
Let’s Talk About Storage & Recovery Methods for
Non-Volatile Memory Database Systems

Joy Arulraj Andrew Pavlo Subramanya R. Dulloor
jarulraj@cs.cmu.edu pavlo@cs.cmu.edu subramanya.r.dulloor@intel.com

Carnegie Mellon University Carnegie Mellon University Intel Labs

ABSTRACT
The advent of non-volatile memory (NVM) will fundamentally
change the dichotomy between memory and durable storage in
database management systems (DBMSs). These new NVM devices
are almost as fast as DRAM, but all writes to it are potentially
persistent even after power loss. Existing DBMSs are unable to take
full advantage of this technology because their internal architectures
are predicated on the assumption that memory is volatile. With
NVM, many of the components of legacy DBMSs are unnecessary
and will degrade the performance of data intensive applications.

To better understand these issues, we implemented three engines
in a modular DBMS testbed that are based on different storage
management architectures: (1) in-place updates, (2) copy-on-write
updates, and (3) log-structured updates. We then present NVM-
aware variants of these architectures that leverage the persistence
and byte-addressability properties of NVM in their storage and
recovery methods. Our experimental evaluation on an NVM hard-
ware emulator shows that these engines achieve up to 5.5× higher
throughput than their traditional counterparts while reducing the
amount of wear due to write operations by up to 2×. We also demon-
strate that our NVM-aware recovery protocols allow these engines
to recover almost instantaneously after the DBMS restarts.

1. INTRODUCTION
Changes in computer trends have given rise to new on-line trans-

action processing (OLTP) applications that support a large number
of concurrent users and systems. What makes these modern appli-
cations unlike their predecessors is the scale in which they ingest
information [41]. Database management systems (DBMSs) are the
critical component of these applications because they are respon-
sible for ensuring transactions’ operations execute in the correct
order and that their changes are not lost after a crash. Optimizing
the DBMS’s performance is important because it determines how
quickly an application can take in new information and how quickly
it can use it to make new decisions. This performance is affected by
how fast the system can read and write data from storage.

DBMSs have always dealt with the trade-off between volatile
and non-volatile storage devices. In order to retain data after a loss

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05. . . $15.00.
http://dx.doi.org/10.1145/2723372.2749441 .

of power, the DBMS must write that data to a non-volatile device,
such as a SSD or HDD. Such devices only support slow, bulk data
transfers as blocks. Contrast this with volatile DRAM, where a
DBMS can quickly read and write a single byte from these devices,
but all data is lost once power is lost.

In addition, there are inherent physical limitations that prevent
DRAM from scaling to capacities beyond today’s levels [46]. Using
a large amount of DRAM also consumes a lot of energy since it
requires periodic refreshing to preserve data even if it is not actively
used. Studies have shown that DRAM consumes about 40% of the
overall power consumed by a server [42].

Although flash-based SSDs have better storage capacities and use
less energy than DRAM, they have other issues that make them less
than ideal. For example, they are much slower than DRAM and only
support unwieldy block-based access methods. This means that if a
transaction updates a single byte of data stored on an SSD, then the
DBMS must write the change out as a block (typically 4 KB). This
is problematic for OLTP applications that make many small changes
to the database because these devices only support a limited number
of writes per address [66]. Shrinking SSDs to smaller sizes also
degrades their reliability and increases interference effects. Stop-gap
solutions, such as battery-backed DRAM caches, help mitigate the
performance difference but do not resolve these other problems [11].

Non-volatile memory (NVM)1 offers an intriguing blend of the
two storage mediums. NVM is a broad class of technologies, in-
cluding phase-change memory [55], memristors [60], and STT-
MRAM [26] that provide low latency reads and writes on the same
order of magnitude as DRAM, but with persistent writes and large
storage capacity like a SSD [13]. Table 1 compares the characteris-
tics of NVM with other storage technologies.

It is unclear at this point, however, how to best leverage these new
technologies in a DBMS. There are several aspects of NVM that
make existing DBMS architectures inappropriate for them [14, 23].
For example, disk-oriented DBMSs (e.g., Oracle RDBMS, IBM
DB2, MySQL) are predicated on using block-oriented devices for
durable storage that are slow at random access. As such, they main-
tain an in-memory cache for blocks of tuples and try to maximize
the amount of sequential reads and writes to storage. In the case
of memory-oriented DBMSs (e.g., VoltDB, MemSQL), they con-
tain certain components to overcome the volatility of DRAM. Such
components may be unnecessary in a system with byte-addressable
NVM with fast random access.

In this paper, we evaluate different storage and recovery methods
for OLTP DBMSs from the ground-up, starting with an NVM-only
storage hierarchy. We implemented three storage engine architec-
tures in a single DBMS: (1) in-place updates with logging, (2) copy-
on-write updates without logging, and (3) log-structured updates.

1NVM is also referred to as storage-class memory or persistent memory.

mailto:jarulraj@cs.cmu.edu
mailto:pavlo@cs.cmu.edu
mailto:subramanya.r.dulloor@intel.com

DRAM PCM RRAM MRAM SSD HDD

Read latency 60 ns 50 ns 100 ns 20 ns 25 µs 10 ms
Write latency 60 ns 150 ns 100 ns 20 ns 300 µs 10 ms
Addressability Byte Byte Byte Byte Block Block
Volatile Yes No No No No No
Energy/ bit access 2 pJ 2 pJ 100 pJ 0.02 pJ 10 nJ 0.1 J
Endurance >1016 1010 108 1015 105 >1016

Table 1: Comparison of emerging NVM technologies with other storage
technologies [15, 27, 54, 49]: phase-change memory (PCM) [55], memristors
(RRAM) [60], and STT-MRAM (MRAM) [26].

We then developed optimized variants for these approaches that
reduce the computational overhead, storage footprint, and wear-out
of NVM devices. For our evaluation, we use a hardware-based emu-
lator where the system only has NVM and volatile CPU-level caches
(i.e., no DRAM). Our analysis shows that the NVM-optimized stor-
age engines improve the DBMS’s throughput by a factor of 5.5×
while reducing the number of writes to NVM in half. These re-
sults also suggest that NVM-optimized in-place updates is the ideal
method as it has lowest overhead, causes minimal wear on the device,
and allows the DBMS to restart almost instantaneously.

Our work differs from previous studies because we evaluate a
DBMS using a single-tier storage hierarchy. Others have only em-
ployed NVM for logging [28, 30, 65] or used a two-level hierarchy
with DRAM and NVM [53]. We note that it is possible today to
replace DRAM with NV-DIMM [6], and run an NVM-only DBMS
unmodified on this storage hierarchy. This enables us to achieve per-
formance similar to that obtained on a DRAM and NVM storage hi-
erarchy, while avoiding the overhead of dealing with the volatility of
DRAM. Further, some NVM technologies, such as STT-RAM [26],
are expected to deliver lower read and write latencies than DRAM.
NVM-only DBMSs would be a good fit for these technologies.

The remainder of this paper is organized as follows. We begin
in Section 2 with a discussion of NVM and why it necessitates a
re-evaluation of DBMS storage architectures. Next, in Section 3 we
describe our DBMS testbed and its storage engines that we devel-
oped for this study. We then present in Section 4 our optimizations
for these engines that leverage NVM’s unique properties. We then
present our experimental evaluation in Section 5. We conclude with
a discussion of related work in Section 6.

2. BACKGROUND
We now provide an overview of emerging NVM technologies and

discuss the hardware emulator platform that we use in this paper.

2.1 Motivation
There are essentially two types of DBMS architectures: disk-

oriented and memory-oriented systems [23]. The former is exem-
plified by the first DBMSs, such as IBM’s System R [7], where
the system is predicated on the management of blocks of tuples on
disk using an in-memory cache; the latter by IBM’s IMS/VS Fast
Path [32], where the system performs updates on in-memory data
and relies on the disk to ensure durability. The need to ensure that all
changes are durable has dominated the design of systems with both
types of architectures. This has involved optimizing the layout of
data for each storage layer depending on how fast it can perform ran-
dom accesses [31]. Further, updates performed on tuples stored in
memory need to be propagated to an on-disk representation for dura-
bility. Previous studies have shown that the overhead of managing
this data movement for OLTP workloads is considerable [35].

NVM technologies, like phase-change memory [55] and memris-
tors [60], remove these tuple transformation and propagation costs
through byte-addressable loads and stores with low latency. This

means that they can be used for efficient architectures that are used
in memory-oriented DBMSs [25]. But unlike DRAM, all writes
to the NVM are potentially durable and therefore a DBMS can ac-
cess the tuples directly in the NVM after a restart or crash without
needing to reload the database first.

Although the advantages of NVM are obvious, making full use of
them in an OLTP DBMS is non-trivial. Previous work that compared
disk-oriented and memory-oriented DBMSs for NVM showed that
the two architectures achieve almost the same performance when
using NVM because of the overhead of logging [23]. This is because
current DBMSs assume that memory is volatile, and thus their
architectures are predicated on making redundant copies of changes
on durable storage. Thus, we seek to understand the characteristics
of different storage and recovery methods from the ground-up.

2.2 NVM Hardware Emulator
NVM storage devices are currently prohibitively expensive and

only support small capacities. For this reason, we use a NVM
hardware emulator developed by Intel Labs [27] in this paper. The
emulator supports tunable read latencies and read/write bandwidths.
This enables us to evaluate multiple hardware profiles that are not
specific to a particular NVM technology. Unlike NVM simulators,
like PCM-SIM [44], this emulator enables us to better understand the
impact of cache evictions, prefetching, and speculative execution on
long-running workloads. The hardware emulator is based on a dual-
socket Intel Xeon platform. Each CPU supports four DDR3 channels
with two DIMMs per channel. Half of the memory channels on each
processor are reserved for the emulated NVM while the rest are
used for regular memory. The emulator’s custom BIOS firmware
partitions the physical memory address space into separate address
spaces for DRAM and emulated NVM.

NVM technologies have higher read and write latency than DRAM.
We are able to emulate the latency for the NVM partition by using
custom CPU microcode. The microcode estimates the additional
cycles that the CPU would have to wait if DRAM is replaced by
slower NVM and then stalls the CPU for those cycles. The accuracy
of the latency emulation model was validated by comparing the
performance of several applications on emulated NVM and slower
NUMA memory [27]. Since the CPU uses a write-back cache for
NVM, the high latency of writes to NVM is not observed on every
write but the sustainable write bandwidth of NVM is lower com-
pared to DRAM [38]. The emulator allows us to control the write
bandwidth by limiting the number of DDR operations performed
per microsecond. It is currently not able to independently vary the
read and write bandwidths as this throttling feature affects all DDR
operations. This limitation is not an issue for this evaluation as
OLTP workloads are not bandwidth intensive [65].

The emulator exposes two interfaces to access the NVM storage:

Allocator Interface: The emulator uses a NVM-aware memory
allocator that provides the POSIX malloc interface. Applications
obtain and use NVM directly using this interface. Internally, lib-
numa library [4] is used to ensure that the application allocates
memory only from emulated NVM and not regular DRAM. When
the DBMS writes to a memory location, the written (dirty) data may
reside indefinitely in the volatile CPU caches and not propagate
immediately to NVM. We use a hardware write barrier primitive
(SFENCE) to guarantee the durability of writes to NVM when they
are flushed from CPU caches.

Filesystem Interface: The emulator exposes a NVM-backed
volume to the OS through a special filesystem that is optimized
for non-volatile memory [27]. This allows applications to use the
POSIX filesystem interface to read/write data to files stored on

1 2 4 8 16 32 64 128 256
Chunk Size (B)

1

4

16

64

256

1024

4096
B

an
dw

id
th

 (M
B

/s
)

Allocator
Filesystem

(a) Sequential Writes

1 2 4 8 16 32 64 128 256
Chunk Size (B)

1

4

16

64

256

1024

4096

B
an

dw
id

th
 (M

B
/s

)

Allocator
Filesystem

(b) Random Writes

Figure 1: Comparison of the durable write bandwidth of Intel Lab’s NVM
emulator using the allocator and filesystem interfaces.

NVM. Normally, in a block-oriented filesystem, file I/O requires
two copies; one involving the block device and another involving the
user buffer. The emulator’s optimized filesystem, however, requires
only one copy between the file and the user buffers. This improves
the file I/O performance by 7–10× compared to block-oriented
filesystems like EXT4. The filesystem interface allows existing
DBMSs to make use of NVM for durable storage.

Both of the above interfaces use memory from the emulated NVM.
The key difference, however, is that the filesystem interface supports
a naming mechanism that ensures that file offsets are valid after
the system restarts. The downside of the filesystem interface is
that it requires the application’s writes to go through the kernel’s
virtual filesystem (VFS) layer. In contrast, when the application
uses the allocator interface, it can write to and read from NVM
directly within userspace. However, the allocator interface does
not automatically provide a naming mechanism that is valid after
a system restart. We use a memory allocator that is designed for
NVM to overcome this limitation.

2.3 NVM-aware Memory Allocator
An NVM-aware memory allocator for a DBMS needs to satisfy

two key requirements. The first is that it should provide a durability
mechanism to ensure that modifications to data stored on NVM are
persisted. This is necessary because the changes made by a transac-
tion to a location on NVM may still reside in volatile CPU caches
when the transaction commits. If a power failure happens before
the changes reach NVM, then these changes are lost. The allocator
exposes a special API call to provide this durability mechanism.
Internally, the allocator first writes back the cache lines contain-
ing the data from any level of the cache hierarchy to NVM using
CLFLUSH [2] instruction. Then, it issues a SFENCE instruction to
ensure that the data flushed from the CPU caches becomes durable.
Otherwise, this data might still be buffered in the memory controller
and lost in case of a power failure. From here on, we refer to the
above mentioned durability mechanism as the sync primitive.

The second requirement is that it should provide a naming mech-
anism for allocations so that pointers to locations in memory are
valid even after the system restarts. The allocator ensures that the
virtual memory addresses assigned to a memory-mapped region
never change. With this mechanism, a pointer to a NVM location is
mapped to the same virtual location after the OS or DBMS restarts.
We refer to these pointers as non-volatile pointers [51].

The NVM allocator that we use in our evaluation is based on the
open-source NVM-related libpmem library [58]. We extended this
allocator to follow a rotating best-fit allocation policy and to support
multi-threaded usage. The allocator directly maps the NVM to its
address space. Unlike the filesystem interface, accessing a region of
memory obtained from this allocator does not require copying data
to user buffers. After an OS restart, the allocator reclaims memory
that has not been persisted and restores its internal metadata to a

Coordinator

Txn Requests

Txn Batches

…

OS

NVM

Allocator
Interface

(malloc, free)

Filesystem
Interface

(read, write)

Memory
Interface

(load, store)

DBMS

Executor

Storage
Engine

Executor

Storage
Engine

Executor

Storage
Engine

Executor

Storage
Engine

Executor

Storage
Engine

Executor

Storage
Engine

Figure 2: An overview of the architecture of the DBMS testbed.

consistent state. This recovery mechanism is required only after the
OS restarts and not after the DBMS restarts, because the allocator
handles memory management for all applications.

To show that accessing NVM through the allocator interface is
faster than using the filesystem interface, we compare them using
a micro-benchmark. In this experiment, the application performs
durable writes to NVM using the two interfaces with sequential and
random access patterns. The application performs durable writes
using the filesystem’s fsync system call and the allocator’s sync
primitive. We vary the size of the data chunk that the application
writes from 1 to 256 bytes. The results in Fig. 1 show that NVM-
aware allocator delivers 10–12× higher write bandwidth than the
filesystem. The performance gap is more evident when the applica-
tion writes out small data chunks sequentially. We also note that the
gap between sequential and random write bandwidth is lower than
that observed in other durable storage technologies.

We now describe the DBMS testbed that we built to evaluate
storage and recovery methods for DBMSs running on NVM. As we
discuss in subsequent sections, we use non-volatile pointers to build
non-volatile data structures that are guaranteed to be consistent after
the OS or DBMS restarts. These data structures, along with the
allocator interface, are used to build NVM-aware storage engines.

3. DBMS TESTBED
We developed a lightweight DBMS to evaluate different stor-

age architecture designs for OLTP workloads. We did not use an
existing DBMS as that would require significant changes to incor-
porate the storage engines into a single system. Although some
DBMSs support a pluggable storage engine back-end (e.g., MySQL,
MongoDB), modifying them to support NVM would still require
significant changes. We also did not want to taint our measurements
with features that are not relevant to our evaluation.

The architecture of the testbed running on the hardware emulator
is depicted in Fig. 2. The DBMS’s internal coordinator receives
incoming transaction requests from the application and then invokes
the target stored procedure. As a transaction executes in the sys-
tem, it invokes queries to read and write tuples from the database.
These requests are passed through a query executor that invokes the
necessary operations on the DBMS’s active storage engine.

The DBMS uses pthreads to allow multiple transactions to run
concurrently in separate worker threads. It executes as a single
process with the number of worker threads equal to the number of
cores, where each thread is mapped to a different core. Since we
do not want the DBMS’s concurrency control scheme to interfere
with our evaluation, we partition the database and use a lightweight

!"#$%&'(&)#$*+#,&

-..-&

-../& 000&

!"#$%&'##%()*&+,-".&

12*324&

/,01,-".(213.&!"#$%4&5##"& !6+0..4&

718.9(213.&!"#$%4&5##"&

2:,*4;#<4&

=01<.(,;.,9&'#>&

5-& 56&78,&&
'(&

7*9"2&&
'(&

7:;"2&&
'(&

!2<#42&*,3&&
=>24&'?*@2A&

-.-& 000& 000& 000&

-.-& -./&

?''@A?+@B& 7C'D2E2+DF&

(a) In-place Updates (InP)

!"#$%&'&'$

!""!# !""$#

%&'(#!""!#

%&'(#!""$#

)#

%&'(#*# +,-(# ./01,#

2(&3(0#

+4-5(#3&1&#

()*'$+)+,'$

!')-$()*'$!)./&0$

./01,#./0(6170,#89:#;400(<1#./0(6170,#8=:#

>0&<6?#8@:#>0&<6?##8A:#>0&<6?#8!:#

B(&C#8D:#B(&C#8$:# B(&C#8E:#

F&G1(0#H(6703#

1/2.3/435670'$89:6''$

;!!<1;:<"$ =>!?@A@:?B$

(b) Copy-on-Write Updates (CoW)

!"#$"%&'()$*'+,&-./0+1--&+

,23#''0+

))3"%&'0++

!"#$%&'%(#)*+,%#-'#)*+,%#./%,'0#

111# 232# 11111#
,23#''0+

23321111#

,&--4+5$&6'#+

7#$6'("8'"9+:-;+

!2# !"#)45##
-6#

)&7,%##
-6#

)*+,%##
-6#

8%9:(%#&5'##
;<%(#-=&>%0#

232# 111# 111# 111#

<'43"%&'++

=::>?=3>@+ 5A:B)C)3B<+

(c) Log-structured Updates (Log)

Figure 3: Architectural layout of the three traditional storage engines supported in the DBMS testbed. The engine components accessed using the allocator
interface and those accessed using the filesystem interface are bifurcated by the dashed line.

locking scheme where transactions are executed serially at each
partition based on timestamp ordering [59]. Using a DBMS that
supports a pluggable back-end allows us to compare the performance
characteristics of different storage and recovery methods on a single
platform. We implemented three storage engines that use different
approaches for supporting durable updates to a database: (1) in-
place updates engine, (2) copy-on-write updates engine, and (3)
log-structured updates engine. Each engine also supports both
primary and secondary indexes.

We now describe these engines in detail. For each engine, we
first discuss how they apply changes made by transactions to the
database and then how they ensure durability after a crash. All of
these engines are based on the architectures found in state-of-the-art
DBMSs. That is, they use memory obtained using the allocator
interface as volatile memory and do not exploit NVM’s persistence.
Later in Section 4, we present our improved variants of these engines
that are optimized for NVM.

3.1 In-Place Updates Engine (InP)
The first engine uses the most common storage engine strategy

in DBMSs. With in-place updates, there is only a single version
of each tuple at all times. When a transaction updates a field for
an existing tuple, the system writes the new value directly on top
of the original one. This is the most efficient method of applying
changes, since the engine does not make a copy of the tuple first
before updating it and only the updated fields are modified. The
design of this engine is based on VoltDB [5], which is a memory-
oriented DBMS that does not contain legacy disk-oriented DBMS
components like a buffer pool. The InP engine uses the STX B+tree
library for all of its indexes [10].

Storage: Fig. 3a illustrates the architecture of the InP engine.
The storage area for tables is split into separate pools for fixed-sized
blocks and variable-length blocks. Each block consists of a set of
slots. The InP engine stores the table’s tuples in fixed-size slots.
This ensures that the tuples are byte-aligned and the engine can
easily compute their offsets. Any field in a table that is larger than
8 bytes is stored separately in a variable-length slot. The 8-byte
location of that slot is stored in that field’s location in the tuple.

The tables’ tuples are unsorted within these blocks. For each
table, the DBMS maintains a list of unoccupied tuple slots. When a
transaction deletes a tuple, the deleted tuple’s slot is added to this
pool. When a transaction inserts a tuple into a table, the engine first
checks the table’s pool for an available slot. If the pool is empty,
then the engine allocates a new fixed-size block using the allocator
interface. The engine also uses the allocator interface to maintain
the indexes and stores them in memory.

Recovery: Since the changes made by transactions committed
after the last checkpoint are not written to “durable" storage, the InP
engine maintains a durable write-ahead log (WAL) in the filesystem
to assist in recovery from crashes and power failures. WAL records
the transactions’ changes before they are applied to DBMS [29]. As
transactions execute queries that modify the database, the engine
appends a new entry to the WAL for those changes. Each entry con-
tains the transaction identifier, the table modified, the tuple identifier,
and the before/after tuple images depending on the operation.

The most well-known recovery protocol for in-place updates is
ARIES [47]. With ARIES, the engine periodically takes checkpoints
that are stored on the filesystem to bound recovery latency and re-
duce the storage space consumed by the log. In our implementation,
we compress (gzip) the checkpoints on the filesystem to reduce their
storage footprint on NVM. During recovery, the engine first loads
the last checkpoint. It then replays the log to ensure that the changes
made by transactions committed since the checkpoint are present
in the database. Changes made by uncommitted transactions at the
time of failure are not propagated to the database. The InP engine
uses a variant of ARIES that is adapted for main memory DBMSs
with a byte-addressable storage engine [45]. As we do not store
physical changes to indexes in this log, all of the tables’ indexes are
rebuilt during recovery because they may have been corrupted [45].

3.2 Copy-on-Write Updates Engine (CoW)

The second storage engine performs copy-on-write updates where
instead of modifying the original tuple, it creates a copy of the tuple
and then modifies that copy. As the CoW engine never overwrites
committed data, it does not need to record changes in a WAL for
recovery. The CoW engine instead uses different look-up direc-
tories for accessing the versions of tuples in the database. With
this approach, known as shadow paging in IBM’s System R [33],
the DBMS maintains two look-up directories at all times: (1) the
current directory, and (2) the dirty directory. The current directory
points to the most recent versions of the tuples and only contains the
effects of committed transactions. The dirty directory points to the
versions of tuples being modified by active transactions. To ensure
that the transactions are isolated from the effects of uncommitted
transactions, the engine maintains a master record that always points
to the current directory. Fig. 3b presents the architecture of the CoW
engine. After applying the changes on the copy of the tuple, the
engine updates the dirty directory to point to the new version of
the tuple. When the transaction commits, the engine updates the
master record atomically to point to the dirty directory. The engine
maintains an internal page cache to keep the hot pages in memory.

System R implements shadow paging by copying the current
directory to create the new dirty directory after every commit op-
eration. But, creating the dirty directory in this manner incurs

high I/O overhead. The CoW engine uses LMDB’s copy-on-write
B+trees [56, 16, 36] to implement shadow paging efficiently. Fig. 3b
illustrates an update operation on a CoW B+tree. When the engine
modifies the leaf node 4 in the current directory, it only needs to
make a copy of the internal nodes lying along the path from that
leaf node up to the root of the current version. The current and
dirty directories of the copy-on-write B+tree share the rest of the
tree. This significantly reduces the I/O overhead of creating the
dirty directory as only a fraction of the B+tree is copied. To further
reduce the overhead of shadow paging, the CoW engine uses a
group commit mechanism that batches the changes made by a group
of transactions before committing the dirty directory.

Storage: The CoW engine stores the directories on the filesystem.
The tuples in each table are stored in a HDD/SSD-optimized format
where all the tuple’s fields are inlined. This avoids expensive random
accesses that are required when some fields are not inlined. Each
database is stored in a separate file and the master record for the
database is located at a fixed offset within the file. It supports
secondary indexes as a mapping of secondary keys to primary keys.

The downside of the CoW engine is that it creates a new copy of
tuple even if a transaction only modifies a subset of the tuple’s fields.
The engine also needs to keep track of references to tuples from
different versions of the copy-on-write B+tree so that it can reclaim
the storage space consumed by old unreferenced tuple versions [9].
As we show in Section 5.3, this engine has high write amplification
(i.e., the amount of data written to storage is much higher compared
to the amount of data written by the application). This increases
wear on the NVM device thereby reducing its lifetime.

Recovery: If the DBMS crashes before the master record is
updated, then the changes present in the dirty directory are not
visible after restart. Hence, there is no recovery process for the CoW
engine. When the DBMS comes back on-line, the master record
points to the current directory that is guaranteed to be consistent.
The dirty directory is garbage collected asynchronously, since it
only contains the changes of uncommitted transactions.

3.3 Log-structured Updates Engine (Log)
Lastly, the third storage engine uses a log-structured update pol-

icy. This approach originated from log-structured filesystems [57],
and then it was adapted to DBMSs as log-structured merge (LSM)
trees [50] for write-intensive workloads. The LSM tree consists of
a collection of runs of data. Each run contains an ordered set of
entries that record the changes performed on tuples. Runs reside
either in volatile memory (i.e., MemTable) or on durable storage (i.e.,
SSTables) with their storage layout optimized for the underlying stor-
age device. The LSM tree reduces write amplification by batching
the updates in MemTable and periodically cascading the changes
to durable storage [50]. The design for our Log engine is based
on Google’s LevelDB [22], which implements the log-structured
update policy using LSM trees.

Storage: Fig. 3c depicts the architecture of the Log engine. The
Log engine uses a leveled LSM tree [40], where each level in the
tree contains the changes for a single run. The data starts from
the MemTable stored in the topmost level and propagates down to
SSTables stored in lower parts of the tree over time. The size of
the run stored in a given level is k times larger than that of the run
stored in its parent, where k is the growth factor of the tree. The Log
engine allows us to control the size of the MemTable and the growth
factor of the tree. It first stores the tuple modifications in a memory-
optimized format using the allocator interface in the MemTable.
The MemTable contains indexes to handle point and range queries

efficiently. When the size of the MemTable exceeds a threshold, the
engine flushes it to the filesystem as an immutable SSTable stored
in a separate file. The Log engine also constructs a Bloom filter [12]
for each SSTable to quickly determine at runtime whether it contains
entries associated with a tuple to avoid unnecessary index look-ups.

The contents of the MemTable are lost after system restart. Hence,
to ensure durability, the Log engine maintains a WAL in the filesys-
tem. The engine first records the changes in the log and then applies
the changes to the MemTable. The log entry contains the transaction
identifier, the table modified, the tuple identifier, and the before/after
images of the tuple depending on the type of operation. To reduce
the I/O overhead, the engine batches log entries for a group of
transactions and flushes them together.

The log-structured update approach performs well for write-
intensive workloads as it reduces random writes to durable stor-
age. The downside of the Log engine is that it incurs high read
amplification (i.e., the number of reads required to fetch the data
is much higher than that actually needed by the application). To
retrieve a tuple, the Log engine first needs to look-up the indexes
of all the runs of the LSM tree that contain entries associated with
the desired tuple in order to reconstruct the tuple [1]. To reduce this
read amplification, the Log engine performs a periodic compaction
process that merges a subset of SSTables. First, the entries associ-
ated with a tuple in different SSTables are merged into one entry
in a new SSTable. Tombstone entries are used to identify purged
tuples. Then, the engine builds indexes for the new SSTable.

Recovery: During recovery, the Log engine rebuilds the MemTable
using the WAL, as the changes contained in it were not written onto
durable storage. It first replays the log to ensure that the changes
made by committed transactions are present. It then removes any
changes performed by uncommitted transactions, thereby bringing
the MemTable to a consistent state.

4. NVM-AWARE ENGINES
All of the engines described above are derived from existing

DBMS architectures that are predicated on a two-tier storage hier-
archy comprised of volatile DRAM and a non-volatile HDD/SSD.
These storage devices have distinct hardware constraints and per-
formance properties [54]. First, the read and write latency of non-
volatile storage is several orders of magnitude higher than DRAM.
Second, the DBMS accesses data on non-volatile storage at block-
granularity, while with DRAM it accesses data at byte-granularity.
Third, the performance gap between sequential and random accesses
is greater for non-volatile storage compared to DRAM.

The traditional engines were designed to account for and reduce
the impact of these differences. For example, they maintain two
layouts of tuples depending on the storage device. Tuples stored
in memory can contain non-inlined fields because DRAM is byte-
addressable and handles random accesses efficiently. In contrast,
fields in tuples stored on durable storage are inlined to avoid random
accesses because they are more expensive. To amortize the overhead
for accessing durable storage, these engines batch writes and flush
them in a deferred manner.

Many of these techniques, however, are unnecessary in a system
with a NVM-only storage hierarchy [23, 27, 49]. As shown in
Table 1, the access latencies of NVM are orders of magnitude shorter
than that of HDDs and SSDs. Further, the performance gap between
sequential and random accesses on NVM is comparable to that of
DRAM. We therefore adapt the storage and recovery mechanisms
of these traditional engines to exploit NVM’s characteristics. We
refer to these optimized storage engines as the NVM-aware engines.

!"#$"%&

'&
'&'&

()*+,&-.& /*+#0*1&

2332&

2334& 555&

!"#$%&'"($)*+,-./)0,,+)

*+,-.)1,,.&23)456+$)

758"56+$&'"($)*+,-./)0,,+)

9,:&;,+5<+$)*=48$$/)

>8"?$&5@$5%)1,A)
62& 67&891&&
-.&

8#:)"&&
-.&

8;<)"&&
-.&

("=*%"$&&
>?"%&-@#A"B&

23332& 555& 555&

23332& 555& 555&

B11CDB4CE)

(a) In-place Updates (NVM-InP)

!"#$%"&'(&)*+",-$"#$./01)*234/))*

!"#$%&% '()$% *+,-(%

.$/#$,%

5)'6*!"7)*5'-"81*

.$/#$,%

0%
0%0%

12"34%5*% 6"3/7"8%

9::9%

9::;% &&&%

2&"9:*5"":$8,*4';&)*

+,-(%+,$3-",(%<=>%?@,,$8-%*+,$3-",(%<A>%

1,/83B%<C>%1,/83B%%<D>%1,/83B%<9>%

6$/E%<F>%6$/E%<;>% 6$/E%<G>%

H/I-$,%J$3",#%

<0=)7$>0?)*2&"9:@*A""&*

%'/0';&)$>0?)*2&"9:@*A""&*

B55C+B4CD*

(b) Copy-on-Write Updates (NVM-CoW)

!"#$"%&'()$*'+,&-./0+1--&+

2-3(4-&"5&'+,67#''0+

899:;"%&'+<'97"%&'0++
2-3(4-&"5&'+,67#''0+

!""!####$

,&--9+=$&;'#+

>#$;'("?'"@+A-B+ %!$ %&$'()$$
*+$

',-./$$
*+$

'01./$$
*+$

2/345/$,)6$$
78/5$*9,:/;$

!"""!$ ###$ ###$

!"""!$ ###$ ###$ ###$

<'97"%&'++CAADEC7DF+

(c) Log-structured Updates (NVM-Log)

Figure 4: NVM-Aware Engines – Architectural layout of the NVM-optimized storage engines.

As we show in our evaluation in Section 5, these engines deliver
higher throughput than their traditional counterparts while still en-
suring durability. They reduce write amplification using NVM’s per-
sistence thereby expanding the lifetime of the NVM device. These
engines use only the allocator interface described in Section 2.3
with NVM-optimized data structures [49, 62].

Table 2 presents an overview of the steps performed by the NVM-
aware storage engines, while executing the primitive database op-
erations. We note that the engine performs these operations within
the context of a transaction. For instance, if the transaction aborts
while executing an operation, it must undo the effects of any earlier
operation performed by the transaction.

4.1 In-Place Updates Engine (NVM-InP)
One of the main problems with the InP engine described in Sec-

tion 3.1 is that it has high rate of data duplication. When a trans-
action inserts a tuple, the engine records the tuple’s contents in the
WAL and then again in the table storage area. The InP engine’s
logging infrastructure also assumes that the system’s durable storage
device has orders of magnitude higher write latency compared to
DRAM. It therefore batches multiple log records and flushes them
periodically to the WAL using sequential writes. This approach,
however, increases the mean response latency as transactions need
to wait for the group commit operation.

Given this, we designed the NVM-InP engine to avoid these
issues. Now when a transaction inserts a tuple, rather than copying
the tuple to the WAL, the NVM-InP engine only records a non-
volatile pointer to the tuple in the WAL. This is sufficient because
both the pointer and the tuple referred to by the pointer are stored on
NVM. Thus, the engine can use the pointer to access the tuple after
the system restarts without needing to re-apply changes in the WAL.
It also stores indexes as non-volatile B+trees that can be accessed
immediately when the system restarts without rebuilding.

Storage: The architecture of the NVM-InP engine is shown in
Fig. 4a and Table 2 presents an overview of the steps to perform
different operations. The engine stores tuples and non-inlined fields
using fixed-size and variable-length slots, respectively. To reclaim
the storage space of tuples and non-inlined fields inserted by uncom-
mitted transactions after the system restarts, the NVM-InP engine
maintains durability state in each slot’s header. A slot can be in one
of three states - unallocated, allocated but not persisted, or persisted.
After the system restarts, slots that are allocated but not persisted
transition back to unallocated state.

The NVM-InP engine stores the WAL as a non-volatile linked list.
It appends new entries to the list using an atomic write. Each entry
contains the transaction identifier, the table modified, the tuple iden-
tifier, and pointers to the operation’s changes. The changes include
tuple pointers for insert operation and field pointers for update oper-

ations on non-inlined fields. The engine persists this entry before
updating the slot’s state as persisted. If it does not ensure this order-
ing, then the engine cannot reclaim the storage space consumed by
uncommitted transactions after the system restarts, thereby causing
non-volatile memory leaks. After all of the transaction’s changes
are safely persisted, the engine truncates the log.

The engine supports primary and secondary indexes using non-
volatile B+trees that it maintains using the allocator interface. We
modified the STX B+tree library so that all operations that alter the
index’s internal structure are atomic [49, 62]. For instance, when
adding an entry to a B+tree node, instead of inserting the key in a
sorted order, it appends the entry to a list of entries in the node. This
modification is necessary because if the entry crosses cache line
boundaries, the cache line write-backs required to persist the entry
need not happen atomically. Our changes to the library ensure that
the engine can safely access the index immediately after the system
restarts as it is guaranteed to be in a consistent state.

Recovery: The effects of committed transactions are durable
after the system restarts because the NVM-InP engine immediately
persists the changes made by a transaction when it commits. The
engine therefore does not need to replay the log during recovery.
But the changes of uncommitted transactions may be present in
the database because the memory controller can evict cache lines
containing those changes to NVM at any time [48]. The NVM-InP
engine therefore needs to undo those transactions using the WAL.

To undo an insert operation, the engine releases the tuple’s storage
space using the pointer recorded in the WAL entry and then removes
entries associated with the tuple in the indexes. In case of an update
operation, the engine restores the tuple’s state using the before
image. If the after image contains non-inlined tuple fields, then
the engine frees up the memory occupied by those fields. For a
delete operation, it only needs to update the indexes to point to the
original tuple. To handle transaction rollbacks and DBMS recovery
correctly, the NVM-InP engine releases storage space occupied by
tuples or non-inlined fields only after it is certain that they are no
longer required. As this recovery protocol does not include a redo
process, the NVM-InP engine has a short recovery latency that only
depends on the number of uncommitted transactions.

4.2 Copy-on-Write Updates Engine (NVM-CoW)

The original CoW engine stores tuples in self-containing blocks
without pointers in the copy-on-write B+tree on the filesystem. The
problem with this engine is that the overhead of propagating mod-
ifications to the dirty directory is high; even if a transaction only
modifies one tuple, the engine needs to copy the entire block to the
filesystem. When a transaction commits, the CoW engine uses the
filesystem interface to flush the dirty blocks and updates the master
record (stored at a fixed location in the file) to point to the root of

NVM-InP Engine NVM-CoW Engine NVM-Log Engine

INSERT • Sync tuple with NVM.
• Record tuple pointer in WAL.
• Sync log entry with NVM.
• Mark tuple state as persisted.
• Add tuple entry in indexes.

• Sync tuple with NVM.
• Store tuple pointer in dirty dir.
• Update tuple state as persisted.
• Add tuple entry in secondary indexes.

• Sync tuple with NVM.
• Record tuple pointer in WAL.
• Sync log entry with NVM.
• Mark tuple state as persisted.
• Add tuple entry in MemTable.

UPDATE • Record tuple changes in WAL.
• Sync log entry with NVM.
• Perform modifications on the tuple.
• Sync tuple changes with NVM.

• Make a copy of the tuple.
• Apply changes on the copy.
• Sync tuple with NVM.
• Store tuple pointer in dirty dir.
• Update tuple state as persisted.
• Add tuple entry in secondary indexes.

• Record tuple changes in WAL.
• Sync log entry with NVM.
• Perform modifications on the tuple.
• Sync tuple changes with NVM.

DELETE • Record tuple pointer in WAL.
• Sync log entry with NVM.
• Discard entry from table and indexes.
• Reclaim space at the end of transaction.

• Remove tuple pointer from dirty dir.
• Discard entry from secondary indexes.
• Recover tuple space immediately.

• Record tuple pointer in WAL.
• Sync log entry with NVM.
• Mark tuple tombstone in MemTable.
• Reclaim space during compaction.

SELECT • Find tuple pointer using index/table.
• Retrieve tuple contents.

• Locate tuple pointer in appropriate dir.
• Fetch tuple contents from dir.

• Find tuple entries in relevant LSM runs.
• Rebuild tuple by coalescing entries.

Table 2: An overview of the steps performed by the NVM-aware storage engines, while executing primitive database operations. The syncing mechanism is
implemented using CLFLUSH and SFENCE instructions on the hardware emulator. We describe the sync primitive in Section 2.3.

the dirty directory [16]. These writes are expensive as they need to
switch the privilege level and go through the kernel’s VFS path.

The NVM-CoW engine employs three optimizations to reduce
these overheads. First, it uses a non-volatile copy-on-write B+tree
that it maintains using the allocator interface. Second, the NVM-
CoW engine directly persists the tuple copies and only records
non-volatile tuple pointers in the dirty directory. Lastly, it uses the
lightweight durability mechanism of the allocator interface to persist
changes in the copy-on-write B+tree.

Storage: Fig. 4b depicts the architecture of the NVM-CoW en-
gine. The storage area for tuples is spread across separate pools for
fixed-sized and variable-length data. The engine maintains the dura-
bility state of each slot in both pools similar to the NVM-InP engine.
The NVM-CoW engine stores the current and dirty directory of the
non-volatile copy-on-write B+tree using the allocator interface. We
modified the B+tree from LMDB [16] to handle modifications at
finer granularity to exploit NVM’s byte addressability. The engine
maintains the master record using the allocator interface to support
efficient updates. When the system restarts, the engine can safely
access the current directory using the master record because that
directory is guaranteed to be in a consistent state. This is because
the data structure is append-only and the data stored in the current
directory is never overwritten.

The execution steps for this engine are shown in Table 2. The
salient feature of this engine’s design is that it avoids the trans-
formation and copying costs incurred by the CoW engine. When
a transaction updates a tuple, the engine first makes a copy and
then applies the changes to that copy. It then records only the non-
volatile tuple pointer in the dirty directory. The engine also batches
transactions to amortize the cost of persisting the current directory.
To commit a batch of transactions, it first persists the changes per-
formed by uncommitted transactions. It then persists the contents
of the dirty directory. Finally, it updates the master record using an
atomic durable write to point to that directory. The engine orders all
of these writes using memory barriers to ensure that only committed
transactions are visible after the system restarts.

Recovery: As the NVM-CoW engine never overwrites commit-
ted data, it does not have a recovery process. When the system
restarts, it first accesses the master record to locate the current di-
rectory. After that, it can start handling transactions. The storage
space consumed by the dirty directory at the time of failure is asyn-
chronously reclaimed by the NVM-aware allocator.

4.3 Log-structured Updates Engine (NVM-Log)
The Log engine batches all writes in the MemTable to reduce

random accesses to durable storage [50, 43]. The benefits of this
approach, however, are not as evident for a NVM-only storage
hierarchy because the performance gap between sequential and
random accesses is smaller. The original log-structured engine
that we described in Section 3.3 incurs significant overhead from
periodically flushing MemTable to the filesystem and compacting
SSTables to bound read amplification. Similar to the NVM-InP
engine, the NVM-Log engine records all the changes performed by
transactions on a WAL stored on NVM.

Our NVM-Log engine avoids data duplication in the MemTable
and the WAL as it only records non-volatile pointers to tuple mod-
ifications in the WAL. Instead of flushing MemTable out to the
filesystem as a SSTable, it only marks the MemTable as immutable
and starts a new MemTable. This immutable MemTable is physi-
cally stored in the same way on NVM as the mutable MemTable.
The only difference is that the engine does not propagate writes
to the immutable MemTables. We also modified the compaction
process to merge a set of these MemTables to generate a new larger
MemTable. The NVM-Log engine uses a NVM-aware recovery pro-
tocol that has lower recovery latency than its traditional counterpart.

Storage: As shown in Fig. 4c, the NVM-Log engine uses an
LSM tree to store the database. Each level of the tree contains a
sorted run of data. Similar to the Log engine, this engine first stores
all the changes performed by transactions in the MemTable which
is the topmost level of the LSM tree. The changes include tuple
contents for insert operation, updated fields for update operation
and tombstone markers for delete operation. When the size of the
MemTable exceeds a threshold, the NVM-Log engine marks it as
immutable and starts a new MemTable. We modify the periodic
compaction process the engine performs for bounding read ampli-
fication to merge a set of immutable MemTables and create a new
MemTable. The engine constructs a Bloom filter [12] for each
immutable MemTable to minimize unnecessary index look-ups.

Similar to the Log engine, the NVM-Log engine maintains a
WAL. The purpose of the WAL is not to rebuild the MemTable,
but rather to undo the effects of uncommitted transactions from the
MemTable. An overview of the operations performed by the NVM-
Log engine is shown in Table 2. Like the NVM-InP engine, this new
engine also stores the WAL as a non-volatile linked list of entries.
When a transaction inserts a tuple, the engine first flushes the tuple
to NVM and records the non-volatile tuple pointer in a WAL entry. It
then persists the log entry and marks the tuple as persisted. Finally,

it adds an entry in the MemTable indexes. After the transaction
commits, the engine truncates the relevant log entry because the
changes recorded in MemTable are durable. Its logging overhead
is lower than the Log engine as it records less data and maintains
the WAL using the allocator interface. The engine uses non-volatile
B+trees [49, 62], described in Section 4.1, as MemTable indexes.
Hence, it does not need to rebuild its indexes upon restarting.

Recovery: When the transaction commits, all the changes per-
formed by the transaction are persisted in the in-memory component.
During recovery, the NVM-Log engine only needs to undo the ef-
fects of uncommitted transactions on the MemTable. Its recovery
latency is therefore lower than the Log engine as it no longer needs
to rebuild the MemTable.

5. EXPERIMENTAL ANALYSIS
In this section, we present our analysis of the six different storage

engine implementations. Our DBMS testbed allows us to evaluate
the throughput, the number of reads/writes to the NVM device, the
storage footprint, and the time that it takes to recover the database
after restarting. We also use the perf toolkit to measure additional,
lower-level hardware metrics of the system for each experiment [3].

The experiments were all performed on Intel Lab’s NVM hard-
ware emulator [27]. It contains a dual-socket Intel Xeon E5-4620
processor. Each socket has eight cores running at 2.6 GHz. It ded-
icates 128 GB of DRAM for the emulated NVM and its L3 cache
size is 20 MB. We use the Intel memory latency checker [63] to
validate the emulator’s latency and bandwidth settings. The engines
access NVM storage using the allocator and filesystem interfaces
of the emulator as described in Section 2.2. We set up the DBMS
to use eight partitions in all of the experiments. We configure the
node size of the STX B+tree and the CoW B+tree implementations
to be 512 B and 4 KB respectively. All transactions execute with
the same serializable isolation level and durability guarantees.

5.1 Benchmarks
We first describe the benchmarks we use in our evaluation. The

tables in each database are partitioned in such way that there are
only single-partition transactions [52].

YCSB: This is a widely-used key-value store workload from
Yahoo! [20]. It is representative of the transactions handled by web-
based companies. It contains a single table comprised of tuples with
a primary key and 10 columns of random string data, each 100 bytes
in size. Each tuple’s size is approximately 1 KB. We use a database
with 2 million tuples (∼2 GB).

The workload consists of two transaction types: (1) a read trans-
action that retrieves a single tuple based on its primary key, and
(2) an update transaction that modifies a single tuple based on its
primary key. We use four types of workload mixtures that allow us
to vary the I/O operations that the DBMS executes. These mixtures
represent different ratios of read and update transactions:
• Read-Only: 100% reads

• Read-Heavy: 90% reads, 10% updates

• Balanced: 50% reads, 50% updates

• Write-Heavy: 10% reads, 90% updates

We modified the YCSB workload generator to support two dif-
ferent levels of skew in the tuple access patterns that allows us to
create a localized hotspot within each partition:
• Low Skew: 50% of the transactions access 20% of the tuples.
• High Skew: 90% of the transactions access 10% of the tuples.

For each workload mixture and skew setting pair, we pre-generate
a fixed workload of 8 million transactions that is divided evenly
among the DBMS’s partitions. Using a fixed workload that is the
same across all the engines allows us to compare their storage
footprints and read/write amplification.

TPC-C: This benchmark is the current industry standard for eval-
uating the performance of OLTP systems [61]. It simulates an
order-entry environment of a wholesale supplier. The workload con-
sists of five transaction types, which keep track of customer orders,
payments, and other aspects of a warehouse. Transactions involving
database modifications comprise around 88% of the workload. We
configure the workload to contain eight warehouses and 100,000
items. We map each warehouse to a single partition. The initial
storage footprint of the database is approximately 1 GB.

5.2 Runtime Performance
We begin with an analysis of the impact of NVM’s latency on

the performance of the storage engines. To obtain insights that
are applicable for various NVM technologies, we run the YCSB
and TPC-C benchmarks under three latency configurations on the
emulator: (1) default DRAM latency configuration (160 ns), (2)
a low NVM latency configuration that is 2× higher than DRAM
latency (320 ns), and (3) a high NVM latency configuration that
is 8× higher than DRAM latency (1280 ns). Prior work [27] has
shown that the sustained bandwidth of NVM is likely to be lower
than that of DRAM. We therefore leverage the bandwidth throttling
mechanism in the hardware emulator [27] to throttle the NVM
bandwidth to 9.5 GB/s, which is 8× lower than the available DRAM
bandwidth on the platform. We execute all workloads three times
on each engine and report the average throughput.

YCSB: Figs. 5 to 7 present the throughput observed with the
YCSB benchmark while varying the workload mixture and skew
settings under different latency configurations. We first consider
the read-only workload results shown in Figs. 5a, 6a and 7a. These
results provide an upper bound on performance since transactions
do not modify the database and the engines therefore do not need to
flush changes from CPU caches to NVM during execution.

The most notable observation is that the NVM-InP engine is not
faster than the InP engine for both skew settings. This is because
both engines perform reads using the allocator interface. The CoW
engine’s throughput is lower than the in-place updates engine be-
cause for every transaction, it fetches the master record and then
looks-up the tuple in the current directory. As the NVM-CoW en-
gine accesses the master record and the non-volatile copy-on-write
B+tree efficiently using the allocator interface, it is 1.9–2.1× faster
than the CoW engine. The Log engine is the slowest among all the
engines because it coalesces entries spread across different LSM tree
components to reconstruct tuples. The NVM-Log engine accesses
the immutable MemTables using the allocator interface and delivers
2.8× higher throughput compared to its traditional counterpart. We
see that increasing the workload skew improves the performance
of all the engines due to caching benefits. The benefits are most
evident for the InP and NVM-InP engines; they achieve 1.3× higher
throughput compared to the low skew setting. The performance
gains due to skew are minimal in case of the Log and NVM-Log
engines due to tuple coalescing costs.

We also observe that the performance gap between the two types
of engines decreases in the read-only workload when we increase
the NVM latency. In the high latency configuration, the NVM-CoW
and the NVM-Log engines are 1.4× and 2.5× faster than their
traditional counterparts. This is because the benefits of accessing
data structures using the allocator interface are masked by slower

InP CoW Log NVM-InP NVM-CoW NVM-Log

Low Skew High Skew
0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) 2.6M 3.3M2.6M 3.3M2.0M

(a) Read-only Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) 2.3M2.3M 2.8M

(b) Read-heavy Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(c) Balanced Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(d) Write-heavy Workload

Figure 5: YCSB Performance (DRAM Latency) – The throughput of the engines for the YCSB benchmark without any latency slowdown.

Low Skew High Skew
0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
) 2.3M 2.3M

(a) Read-only Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(b) Read-heavy Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(c) Balanced Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(d) Write-heavy Workload

Figure 6: YCSB Performance (Low Latency) – The throughput of the engines for the YCSB benchmark under the low NVM latency configuration (2×).

Low Skew High Skew
0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(a) Read-only Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(b) Read-heavy Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(c) Balanced Workload
Low Skew High Skew

0

400000

800000

1200000

1600000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(d) Write-heavy Workload

Figure 7: YCSB Performance (High Latency) – The throughput of the engines for the YCSB benchmark under the high NVM latency configuration (8×).

NVM loads. The engines’ throughput decreases sub-linearly with
respect to the increased NVM latency. For example, with 8× higher
latency, the throughput of the engines only drop by 2–3.4×. The
NVM-aware engines are more sensitive to the increase in latency as
they do not incur tuple transformation and copying costs that dampen
the effect of slower NVM accesses in the traditional engines.

For the read-heavy workload, the results shown in Figs. 5b, 6b
and 7b indicate that the throughput decreases for all the engines
compared to the read-only workload because they must flush trans-
actions’ changes to NVM. Unlike before where the two engines had
the same performance, in this workload we observe that the NVM-
InP engine is 1.3× faster than the InP engine due to lower logging
overhead. The performance of the CoW engine drops compared to
its performance on the read-only workload because of the overhead
of persisting the current directory. The drop is less prominent in the
high skew workload because the updates are now concentrated over
a few hot tuples and therefore the number of copy-on-write B+tree
nodes that are copied when creating the dirty directory is smaller.

The benefits of our optimizations are more prominent for the
balanced and write-heavy workloads. For the NVM-InP and the
NVM-Log engines, we attribute this to lower logging overhead. In
case of the NVM-CoW engine, this is because it does not have to
copy and transform tuples from the filesystem whenever it modifies
them. This allows this engine to achieve 4.3–5.5× higher throughput
than the CoW engine. The performance gap between the Log and
the CoW engines decreases because the former incurs lower tuple
coalescing costs in these workloads. The Log engine is therefore
1.6–4.1× faster than the CoW engine. It still lags behind the InP
engine, however, because batching updates in the MemTable are not
as beneficial in the NVM-only storage hierarchy. With increased
latency, the throughput of all the engines decreases less on these
write-intensive workloads compared to the workloads that contain
more reads. The throughput does not drop linearly with increasing
NVM latency. With an 8× increase in latency, the throughput of the
engines only drops by 1.8–2.9×. We attribute this to the effects of
caching and memory-level parallelism in the emulator.

DRAM Latency Low NVM Latency High NVM Latency
0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Figure 8: TPC-C Throughput – The performance of the engines for TPC-
C benchmark for all three NVM latency settings.

TPC-C: Fig. 8 shows the engines’ throughput while executing
TPC-C under different latency configurations. Among all the en-
gines, the NVM-InP engine performs the best. The NVM-aware
engines are 1.8–2.1× faster than the traditional engines. The NVM-
CoW engine exhibits the highest speedup of 2.3× over the CoW
engine. We attribute this to the write-intensive nature of the TPC-
C benchmark. Under the high NVM latency configuration, the
NVM-aware engines deliver 1.7–1.9× higher throughput than their
traditional counterparts. These trends closely follow the results
for the write-intensive workload mixture in the YCSB benchmark.
The benefits of our optimizations, however, are not as significant as
previously observed with the YCSB benchmark. This is because
the TPC-C transactions’ contain more complex program logic and
execute more queries per transaction.

5.3 Reads & Writes
We next measure the number of times that the storage engines

access the NVM device while executing the benchmarks. This is
important because the number of write cycles per bit is limited in
different NVM technologies as shown in Table 1. We compute
these results using hardware performance counters on the emulator
with the perf framework [3]. These counters track the number of
loads (i.e. reads) from and stores (i.e. writes) to the NVM device
during execution. In each trial, the engines’ access measurements
are collected after loading the initial database.

YCSB: The results for NVM reads and writes while executing
the YCSB benchmark are shown in Figs. 9 and 10, respectively. In

InP CoW Log NVM-InP NVM-CoW NVM-Log

Low Skew High Skew
0

200
400
600
800

1000
1200

N
VM

 L
oa

ds
 (M

)

(a) Read-only Workload
Low Skew High Skew

0
200
400
600
800

1000
1200

N
VM

 L
oa

ds
 (M

)

(b) Read-heavy Workload
Low Skew High Skew

0
200
400
600
800

1000
1200

N
VM

 L
oa

ds
 (M

)

(c) Balanced Workload
Low Skew High Skew

0
200
400
600
800

1000
1200

N
VM

 L
oa

ds
 (M

)

1.6B

(d) Write-heavy Workload

Figure 9: YCSB Reads – The number of load operations executed by the engines while running the YCSB workload.

Low Skew High Skew
0

100

200

300

400

500

N
VM

 S
to

re
s

(M
)

(a) Read-only Workload
Low Skew High Skew

0

100

200

300

400

500
N

VM
 S

to
re

s
(M

)

(b) Read-heavy Workload
Low Skew High Skew

0

100

200

300

400

500

N
VM

 S
to

re
s

(M
)

(c) Balanced Workload
Low Skew High Skew

0

100

200

300

400

500

N
VM

 S
to

re
s

(M
)

(d) Write-heavy Workload

Figure 10: YCSB Writes – The number of store operations executed by the engines while running the YCSB workload.

0

200

400

600

800

1000

1200

N
VM

 L
oa

ds
 (M

)

(a) Reads

0

100

200

300

400

500

600

N
VM

 S
to

re
s

(M
)

(b) Writes

Figure 11: TPC-C Reads & Writes – The number of load and store opera-
tions executed by the engines while running the TPC-C benchmark.

the read-only workload, we observe that the Log engine performs
the most load operations due to tuple coalescing. The NVM-aware
engines perform up to 53% fewer loads due to better cache locality
as they do not perform any tuple deserialization operations. When
we increase the workload skew, there is a significant drop in the
NVM loads performed by all the engines. We attribute this to
caching of hot tuples in the CPU caches.

In the write-intensive workloads, we observe that the CoW engine
now performs the most NVM stores. This is because it needs to
copy several pages while creating the dirty directory. This engine
also performs the largest number of load operations. The copying
mechanism itself requires reading data off NVM. Further, the I/O
overhead of maintaining this directory reduces the number of hot
tuples that can reside in the CPU caches.

On the write-heavy workload, the NVM-aware engines perform
17–48% fewer stores compared to their traditional counterparts. We
attribute this to their lightweight durability mechanisms and smaller
storage footprints that enable them to make better use of hardware
caches. Even with increased workload skew, the NVM-aware en-
gines perform 9–41% fewer NVM writes. We note that the NVM
accesses performed by the storage engines correlate inversely with
the throughput delivered by these engines as shown in Section 5.2.

TPC-C: Fig. 11 presents the NVM accesses performed while
executing the TPC-C benchmark. NVM-aware engines perform
31–42% fewer writes compared to the traditional engines. We see
that the access patterns are similar to that observed with the write-
intensive workload mixture in the YCSB benchmark. The Log
engine performs more writes in this benchmark compared to the
YCSB benchmark because it has more indexes. This means that
updating a tuple requires updating several indexes as well.

1000 10000 100000
Number of transactions

0.01

1

100

10000

1000000

R
ec

ov
er

y
La

te
nc

y
(m

s)

(a) YCSB

1000 10000 100000
Number of transactions

0.01

1

100

10000

1000000

R
ec

ov
er

y
La

te
nc

y
(m

s)

(b) TPC-C

Figure 12: Recovery Latency – The amount of time that the engines take
to restore the database to a consistent state after a restart.

5.4 Recovery
In this experiment, we evaluate the recovery latency of the stor-

age engines. For each benchmark, we first execute a fixed num-
ber of transactions and then force a hard shutdown of the DBMS
(SIGKILL). We then measure the amount of time for the system to
restore the database to a consistent state. That is, a state where the
effects of all committed transactions are durable, and the effects of
uncommitted transactions are removed. The number of transactions
that need to be recovered by the DBMS depends on the frequency
of checkpointing for the InP engine and on the frequency of flush-
ing the MemTable for the Log engine. The CoW and NVM-CoW
engines do not perform any recovery mechanism after the OS or
DBMS restarts because they never overwrite committed data. They
have to perform garbage collection to clean up the previous dirty di-
rectory. This is done asynchronously and does not have a significant
impact on the throughput of the DBMS.

YCSB: The results in Fig. 12a show the recovery measurements
for the YCSB benchmark. We do not show the CoW and NVM-
CoW engines as they never need to recover. We observe that the
latency of the InP and Log engines grows linearly with the number
of transactions that need to be recovered. This is because these en-
gines first redo the effects of committed transactions before undoing
the effects of uncommitted transactions. In contrast, the NVM-InP
and NVM-Log engines’ recovery time is independent of the number
of transactions executed. These engines only need to undo the ef-
fects of transactions that are active at the time of failure and not the
ones since the last checkpoint or flush. The NVM-aware engines
therefore have a short recovery that is always less than a second.

TPC-C: The results for the TPC-C benchmark are shown in
Fig. 12b. The recovery latency of the NVM-InP and NVM-Log en-
gines is slightly higher than that in the YCSB benchmark because the

Storage Recovery Index Other

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0
20
40
60
80

100

Ti
m

e
(%

)

(a) Read-only Workload

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0
20
40
60
80

100

Ti
m

e
(%

)
(b) Read-heavy Workload

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0
20
40
60
80

100

Ti
m

e
(%

)

(c) Balanced Workload

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0
20
40
60
80

100

Ti
m

e
(%

)

(d) Write-heavy Workload

Figure 13: Execution Time Breakdown – The time that the engines spend in their internal components when running the YCSB benchmark.

TPC-C transactions perform more operations. However, the latency
is still independent of the number of transactions executed unlike
the traditional engines because the NVM-aware engines ensure that
the effects of committed transactions are persisted immediately.

5.5 Execution Time Breakdown
In this experiment, we analyze the time that the engines spend

in their internal components during execution. We only examine
YCSB with low skew and low NVM latency configuration, which
allows us to better understand the benefits and limitations of our
implementations. We use event-based sampling with the perf frame-
work [3] to track the cycles executed within the engine’s components.
We start this profiling after loading the initial database.

The engine’s cycles are classified into four categories: (1) storage
management operations with the allocator and filesystem interfaces,
(2) recovery mechanisms like logging, (3) index accesses and main-
tenance, and (4) other miscellaneous components. This last category
is different for each engine; it includes the time spent in synchroniz-
ing the engine’s components and performing engine-specific tasks,
such as compaction in case of the Log and NVM-Log engines. As
our testbed uses a lightweight concurrency control mechanism, these
results do not contain any overhead from locking or latching [59].

The most notable result for this experiment, as shown in Fig. 13,
is that on the write-heavy workload, the NVM-aware engines only
spend 13–18% of their time on recovery-related tasks compared
to the traditional engines that spend as much as 33% of their time
on them. We attribute this to the lower logging overhead in the
case of the NVM-InP and NVM-Log engines, and the reduced cost
of committing the dirty directory in the NVM-CoW engine. We
observe that the proportion of the time that the engines spend on
recovery mechanisms increases as the workload becomes write-
intensive. This explains why the benefits of our optimizations are
more prominent for the balanced and write-heavy workloads.

These results highlight the benefits of optimizing the memory
allocator to leverage NVM’s characteristics. This is because the
NVM-aware engines spend most of their time performing storage
management operations since their recovery mechanisms are so
efficient. Interestingly, the engines performing copy-on-write up-
dates spend a higher proportion of time on recovery-related tasks
compared to other engines, particularly on the read-heavy work-
load. This highlights the cost of creating and maintaining the dirty
directory for large databases, even using an efficient CoW B+tree.
Another observation from Fig. 13 is that the Log and NVM-Log
engines spend a higher fraction of their time accessing and maintain-
ing indexes. This is because they perform multiple index look-ups
on the LSM tree to reconstruct tuples. We observe that the NVM-
Log engine spends less time performing the compaction process
compared to the Log engine. This is due to the reduced overhead of
maintaining the MemTables using the allocator interface.

Table Index Log Checkpoint Other

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0.0

1.5

3.0

4.5

6.0

St
or

ag
e

(G
B

)
(a) YCSB Storage

In
P

Co
W Lo
g

NV
M

-In
P

NV
M

-C
oW

NV
M

-L
og

0.0

1.5

3.0

4.5

6.0

St
or

ag
e

(G
B

)

(b) TPC-C Storage

Figure 14: Storage Footprint – The amount of storage occupied in NVM
by the internal components of the engines.

5.6 Storage Footprint
Lastly, we compare the engines’ usage of NVM storage at run-

time. The storage footprint of an engine is the amount of space that
it uses for storing tables, logs, indexes, and other internal data struc-
tures. This metric is important because we expect that the first NVM
products will initially have a higher cost than current storage tech-
nologies [39]. For this experiment, we periodically collect statistics
maintained by our allocator and the filesystem meta-data during the
workload execution. This is done after loading the initial database
for each benchmark. We then report the peak storage footprint of
each engine. For all of the engines, we allow their background
processes (e.g., group commit, checkpointing, garbage collection,
compaction) to execute while we collect these measurements.

YCSB: We use the balanced workload mixture and low skew
setting for this experiment. The initial size of the database is 2 GB.
The results shown in Fig. 14a indicate that the CoW engine has the
largest storage footprint. Since this workload contains transactions
that modify the database and tuples are accessed more uniformly,
this engine incurs high overhead from continually creating new
dirty directories and copying tuples. The InP and Log engines rely
on logging to improve their recovery latency at the expense of a
larger storage footprint. The InP engine checkpoints have a high
compression ratio and therefore consume less space.

The NVM-aware engines have smaller storage footprints com-
pared to the traditional engines. This is because the NVM-InP and
NVM-Log engines only record non-volatile pointers to tuples and
non-inlined fields in the WAL. As such, they consume 17–21%
less storage space than their traditional counterparts. For the CoW
engine, its large storage footprint is due to duplicated data in its
internal cache. In contrast, the NVM-CoW engine accesses the
non-volatile copy-on-write B+tree directly using the allocator inter-
face, and only records non-volatile tuple pointers in this tree and not
entire tuples. This allows it to use 25% less storage space.

TPC-C: The graph in Fig. 14b shows the storage footprint of
the engines while executing TPC-C. For this benchmark, the initial
size of the database is 1 GB and it grows to 2.4 GB. Transactions
inserting new tuples increase the size of the internal data structures
in the CoW and Log engines (i.e., the copy-on-write B+trees and
the SSTables stored in the filesystem). By avoiding unnecessary
data duplication using NVM’s persistence property, the NVM-aware
engines have 31–38% smaller storage footprints. The space savings
are more significant in this benchmark because the workload is
write-intensive with longer running transactions. Thus, the logs in
the InP and the Log engines grow more quickly compared to the
small undo logs in their NVM-aware counterparts.

5.7 Discussion
Our analysis shows that the NVM access latency has the most

impact on the runtime performance of the engines, more so than the
amount of skew or the number of modifications to the database in the
workload. This difference due to latency is more pronounced with
the NVM-aware variants; their absolute throughput is better than the
traditional engines, but longer latencies cause their performance to
drop more significantly. This behavior is because they are no longer
bottlenecked by heavyweight durability mechanisms [23].

The NVM-aware engines also perform fewer store operations,
which will help extend NVM device lifetimes. We attribute this
to the reduction in redundant data that the engines store when a
transaction modifies the database. Using the allocator interface with
non-volatile pointers for internal data structures also allows them
to have a smaller storage footprint. This in turn avoids polluting
the CPU’s caches with unnecessary copying and transformation
operations. It also improves the recovery times of the engines that
use a WAL since they no longer record redo information.

Overall, we find that the NVM-InP engine performs the best
across a wide set of workload mixtures and skew settings for all
NVM latency configurations. The NVM-CoW engine did not per-
form as well for write-intensive workloads, but may be a better fit for
DBMSs that support non-blocking read-only transactions. For the
NVM-Log engine, many of its design assumptions are not copacetic
for a single-tier storage hierarchy. The engine is essentially perform-
ing in-place updates like the NVM-InP engine but with additional
overhead of maintaining its legacy components.

6. RELATED WORK
We now discuss previous research on using NVM. SafeRAM [21]

is one of the first projects that explored the use of NVM in software
applications. Using simulations, they evaluated the improvement in
throughput and latency of OLTP workloads when disk is replaced
by battery-backed DRAM. Later work demonstrated the utility of
NVM in a client-side cache for distributed filesystems [8].

Recently, several application-level APIs for programming with
persistent memory have been proposed. Mnemosyne [64] and NV-
heaps [18] use software transactional memory to support transac-
tional updates to data stored on NVM. NVMalloc [49] is a memory
allocator that considers wear leveling of NVM. The primitives pro-
vided by these systems allow programmers to use NVM in their
applications but do not provide the transactional semantics required
by a DBMS.

In the context of DBMSs, recent work demonstrated that memory-
oriented DBMSs perform only marginally better than disk-oriented
DBMSs when using NVM because both systems still assume that
memory is volatile [24]. Others have developed new recovery mech-
anisms for DBMSs that are using a NVM + DRAM storage hier-
archy [53, 30, 17, 65]. Pelley et al. introduce a group commit
mechanism to persist transactions’ updates in batches to reduce the

number of write barriers required for ensuring correct ordering [53].
This work is based on the Shore-MT engine [37], which means that
the DBMS records page-level before-images in the undo logs before
performing in-place updates. This results in high data duplication.

Wang et al. present a passive group commit method for a dis-
tributed logging protocol extension to Shore-MT [65]. Instead of
issuing a barrier for every processor at commit time, the DBMS
tracks when all of the records required to ensure the durability of a
transaction are flushed to NVM. This approach is similar to other
work on a log manager that directly writes log records to NVM, and
addresses the problems of detecting partial writes and recoverabil-
ity [28]. Both of these projects rely on software-based simulation of
a NVM + DRAM system.

MARS [17] is an in-place updates engine optimized for NVM
that relies on a hardware-assisted primitive that allows multiple
writes to arbitrary locations to happen atomically. MARS does away
with undo log records by keeping the changes isolated using this
primitive. Similarly, it relies on this primitive to apply the redo log
records at the time of commit. In comparison, our NVM-InP engine
is based on non-volatile pointers, a software-based primitive. It
removes the need to maintain redo information in the WAL, but still
needs to maintain undo log records until the transaction commits.

SOFORT [51] is a hybrid storage engine designed for a storage
hierarchy with both NVM and DRAM. The engine is designed to not
perform any logging and uses MVCC. Similar to SOFORT, we make
use of non-volatile pointers [58]. Our usage of persistent pointers
is different. Their persistent pointer primitive is a combination of
page ID and offset. We eschew the page abstraction in our engines,
as NVM is byte-addressable. Hence, we use raw NVM pointers
to build non-volatile data structures. For example, the engines
performing in-place and log-structured updates need to perform
undo logging, which is where we use non-volatile pointers to reduce
data duplication.

Beyond DBMSs, others have looked into using NVM in filesys-
tems. BPFS is a filesystem designed for persistent memory [19]. It
uses a variant of shadow paging that supports atomic updates by
relying on a special hardware instruction that ensures ordering be-
tween writes in different epochs. PMFS is another filesystem from
Intel Labs that is designed for byte-addressable NVM [27]. It relies
on write-ahead logging to preserve meta-data consistency and uses
shadow paging only for data. It assumes a simpler hardware barrier
primitive than epochs. Further, it optimizes memory-mapped I/O
by directly mapping the persistent memory to the application’s ad-
dress space. The filesystem interface used by the traditional storage
engines in our DBMS testbed is backed by PMFS.

7. CONCLUSION
This paper explored the fundamentals of storage and recovery

methods in OLTP DBMSs running on an NVM-only storage hier-
archy. We implemented three storage engines in a modular DBMS
testbed with different architectures: (1) in-place updates, (2) copy-
on-write updates, and (3) log-structured updates. We then developed
optimized variants of each of these engines that better make use of
NVM’s characteristics. Our experimental analysis with two different
OLTP workloads showed that our NVM-aware engines outperform
the traditional engines by up to 5.5× while reducing the number of
writes to the storage device by more than half on write-intensive
workloads. We found that the NVM access latency has the most
impact on the runtime performance of the engines, more so than the
workload skew or the number of modifications to the database in
the workload. Our evaluation showed that the NVM-aware in-place
updates engine achieved the best throughput among all the engines
with the least amount of wear on the NVM device.

8. REFERENCES

[1] Apache Cassandra.
http://datastax.com/documentation/cassandra/2.0/.

[2] Intel Architecture Instruction Set Extensions Programming
Reference. https://software.intel.com/sites/
default/files/managed/0d/53/319433-022.pdf.

[3] Linux perf framework.
https://perf.wiki.kernel.org/index.php/Main_Page.

[4] NUMA policy library.
http://linux.die.net/man/3/numa.

[5] VoltDB. http://voltdb.com.
[6] AGIGARAM. DDR3 NVDIMM.

http://www.agigatech.com/ddr3.php.
[7] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P.

Eswaran, J. N. Gray, P. P. Griffiths, W. F. King, R. A. Lorie,
P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W.
Wade, and V. Watson. System R: relational approach to
database management. ACM Trans. Database Syst.,
1(2):97–137, June 1976.

[8] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.
Non-volatile memory for fast, reliable file systems. In
ASPLOS, pages 10–22, 1992.

[9] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[10] T. Bingmann. STX B+ tree C++ template classes.
http://panthema.net/2007/stx-btree/.

[11] M. Bjørling, P. Bonnet, L. Bouganim, and N. Dayan. The
necessary death of the block device interface. In CIDR, 2013.

[12] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 1970.

[13] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam,
K. Gopalakrishnan, and R. S. Shenoy. Overview of candidate
device technologies for storage-class memory. IBM J. Res.
Dev., 52(4):449–464, July 2008.

[14] J. Chang, P. Ranganathan, T. Mudge, D. Roberts, M. A. Shah,
and K. T. Lim. A limits study of benefits from
nanostore-based future data-centric system architectures. CF
’12, pages 33–42, 2012.

[15] F. Chen, M. Mesnier, and S. Hahn. A protected block device
for persistent memory. In 30th Symposium on Mass Storage
Systems and Technologies (MSST), 2014.

[16] H. Chu. MDB: A Memory-Mapped Database and Backend for
OpenLDAP. Technical report, OpenLDAP, 2011.

[17] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson.
From ARIES to MARS: Transaction support for
next-generation, solid-state drives. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 197–212, 2013.

[18] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. Nv-heaps: making persistent
objects fast and safe with next-generation, non-volatile
memories. In ASPLOS, pages 105–118. ACM, 2011.

[19] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through
byte-addressable, persistent memory. In SOSP, pages
133–146, 2009.

[20] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB. In
SoCC, pages 143–154, 2010.

[21] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The
case for safe ram. VLDB, pages 327–335. Morgan Kaufmann
Publishers Inc., 1989.

[22] J. Dean and S. Ghemawat. LevelDB.
http://leveldb.googlecode.com.

[23] J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker, S. Zdonik,
and S. Dulloor. A prolegomenon on OLTP database systems
for non-volatile memory. In ADMS@VLDB, 2014.

[24] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik.
Anti-caching: A new approach to database management
system architecture. Proc. VLDB Endow., 6(14):1942–1953,
Sept. 2013.

[25] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. Wood. Implementation techniques for
main memory database systems. SIGMOD Rec., 14(2):1–8,
1984.

[26] A. Driskill-Smith. Latest advances and future prospects of
STT-RAM. In Non-Volatile Memories Workshop, 2010.

[27] S. R. Dulloor, S. K. Kumar, A. Keshavamurthy, P. Lantz,
D. Subbareddy, R. Sankaran, and J. Jackson. System software
for persistent memory. In EuroSys, 2014.

[28] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High
performance database logging using storage class memory.
ICDE, pages 1221–1231, 2011.

[29] M. Franklin. Concurrency control and recovery. The Computer
Science and Engineering Handbook, pages 1058–1077, 1997.

[30] S. Gao, J. Xu, B. He, B. Choi, and H. Hu. PCMLogging:
Reducing transaction logging overhead with pcm. CIKM,
pages 2401–2404, 2011.

[31] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. IEEE Trans. on Knowl. and Data Eng.,
pages 509–516, 1992.

[32] D. Gawlick and D. Kinkade. Varieties of concurrency control
in IMS/VS Fast Path. Technical report, Tandem, 1985.

[33] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Putzolu, and I. Traiger. The recovery manager of
the system R database manager. ACM Comput. Surv.,
13(2):223–242, June 1981.

[34] R. A. Hankins and J. M. Patel. Effect of node size on the
performance of cache-conscious b+-trees. SIGMETRICS ’03,
pages 283–294, 2003.

[35] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker.
OLTP through the looking glass, and what we found there. In
SIGMOD, pages 981–992, 2008.

[36] M. Hedenfalk. Copy-on-write B+ Tree.
http://www.bzero.se/ldapd/.

[37] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and
B. Falsafi. Shore-MT: a scalable storage manager for the
multicore era. In EDBT, pages 24–35, 2009.

[38] N. P. Jouppi. Cache write policies and performance. In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, ISCA, 1993.

[39] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evaluating
phase change memory for enterprise storage systems: A study
of caching and tiering approaches. In Proceedings of the 12th
USENIX Conference on File and Storage Technologies (FAST
14), 2014.

[40] B. Kuszmaul. A Comparison of Fractal Trees to
Log-Structured Merge (LSM) Trees. Technical report,
Tokutek, 2014.

http://datastax.com/documentation/cassandra/2.0/
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
 https://perf.wiki.kernel.org/index.php/Main_Page
http://linux.die.net/man/3/numa
http://voltdb.com
http://www.agigatech.com/ddr3.php
http://panthema.net/2007/stx-btree/
http://leveldb.googlecode.com
http://www.bzero.se/ldapd/

[41] D. Laney. 3-D data management: Controlling data volume,
velocity and variety. Feb. 2001.

[42] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. W. Keller. Energy management for commercial servers.
Computer, 36(12).

[43] LevelDB. Implementation details of LevelDB. https:
//leveldb.googlecode.com/svn/trunk/doc/impl.html.

[44] P. Macko. A simple PCM block device simulator for Linux.
https://code.google.com/p/pcmsim/people/list.

[45] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking main memory OLTP recovery. In ICDE, 2014.

[46] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K.
DeBrosse, R. Divakaruni, Y. Li, and C. J. Radens. Challenges
and future directions for the scaling of dynamic
random-access memory (DRAM). IBM J. Res. Dev., 46(2-3).

[47] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using
write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[48] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller.
Memory performance and cache coherency effects on an intel
nehalem multiprocessor system. PACT ’09, pages 261–270.

[49] I. Moraru, D. Andersen, M. Kaminsky, N. Tolia,
P. Ranganathan, and N. Binkert. Consistent, durable, and safe
memory management for byte-addressable non volatile main
memory. In TRIOS, 2013.

[50] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385,
June 1996.

[51] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm.
SOFORT: A hybrid SCM-DRAM storage engine for fast data
recovery. DaMoN, pages 8:1–8:7, 2014.

[52] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic
database partitioning in shared-nothing, parallel OLTP
systems. In SIGMOD, pages 61–72, 2012.

[53] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the NVRAM era. PVLDB, 7(2):121–132,
2013.

[54] T. Perez and C. Rose. Non-volatile memory: Emerging
technologies and their impact on memory systems. PURCS
Technical Report, 2010.

[55] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen,
R. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and
C. Lam. Phase-change random access memory: A scalable
technology. IBM Journal of Research and Development,
52(4.5):465–479, 2008.

[56] O. Rodeh. B-trees, shadowing, and clones. Trans. Storage,
pages 2:1–2:27, 2008.

[57] M. Rosenblum and J. K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1):26–52, Feb. 1992.

[58] A. Rudoff. Persistent memory library. https://github.com/
pmem/linux-examples/tree/master/libpmem.

[59] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era:
(it’s time for a complete rewrite). In VLDB, pages 1150–1160,
2007.

[60] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams.
The missing memristor found. Nature, (7191):80–83, 2008.

[61] The Transaction Processing Council. TPC-C Benchmark
(Revision 5.9.0). http://www.tpc.org/tpcc/, June 2007.

[62] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H.
Campbell. Consistent and durable data structures for
non-volatile byte-addressable memory. In FAST, 2011.

[63] V. Viswanathan, K. Kumar, and T. Willhalm. Intel Memory
Latency Checker. https://software.intel.com/en-us/
articles/intelr-memory-latency-checker.

[64] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
lightweight persistent memory. In R. Gupta and T. C. Mowry,
editors, ASPLOS, pages 91–104. ACM, 2011.

[65] T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. PVLDB, 7(10):865–876, 2014.

[66] J. H. Yoon, H. C. Hunter, and G. A. Tressler. Flash & dram si
scaling challenges, emerging non-volatile memory technology
enablement - implications to enterprise storage and server
compute systems. Flash Memory Summit, aug 2013.

APPENDIX
A. ANALYTICAL COST MODEL

In this section, we present a cost model to estimate the amount
of data written to NVM per operation, by the traditional and NVM-
optimized storage engines. This model highlights the strengths and
weaknesses of these engines.

We begin the analysis by stating the assumptions we use to sim-
plify the model. First, the database operations are presumed to be
always successful. The amount of data written to NVM while per-
forming an aborted operation will depend on the stage at which the
operation fails. We therefore restrict our analysis to only successful
operations. Second, the engines handle fixed-length and variable-
length tuple fields differently. The fixed-length fields are stored
in-line, while the variable-length fields are stored separately. To
illustrate this difference, we assume that the update operation alters
one fixed-length field and one variable-length field. Note that the tu-
ple itself can contain any number of fixed-length and variable-length
fields depending on the database schema.

Let us now describe some notation. We denote the size of the
tuple by T . This depends on the specific table on which the engine
performs the database operation. Let the size of the fixed-length
field and the variable-length field altered by the update operation
be F and V , respectively. These parameters depend on the table
columns that are modified by the engine. The size of a pointer is
represented by p. The NVM-optimized engines use non-volatile
pointers to tuples and variable-length tuple fields to reduce data
duplication. We use θ to denote the write-amplification factor of the
engines performing log-structured updates. θ could be attributed to
the periodic compaction mechanism that these engines perform to
bound read-amplification and depends on the type of LSM tree. Let
B represent the size of a node in the CoW B+tree used by the CoW
and NVM-CoW engines. We indicate small fixed-length writes to
NVM, such as those used to maintain the status of tuple slots, by ε .

Given this notation, we present the cost model in Table 3. The
data written to NVM is classified into three categories: (1) memory,
(2) log, and (3) table storage. We now describe some notable entries
in the table. While performing an insert operation, the InP engine
writes three physical copies of a tuple. In contrast, the NVM-InP en-
gine only records the tuple pointer in the log and table data structures
on NVM. In the case of the CoW and NVM-CoW engines, there
are two possibilities depending on whether a copy of the relevant
B+tree node is absent or present in the dirty directory. For the latter,
the engines do not need to make a copy of the node before applying

https://leveldb.googlecode.com/svn/trunk/doc/impl.html
https://leveldb.googlecode.com/svn/trunk/doc/impl.html
https://code.google.com/p/pcmsim/people/list
https://github.com/pmem/linux-examples/tree/master/libpmem
https://github.com/pmem/linux-examples/tree/master/libpmem
http://www.tpc.org/tpcc/
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

Insert Update Delete

InP
Memory : T
Log : T
Table : T

Memory : F + V
Log : 2 × (F + V)
Table : F + V

Memory : ε

Log : T
Table : ε

CoW
Memory : B + T ‖ T
Log : 0
Table : B ‖ T

Memory : B + F + V ‖ F + V
Log : 0
Table : B ‖ F + V

Memory : B + ε ‖ ε

Log : 0
Table : B ‖ ε

Log
Memory : T
Log : T
Table : θ × T

Memory : F + V
Log : 2 * (F + V)
Table : θ × (F + V)

Memory : ε

Log : T
Table : ε

NVM-InP
Memory : T
Log : p
Table : p

Memory : F + V + p
Log : F + p
Table : 0

Memory : ε

Log : p
Table : ε

NVM-CoW
Memory : T
Log : 0
Table : B + p ‖ p

Memory : T + F + V
Log : 0
Table : B + p ‖ p

Memory : ε

Log : 0
Table : B + ε ‖ ε

NVM-Log
Memory : T
Log : p
Table : θ × T

Memory : F + V + p
Log : F + p
Table : θ × (F + p)

Memory : ε

Log : p
Table : ε

Table 3: Analytical cost model for estimating the amount of data written to NVM, while performing insert, update, and delete operations, by each engine.

the desired transformation. We distinguish these two cases in the
relevant table entries using vertical bars. Note that these engines
have no logging overhead as they always apply modifications in the
dirty directory. The performance gap between the traditional and the
NVM-optimized engines, particularly for write-intensive workloads,
directly follows from the cost model presented in the table.

B. IMPACT OF B+TREE NODE SIZE
We examine the sensitivity of our experimental results to size of

the B+tree nodes in this section. The engines performing in-place
and log-structured updates use the STX B+tree [10] for maintaining
indexes, while the engines performing copy-on-write updates use
the append-only B+tree [56, 16, 36] for storing the directories. In
all our experiments, we use the default node size for both the STX
B+tree (512 B) and copy-on-write B+tree (4 KB) implementations.
For this analysis, we vary the B+tree node size and examine the
impact on the engine’s throughput, while executing different YCSB
workloads under low NVM latency (2×) and low workload skew
settings. We restrict our analysis to the NVM-aware engines as they
are representative of other engines.

The graphs, shown in Fig. 15, indicate that the impact of B+tree
node size is more significant for the CoW B+tree than the STX
B+tree. In case of the CoW B+tree, we observe that increasing
the node size improves the engine’s performance on read-heavy
workloads. This can be attributed to smaller tree depth, which in
turn reduces the amount of indirection in the data structure. It also
reduces the amount of metadata that needs to be flushed to NVM
to ensure recoverability. However, the engine’s performance on
write-heavy workloads drops as the B+tree nodes get larger. This
is because of the copying overhead when performing updates in
the dirty directory of the CoW B+tree. We found that the engines
performing copy-on-write updates perform well on both types of
workloads when the node size is 4 KB. With the STX B+tree, our
experiments suggest that the optimal node size is 512 B. This set-
ting provides a nice balance between cache misses, instructions
executed, TLB misses, and space utilization [34]. Hence, in all of
our experiments in Section 5, we configured the B+trees used by all
the engines to their optimal performance settings.

C. NVM INSTRUCTION SET EXTENSIONS
In this section, we explore the impact of newly proposed NVM-

related instruction set extensions [2] on the performance of the

engines. These extensions have been added by Intel in late 2014
and are not currently commercially available. As we describe in
Section 2.3, we currently implement the sync primitive using the
SFENCE and CLFLUSH instructions. We believe that these new ex-
tensions, such as the PCOMMIT and CLWB instructions [2], can be
used to ensure the correctness and improve the performance of this
primitive in future processors because they are more efficient and
provide better control for how a DBMS interacts with NVM.

The PCOMMIT instruction guarantees the durability of stores to
persistent memory. When the data is written back from the CPU
caches, it can still reside in the volatile buffers on the memory
controller. After the PCOMMIT instruction is executed, the store must
become persistent. The CLWB instruction writes back a target cache
line to NVM similar to the CLFLUSH instruction. It is, however,
different in two ways: (1) it is a weakly-ordered instruction and can
thus perform better than the strongly-ordered CLFLUSH instruction,
and (2) it can retain a copy of the line in the cache hierarchy in
exclusive state, thereby reducing the possibility of cache misses
during subsequent accesses. In contrast, the CLFLUSH instruction
always invalidates the cacheline, which means that data has to be
retrieved again from NVM.

To understand the performance impact of the sync primitive com-
prising of PCOMMIT and CLWB instructions, we emulate its latency us-
ing RDTSC and PAUSE instructions. We note that our software-based
latency emulation does not capture all the complex interactions in
real processors. However, it still allows us to perform a useful what-
if analysis before these instruction set extensions are available. We
vary the latency of the sync primitive from 10–10000 ns and com-
pare it with the currently used sync primitive. Since the traditional
engines use PMFS [27], which is loaded in as a kernel module, they
require more changes for this experiment. We therefore restrict our
analysis to the NVM-aware engines. We execute different YCSB
workloads under low NVM latency (2×) and low workload skew
settings.

The results in Fig. 16 show that the engines are sensitive to the
performance of the sync primitive. Performance measurements of
the engines while using the current sync primitive are shown on the
left side of each graph to serve as a baseline. We observe that the
throughput of all the engines drops significantly with the increasing
sync primitive latency. This is expected as these engines make ex-
tensive use of this primitive in their non-volatile data structures. The
impact is therefore more pronounced on write-intensive workloads.

Read-Only Read-Heavy Balanced Write-Heavy

64 128 256 512 1024 2048
B+tree node size (bytes)

0

500000

1000000

1500000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(a) NVM-InP engine (STX B+tree)

512 1024 2048 4096 8192 16384
B+tree node size (bytes)

0

500000

1000000

1500000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(b) NVM-CoW engine (CoW B+tree)

64 128 256 512 1024 2048
B+tree node size (bytes)

0

500000

1000000

1500000

2000000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(c) NVM-Log engine (STX B+tree)

Figure 15: B+Tree Node Size – The impact of B+tree node size on the performance of the NVM-aware engines. The engines run the YCSB workloads under
low NVM latency (2×) and low skew settings.

Current 10 100 1000 10000
Sync primitive latency (ns)

0

400000

800000

1200000

1600000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(a) NVM-InP engine

Current 10 100 1000 10000
Sync primitive latency (ns)

0

400000

800000

1200000

1600000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(b) NVM-CoW engine

Current 10 100 1000 10000
Sync primitive latency (ns)

0

400000

800000

1200000

1600000

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

(c) NVM-Log engine

Figure 16: NVM Instruction Set Extensions – The impact of sync primitive latency on the performance of the NVM-aware engines. The engines run the
YCSB workloads under low NVM latency (2×) and low skew settings. Performance obtained using the current primitive, built using the SFENCE and CLFLUSH
instructions, is shown on the left side of each graph to serve as a baseline.

We note that the NVM-CoW engine is slightly less sensitive to
latency of the sync primitive than the NVM-InP and NVM-Log
engines. We attribute this to the fact that this engine primarily uses
data duplication to ensure recoverability and only uses the sync
primitive to ensure the consistency of the CoW B+tree. In case of
the NVM-Log engine, its performance while executing the write-
heavy workload is interesting. Its throughput becomes less than the
throughput on the balanced workload only when the latency of the
sync primitive is above 1000 ns. This is because the engine needs
to reconstruct tuples from entries spread across different LSM tree
components.

We conclude that the trade-offs that we identified in these NVM-
aware engines in the main body of the paper still hold at higher
sync primitive latencies. Overall, we believe that these new in-
structions will be required to ensure recoverability and improve the
performance of future NVM-aware DBMSs.

D. FUTURE WORK
A hybrid DRAM and NVM storage hierarchy is a viable alter-

native, particularly in case of high NVM latency technologies and
analytical workloads. We plan to expand our NVM-aware engines

to run on that storage hierarchy. There are several other aspects
of DBMS architectures for NVM that we would like study further.
We plan to investigate concurrency control algorithms that are more
sophisticated than the scheme that we used in our testbed to see
whether they can be made to scale on a NVM-based system. In
particular, we are interested in exploring methods for supporting
hybrid workloads (i.e., OLTP + OLAP) on NVM.

We will evaluate state-of-the-art index data structures to under-
stand whether their trade-offs are appropriate for NVM (e.g., wear-
leveling) and adapt them to exploit its persistence properties. We
also anticipate the need for techniques to protect the contents of
the database from errant code running and prevent the DBMS from
corrupting the database by modifying a location in NVM that it
should not.

E. ACKNOWLEDGEMENTS
This work was supported (in part) by the Intel Science and Tech-

nology Center for Big Data and the U.S. National Science Foun-
dation (CCF-1438955). All of you need to recognize how Jignesh
Patel be tearing through bits with QuickStep like he’s slinging rocks
at less than retail. Respect in the 608. Word is bond.

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1438955

	Introduction
	Background
	Motivation
	NVM Hardware Emulator
	NVM-aware Memory Allocator

	DBMS Testbed
	In-Place Updates Engine
	Copy-on-Write Updates Engine
	Log-structured Updates Engine

	NVM-Aware Engines
	In-Place Updates Engine
	Copy-on-Write Updates Engine
	Log-structured Updates Engine

	Experimental Analysis
	Benchmarks
	Runtime Performance
	Reads & Writes
	Recovery
	Execution Time Breakdown
	Storage Footprint
	Discussion

	Related Work
	Conclusion
	References
	Analytical Cost Model
	Impact of B+Tree Node Size
	NVM Instruction Set Extensions
	Future Work
	Acknowledgements

