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ABSTRACT
The unrelenting growth of the memory needs of emerging data-
center applications, along with ever increasing cost and volatility
of DRAM prices, has led to DRAM being a major infrastructure
expense. Alternative technologies, such as NVMe SSDs and upcom-
ing NVM devices, offer higher capacity than DRAM at a fraction
of the cost and power. One promising approach is to transparently
offload colder memory to cheaper memory technologies via ker-
nel or hypervisor techniques. The key challenge, however, is to
develop a datacenter-scale solution that is robust in dealing with di-
verse workloads and large performance variance of different offload
devices such as compressed memory, SSD, and NVM.

This paper presents TMO, Meta’s transparent memory offloading
solution for heterogeneous datacenter environments. TMO intro-
duces a new Linux kernel mechanism that directly measures in re-
altime the lost work due to resource shortage across CPU, memory,
and I/O. Guided by this information and without any prior appli-
cation knowledge, TMO automatically adjusts how much memory
to offload to heterogeneous devices (e.g., compressed memory or
SSD) according to the device’s performance characteristics and
the application’s sensitivity to memory-access slowdown. TMO
holistically identifies offloading opportunities from not only the
application containers but also the sidecar containers that provide
infrastructure-level functions. To maximize memory savings, TMO
targets both anonymous memory and file cache, and balances the
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swap-in rate of anonymous memory and the reload rate of file pages
that were recently evicted from the file cache.

TMO has been running in production for more than a year, and
has saved between 20-32% of the total memory across millions
of servers in our large datacenter fleet. We have successfully up-
streamed TMO into the Linux kernel.
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1 INTRODUCTION
The massive growth in memory needs of emerging applications
such as machine learning, coupled with the slowdown of DRAM
device scaling [19, 25] and large fluctuations of the DRAM cost, has
made DRAM prohibitively expensive as the sole memory capacity
solution.

In recent years, a plethora of non-DRAM cheaper memory tech-
nologies such as NVMe SSDs [8, 11] and NVM [14, 17, 24, 30, 34, 37]
have been successfully deployed in datacenters, or are on their way.
Moreover, emerging non-DDR memory bus technologies such as
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CXL [9] provide memory-like access semantics and close-to-DDR
performance. The confluence of these trends enable new opportu-
nities for memory tiering not possible in the past [12, 16, 21, 31–
33, 39, 40].

With memory tiering, less frequently accessed data is migrated
to slower memory. The migration process can be driven by the
application itself, a userspace library [6, 12, 26, 29], the kernel, or
the hypervisor. This paper focuses on kernel-driven migration, or
swapping, as it can be transparently applied to many applications
without requiring any application modification.

Despite its conceptual simplicity, the only known large-scale
adoption of kernel-driven swapping for latency-sensitive datacen-
ter applications, is Google’s deployment [18] of zswap [43], which
we call g-swap in the rest of this paper. As a pioneer, g-swap sig-
nificantly advanced the state of the art, but still has several major
limitations.

First, g-swap supports only a single slow memory tier, i.e., a
compressed memory pool managed by zswap. On one hand, this
simplicity avoids the difficult problem of tackling heterogeneous
memory tiers that exhibit large performance variances, e.g., NVMe
SSDs and NVM devices. On the other hand, it is insufficient in
maximizing memory-cost savings. §2.1 shows that NVMe SSDs
offer an order of magnitude cost and power savings compared
with compressed memory. Moreover, some application’s data are
hard to compress, e.g., machine learning models with quantized
byte-encoded values.

Second, g-swap relies on extensive offline application profiling,
and sets a static target page-promotion rate to determine howmuch
memory to offload. This empirical approach is not sufficiently ro-
bust because the promotion-rate metric does not directly reflect
an application’s sensitivity to memory-access slowdown, and does
not consider the performance characteristics of the offloading de-
vice. Specifically, our evaluation in §4.3 with one of the largest
applications at Meta, directly contradicts g-swap’s assumption that
memory offloading should be kept below a pre-configured promo-
tion rate in order to avoid hurting the application’s performance.
To the contrary, with a faster offloading device, a higher promotion
rate actually improves the application’s performance

To address these limitations, we built TMO, a transparent mem-
ory offloading solution for containerized environments. Fundamen-
tally, TMO needs to answer two questions: how much memory to
offload and what memory to offload. To answer the first question,
TMO introduces a new kernel mechanism called Pressure Stall In-
formation (PSI ), which directly measures in realtime the lost work
due to resource shortage across CPU, memory, and I/O. PSI is re-
ported on a per-process and per-container basis. Unlike g-swap’s
promotion-rate metric, PSI accounts for both the performance char-
acteristics of the slow memory tier and the application’s sensitivity
to memory-access slowdown. A userspace agent called Senpai uses
the PSI metrics to dynamically decide how much memory to offload
without prior application knowledge while taking into account
hardware heterogeneity in datacenters.

To answer the question of what memory to offload, we had to
address several challenges. First, the Linux kernel attempted to
balance memory reclamation between file cache and swap-backed
anonymousmemory, but skewed heavily towards file cache through

several heuristics. This relegated swap to only be used as an emer-
gency overflow for memory, which is not suitable for offloading op-
erations. In order to offload file and anonymous pages more evenly,
we modified the kernel to balance the swap-in rate of anonymous
memory and the reload rate of file pages that were recently evicted
from the file cache.

Second, TMO holistically identifies offloading opportunities from
not only the application containers but also the sidecar containers
that provide connectivity functions (e.g., routing and proxy) among
microservices or infrastructure-level functions such as logging and
service discovery.

Finally, as memory is distributed across complex container hi-
erarchies and containers may have different priorities, TMO accu-
rately monitors each container’s memory needs, and considers the
hierarchies and properties of containers when making offloading
decisions.

Currently, TMO provides transparent memory offloading across
millions of servers in our datacenters, and saves 20-32% of the total
memory. About 7-19% of the savings come from the application
containers, while about 13% of the savings come from the sidecar
containers.

The contributions of this paper are as follows:
(1) We introduce PSI, a Linux kernel component that directly

measures in realtime the lost work due to resource shortage
across CPU, memory, and I/O. This is the first solution that
can directly measure an application’s sensitivity to memory-
access slowdown, without resorting to fragile low-level met-
rics such as the page-promotion rate.

(2) We introduce Senpai, a userspace agent that applies a mild
memory pressure to effectively offload memory across di-
verse workloads and heterogeneous hardware with minimal
impact on application performance. Compared with g-swap,
the key advantages of Senpai are that it does not require of-
fline application profiling and supports both SSDs and zswap
as slow memory tiers.

(3) TMO performs memory offloading to swap at a subliminal
memory-pressure level, and the turnover is proportional
to file cache. This is in contrast to the historic behavior of
swapping as an emergency overflow under severe memory
pressure.

(4) We report our experience of deploying TMO in production
to millions of servers.

(5) We have upstreamed PSI into the Linux kernel and also made
Senpai1 open source.

2 MEMORY OFFLOADING OPPORTUNITIES
AND
CHALLENGES IN DATACENTERS

In this section, we first present DRAM and SSD cost trends from
Meta’s datacenters that consist of millions of servers. Then, we
showcase memory offloading opportunities across a wide range of
applications running in our fleet. Furthermore, beyond workloads,
we introduce datacenter and microservice memory tax and present
fleet-wide characterization of offloading opportunities. Next, we

1https://github.com/facebookincubator/oomd
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highlight the need for a memory offloading system to take into
account the intricacies of the memory allocation subsystem. Finally,
we show SSD heterogeneity across our datacenters and how it poses
significant challenges to heterogeneous memory offloading.

2.1 Memory and SSD Cost Trends
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Figure 1: Cost of memory, compressed memory, and SSDs
as a percentage of compute infrastructure across hardware
generations.

Figure 1 shows the relative cost of DRAM, compressed memory,
and SSD storage as a fraction of server cost in our datacenters.
The 𝑥-axis shows different hardware generations. The compressed
memory cost is estimated based on a 3x compression ratio repre-
sentative of the average for our production workloads. The Gen-1
hardware is near its end of life while Gen-5 and Gen-6 are expected
to be deployed in the near future. The cost of DRAM, as a fraction
of server cost, is expected to grow and reach 33%. While not shown
in the figure, DRAM power consumption follows a similar trend
and is expected to reach 38% of our server infrastructure.

Using compressed memory can reduce the cost significantly,
but it is still insufficient and we need alternative memory tech-
nologies such as NVMe SSDs to further drive down the cost more
aggressively. NVMe SSDs provide a much larger memory footprint
per-server than DRAM, at substantially cheaper cost and lower
power per-byte. We equip all our production servers with a very
capable NVMe SSD. At the system level, NVMe SSDs contribute to
under 3% of server cost (about 3x lower than compressed memory
in our current generation of servers). Moreover, Figure 1 shows
that, iso-capacity to DRAM, SSD remains under 1% of server cost
across generations (about 10x lower than compressed memory in
cost-per-byte!). These trends make NVMe SSDs much more cost
effective compared to compressed memory for our fleet.

2.2 Cold Memory as Offloading Opportunity
Datacenter applications exhibit drastic differences in their memory
behavior. To quantify the opportunity of memory offloading we
characterize the memory coldness of seven large applications at
Meta.

Figure 2 shows the amount of memory touched in the last 𝑥
minutes, where 𝑥 is 1, 2, or 5 minutes, as well as memory that
remains untouched after 5 minutes. For example, for Feed, starting
from the bottom, 50% of the memory is used in the last 1 minute,
additional 8% in the last 2 minutes, and additional 12% in the last
5 minutes. The remaining 30% remains cold past the 5 minute
interval. The memory coldness of applications vary drastically. For
example, 81% of memory for Cache B is active in the last 5 minutes.
By contrast, only 38% of memory for Web is actively used in the
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Figure 2: Application’s recently used memory in 1 min, 2
min, and 5 min intervals, and memory not used in the last 5
min.

last 5 minutes. Overall, the memory offloading opportunity (i.e.,
fraction of cold memory) averages about 35%, but varies wildly
across applications in a range of 19-62%, which emphasizes the
importance of having an offloading method that is robust against
application’s diverse memory behaviors.

2.3 Memory Tax
To ease the operation of applications in datacenters, a significant
amount of memory is used to enable microservices and provide
infrastructure-level functions. We define as datacenter memory tax
the memory required for software packages, profiling, logging, and
other supporting functions related to the deployment of applica-
tions in datacenters. We further define as microservice memory tax
all the memory required by applications due to their disaggrega-
tion into microservices, e.g., to support routing and proxy, and it is
applicable uniquely to microservice architectures.
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Figure 3: Datacenter and microservice memory tax.

Figure 3 shows the average memory tax as a percentage of the
total server memory across all workloads at Meta. Both datacenter
and microservice tax account for a significant percentage of mem-
ory usage. On average, the memory tax accounts for 20% of the total
memory capacity. Datacenter memory tax is 13% and it is uniform
across all workloads. Microservice memory tax accounts for 7%
on average, and can vary depending on application characteristics.
Notably, the performance SLA for most of the memory tax is more
relaxed than that of memory directly consumed by applications. As
a result, the memory tax was a prime target for memory offloading
during our first production launch of TMO.

2.4 Anonymous and File-Backed Memory
Memory is separated into two main categories, anonymous mem-
ory and file-backed memory. Anonymous memory is allocated by
applications and is not backed by a file or a device. File-backed
memory represents allocated memory in relation to a file and is
further stored in the kernel’s page cache.
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Figure 4: Anonymous and file-backed memory breakdown.

Figure 4 shows the breakdown of anonymous and file-backed
memory for several large applications, datacenter memory tax, and
microservice memory tax. The breakdown varies wildly across
applications and memory taxes. Overall, we need to consider of-
floading opportunities for both anonymous and file-backedmemory
in order to maximize the savings.

2.5 Hardware Heterogeneity of Offload Backend
We define a memory offload backend as the slow-memory tier that
holds offloadedmemory. In our current production fleet this consists
of NVMe SSDs and a compressed memory pool. In the future we
expect this to include NVM and CXL devices.

NVMe SSD device heterogeneity is a significant challenge in
datacenter environments. Multiple factors unavoidably create het-
erogeneous hardware in large-scale datacenters, including datacen-
ter turn-ups, hardware refresh, and the need to maintain a diverse
supply chain from different vendors.
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Figure 5: SSD characteristics in logscale. 𝐴-𝐺 on the 𝑥-axis
represent different SSD devices.

Figure 5 shows in logscale, the endurance, read and write IOPS
and p99 latency across major SSD types across Meta’s fleet. Newer
devices are to the right of the figure. Notably, although SSD en-
durance has improved over SSD generations, it is still a limited
resource and should be used judiciously by a memory offloading
system. Furthermore, although IOPS are relatively stable across
generations, read and write latency shows significant variation
across generations, ranging from 9.3ms to 470us.

Besides SSDs, we also use compressed memory as an offload
backend. The p90 latency of a 4KB read from compressed memory
is about 40us. Compared with SSDs, compressed memory is an
order of magnitude faster and with a small latency variance. More-
over, compressed memory avoids the endurance limits of SSDs.
Overall, a memory offloading system needs to effectively tackle a
heterogeneous fleet despite large differences in offload backends.

3 TMO DESIGN
The goal of TMO is to transparently offload memory to hetero-
geneous backends that offer cost-effective but slower memory ac-
cesses. TMO’s workload-transparent design allows for a seamless
deployment across a diverse set of applications and heterogeneous
infrastructure. Fundamentally, TMO addresses the questions of how
much memory to offload and what memory to offload.

3.1 Transparent Memory Offloading
Architecture

Figure 6 shows the overview of the TMO architecture (left) and the
memory and storage layout (right). TMO is composed of multiple
pieces across userspace and the kernel. Unmodified workloads ex-
ecute within a container 1 and interact with the kernel memory
management subsystem through system calls and paging. TMO’s
Senpai is a userspace component 2 responsible for controlling the
memory offloading process and deciding howmuchmemory should
be offloaded from each workload. The Senpai monitors application
performance degradation in the form of pressure information that
is reported by the Pressure Stall Information (PSI) component 3
that lives in the kernel. We describe PSI in §3.2 and Senpai in §3.3.

Based on the PSI information, Senpai drives the offload pro-
cess by writing to cgroup control files 4 that trigger the kernel’s
memory reclamation logic. The reclamation logic determines what
memory to offload. We describe our modifications to Linux kernel
reclaim algorithms in §3.4. The memory management subsystem 5
exposes memory pressure information to the PSI module and trig-
gers read and write operations to the offload backend 6 and the
regular filesystem. TMO supports offloading to either a compressed
memory pool based on zswap or storage devices through swap.

The right side of Figure 6 shows a high-level layout of the mem-
ory and storage in addition to their respective operations. TMO
targets workload memory as well as datacenter and microservice
memory tax. Furthermore, TMO is responsible for both offloading
memory to the backends 7 by compression, swapping or discard-
ing page cache, as well as bringing it back to main memory when
needed, following the reverse operations. Finally, the figure shows
TMO’s currently supported offloading backends 8 , with zswap
being in DRAM and swap and filesystem in storage SSDs.

3.2 Defining Resource Pressure
In determining how much memory to offload we need a measure
of the impact on application performance due to lack of memory.
Devising a uniform metric for application performance across di-
verse workloads is by itself difficult, but even more challenging is
capturing the performance impact of lack of memory specifically,
excluding other unrelated issues.

The OS kernel exports various event counters that can indicate
problems, such as counts of major page faults, and most prior work
has used major faults as a primary indicator for approximating the
impact of memory offloading to application performance. However,
elevatedmajor fault counts could be due to aworkload starting up or
a working set transition, and not due to a shortage of memory. Also,
in a heterogeneous memory system with diversity across offloading
backends, a given major fault rate could constitute a problem on
a slow storage device while being insignificant on a faster one. In
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Figure 6: Overview of the TMO architecture (left) and the memory and storage layout (right).

general, it can be difficult to understand if particular kernel events
are a functional problem for a workload or not. We will demonstrate
in the evaluation §4.3 that major fault rate or promotion rate has
limitations, especially when considering heterogeneous offloading
backends with significant diversity in performance.

3.2.1 PSI Metrics. Fundamentally, PSI exposes a metric that rep-
resents the amount of lost work due to the lack of a resource. It
can be measured for a single process, a container or machine-wide.
PSI calculates pressure metrics by considering only non-idle pro-
cesses. For each non-idle process, PSI further distinguishes between
periods of time when a process is exclusively either runnable or
stalled due to insufficient resources. Furthermore, it defines the
compute potential as the number of non-idle processes capped at
the number of CPUs. PSI is the proportion of compute potential
that is unproductive due to resource stalls. It is often represented
as a percentage. For containers and whole-system domains, PSI
introduces two pressure indicators for each resource called some
and full. The some metric tracks the percentage of time in which
at least one process within the domain is stalled waiting for the
resource. The full metric tracks the percentage of time in which
all processes are delayed simultaneously.

Consider the example in Figure 7, which shows the execution
time of two processes A and B aswell as their stall timewith a dotted
box. The some stalling information is shown with a blue arrow,
while full stalling is shownwith a green arrow. The execution time
is normalized to 100% and partitioned into four sections. During the
first quarter, only one process stalls at a time, either process A or
process B. Hence 12.5% of time is accounted for by the some metric.
Instead, in the second quarter, for 6.25% of time, both processes stall
concurrently during their execution time and hence this stalling
time is accounted for by the fullmetric. In addition, 18.75% of stall
time is accounted for by the some metric. The next two quarters
show different variations of stalls and how some and full are
accounted for accordingly. Overall, some aims to capture added
latencies to individual processes due to lack of a resource while
full indicates the amount of completely unproductive time in the
container or system.

3.2.2 PSI Comparison to Other Metrics and Cost. One existing
mechanism is the resident set size (RSS), which tracks the amount of
main memory that belongs to a process. The main limitation of RSS

Process A

Process B
25%0.0 50% 75% 100%

stallTime
Full: All process
stall for resources

Some: One process
stalls for resources

Figure 7: Kernel resource pressure metrics.

is that by itself it does not capture the impact of memory, or a lack
thereof, on application performance. Other metrics, like promotion
rate account for the number of swap-ins per second. A drawback
of the promotion rate is that it does not take into account the
performance characteristics of the offloading backend. Furthermore,
it fails to capture application performance improvements as more
memory becomes available due to offloading.

Instead, PSI directly captures the impact of memory-access slow-
down to an application and further incorporates the performance
and utilization characteristics of the offloading backend. The main
cost of PSI is scheduling latency since some logic needs to be per-
formed on a context switch. In real applications in our fleet the
overhead is negligible. Beyond datacenters, PSI is enabled by de-
fault on all major Linux distributions including Android. We further
compare PSI to other metrics in Section 4.

3.2.3 PSI Across System Resources. To track memory pressure, PSI
records time spent on events that occur exclusively when there is a
shortage of memory. Currently, this includes three occasions. The
first occasion is when a process triggers reclaiming pages when
memory is full and the process tries to allocate new pages. The
second occasion is when a process needs to wait for IO for a refault,
i.e., a major fault against a page which was recently evicted from the
file cache. The third occasion is when a process blocks on reading
a page in from the swap device.

Block IO stalls are more difficult to accurately calculate because
existing hardware provides little insights into device contention.
In particular, we cannot attribute a portion of a stall on block IO
to the device being oversubscribed or simply expected latency of a
device access. We therefore treat any process waiting on block IO
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completion to be stalled due to lack of IO. This has worked well for
us in production across diverse workloads.

CPU stalls are accounted for as the periods of time when a
process is runnable but needs to wait for an idle CPU to become
available. CPU full pressure is only possible within a container,
which occurs when none of the processes can execute either due
to outside competition or due to configured limits on the cgroup’s
CPU cycles.

3.2.4 PSI Use Cases. By aggregating these process state times
across all CPUs in the system and breaking them down per con-
tainer, PSI gives an intuitive insight into the quality of resource
provisioning for any given workload and container, and provides
the ability to root-cause performance problems or SLO violations
observed at the application level such as missed response deadlines.

The pressuremetrics are aggregated in realtime, and are available
at the microsecond resolution as well as running averages (10s,
1m, 5m). This enables resource management on both ends of the
pressure spectrum.

Large amounts of full pressure can be used to detect unac-
ceptable losses of productivity that require immediate remediation.
These can be caused by overlapping peaks in a system’s main work-
load and a system maintenance process, as well as application bugs,
or errors in configuration and scheduling. Any of these situations
require a timely intervention in order to prevent disruption to ser-
vice quality or threats to the health of the server itself. For example,
long before the kernel’s out-of-memory killer triggers, applications
can be functionally out of memory when the lack of it causes de-
lays that prevent the application from meeting its SLO. Userspace
out-of-memory killers can monitor full metrics and apply killing
policies.

Additionally, some pressure measures the latency impact of lack
of a resource and is sensitive enough to detect aggregate delays
below the threshold that would cause applications to suffer mean-
ingful performance losses. In TMO we exclusively rely on some
metrics to measure the performance impact of memory offloading.
By ensuring the value is low but non-zero, we maintain the pres-
ence of resource contention just high enough that no resources are
going idle, but not so high as to disturb the nominal operation of
the workload. In this pressure range, the workload is provisioned
with the minimum amount of the resource it requires to function
well.

Before PSI, operators relied on correlating indirect metrics such
as kernel time, variations in application throughput, event counters
for reclaim activity, file re-reads, and swap-ins, in order to estimate
the resource health of workloads. This required an intuitive under-
standing of the storage hardware device characteristics and kernel
behavior. For example, the file read-ahead algorithm may shield the
application to varying degrees from the effects of recorded cache
re-reads. PSI on the other hand measures productivity losses from
qualifying stall events directly at the process level. It takes into
account differences in underlying hardware, the effectiveness of the
kernel’s memory management algorithms, and even the internal
concurrency (i.e., some vs. full stalls) of the workload.

3.3 Determining Memory Requirements of
Containers

Senpai is a userspace tool responsible for driving memory offload,
using PSI metrics to determine how much memory can be moved
out.

Estimating thememory aworkload requires is challenging. Along
with their workingsets, applications also make allocations or in-
stantiate file cache that is rarely used - or even used just once -
but the kernel only identifies and reclaims such cold pages when
free memory is low. This leads to applications’ memory footprints
being larger than the number of pages they would need resident
in order to function normally. In practice, most developers notice
when their applications run out of memory, but are rarely made
aware when memory is (vastly) overprovisioned.

Senpai continuously engages the kernel’s reclaim algorithm,
using PSI as feedback on workload health to modulate its aggres-
siveness, to identify the share of allocated pages that the workload
requires to function, and offload any beyond that. This proactive
approach ensures that available offloading capacity is utilized opti-
mally on one hand, and simultaneously provides an accurate work-
ingset profile of the application over time. This allows application
developers to more precisely provision memory capacity for their
workloads.
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Figure 8: Example of Senpai PSI tracking and reclaim volume
tuning.

Figure 8 shows a high-level overview of Senpai’s operations.
Once every few seconds, Senpai calculates for each cgroup the
amount of memory to reclaim as follows:

𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑚𝑒𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑚 × 𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑟𝑎𝑡𝑖𝑜 ×

𝑚𝑎𝑥 (0, 1 − 𝑃𝑆𝐼𝑠𝑜𝑚𝑒

𝑃𝑆𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
)

𝑃𝑆𝐼𝑠𝑜𝑚𝑒 is the cgroup’s some PSI metric. 𝑃𝑆𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 and re-
claim_ratio are configurable parameters. 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑚𝑒𝑚 is the cur-
rent memory footprint of the cgroup. Nomemory is reclaimedwhen
𝑃𝑆𝐼𝑠𝑜𝑚𝑒 is above 𝑃𝑆𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Otherwise, Senpai asks the kernel
to reclaim 𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑚𝑒𝑚 from the cgroup. As 𝑃𝑆𝐼𝑠𝑜𝑚𝑒 approaches
𝑃𝑆𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , Senpai gradually reclaims less memory in order to
achieve a mild steady-state memory pressure.

Senpai uses the cgroup interface to direct the kernel’s reclaim
algorithm. In an early version, Senpai would continuously adjust the
memory limit of the workload’s cgroup. Lowering the limit below
the current size causes the kernel to reclaim the difference. Instead,
increasing the limit relieves pressure and allows the workload to
expand. However, the statefulness of the memory limit combined
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with dynamic workloads can cause problems in some situations.
For example, if a container is under rapid memory growth and its
size is actively expanding, it may become blocked until Senpai can
raise its limit further.

To address this problem, we added a stateless memory.reclaim
cgroup control file to the kernel. This knob allows Senpai to ask the
kernel to reclaim exactly the calculated memory amount without
applying any limit, thus avoiding the risk of blocking expanding
workloads.

As PSI is effective in capturing the impact of memory offloading
on diverse applications, we strive for using a single globally optimal
Senpai configuration to support all applications. We studied the
performance sensitivity of applications related to file cache and
anonymous memory, and iteratively arrived at the current configu-
ration that is used in production for all applications, specifically,
𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑟𝑎𝑡𝑖𝑜=0.0005 and 𝑃𝑆𝐼_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=0.1%. In production, re-
claim is performed every six seconds. We set this value empirically
to leave enough time to measure the delayed impact (refaults) of
reclaimed memory. The step size of howmuch memory is reclaimed
(𝑟𝑒𝑐𝑙𝑎𝑖𝑚_𝑚𝑒𝑚) depends on how far or how close the observed pres-
sure (𝑃𝑆𝐼𝑠𝑜𝑚𝑒 ) is to the target threshold (𝑃𝑆𝐼𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ). The maxi-
mum is 1% of the total workload size in each reclaim period. As a
result, reaction time to extreme contraction tends to be minutes.
Adaptation to workload expansion, on the other hand, is immediate.

On one hand, TMO’s effectiveness is not very sensitive to these
parameters. On the other hand, our experiments demonstrate that
certain workloads (e.g., batch workloads with less stringent SLOs)
can tolerate more memory pressure, which provides opportunities
for offloading more memory. We leave it as future work to per-
form automated or online tuning of these parameters to maximize
savings.

Senpai has additional mechanisms to modulate reclaim in certain
events such as SSD write endurance thresholds being exceeded or
swap space exhaustion. Besides the memory PSI metrics, Senpai
also monitors the IO PSI metrics, because the memory PSI metrics
alone are insufficient to fully capture the performance impact of
memory offloading. In some cases, refaults induced by Senpai might
not impact the workload in the form of fault latencies, but might
slow down the storage device enough to impact the workload’s
operation indirectly. In theory, the same idea might apply to CPU
contention, but in practice, we have not found the CPU cycles spent
on refaults to be significant.

Advantages of a userspace Senpai.
Senpai is implemented in userspace on top of exported kernel in-

terfaces for PSI and cgroup memory control. This has several advan-
tages over a hypthetical in-kernel implementation. First, userspace
has full access to floating point units and can therefore perform cal-
culations more effectively. Second, release cycles for userspace com-
ponents tend to be significantly faster than for the kernel. We have
repeatedly iterated through Senpai variables over experimental and
deployment phases, and have also deployed different settings across
applications for extended periods of time. In the future we have
plans to exploit distinct Senpai configurations across workloads
with different performance SLO thresholds.

3.4 Kernel Optimizations for Memory
Offloading

Senpai relies on the kernel to reclaim cold memory pages from
cgroups. Instead of using expensive full page table scans to deter-
mine which memory pages are cold, Senpai lets the kernel’s reclaim
algorithm choose the pages to offload. This algorithm operates by
maintaining a pair of active/inactive page LRU lists for both file and
swap-backed pages and by reclaiming colder pages first. This mech-
anism is production-tested for identifying less-used memory pages
with relatively low CPU cost and high accuracy. Using it in Sen-
pai greatly simplifies our implementation. In production, reclaim
driven by Senpai consumes 0.05% of all CPU cycles, a negligible
amount.

Historically, the kernel has been very conservative in using swap.
In the era of slow, spinning disks, the semi-random IO patterns
produced by paging would impose substantial latencies on the
workload due to seek overheads of rotational media. Workloads
typically could not sustain the IO overhead of constant paging, so
supporting working sets larger than available memory was not
considered a case to optimize for. Rather, the kernel focused on
simply reclaiming memory that would never be accessed again,
specifically, file cache from previous reads. The kernel’s logic for
balancing scans of file cache against swap-backed memory would
attempt to balance reclaim success rate between the two pools of
memory, but skewed heavily towards file cache through a number
of different heuristics. This relegated swap to only be used as an
emergency overflow for memory. While developing TMO, we no-
ticed that substantial portions of a workload’s file cache would be
reclaimed before the kernel began to consider swapping out cold
swap-backed memory.

Fundamentally, at the time the algorithm was conceived, the
kernel lacked knowledge of when reclamation of file cache was
resulting in recently resident file pages (part of the working set)
needing to be read in from storage. We augmented the kernel with
non-resident cache tracking. Whenever a file cache page is evicted
from memory, a counter that is maintained per cgroup is incre-
mented and the current value is stored in a shadow entry that
replaces the page. When a file page is faulted in, the kernel can
determine the reuse distance [7], i.e., the difference between the
current page fault count and its value in the shadow entry. If the
reuse distance is smaller than the size of resident memory, the fault
is considered a refault.

TMO uses this refault-detection mechanism in two ways. For
one, we repurpose it to calculate memory PSI, by tracking stalls
due to recently evicted file cache, and excluding stalls due to first-
time-accessed file cache.

For the purpose of offloading to swap backends, we modify the
kernel reclaim algorithm to exclusively reclaim from file cache
so long as no refaults occur. As soon as refaults begin to occur,
the kernel now balances reclamation of file cache and swap based
on the refault rate and swap-in rate respectively. With this new
reclaim algorithm, swap occurs as soon as the file cache’s working-
set begins to be reclaimed, i.e., refaults begin to occur. This approach
more equally offloads file-backed and swap-backed cold memory,
and minimizes the aggregate amount of paging. Our changes to the
Linux kernel reclaim algorithm have been upstreamed.
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3.4.1 Transparent Zswap Support. As described in §2.5, using com-
pressed memory as an offload backend has substantial performance
advantages. It provides a memory offload solution in the absence
of SSDs, and avoids the endurance limits imposed by SSDs.

As a new Linux component, zswap allows the kernel to store
anonymous memory compressed in RAM. Instead of writing pages
to a swap partition on disk, the kernel compresses the page and
stores them in RAM. Accessing the original anonymous memory
page will still result in a page fault, but this time no disk IO needs
to be performed, the page can be decompressed and made resident.
Zswap fault latencies can be substantially faster than loading from
a block device, but the per-page memory savings depend on the
compressibility of the application’s cold anonymous memory.

With Senpai and PSI, we can deploy swap or zswap with no
additional modifications to the application or Senpai, since Senpai
automatically adjusts the reclaim rate based on the offload back-
end’s performance. In the case of faster storage or zswap, more
pages can be offloaded due to lower latency per-page swap-in.

4 EVALUATION
TMO has been running in production for more than a year leading
to significant memory savings across Meta’s fleet. Our evaluation
focuses on showcasing different aspects of TMO. Specifically, it
answers the following questions:

(1) How much memory can TMO save?
(2) How does TMO impact memory-bound applications?
(3) Are PSI metrics more effective than the promotion-rate met-

ric?
(4) How to tune TMO’s configurable parameters?
(5) Can TMO avoid SSD wear-out due to offloading writes?

4.1 Fleet-Wide Memory Savings
We break TMO’s memory savings into savings from applications,
datacenter memory tax, and application memory tax, respectively.
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Figure 9: Memory savings across eight applications normal-
ized to their resident memory size.

Application savings. Figure 9 shows the relative memory sav-
ings achieved by TMO for eight representative applications using
different offload backends, either compressed memory or SSDs. Us-
ing a compressed-memory backend, TMO saves 7-12% of resident
memory across five applications.

Multiple applications’ data have poor compressibility and their
memory offloading is more effective with a SSD backend. For those
applications, Figure 9 shows that TMO achieves significant savings
of 10-19% with a SSD backend. Such savings that do not rely on

compression would be unattainable with previous approaches [18].
Specifically, machine learning models used for Ads prediction com-
monly use quantized byte-encoded values that exhibit a compres-
sion ratio of 1.3-1.4x, leading to poor memory savings through a
compressed memory offloading. Instead, for such applications SSD
offloading provides a more cost-effective solution. Overall, across
compressed-memory and SSD backends, TMO achieves significant
savings of 7-19% of the total memory, without any noticeable appli-
cation performance degradation.

Datacenter and application memory tax savings. Beyond regular
workload memory, TMO further targets datacenter and application
memory tax.
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Figure 10: Datacenter and application memory tax savings
normalized to a server’s total memory.

Figure 10 shows the relative memory savings by offloading mem-
ory tax across Meta’s fleet. When it comes to datacenter tax, TMO
saves on average 9% of the total memory within a server. Applica-
tion tax savings account for 4%. Overall, TMO achieves on average
13% of memory tax savings, in addition to actual workload savings.
This is a significant amount of memory at the scale of Meta’s fleet.

4.2 Performance Impact on Memory-Bound
Applications

In this section we demonstrate how TMO helps improve the perfor-
mance of memory-bound applications. Specifically, we perform an
analysis of the Web application, which is one of the largest appli-
cations at Meta. Our production load-testing framework provides
high fidelity A/B tests and we use it to guide our hardware and
software optimizations across Meta’s fleet. The hardware used for
each of the experimental machine pools in the experiments below
are production Skylake 64GB hosts (representative of what is de-
ployed in our fleet). We chose enough machines (often 10s of hosts)
to have statistically accurate A/B comparisons. In this section we
will extensively demonstrate results from Web due to its excellent
testing framework, but most of the conclusions are representative
across our fleet for other large applications. The performance met-
ric is requests per second (RPS) with a predefined target tail latency.
Each server automatically throttles its RPS in order to meet the tail
latency.

The memory profile of Web works as follows. It starts by loading
up the entire file system cache into memory and then lazily loads
anonymousmemory asWeb requests arrive over time. AsWeb hosts
get closer to their memory limits, servers self-regulate and throttle
the processed requests per second in order to avoid running out of
memory. The baseline tier in Figure 11(a) illustrates that behavior,
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Figure 11: Performance improvement and memory saving for the Web application on memory-bound hosts. We set up two tiers:
started with identical configuration without any swap enabled and later enabled SSD & then compressed memory offloading
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Figure 12: The Web application under the control of TMO with fast and slow SSDs. The solid-gray configuration has lower
RPS/performance but actually lower promotion/swap-in rate; while its PSI metrics are indeed higher.

i.e., as the server gets memory bound, the RPS gradually goes down.
Note that the loss can be more than 20% over a two-hour period.

Figure 11(b) shows the resident memory size when offloading to
SSD devices (2nd phase in the middle) and a compressed memory
pool (3rd phase on the right), respectively, compared with a baseline
without offloading (1st phase on the left). The figure shows that
once TMO is enabled, it is able to offload a significant fraction of
system memory to the heterogeneous backends and the RPS drop is
eliminated over time. This leads to 20% of capacity savings for Web.
Because the Web application’s data has a high compression ratio
of 4x, compressed-memory offloading is effective and saves about
13% of Web memory at the peak. By contrast, SSD offloading saves
only about 4% memory in the best case, because Web is sensitive to
memory-access slowdown.

4.3 Comparing PSI and Promotion Rate
TMO relies on PSI to report the lost work due to lack of resources
such as CPU, memory, and IO. Compared with counting page-
promotion events [18], PSI naturally factors in an application’s
sensitivity to memory-access slowdown as well as the performance

and utilization aspects of a given offload backend. These cannot be
achieved by low-level metrics such as the promotion rate.

In general, a slower backend directly impacts the PSI memory
pressure and IO pressure, since a page fault takes longer to resolve,
which leads to lower memory savings. Figure 12 presents various
metrics to compare TMO with two different SSD backends, when
running the Web application under load tests, with a Senpai config-
uration to keep the memory and IO pressure below a predefined
threshold. The “fast SSD” and “slow SSD” in Figure 12 refer to SSD
C and B in Figure 5, respectively.

Figure 12(a) shows that the P90 read latency of the slow SSD is
significantly worse than that of the fast SSD. Figure 12(b) shows that
TMOwith the fast SSD backend exhibits more aggressive swapping,
with a higher swap size and a lower resident memory size. Note
the consistent 1.6-3GB difference between the amount of anony-
mous memory offloaded across the two SSDs. This corresponds to
a significant difference of 10-15% of the resident set size.

Figure 12(c) further shows that the promotion rate (i.e., swap-in
per second) is higher for the fast SSD. Combined with Figure 12(d),
we see that the host with a higher promotion rate actually processes
more requests per second. This illustrates the flaw in simply using
promotion rate as a proxy for application performance. First, it
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Figure 13: Memory savings, RPS, observed memory and IO PSI metrics, SSD Read Rate, and File Cache Size for the Web
application on non-memory-bound hosts. We set up two tiers: the 2nd tier started with TMO disabled and later enabled
compressed memory offloading with 2 different configs.

ignores the fact that the performance characteristics of the offload
backend impacts the offloading decision. Second, it ignores the fact
that some applications actually gain better performance as more
memory becomes available due to more aggressive offloading. The
observed behavior in this experiment demonstrates that promotion
rate is not a robust metric to drive offloading decisions with not
only heterogeneous offload backends, but also the same offload
backend with device-to-device performance variance in the fleet,
e.g., slow SSD vs. fast SSD as shown above.

Unlike the promotion rate, the PSI memory and IO pressures in
Figures 12(e) and (f) adapt well to maintain the application-level per-
formance. It offloads more memory for a better-performing offload
backend, while keeping the memory pressure within the target
threshold. Overall, the figure shows that Senpai naturally adapts
its behavior based on the real-time characteristics of individual
backends and applications.

4.4 Impact of Senpai Configuration Tuning and
Production Selection Process

In order to select the production Senpai configurations for memory
and IO PSI metrics, and the maximum reclaim step, we performed
tuning of the parameters across many production workloads and
finally selected one global configuration. Our goal was to select a
configuration that 1) avoids application end-to-end performance
SLA regressions when compared to a system without offloading,
and 2) provides maximum memory savings.

Figure 13 compares the Web application across 2 different Senpai
configurations, Config A and Config B. Config A has more mild set-
tings compared to Config B. Figures 13(a) and (b) show the memory
savings and RPS across the two configs. While the aggressive Config
B leads to larger memory savings compared to Config A, which still
saves significant memory for Web, it comes at the cost of significant
RPS regression, violating our design goal.

We are currently running our production fleet with Config A and
it works well across different offload backends. In order to arrive
at this config, we had to understand the sensitivity of applications
to various Senpai configuration parameters. Figures 13(c) and (d)
show that across the two configs, memory PSI pressure was similar
to the baseline tier without TMO, while IO PSI pressure with Config
B was noticeably higher to Config A, which itself tracked baseline
pretty well. Recall that memory PSI pressure tracks stalls due to
shortage of memory, while IO PSI pressure tracks Block IO stalls
coming from SSD reads. In this experiment we are using compressed
memory pool as the offload backend, and so Block IO stalls should
be coming from increased file cache faults. Figures 13(e) and (f)
confirm that we are experiencing higher IO PSI pressure in file
cache since we see that SSD read rates are higher, while resident
file cache is significantly lower, with Config B.

A higher IO PSI pressure doesn’t always direclty translate into
application performance loss unless the data is critical. Digging
deeper and tracing the SSD reads we found that SSD reads are
contributed primarily by application bytecode which is directly
loaded from filesystem and cached in the file cache. In our fleet,
Web is bound in the cpu front-end (fetching instructions/code) and
increased IO PSI pressure caused by higher application bytecode
misses in the file cache directly impacted the RPS with Config B.
This tuning experiment, yet again, highlights the importance of
holistically tuning for both file cache and anonymous memory in
TMO.

4.5 Handling SSD Endurance
SSDs have limited write endurance. To avoid premature SSD wear-
out, TMO regulates writes during memory offloading to SSDs. Fig-
ure 14 shows memory offloading for the Ads B application with
and without the regulation mechanism. Based on a fleet-wide anal-
ysis, we have identified that 1MB per-second is a safe threshold
for the SSDs in our fleet. The figure shows that Senpai accurately
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Figure 14: Swap rate with and without write regulation.

modulates the write rate of memory offloading, which gives us the
confidence to deploy TMO across Meta’s fleet.

5 DISCUSSION
5.1 Production Deployment Experience
Since PSI is already in the upstream Linux kernel and Senpai is
also open source, it is feasible for other organizations to deploy the
full TMO solution. We describe our deployment experience as a
reference for others.

We first deployed TMO to tackle datacenter memory and mi-
croservice memory tax, as they had more relaxed performance
constraints compared with user-facing workloads such as our Web
application. Previous measurements of tax memories were ad hoc,
reliant on measuring how much memory was used before hitting
out-of-memory or unreliable per-process metrics such as RSS. With
TMO, we were able to measure and attribute memory consump-
tion to specific processes and proactively act on regressions. This
improved observability by itself was very valuable and helped us
accurately repurpose tax memories for application workloads.

After the success with offloading datacenter and microservice
memory tax, we then deployed TMO in file-only mode (i.e., without
swapping) for all applications. The improved observability helped
accurately setting the memory size for application containers. It
also helped determine howmuch file cache each application needed.
In one case, TMO helped detect that an application unexpectedly
consumed a large amount of file cache due to its repeated execu-
tion of a self-extracting binary. Most methods for memory-usage
accounting would not detect this as they discount file cache as
negligible or reclaimable. We changed the application to extract
the binary ahead of time, which resulted in 70% memory savings
for the application!

Finally, we switched TMO from file-only mode to include swap-
ping for several of the largest applications at Meta. The performance
SLO of our user-facing applications is much more stringent than
that of the system-tax components. As PSI works well to capture the
impact of memory offloading on diverse applications, we were able
to use a single globally-optimal Senpai configuration to support all
applications (§3.3).

In order to get the best performance and compression ratio for
zswap, we experimented with many compression algorithms, in-
cluding lzo, lz4, and zstd [42], and finally chose zstd as it provided a
good compression ratio with a low overhead. We also experimented
with various zswapmemory pool allocators, including Z3fold, Zbud,

and Zsmalloc [43], and finally chose Zsmalloc as it provided the
most efficient memory pool and gave the biggest memory savings.

5.2 Limitations and Future Work
Currently, we manually choose the offload backend between zswap
and SSD-backed swap depending on the application’s memory com-
pressibility and sensitivity to memory-access slowdown. Although
we could develop tools to automate the process, a more fundamental
solution is for the kernel to manage a hierarchy of offload backends,
e.g., automatically using zswap for warmer pages and using SSD for
colder or less-compressible pages, as well as including NVM and
CXL devices into the memory hierarchy in the future. The kernel
reclaim algorithm should dynamically balance across these pools
of memory. We are actively working on this architecture.

5.3 Hardware for Memory Offloading
Hardware support can make memory offloading more efficient and
effective. Specifically, zswap can benefit from hardware-assisted
memory compression and decompression. Currently, we rely on
sampling in software to maintain the LRU ordering for memory
reclaim and offloading, and the overhead scales with the targeted
paging rate. With upcoming bus technologies such as CXL that
provide memory-like access semantics, hardware assistance for
estimating not only cold memory but also warm memory will help
TMO-like techniques work more effectively.

6 RELATEDWORK
The work from Lagar-Cavilla et al. [18] is the closest to ours. Their
approach swaps cold pages into a compressed in-memory pool,
enforces a target rate of swapping-in pages, and uses machine
learning to tune the key parameters. The fundamental difference
that distinguishes our work lies in the way we measure application
performance degradation. Instead of building heuristics around
low-level performance indicators based on offline profiling, our
approach relies on high-level, real-time pressure metrics that nat-
urally factors in memory access pattern, sensitivity to page faults
and hardware characteristics. As a result, TMO is applicable to a
much wider variety of production environments.

Remote Memory. Using remote machine’s memory to offload cold
local memory has been studied before [2, 22, 23]. Infiniswap [13]
reduces remote CPU usage and addresses fault tolerance concerns.
Fastswap [4] uses a far-memory-aware scheduler to optimize total
workload throughput. These systems do not provide fine-grained
control over performance degradation and hence are unsuitable for
latency-sensitive workloads.

DRAM-NVM hybrid memories and Page Migration Optimizations.
The emerging NVM technologies attract many studies on using
NVM to extend DRAM with several optimizations [3, 12, 16, 21, 31–
33, 36, 38]. Techniques such as prefetching, kernel-object migra-
tions, multi-threaded and huge page migrations, batching and asyn-
chronous memory management operations, as well as compiler
support can further improve the overall system performance and
enable evenmore aggressivememorymanagement. Persistent mem-
ory file systems [5, 15, 27, 35, 40] often cope with similar problems
as TMO in determining how often to migrate data to slower storage
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mediums and which data to migrate. We believe that PSI could be
used in this domain to better account for the performance implica-
tions of data placement in such tiered storage systems.

Cold page detection. Some earlier work [20, 41] classifies cold/hot
pages based on the accessed bit in page table entry (PTE), which is
also used by the kernel’s reclaim logic. Idle memory tracking [10]
avoids this conflict by introducing an additional page flag. G-swap
improves accessed bit accuracy by additionally tracking page age
histograms and feeding them tomachine learning [18]. [28] samples
accessed bit in dynamic sized regions that are subdivided when
getting too hot. Our work instead relies on the kernel LRU algorithm
to estimate page hotness, which is more efficient than unoptimized
or unsorted linear sampling methods. Most previous work uses
access rate for a hot/cold page cutoff decision. Thermostat [1] uses
estimated access latency based on access rate to better quantify
performance impact. Our use of pressuremetrics takes a step further
by directly measuring performance loss, which is more adaptive to
different hardware and workloads.

7 CONCLUSION
This paper introduces TMO, Meta’s transparent memory offload-
ing solution for heterogeneous datacenter environments. TMO is
composed of multiple components across userspace and the kernel.
The Pressure Stall Information (PSI) in the OS kernel tracks the
amount of lost work due to the lack of CPU, memory, and I/O. Sen-
pai is a userspace component responsible for controlling how much
memory to offload given the workload behavior and hardware char-
acteristics. We further presented a set of kernel optimizations for
efficient memory offloading for both anonymous and file-backed
memory. Finally, we described our production deployment experi-
ence of TMO and future work.
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