Asymmetry-aware execution placement on manycore chips

Alexey Tumanov, Joshua Wise, Onur Mutlu, Gregory R. Ganger
Carnegie Mellon University

ABSTRACT

Network-on-chip based manycore systems with multiple mem-

ory controllers on a chip are gaining prevalence. Among
other research considerations, placing an increasing number
of cores on a chip creates a type of resource access asym-
metries that didn’t exist before. A common assumption of
uniform or hierarchical memory controller access no longer
holds. In this paper, we report on our experience with mem-
ory access asymmetries in a real manycore processor, the im-
plications and extent of the problem they pose, and one po-
tential thread placement solution that mitigates them. Our
user-space scheduler harvests memory controller usage in-
formation generated in kernel space on a per process basis
and enables thread placement decisions informed by threads’
historical physical memory usage patterns. Results reveal a
clear need for low-overhead, per-process memory controller
hardware counters and show improved benchmark and ap-
plication performance with a memory controller usage-aware
execution placement policy.
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1. INTRODUCTION

Modern manycore platforms organize on-chip cores in a
grid connected with a “Network-on-Chip” (NoC) intercon-
nect (e.g., Figure 1). New hardware characteristics such as
this pose an array of interesting research challenges for the
design and architecture of operating systems. These chal-
lenges are further exacerbated by the continuing growth of
the number of cores on the die and, correspondingly, the
diameter of the 2D NoC. With the increasing need for mem-
ory bandwidth on manycore systems, multiple memory con-
trollers (MC) are placed on the die around the periphery of
the grid. As a result, each core may incur a different mem-
ory access latency depending on which MC it accesses and
its relative distance to that controller.

This raises an important question: can intelligent place-
ment of execution threads on the network improve system
performance and better satisfy per-application performance
requirements? If so, OS designers should concern themselves
with initial placement, careful monitoring, and runtime mi-
gration of threads in response to a number of runtime char-
acteristics to mitigate the effects of variable memory access
latency on performance. One of these characteristics is the
thread’s DRAM usage—the degree to which it utilizes each
MC—and its sensitivity to memory access latency.

Variability of memory access latency is, thus, an impor-
tant aspect to consider when designing an operating sys-
tem scheduler or a virtual machine placement scheduler in a
manycore datacenter—an argument we motivate with pre-
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Figure 1: TilePro64 interconnect architecture [1].

liminary results obtained on the 64-core Tilera processor [1].
To our knowledge, the effect of this variability on a real sys-
tem has not seen extensive study before. We share our expe-
rience addressing this challenge on a 8x8 core system running
a TILE Linux port and present motivating evidence of as
much as 14% variability in application performance caused
by NoC routing distance variation. We show promising signs
of asymmetry-aware execution placement advantages, full
realization of which, however, calls for a holistic cooperative
effort of multicore hardware and OS architects.

2. RELATED WORK

Much work was done on traditional NUMA and its ef-
fects on thread scheduling [6]. We argue that Networks-on-
Chip are fundamentally different from traditional NUMA
systems. Indeed, sharing of resources is a lot more exten-
sive and fine-grained in NoC systems and spans the entire
cache/memory system. There’s also no longer a notion of
strict memory hierarchies nor a sharp difference in latency
between local and remote memory node access. Instead,
NoCs and the use of multiple MCs on a chip result in a multi-
dimensional continuum of NoC-induced memory access la-
tencies. We thus make a key observation that the traditional
NUMA concept of local vs. remote memory controller access
breaks down in the context of NoC-based manycore architec-
tures. Whereas previously the primary concern was binary
(local vs. remote access), the access latencies we observe are
now more continuously variable as a function of static and



dynamic factors. In this paper, we focus on one such factor,
namely the Manhattan core-to-MC distance. Recent work
by Awasthi et al. [2] considers interconnect architectures
that, by their design, fall into a more hierarchical NUMA
category (e.g., quad-socket quad-core), and chooses a mem-
ory page placement-centric solution. We focus on continu-
ously variable access latency interconnects, exemplified by
mesh-based manycore chips, such as a 64 core TilePro64 [1],
and depart from [2] with our execution placement-centric so-
lution. Data-to-execution and execution-to-data placement
strategies could also be combined.

In the architecture and hardware design communities, packet-
switched on-chip networks [7] have recently received widespread

attention, with research focused on topology, routing, flow
control, energy management, and quality of service. Al-
most all of this research is on improving the hardware de-
sign. While this work has considered hardware support for
providing quality of service, fairness, and performance iso-
lation in the presence of multiple applications sharing the
NoC [2,9,11,13,19], none of these efforts have investigated
OS-level issues that arise from the sharing of the NoC.

Recent research provided hardware support for partition-
ing bandwidth and capacity in shared hardware resources,
e.g. caches [18], memory controllers [12,17], and on-chip net-
works [9,11,13]. These mechanisms can be used as building
blocks by a manycore operating system. However, all of
the proposals were evaluated without consideration for OS
design. Similarly, OS-level techniques that aim to reduce
contention in the memory system [10, 23] assume that the
hardware provides no support. Based on empirical evidence
in current NoC-based systems, such as the TILEPro64 pro-
cessor, our vision departs from hardware-only or OS-only
approaches and is more in line with Jeff Mogul’s call for
OS-driven innovation in computer architecture [15]. We be-
lieve a simultaneous investigation of hardware and OS mech-
anisms driven by the needs of the OS at the higher level and
characteristics of the network-on-chip based hardware at the
lower level can lead to more scalable and efficient manycore
operating systems.

Lastly, Boyd-Wickizer et al. [5] present an evaluation of
Linux scalability to manycores. They mention, but do not
explore the inter-core interconnect as one source of scalabil-
ity bottlenecks. Barrelfish [3], Corey [4], and fos [22] propose
more scalable OS designs for manycore systems but they 1)
assume no hardware support, and 2) do not focus on the
challenges brought about by on-chip networks.

3. VARIABLE MEMORY ACCESS LATENCY

We start with a set of motivating experiments that val-
idate our prediction of NoC-latency induced variability in
execution thread performance. Inspired by this, we move
on to our preliminary efforts to construct a mechanism for
runtime memory access profiling and reactive placement of
execution threads based on their memory utilization char-
acteristics. As the overhead of instrumenting virtual mem-
ory subsystem motivates the need for hardware support, we
demonstrate the promise of asymmetry-aware thread place-
ment in our comparison of preliminary performance results
to the overhead placement policy.

3.1 System Setup

All of our development, measurement, and experimenta-
tion was carried out on a real manycore system, namely the
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Figure 2: Microbenchmark heatmap. Axes are core
rows & columns.

TILEzpressPro-64 board. The TilePro64 [1] is a grid of 8 by
8 TILE processors arranged in an on-chip two-dimensional
network (Figure 1). This board was installed in a stan-
dard host Linux system, and benchmarks were run using
the board’s on-board frequency sources. We worked with
the board at the hypervisor level as well as on top of the
Tilera Linux port.

3.2 Motivating Experiments

We begin by running a microbenchmark directly on top of
the hypervisor to confirm that access latency to any given
memory controller varies with the placement of an execu-
tion task. Our microbenchmark consists of a simple execu-
tion kernel that performs a read/modify/write/flush cycle
on each cache line in a large block of memory allocated from
one of the four available memory controllers. It is run on
each tile in sequence. Benchmark runtime is measured in
cycles and ranges from 700000 to 800000, depending on the
core location. In Figure 2, the bottom left MC was accessed,
and the heatmap reveals a gradual increase of the bench-
mark’s runtime with the placement distance away from the
controller. A spread of as much as 14% is observed, directly
attributable to the NoC propagation latency for a single ex-
ecution thread unhampered by NoC link contention. Higher
latency variation is possible, especially in the presence of
competition for NoC links, which will have an amplifying
effect on latency asymmetry.

We then verify the continued presence of latency varia-
tion when running a real application atop the Linux port.
GCC’s front end, ccl, was used to process a large source
file on each of the available cores in the 8x8 grid, while the
task was bound to a single memory controller. Remark-
ably, a heatmap similar to 2 was produced, with the corre-
sponding scatter plot in Figure 3 showing a clear linear rela-
tionship between the Manhattan distance from the memory
controller to the execution thread and its runtime. In fact,
the observed variation in application runtime between the
closest and the furthest point of execution was also 14%,
matching our pu—benchmark results. Based on this, it be-
comes clear that real applications can benefit from execution
thread placement optimizations in the network-on-chip. The
extent of that benefit will depend on the application’s mem-
ory access patterns. We expect memory intensive and mem-
ory latency sensitive (i.e., those that exhibit low memory
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Figure 3: Manhattan distance to MC vs. runtime

parallelism) applications to benefit the most. Such applica-
tions are most sensitive to interference in the network and
MCs [8]. We leave full analysis of application classes and
their sensitivity to memory access latency asymmetries for
future work.

4. OUR SOLUTION
4.1 Placement Algorithm

Here we briefly summarize our initial algorithm for MC
usage and location-aware placement of execution threads.
The basic idea is to have the operating system keep track of
each task’s access counts to each MC at fixed time intervals
and use those counts to place tasks on the grid such that the
average latency to any memory controller from each task is
minimized. The placement algorithm is based on the core
concept of a weight vector, w(t), learned from the physi-
cal page access patterns to each memory controller for each
monitored process. We collect a vector of page access counts,
with one element per on-chip memory controller, by instru-
menting the virtual memory subsystem. The count vector is
then normalized to produce an Li-normal unit weight vec-
tor used to calculate the (x,y) coordinates for the monitored
thread as follows (where (z;,y;) are the coordinates of each
MCQ):

wo(t)
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We refer to this placement strategy as weighted geometric
and compare it against three others. First, the baseline
thread placement is the default “tile” architecture Linux
scheduling policy with no MC stats collection. Second, the
overhead policy is identical to baseline, but with MC usage
tracking turned on. Third, the brute force placement strat-
egy is a search performed over a space of available cores
minimizing the cost function, defined as follows:

costf(z,y,&(t) = Y (lo — @il + |y —yil) * ¢

i
where (z,y) are the coordinates of the candidate tile, ¢; is
the '™ element of the access count vector &(t) associated

with memory controller ¢, and (z;,y;) are the corresponding
memory controller coordinates on the 2D grid.

Once computed, the placement map dictates the migra-
tion of threads to their coordinates. Conflicts in optimal core
selection were infrequent and were resolved using a gradient
descent method to probe directly adjacent candidate cores.

4.2 MC Usage Collection Mechanism

The placement calculation for monitored threads is pred-
icated on the knowledge of &(t). In the absence of pro-
grammable performance counters that could expose to the
operating system per-process memory controller usage statis-
tics, we use the virtual memory subsystem to maintain a dis-
cretized running log of which pages on the system have been
accessed. We do this by repeatedly setting the PTEs of all
pages in a monitored process to be unreadable. As the sys-
tem continues its execution, the monitored process generates
page faults when accessing those pages. Our mechanism in-
tercepts these page faults and determines which faults were
caused by our interposition. The latter set of faults then
contributes to access counters for corresponding memory
controllers, thereby updating ¢(t). The usage of the page
fault handler to estimate memory controller accesses fore-
shadows significant overhead associated with this collection
mechanism. Furthermore, in the absence of hardware based
MC access counters, our best effort is to track the number
of page faults triggered by periodic PTE resets, which serves
as a proxy to the real count of MC accesses.

Furthermore, we add a toggle mechanism through Linux’s
/proc interface to enable or disable MC access statistics col-
lection on a per-process basis and to read out the collected
statistics at placement decision time. The sampling callback
fires at 20Hz when enabled. The user-space execution thread
scheduler subsequently polls collected MC usage statistics at
its own parameterizable rate and makes thread placement
decisions in accordance with the chosen policy.

4.3 Lessons Learned and Observations

First, through a series of experiments, we demonstrate
that the overhead of MC access count approximation over-
shadows the benefits of MC location- and usage-aware adap-
tive scheduling. The experiment consisted of 60 trials for
each of the placement policies, with the distribution for the
slowest, median, and fastest tasks captured by the corre-
sponding boxplots in Figures 4 and 5. In Figure 4, the work-
load consists of 1, 2, 4, 8, or 16 copies of the off-the-shelf
STREAM [14] benchmark, and tracks the copy bandwidth
of each executing task. As the number of tasks (and the
associated page faulting overhead) grew from one to 16, the
weighted policy consistently underperformed the baseline. In
the case of 16 tasks, the loss of performance due to our pro-
totype was 5%. In fact, a comparison based on median task
performance reveals up to 10.5% performance degradation
of overhead from the baseline, indicating there is a tangi-
ble loss due to the page-fault-based MC statistics collection
mechanism. At the same time, weighted outperformed over-
head by a 5% increase in performance, demonstrating a clear
opportunity to improve performance with asymmetry-aware
task placement.

While in Figure 4 we explore the effect of our scheduler
on the memory bandwidth performance of managed threads,
we measure its runtime performance in Figure 5. The latter
reports the amount of time taken to complete a striding
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Figure 4: Memory bandwidth performance (MB/s). Each group of 4 box plots corresponds to 1, 2, 4, 8, or
16 instances of the benchmark being executed. Within each group, we compare baseline(IN), overhead(0),

weighted(1), and brute force(2). Higher is better.

read/modify /write pattern benchmark, similar to the one
used for Figure 2, which we call bench2. Again, we observe
some overhead compared to the baseline, but the runtime
performance is improved in all cases for both asymmetry-
aware placement strategies we evaluated (weighted and brute
force) as compared to the overhead policy.

These results call for programmable MC access counters
exposed to the manycore OS by the architecture. Their
availability will not only eliminate the overhead of MC stats
collection, but will also provide a stable, reliable stream of
real MC usage data instead of its statistical surrogate, which
may be inaccurate. In fact, we believe MC access coun-
ters are but a small piece of the architectural performance
profiling support needed for a NoC-based OS. Other pro-
grammable counters can keep track of contention for dif-
ferent NoC links, access counts for distributed L2 cache
banks, and occupancy levels of different 1.2 cache banks.
Such counters can allow the NoC-based OS to make intel-
ligent, contention- and locality-aware execution placement
and migration decisions.

S. LIMITATIONS & FUTURE WORK

Given our results, we describe two limitations imposed
by our statistics collection mechanism and propose some
schemes that mitigate these effects. We also consider other
improvements to Network-on-Chip systems enabled as a di-
rect result of our work.

5.1 Statistics Collection Limitations

We find two primary problems imposed by the way we
collect MC usage data. First, there is a fairly substantial
performance overhead from our prototype. For a single-

threaded instance of our microbenchmark, the median exe-
cution time increases from 5.3 seconds to 5.8 seconds (a 9%
performance degradation). In many cases, our assignment
algorithm is capable of winning back much of that perfor-
mance loss (and it follows that a more optimal statistics col-
lection scheme would see a strict gain), but the degradation
is still substantial.

Second, although our data relocation algorithm is not de-
pendent on high-precision usage data, the MC usage statis-
tics provide an approximate view of how physical memory is
used by an application. It more effectively captures the size
of the working set on an MC and uses that as a proxy for
utilization. However, this approach does not capture a full
picture of memory access patterns—for instance, a workload
with high temporal locality may have a lesser need for low
memory latency than a workload prone to cache thrashing.

One way to resolve the latter problem, albeit at the po-
tential expense of more overhead, would be to use the TILE
architecture’s software-loaded TLB functionality to more di-
rectly probe page access. By artificially shrinking the size
of the TLB, we can cause TLB misses to act as a more ac-
curate proxy for cache misses, providing more precise data
to an application that wishes to optimize the system. This
would be an effective means for further experimentation on a
live system, though such a drastic reduction of TLB capacity
would almost certainly not be appropriate for a production
system, thus calling for memory access instrumentation in
hardware. A simple effort would be to augment each core
with a counter that increments on each access to an MC
(and how many cycles the core has spent blocked on access
to that MC). While this would enable simple application lo-
cality optimizations, it would not provide detailed informa-
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tion about utilization of individual pages within the working
set.

For the full benefit of software-optimized application place-
ment, it may be useful to collect statistics on specific pages
that frequently miss in cache. An individual CAM updated
in parallel with memory requests could easily store this in-
formation. A more advanced scheme could attach this data
to the TLB and write back to a buffer alongside the page
table.

5.2 Related Challenges

Precise collection of memory access data opens up new
opportunities for improving the performance of Network-on-
Chip systems. We discuss three concepts thus motivated.

Optimizing for programmable NUCA environments:

While we focused on variable memory access latency in this
paper, we recognize that other causes of variability in data
access latency exist. For instance, on the TILE architecture,
access latency to cached blocks can be extremely variable,
because the third-level cache is distributed across all nodes
on the many-core chip. This is known as a Non-Uniform
Cache Architecture (NUCA). It is possible to pin caches for
individual pages to be “homed” to specific nodes, but to date
the only application of this feature has been to home caches
to the node on which a process executes. This provides the
undesirable choice between either a large cache with vari-
able and high access latency, or a low latency cache that is
substantially smaller than what could be accomplished by
aggregating the cache from multiple nodes.

A memory instrumentation scheme that can count cache
misses to each page would aid in choosing more effective
placements of caches. Our weighted geometric scheme could
be similarly used to choose home nodes for each page, hom-

ing lesser-used pages further away (but, on average, closer
than a random placement would provide). Such a scheme
could also influence application placement such that heavy
users of cache are placed further from each other, allowing
the most physically-adjacent cache to be available to each
application.

Optimizing for application performance require-
ments: In a typical datacenter, multiple heterogeneous ap-
plications [20] and virtual machines will share the many-
core chip resources. Extensive sharing of on-chip resources
(caches, on-chip network, memory bandwidth and capac-
ity) among applications with differing performance, SLA,
and QoS requirements creates a new problem for both dat-
acenter and manycore operating systems: how do we de-
sign the OS in such a way that each application’s require-
ments are satisfied while the system’s throughput is still
maximized [21]?7 The problem is difficult because existing
multicore hardware does not provide mechanisms for per-
formance isolation or fairness to different applications/VMs
within shared hardware resources [10,16,17]. Some appli-
cations can be starved or denied service for long time peri-
ods [16]. The priorities set by the OS cannot be enforced
by the shared hardware resources because these resources
are not designed to be aware of application priorities. And,
application performance becomes very dependent on what
other applications are running on the same chip [9,16,17].
The solution we present in this paper is currently oblivious
to such heterogeneity, but can be adapted to account for
priorities and weighting application placement preferences
accordingly. Our technique could, thus, be used to improve
memory access latency for more demanding (and, therefore,
higher priority) applications, while simultaneously allowing



lower priority (e.g., management) tasks to continue to exe-
cute on the same network.

Improving power efficiency: Although we primarily
focused on raw performance, real environments are increas-
ingly becoming bound by power density as a limit on how
many systems can be simultaneously active in a datacenter.
In that light, a useful measurement is not only raw perfor-
mance per mm?, but also performance per Watt. Although
our experimental setup was not capable of such measure-
ments, we believe that our results should show an improve-
ment in power as well. As transistors shrink, NoC devices
will move from being dominated by dynamic power on gates
to being dominated by static power and wire capacitance
power. The latter is proportional to Manhattan intercon-
nect distances, which we track and optimize for.

6. CONCLUSION

Variable Network-on-Chip memory access latencies can
significantly affect application performance in NoC-based
manycore systems in ways fundamentally different from tra-
ditional NUMA interconnect systems. This paper proposes
explicit scheduling of execution threads so as to mitigate
memory access latency variation. We depart from previous
work by migrating execution closer to the data it uses as
opposed to inter-controller memory page migration. In our
implementation, we rely on instrumentation of the virtual
memory subsystem for the purposes of memory controller ac-
cess statistics collection on a per-address space basis. This
approach helps motivate the need for programmable, low-
overhead, per-process memory controller access counters,
which will substantially reduce the overhead associated with
execution behavior measurement. By reporting on our ex-
perience constructing a solution without them, we show that

their availability will enable the OS scheduler to assess threads’

runtime dependence on specific memory nodes, adjust their
placement accordingly, and improve their performance as a
result.
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