 3: Time for 106 Memcached operations (80%
puts, 20% deletes).

8.2 Asynchronous Memory Protection

We measure the performance benefits of using async
memory protection vs. synchronous mprotect.

Figure 8 shows the time to perform one million ran-
dom insert operations in the in-memory B+ tree and
Memcached version 1.4.7 using async memory protec-
tion, no memory protection, and synchronous memory
protection respectively. In the async case, we make an
unprotect request right before we start an update to a
memory object (B+ tree node or value slot, or Mem-
cached value item), and make a protect request as soon
as we are done updating it. For the synchronous mpro-
tect, we also maintain a user-space bitmap that records
the state of a page (protected/unprotected) to avoid su-
perfluous syscalls. We further modified Memcached to
perform all operations in a tight loop, so that we discount
RPC overhead. Overall application speedup with async
mprotect instead of regular mprotect varies between 34%
and 500% depending on memory object sizes—async
mprotect performs better for small objects because more
objects will occupy the same pages, so our batching ap-
proach is able to coalesce more requests into fewer page
protection changes. The overhead of async mprotect over
no mprotect varies between 67% and 323%.

These workloads were selected to stress the protec-
tion path in order to evaluate the speedup for protec-
tion requests conferred by the async mprotect mecha-
nism. Real-world uses would likely incur a larger per-
centage of read operations, which do not require pro-
tection changes. The actual (workload-dependent) ap-
plication throughput can therefore be determined from
these results by weighting the overhead by the percent-
age of reads: For example, memcache-256B with 50%
reads would observe a roughly 2.5x slowdown with nor-
mal mprotect, and 1.3x using async mprotect.

In reducing the overhead of synchronous mprotect,
sorting batched requests by page address plays an im-
portant role: without sorting, the B+ tree test with one
million 256 B inserts is 66% slower than with sorting.

We also measure the latency to complete a protection
request from the time the application issues it until the
kernel thread protects the page. Figure 9 show a CDF of

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

btree
256B

btree
4K

memcache
256B

memcache
4K

T
h
ro

u
g
h
p
u
t
[o

p
s
/s

e
c
] async mprotect

no mprotect
sync mprotect

Figure 8: Operations throughput (with 95% confi-
dence intervals) for (i) B+ tree inserts and (ii) Mem-
cached operations (80% puts, 20% deletes), with
256 B and 4 KB values (8 B keys). For async mpro-
tect, the maximum kernel thread sleep time is 150 ms.

 0

 20

 40

 60

 80

 100

 100 150 200 250 300 350

P
e

rc
e

n
ta

g
e

o
f

re
q

u
e

s
ts

Latency [ms]

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

P
e

rc
e

n
ta

g
e

o
f

re
q

u
e

s
ts

Latency [ms]

Figure 9: CDF of memory protection latency for the
B+ tree using kernel thread wait times of 150 ms (left
graph) and 0.01 ms.

async mprotect performance with 1 M inserts of 8 B keys
and 256 B values into the B+ tree. With Linux high reso-
lution timers, we can achieve low latencies (50 µs on av-
erage) at the expense of throughput: the slowdown of low
latency asynchronous mprotect is 7.9×—up from 1.72×
for the high latency async mprotect, but still smaller than
that of synchronous mprotect (9×).

In conclusion, our new memory protection mecha-
nism gives application programmers the ability to trade
the latency of protection changes (how long an object
is vulnerable to erroneous writes after an update, or af-
ter updates to objects in the same VM page) for update
throughput.

It is important to note that the relative overheads of
memory protection (both async and traditional) will be
lower for NVRAM than presented here for DRAM, be-
cause of NVRAM’s slower writes.

8.3 Cache Line Counters

This section compares the insert throughput achieved
by our modified B+ tree and the original B+ tree [5]
with (a) no modifications and therefore no consistency
guarantees, (b) cache line flushes to achieve consistency
(as defined in Section 6), and (c) memory mapped so
as to use the write-combining memory access protocol,
which guarantees that writes go (almost) immediately to

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

original write-
combining

CLFLUSH MOVNT CLC-UB CLC-LBT
h
ro

u
g
h
p
u
t
[o

p
s
/m

s
] 256 B

4 KB

Figure 10: Insert throughput for 106 entries (8 B keys,
256 B and 4 KB values respectively) CLC corresponds
to cache line counters (LB/UB = lower/upper bound).

memory.8 We also compare to the B+ tree modified to
use non-temporal streaming writes (MOVNTx Intel SSE
instructions), even if they do not guarantee immediate
write-back to memory (they may update only the cache
if the targeted location is already in the cache [19]), to
give a higher bound on what can be achieved with cache-
bypassing techniques. These results use the simulated
cache line counter overhead (Section 7.3).

Figure 10 depicts the results. Because a node split has
a transient state (see Section 6) whose duration depends
on the cache line replacement rate, we present the results
for the cache line counter enabled B+ tree as two data
series: one corresponding to transient states ending im-
mediately (an upper bound for performance), and one for
transient states lasting indefinitely (a lower bound).

Cache line counters outperform the other consistency
preserving mechanisms for inserts. However, this comes
at the expense of the read throughput: unlike the B+ tree
versions using cache flushes and cache bypassing writes,
the nodes in our B+ tree do not maintain the keys in order.
As a result, the read throughput decreases by 30% to 32%
for 256 B values, and by 10% to 12% for 4 KB values. A
possible solution is to lazily sort nodes during periods of
low update load, but we leave this for future work.

8.4 DRAM vs. NVRAM

Our evaluation used DRAM as a proxy for NVRAM.
As discussed in Section 2, some of the characteristics of
DRAM are overly optimistic predictions for NVRAM.
We believe, nevertheless, that “high-order bits” of our
results would remain when using NVRAM, were it avail-
able: VM page tables would still be maintained in
DRAM, so the mprotect overhead would be the same (in
absolute value; the relative overhead will be lower, due
to NVRAM’s slower writes). NVMalloc’s write patterns
would remain the same, but, if NVRAM writes were

8Linux lacks user-space Page Attributes Table support. We
ran the experiments in this section on Windows Vista 64, using
Visual C++ 2010, on the same Core i7 machine, except for the
tests with SSE streaming writes, which we have only been able
to implement with the GCC compiler. The results of those tests
that ran on both Windows and Linux were very similar.

appreciably slower than DRAM writes, NVMalloc’s de-
creased overall write traffic would give it a performance
advantage over traditional allocators. Finally, the advan-
tages of cache line counters would be more evident on
NVRAM: by not forcing writes to go directly to mem-
ory, we decrease the number of memory bus transactions
(which are likely to be slower with NVRAM), as well as
the used write bandwidth.

9 Related Work

Related work falls into three main categories: systems
that use NVRAM as persistent storage on the memory
bus, memory management, and virtual memory protec-
tion.

NVRAM on the memory bus. Recent work has ad-
dressed some of the challenges of using NVRAM as
persistent storage on the memory bus. BPFS [11] is a
file system designed specifically for NVRAM. As we
do, BPFS identifies cache-bypassing writes and cache
flushes as an important source of inefficiency, and pro-
poses CPU modifications—epoch barriers—to allow ap-
plications to use normal stores while getting strict guar-
antees for the order in which these stores will be per-
sisted. Our cache line counter mechanism is a more gen-
eral and flexible solution: applications themselves con-
trol the ordering of updates by delaying making those up-
dates that depend on something still in the CPU caches.
This allows for a less intrusive hardware implementation
when compared to epoch barriers: the cache line replace-
ment logic does not change (which is important, since
otherwise this could negate the benefits of many years
of CPU cache optimizations), and the CPU never has to
perform cache walks when a cache line has to be written
back to memory. Moreover, it is unclear if epoch barriers
can work well in a general multi-process setting, outside
of BPFS, because barriers would impose false dependen-
cies between unrelated processes.

Since they do not rely on the correct functioning of
external subsystems, cache line counters are more reli-
able than approaches that use capacitors or the residual
energy in power supplies [27] to flush the CPU caches in
case of power failure.

NV-heaps [10] and Mnemosyne [43] extend the soft-
ware transactional memory semantics to include per-
sistence. NV-heaps restrict the interface to NVRAM
to an object-oriented programming model, and provide
garbage collection for persistent memory objects—this
is important, because memory leaks are especially prob-
lematic for non-volatile memory. We believe the tech-
niques we presented in this paper are complementary
to the ones introduced by NV-heaps. Mnemosyne, like
Rio Vista [23] before it, also identifies the need for sep-

arating the memory allocator metadata from the allo-
cated blocks of non-volatile memory, but it stores this
metadata unguarded in NVRAM—this scheme is there-
fore more vulnerable to corruption and data loss than
NVMalloc (see discussion in Section 3.2). NV-heaps
uses the BPFS epoch barriers for guarantees about order-
ing, while Mnemosyne relies on non-cacheable writes.

A multi-versioned B+ tree for NVRAM has been pre-
sented in [41]. It relies on cache line flushes for main-
taining write ordering—we therefore believe that it could
benefit from our cache line counters scheme.

The aforementioned systems rely solely on external
solutions for wear-out prevention.

Memory Management. Throughout this paper, we ex-
tensively compare NVMalloc with the GNU C Library’s
popular malloc implementation, which is based on dl-
malloc [22]. Many other memory allocators exist [4, 14,
16], but they are generally focused on multithread perfor-
mance (Section 8.1.1 also compares with jemalloc and
Hoard). Some of their techniques work against our wear
leveling goals (e.g., concentrating allocations into as few
pages as possible), but most are optimizations orthogonal
to ours.

Dhiman et al. [13] presented an OS-level page man-
agement technique for wear leveling page allocations.
By contrast, NVMalloc is a general-purpose allocator.

Virtual Memory Protection Protecting data mapped in
the address spaces of processes using virtual memory
protection has been employed successfully for over two
decades in the context of databases [38, 12] or reliable
file system caches on battery-backed DRAM [8]. Mpro-
tect continues to be used for the same purpose today in
mainstream databases, but the vendors recommend turn-
ing it off when performance is important [42].

We improve the performance of this technique by
making the protect operations asynchronous. Our im-
plementation, by avoiding system calls, is reminiscent of
FlexSC’s exception-less system calls [37]. However, our
approach gains more from being tailored to the particu-
larities of mprotect than from avoiding mode switches.

Protecting the memory of modules running within
the same address space, particularly device drivers in
an OS kernel, has been the subject of much research.
Nooks [39] statically provides each kernel extension with
its separate page table (with write rights only for its own
memory), and uses the regular hardware-enforced virtual
memory protection mechanisms. Nooks does not permit
direct cross-domain memory access, instead using cross-
domain procedure calls. This provides stronger protec-
tion than our approach, but has lower performance when
accessing memory directly. For reasons similar to ours,
Nooks uses batching to mitigate the cost of changing
protection domains (it batches cross-domain procedure

calls). BGI [7] uses a compiler plug-in to generate in-
strumented code that checks permissions for every write
to memory, at byte granularity. Unlike BGI, mprotect-
based approaches work with existing, un-instrumented
library code. AddressSanitizer [35] works similarly to
BGI in detecting out-of-bounds accesses in user space,
and we believe it could be extended to detect accidental
overwrites. It has high space overhead (3.4x), but offers
a higher level of protection than our scheme.

10 Conclusions
Upcoming memory technologies will soon provide a new
way for applications to store persistent data at near-
DRAM speeds. Harnessing this speed, however, will
require placing NVRAM directly on the memory bus.
Applications, supported by user-space libraries and the
OS, must ensure that this persistent data remains safe
from wear-out and corruption. We believe that the tech-
niques described in this paper—a new memory alloca-
tor for NVRAM, a virtual memory protection scheme,
and cache line counters—can substantially ease the task
of creating safe, high-performance persistent data struc-
tures for emerging non-volatile memories.

Acknowledgments
We thank our shepherd Gernot Heiser, the anonymous
reviewers, Hans Boehm, Terence Kelly, Dejan Milojicic,
Dhruva Chakrabarti, Garth Gibson and Todd Mowry for
their comments and suggestions. Reinhard Munz helped
us with the performance evaluation. This research was
funded in part by Intel via the Intel Science and Technol-
ogy Center for Cloud Computing (ISTC-CC), by the Na-
tional Science Foundation under award CCF-0964474,
and by gifts from HP and Google.

References
[1] S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai,

Y. Hwang, S. Lee, K. Ryoo, S. Lee, J. Park,
H. Horii, Y. Ha, J. Yi, B. Kuh, G. Koh, G. Jeong,
H. Jeong, K. Kim, and B. Ryu. Highly manu-
facturable high density phase change memory of
64Mb and beyond. In Electron Devices Meeting,
2004. IEDM Technical Digest. IEEE International,
pages 907–910, Dec. 2004.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie. Unbounded transactional
memory. IEEE Micro, 26:59–69, Jan. 2006.

[3] F. Bedeschi, C. Resta, O. Khouri, E. Buda,
L. Costa, M. Ferraro, F. Pellizzer, F. Ottogalli,

A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and
G. Casagrande. An 8Mb demonstrator for high-
density 1.8V phase change memories. In VLSI Cir-
cuits, 2004. Digest of Technical Papers. 2004 Sym-
posium on, pages 442–445, June 2004.

[4] E. D. Berger, K. S. McKinley, R. D. Blumofe, and
P. R. Wilson. Hoard: A scalable memory allocator
for multithreaded applications. In ASPLOS, pages
117–128, 2000.

[5] T. Bingmann. Stx b+ tree c++ template
classes. http://idlebox.net/2007/
stx-btree/, 2008.

[6] H.-J. Boehm. The Boehm-Demers-Weiser
conservative garbage collector. http:
//www.research.ibm.com/ismm04/
slides/boehm-tutorial.ppt, 2004.

[7] M. Castro, M. Costa, J.-P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In
Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 45–58, Oct. 2009.

[8] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock,
G. Rajamani, and D. Lowell. The Rio file cache:
Surviving operating system crashes. In Proc. 7th
International Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 74–83, Oct. 1996.

[9] A. T. Clements, M. F. Kaashoek, and N. Zel-
dovich. Radixvm: scalable address spaces for mul-
tithreaded applications. In Proceedings of the 8th
ACM European Conference on Computer Systems,
EuroSys ’13, pages 211–224, 2013.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-Heaps:
Making persistent objects fast and safe with next-
generation, non-volatile memories. In Proc. 16th
International Conf. on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), Mar. 2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. Lee, D. Burger, and D. Coetzee. Better I/O
through byte-addressable, persistent memory. In
Proc. 22nd ACM Symposium on Operating Systems
Principles (SOSP), pages 133–146, Oct. 2009.

[12] G. Copeland, T. Keller, R. Krishnamurthy, and
M. Smith. The case for safe RAM. In Proceedings
of the 15th International Conference on Very Large
Data Bases, VLDB ’89, pages 327–335. Morgan
Kaufmann Publishers Inc., 1989.

[13] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A
Hybrid PRAM and DRAM Main Memory System.
In Design Automation Conference, 2009. DAC ’09.

http://idlebox.net/2007/stx-btree/
http://idlebox.net/2007/stx-btree/
http://www.research.ibm.com/ismm04/slides/boehm-tutorial.ppt
http://www.research.ibm.com/ismm04/slides/boehm-tutorial.ppt
http://www.research.ibm.com/ismm04/slides/boehm-tutorial.ppt

46th ACM/IEEE, pages 664 –669, July 2009.
[14] J. Evans. A Scalable Concurrent malloc(3) Imple-

mentation for FreeBSD. BSDCan - The BSD Con-
ference, 2006.

[15] G. R. Ganger and Y. N. Patt. Soft updates: a solu-
tion to the metadata update problem in file systems.
ACM Transactions on Computer Systems, 18:127–
153, 2000.

[16] S. Ghemawat and P. Menage. Tcmalloc : Thread-
caching malloc. http://goog-perftools.
sourceforge.net/doc/tcmalloc.html.

[17] B. Holden. Latency comparison between
HyperTransportTM and PCI-ExpressTM

in communications systems. http:
//www.hypertransport.org/docs/
wp/Low_Latency_Final.pdf, 2006.

[18] IBM websphere real time for real time Linux,
version 2 information center. http://
publib.boulder.ibm.com/infocenter/
realtime/v2r0/index.jsp, 2006.

[19] Intel 64 and IA-32 architectures devel-
oper’s manual: Vol. 1. http://www.
intel.com/content/www/us/en/
architecture-and-technology/, 2011.

[20] M. Kharbutli and Y. Solihin. Counter-based cache
replacement and bypassing algorithms. Computers,
IEEE Transactions on, 57(4):433–447, Apr. 2008.

[21] L. Lamport. Proving the correctness of multipro-
cess programs. Software Engineering, IEEE Trans-
actions on, SE-3(2):125 – 143, Mar. 1977.

[22] D. Lea. A memory allocator. http://g.
oswego.edu/dl/html/malloc.html,
2000.

[23] D. E. Lowell and P. M. Chen. Free transactions
with Rio Vista. In Proceedings of the sixteenth
ACM Symposium on Operating Systems Principles,
SOSP ’97, pages 92–101. ACM, 1997.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Janapa, and R. K. Hazel-
wood. Pin: Building customized program analysis
tools with dynamic instrumentation. In In Program-
ming Language Design and Implementation, pages
190–200. ACM Press, 2005.

[25] A distributed memory object caching system.
http://memcached.org/, 2011.

[26] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood. LogTM: log-based transactional
memory. In High-Performance Computer Architec-
ture, 2006. The Twelfth International Symposium
on, pages 254–265, Feb. 2006.

[27] D. Narayanan and O. Hodson. Whole-system per-
sistence. In Proceedings of the seventeenth interna-

tional conference on Architectural Support for Pro-
gramming Languages and Operating Systems, AS-
PLOS ’12, pages 401–410. ACM, 2012.

[28] Numonyx. Phase change memory (PCM): A
new memory technology to enable new mem-
ory usage models. http://www.numonyx.
com/Documents/WhitePapers/Numonyx_
PhaseChangeMemory_WhitePaper.pdf,
2009.

[29] Numonyx. Phase change memory. http:
//www.pdl.cmu.edu/SDI/2009/slides/
Numonyx.pdf, 2009.

[30] M. K. Qureshi, J. Karidis, M. Franceschini,
V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of pcm-based main memory
with start-gap wear leveling. In Proc. ACM MI-
CRO, 2009.

[31] M. K. Qureshi, A. Seznec, L. Lastras, and
M. Franceschini. Practical and secure pcm systems
by online detection of malicious write streams. In
Proc. HPCA, 2011.

[32] B. Saha, A.-R. Adl-Tabatabai, and Q. Jacobson.
Architectural support for software transactional
memory. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microar-
chitecture, MICRO 39, pages 185–196. IEEE Com-
puter Society, 2006.

[33] Virtualized SAP performance with VMware
vSphere 4. http://www.vmware.com/
files/pdf/perf_vsphere_sap.pdf,
2009.

[34] M. Satyanarayanan, H. H. Mashburn, P. Kumar,
D. C. Steere, and J. J. Kistler. Lightweight recover-
able virtual memory. ACM Transactions on Com-
puter Systems, 12:33–57, Feb. 1994.

[35] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. Addresssanitizer: a fast address sanity
checker. In Proceedings of the 2012 USENIX con-
ference on Annual Technical Conference, USENIX
ATC’12, 2012.

[36] A. Seznec. A phase change memory as a secure
main memory. IEEE Comp. Arch. Letters, 9:5–8,
2010.

[37] L. Soares and M. Stumm. FlexSC: Flexible system
call scheduling with exception-less system calls. In
Proc. 9th USENIX OSDI, Oct. 2010.

[38] M. Sullivan and M. Stonebraker. Using write pro-
tected data structures to improve software fault tol-
erance in highly available database management
systems. In Proc. VLDB, 1991.

[39] M. M. Swift, B. N. Bershad, and H. M. Levy. Im-
proving the reliability of commodity operating sys-

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.hypertransport.org/docs/wp/Low_Latency_Final.pdf
http://www.hypertransport.org/docs/wp/Low_Latency_Final.pdf
http://www.hypertransport.org/docs/wp/Low_Latency_Final.pdf
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html
http://memcached.org/
http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_WhitePaper.pdf
http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_WhitePaper.pdf
http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_WhitePaper.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.vmware.com/files/pdf/perf_vsphere_sap.pdf
http://www.vmware.com/files/pdf/perf_vsphere_sap.pdf

tems. ACM Transactions on Computer Systems,
pages 77–100, 2005.

[40] How long does it take to make a context switch?
http://blog.tsunanet.net/
2010/11/how-long-does-
it-take-to-make-context.html.

[41] S. Venkataraman, N. Tolia, P. Ranganathan, and
R. Campbell. Consistent and durable data struc-
tures for non-volatile byte-addressable memory. In
Proceedings of the 9th USENIX Conference on File
and Storage Technologies (FAST ’11), Feb. 2011.

[42] VMware best practices for SAP installations.
http://communities.vmware.com/
blogs/SAPsolutions/2008/01/18/
vmware-best-practices-for
-sap-installations, 2008.

[43] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight persistent memory. In Proc. 16th In-
ternational Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS), Mar. 2011.

[44] P. R. Wilson. Pointer swizzling at page fault time:
Efficiently supporting huge address spaces on stan-
dard hardware. SIGARCH Computer Architecture
News, 19:6–13, July 1991.

[45] P. R. Wilson, M. S. Johnstone, M. Neely, and
D. Boles. Dynamic storage allocation: A survey
and critical review. In H. G. Baker, editor, IWMM,
volume 986 of Lecture Notes in Computer Science,
pages 1–116. Springer, 1995.

http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://communities.vmware.com/blogs/SAPsolutions/2008/01/18/vmware-best-practices-for-sap-installations
http://communities.vmware.com/blogs/SAPsolutions/2008/01/18/vmware-best-practices-for-sap-installations
http://communities.vmware.com/blogs/SAPsolutions/2008/01/18/vmware-best-practices-for-sap-installations
http://communities.vmware.com/blogs/SAPsolutions/2008/01/18/vmware-best-practices-for-sap-installations

	Introduction
	Background and Assumptions
	Non-Volatile RAM
	NVRAM on the Memory Bus
	Hardware Wear Leveling Limitations
	Operating System Support

	Memory Allocation for NVRAM
	Wear-Aware Memory Allocation
	Robust Memory Allocation

	Low-Overhead VM Protection
	Cache-Efficient Updates to Persistent Main Memory
	Cache Line Counters
	Implementing Cache Line Counters

	A B+ Tree Example
	Implementation
	NVMalloc
	Asynchronous Memory Protection
	Simulating Cache Line Counters

	Evaluation
	NVMalloc
	Wear Leveling
	Fragmentation and Overhead

	Asynchronous Memory Protection
	Cache Line Counters
	DRAM vs. NVRAM

	Related Work
	Conclusions

