
Challenges and Solutions for Fast Remote Persistent
Memory Access

Anuj Kalia∗
Microsoft Research

anuj.kalia@microsoft.com

David Andersen
Carnegie Mellon University

dga@cs.cmu.edu

Michael Kaminsky
BrdgAI, Carnegie Mellon

University
kaminsky@cs.cmu.edu

ABSTRACT
Non-volatile main memory DIMMs (NVMMs), such as Intel’s
Optane DC Persistent Memory modules, provide data dura-
bility with orders of magnitude higher performance than
prior durable technologies. This paper explores the unique
challenges that arise when building high-performance net-
worked systems for NVMM. Compared to DRAM, we find
that NVMMs have distinctive fundamental properties that
pose unique challenges for networked access to NVMM, both
from the NIC and the CPU. We show that much of the chal-
lenges in efficient access to remote NVMM arises from the
fact that CPU caches are not optimized for NVMM. To ad-
dress these challenges, we propose a menu of solutions for
current hardware and evaluate their benefits.

CCS CONCEPTS
• Computer systems organization → Dependable and
fault-tolerant systems and networks; • Networks →

Network protocols.

KEYWORDS
Persistent memory, Remote Procedure Calls, Remote Direct
Memory Access, Intel I/O Acceleration Technology

ACM Reference Format:
Anuj Kalia, David Andersen, and Michael Kaminsky. 2020. Chal-
lenges and Solutions for Fast Remote Persistent Memory Access.

∗Work done as a student at CMU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC ’20, October 19–21, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00
https://doi.org/10.1145/3419111.3421294

In ACM Symposium on Cloud Computing (SoCC ’20), October 19–
21, 2020, Virtual Event, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3419111.3421294

1 INTRODUCTION
The arrival of NVMM DIMMs with sub-microsecond latency
requires rethinking the design of high-performance net-
worked systems for modern datacenters. NVMM breaks the
storage latency barrier that has long limited the performance
of such systems. With NVMMs such as Intel’s Optane DC
Persistent Memory Modules (referred to as Optane DIMMs
in this work), making data durable now requires less time
(∼100 ns) than a datacenter network round trip (≈2 µs), re-
versing a historical trend.1 In the past, persistent media had
high latency (e.g., ≈10 µs for the fastest SSDs), and systems
designed to operate at near-network latencies avoided sync-
ing data to stable storage on the critical path of requests,
often sacrificing consistency guarantees. Several networked
systems used in industry now support NVMM, including key-
value stores [33, 41], databases [8, 38], and object stores [3].

Researchers have redesigned distributed systems in an-
ticipation of NVMMs. (We use the term NVMM to refer to
DIMMs with persistent media, excluding DRAM-based ap-
proaches to provide non-volatile memory, such as such as
battery-backed DRAM.) These systems include distributed
transaction processing systems and key-value stores [19, 27,
35, 50, 54], network stacks [23], distributed file systems [9,
51], disaggregated persistentmemory [46], etc. These projects
use emulated NVMM (e.g., using battery-backed DRAM) to
guide their design, with the (sometimes implicit) expectation
that the observations will carry over to real NVMM when it
becomes available.

In this paper, we investigate network-level challenges that
arise when building high-performance distributed systems
for NVMM, with Optane memory as a representative tech-
nology. Similar to recent research by Yang et al. [53] on
single-machine systems, we find that NVMMs have distinc-
tive (compared to prior DRAM-based emulation setups) yet
fundamental properties that affect performance. In addition

1Although datacenter network bandwidth is increasing rapidly, network
latency has stagnated at around 1–2 µs per intra-rack round trip.

105

https://doi.org/10.1145/3419111.3421294
https://doi.org/10.1145/3419111.3421294

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

to NVMM’s well-understood distinctions, such as higher per-
formance for sequential accesses than random accesses, and
lower performance for writes than reads, we discover new
distinctions that arise specifically in the networked context.
These include the interplay between PCIe or DMA accesses
and the NVMM’s internal block size, and performance regres-
sions that occur in particular workloads such as networked
counters and timestamps.
What makes fast remote access to NVMM challenging?

We find that a recurring cause is that CPU caches are not
optimized for NVMM. We identify sub-optimal interactions
between caches and NVMM that future hardware architects
may target, and we design methods for fast remote NVMM
access that work well on current hardware. Our methods
address both methods of remote NVMM access: one-sided
RDMA access that bypasses the remote CPU, as well as RPC-
based access in which the remote CPU handles all NVMM
access. In addition, we make the following contributions:

(1) We present, to our knowledge, the first detailed empir-
ical evaluation of networking approaches (one-sided
RDMA and RPCs) to access remote Optane DIMMs.
We show that for small persistent writes to remote
NVMM, RPCs have comparable latency as one-sided
RDMA.

(2) We show that, counter-intuitively, disabling the Data
Direct I/O optimization, with which NICs inject data
into the CPU’s L3 cache instead of DRAM/NVMM,
improves bandwidth of bulk RDMA writes by avoiding
random accesses to NVMM that DDIO generates.

(3) We showhowRPC-based approaches can use the CPU’s
DMA engines to achieve 2.3x higher bulk write band-
width.

(4) We present as case studies two distributed systems that
demonstrate the effectiveness of our techniques. We
build a state machine replication (SMR) system whose
99th percentile latency for three-way replication is
10.2 µs, which is only 12% higher than a non-persistent
DRAM-based version. We build a networked log server
whose append rate improves by up to 90% with our
new optimizations.

A note on the paper’s organization: After covering back-
ground and our experimental setup, we dive into challenges
and solutions for low-latency (Section 4) and high-bandwidth
(Section 5) access to remote NVM. Section 6 presents our
persistent log case study. We cover our state machine repli-
cation system in the context of low-latency remote NVMM
access in Section 4.

Core

Core

L3 cache

M
em

or
y

co
nt

ro
ll

er

PM DIMMs

Power-safe domain

Figure 1: The power-safe domain with Optane DIMMs.
The dotted box shows components whose contents
survive power failure.

2 BACKGROUND
2.1 Non-volatile main memory
NVMM DIMMs attach to the CPU over the memory bus, and
aim to provide latency and bandwidth close to DRAM. Op-
tane DIMMs provide durability with a few hundred nanosec-
onds of latency in commodity servers. Optane DIMMs have
higher density, and lower price per gigabyte than DRAM.
For example, for 128GB modules, the cost per GB is $35 for
DRAM, and $5 for Optane DIMMs.

Applications use memory-mapped files to access NVMM.
Loads and stores to the mapped region are cached by CPU
caches. All NVMM data path operations run in userspace.
The libpmem library provides support for managing persis-
tent files, and fast SIMD-based persistent building blocks (e.g.,
memory copies). The clwb instruction initiates a write-back
of a cache line to NVMM. To wait for writes to become per-
sistent, applications follow one or more clwb instructions by
a store fence (sfence), which blocks the processor’s pipeline
until all the preceding stores complete. Because NVMMs
attach to the memory bus, they are directly accessible from
DMA-capable peripherals such as NICs.

A write-back completes when it reaches the memory con-
troller. In machines with Optane DIMMs, the Asynchronous
DRAM Refresh feature guarantees that the contents of these
DIMMs, as well as buffers in the write pending queue of
the CPU’s on-die memory controller survive power failure.
These two components form the platform’s power-safe do-
main. CPU cache contents may not survive power failure.
This is because caches are much larger than memory con-
troller buffers, and server power supply units may not have
sufficient capacitance to flush large CPU caches after a power
failure [42]. Figure 1 shows this distinction. We also con-
sider machines with power-safe caches in our work. Battery-
backed servers already provide power-safe caches [19], and
future platforms will likely extend the power-safe domain
to include CPU caches [42].

2.1.1 Intel’s Optane DC Persistent Memory. We provide a
brief overview of Optane DIMM internals, based on Intel’s

106

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

manual [6] . Each Optane DIMM contains several hundred
gigabytes (currently up to 512GB) of persistent media, inter-
nally divided into 256 B blocks. It includes a controller that
receives 64 B commands over the DDR4 bus, and translates
them into 256 B reads and writes to the persistent media. The
on-DIMM controller in Optane DIMMs implements write-
combining, coalescing 64 B DDR writes into larger media
256 B writes using a write-combining buffer. It also imple-
ments wear-leveling and bad block management.

Firmware on each Optane DIMM provides hardware coun-
ters for the number of 64 B commands received by the con-
troller on the DDR bus, and the number of 256 B commands
issued by the controller to the persistent media. We use the
term “in-DIMM write amplification” to refer to the ratio
of bytes written to persistent media, to bytes received for
writing over the DDR bus. Smaller values of in-DIMM write
amplification indicate more efficient use of Optane DIMMs.

NVMMemulation. Before the availability of OptaneDIMMs,
researchers used emulation to guide the design of NVMM-
based single-machine systems and distributed systems [10,
20, 47, 51, 55, 56]. Emulation techniques include using soft-
ware approaches to add latency to memory accesses, as well
as hardware-based emulation platforms [10].

Recent empirical analysis by Yang et al. [53] with Optane
DIMMs in single-machine systems shows that, because of
fundamental but distinctive properties of NVMMs that be-
came evident only after the real DIMMs became available, the
emulation techniques fail to capture the distinctive character-
istics of Optane DIMMs. They find that, compared to DRAM,
the performance of Optane DIMMs depends much more
on access type (reads vs writes), access patterns (random
vs sequential), and access concurrency (number of threads
accessing Optane DIMMs) than prior emulation accounts
for. Our work finds similar evidence in networked access to
NVMM.

2.2 High-performance networking
Modern commodity datacenter networks support single-
digit microsecond round-trip latency and up to 100Gbps
of network bandwidth per server [21, 22]. In addition to
faster NIC and switch hardware, high-performance userspace
networking in the form of Remote Direct Memory Access
(RDMA) [22] and theData PlaneDevelopment Kit (DPDK) [17]
is now commonplace. Researchers have redesigned several
distributed systems to take advantage of fast networks, in-
cluding object stores [26, 37], distributed transaction pro-
cessing [16, 19, 27, 35, 49], and state machine replication [25,
28, 39].
We expect network latency to remain far above NVMM

latency for the foreseeable future. Although network band-
width continues to improve, with 200Gbps and 400Gbps

networks on the horizon, reducing network latency is much
harder. This is because in addition to propagation delay [43],
a network round trip requires at least two switch port cross-
ings (300–800 ns one-way) and two PCIe bus round trips
(∼400 ns per round trip). These components are already op-
timized for latency, so reducing network round trip time
below 1.4 µs (2×300 ns + 2×400 ns) is extremely challenging.

We review the two high-level methods of accessing remote
NVMM next.

One-sided RDMA. Accessing NVMM directly from NICs
via RDMA is a popular approach, which has the benefit
of reducing or eliminating remote CPU use. This includes
one-sided RDMA accesses in application such as transac-
tion processing [19, 50], state machine replication [39], and
distributed file systems [9, 31, 51, 53].

Remote procedure calls. Another method to use NVMM
in distributed systems is to treat it as conventional stor-
age that clients access using RPCs: Clients send requests to
the server’s CPU, which copies volatile network buffers to
NVMM and sends responses. With RPCs, the networking
subsystems at the server and client are unaware of NVMM.

Although recent high-performance RPC libraries provide
latency, message rate, and bandwidth that is comparable to
one-sided RDMA in volatile use cases, we find that existing
RPCs are much slower than RDMA NICs for bulk writes to
NVMM. We improve RPC performance for this workload by
using DMA engines present on the CPU die (Section 5.5).
We use eRPC [28] for remote procedure calls in this work,
although other libraries that provide similar performance are
also sufficient. eRPC runs over both lossy Ethernet and loss-
less InfiniBand networks, and supports end-to-end reliability
and congestion control.

2.3 Goals of this paper
A large number of prior distributed systems designed for
high-speed networks target applications (e.g., transactions
and state machine replication) that require data durabil-
ity [16, 19, 25, 27, 28, 35, 39, 49]. These systems use DRAM
to store data, often as a placeholder for future NVMM tech-
nologies. This is because the latency overhead of persisting
data to SSDs on the critical path of requests is prohibitive
on fast networks, and low-latency NVMMs such as Optane
were unavailable until recently.

Our goal is to help future designers of high-performance
NVMM-based distributed systems in answering the follow-
ing question: What aspects of the system should be designed
differently for real NVMM compared to DRAM? As an ex-
ample, we suggest the following change in Section 5: for

107

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

efficient bulk RDMA writes to remote NVMM, the DDIO op-
timization, which benefits writes to remote DRAM, should
be turned off.
We limit this paper primarily to primitives used to build

distributed systems, including small latency-sensitive writes,
bulk bandwidth-sensitive writes, and networked counters,
although we include end-to-end case studies with real ap-
plications. There are two reasons for our focus on a mi-
crobenchmark analysis of the primitive building blocks: First,
understanding the characteristics of these building blocks is
crucial for end-to-end efficiency. Second, as we show later,
the distinctive properties of NVMM make the behavior of
even these simple building blocks quite complex. For exam-
ple, explaining the performance of these primitives requires
carefully studying the DIMMs’ hardware counters.

3 EVALUATION SETUP
Our experiments use three machines with Cascade Lake
Xeon CPUs (24 cores, 2.9 GHz). Each CPU has six memory
channels. Each channel connects to one Optane DIMM, and
one 32GB DDR4 DRAM. Our primary evaluation machine
has 256GB Optane DIMMs; the other two machines have
128GB. Unless stated otherwise, wemeasure performance on
the primary machine. We run Linux kernel 4.17, which is the
minimum required to expose NVMM over RDMA.We collect
hardware counters for Optane DIMMs using the ipmctl
utility. We use the libpmem library for persistent memory
programming, configured to use AVX-512 instructions for
64 B loads and stores.

Eachmachine has a single-port 56GbpsMellanoxConnectX-
3 InfiniBand NIC (PCIe 3.0 x8), connected to a Mellanox
SX6036 56Gbps InfiniBand switch. Our results also apply to
newer NICs (Section 4.4), and to modern Ethernet networks,
which offer similar latency and bandwidth as InfiniBand [28].
We use InfiniBand’s Reliable Connected (RC) transport for
one-sided RDMA. All source code used in this paper will be
made publicly available.

4 LOW-LATENCYWRITES
We begin by studying the performance of latency-critical
writes to remote NVMM. The key takeaway from the exper-
iments in this section is that one-sided RDMA loses most
of its latency advantage over RPCs for durable writes to re-
mote NVMM. With this takeaway, we later choose to design
our low-latency state machine replication system with RPCs
instead of one-sided RDMA.

4.1 Persistent RDMA background
With RDMA, the required sequence of operations to write
durably to remote NVMM is an RDMA write followed by an
RDMA read, with DDIO disabled. (We term this combination

an RDMA pwrite.) The reasoning is as follows: When an
RDMA write completes at the client, the written data is not
guaranteed to be present in the server’s memory hierarchy,
i.e., CPU caches, memory controller, and DIMMs. At this
point, the written data may be in the server’s NIC or PCIe
buffers. The subsequent RDMA read from the client gener-
ates a DMA read at the server that flushes prior DMA writes
from the server’s NIC and PCIe buffers into the server CPU’s
memory hierarchy. With DDIO disabled, the DMA writes go
directly to the NVMM instead of the L3 cache.

4.2 Durability guarantee of RDMA
Although our processor and NIC vendors (i.e., Intel and Mel-
lanox, respectively) require using pwrites for durability, is
the RDMA read-after-write sequence needed for durability
in practice? Answering this question is both important and
challenging. It is important because RDMA NICs sometimes
provide stronger guarantees in practice than what the ven-
dors officially support, and system designers may use such
guarantees for higher performance. For example, production
systems such as MPICH [30] and FaRM [14] rely on the left-
to-right byte ordering of RDMA writes, which the RDMA
specification and the NIC vendor prohibits [5, 34]. Similarly,
if the RDMA read after the RDMA write is not necessary
for durability in practice, developers will choose to omit the
RDMA read.

Answering the question is challenging because it requires
checking a time-based ordering relationship between two
nodes in a distributed system: The server must check if the
written data is persistent after the RDMA write completes at
the client. This is difficult to do without synchronized clocks.

RDMA write visibility test. We designed a novel test to
show that an RDMA write completed at the client may not
be durable at the server. The test works by proving that such
an RDMA write may not even be visible in the server’s mem-
ory hierarchy, and is therefore outside the server’s durable
power-safe domain. Therefore, designers must include the
RDMA read after the RDMAwrite if they require persistence.

Our test works around the clock synchronization issue by
using one machine with two RDMA NICs. We run a server
and a client thread on this machine, which use different NICs.
The client thread sends an RDMA write to the server thread,
and sets an in-memory flag after it gets the RDMA write
completion. This write goes through the network switch, so
our experiment accurately emulates a setup with the client
and server on different machines. On detecting a raised flag,
the server thread checks if the written data is visible. We
find that the written data is frequently (many times every
second) invisible to the server.

108

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

Client Server
NIC L3$ MC

(a) RDMA write

(b) RDMA pwrite

(c) RPC

(d) RDMA write + flush

Figure 2: Network and PCIe operations involved in
writing to remote NVMMwith different methods. Red
arrows from the client to the server’s NIC are network
packets. The dotted arrows are NIC-generated RDMA
acknowledgments. Straight blue arrows between the
server’s NIC and its cache (L3) or memory controller
(MC) are PCIe DMA or MMIO writes; the curved ones
are DMA reads. The server’s CPU (not shown) is in-
volved in persisting RPC requests.

4.3 Measurements
We next evaluate the latency added by disabling DDIO and
the additional RDMA read. We measure the latency of dif-
ferent methods of writing small items (64–1024 B) to remote
NVMM. We use two machines in our cluster (Section 3). We
run a single-threaded server on the machine with 256GB
Optane DIMMs, and a single-threaded client on another ma-
chine. The client measures the round-trip latency of writes to
sequential locations at the server. Figure 3 shows the median
and 99th percentile latency of three methods, shown as parts
(a)–(c) in Figure 2.

(1) RDMA write. As a baseline, we measure the latency
of an RDMA write issued by the client, with DDIO
enabled at the server. Recall that this method does not
provide durability because the server’s NIC may reply
before its DMA write reaches the server’s memory
hierarchy. As a result, the median latency of a 64 B
RDMA write is only 1.4 µs.

 0

 1

 2

 3

 4

 0 256 512 768 1024

La
te

nc
y

(u
s)

Write size (bytes)

RDMA write (not persistent)
RDMA pwrite

RPCs

(a) Median latency

 0

 1

 2

 3

 4

 5

 0 256 512 768 1024

La
te

nc
y

(u
s)

Write size (bytes)

RDMA write (not persistent)
RDMA pwrite

RPCs

(b) 99th percentile latency

Figure 3: Latency of sequential writes to remote Op-
tane memory with RDMA and with RPCs

(2) RDMApwrite.Disabling DDIO and adding a flushing
RDMA read pipelined with the RDMA write increases
median latency of 64 B writes by over 2x to 2.9 µs. In
our test implementation, the client’s RDMA write is
“unsignaled,” so the client’s NIC does not generate a
completion for the RDMA write. The client measures
the latency of the read-after-write operation using
the RDMA read’s completion. Of the 1.5 µs latency
increase (from 1.4 µs to 2.9 µs), only 100 ns is due to
disabling DDIO, and the remaining 1.4 µs is due to the
flushing RDMA read.

(3) RPC.With RPCs, the server’s NIC writes packets into
volatile ring buffers in the server’s L3 cache. The server’s
CPU detects new requests via busy polling, persists
them to Optane memory, and replies to the client. Me-
dian latency with RPCs is up to 20% lower than an
RDMA pwrite, e.g., 2.3 µs for 64 B writes. 99th per-
centile latency with RPCs is up to 18% higher than
RDMA pwrites, but we believe the higher tail latency
of RPCs is an artifact of the old ConnectX-3 NICs in our
cluster (more in Section 4.6). 99.9th percentile latency

109

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

(not shown in Figure 3) for 1024 B writes is 4.3 µs with
RDMA pwrites, and 4.8 µs with RPCs.

The takeaway from our measurements is that switching
from volatile DRAM writes to durable NVMM writes greatly
reduces the latency advantage of one-sided RDMAover RPCs.
Overall, the latency of the two approaches is similar: RPCs
have slightly better median latency, and slightly worse tail
latency. There is a fundamental reason behind this similarity:
RPCs and pwrites have similar network and PCIe opera-
tion on their critical path (Figure 2), which are the factors
that largely govern the end-to-end latency of simple primi-
tives [26]. In contrast, an RDMAwrite avoids one PCIe round
trip at the server on its critical path.

In addition to comparable latency as RDMA pwrites, RPCs
are simpler to use and can reduce round trips needed to
complete distributed system operations [26, 32]. For these
reasons, we find that RPCs are well-suited to building low-
latency distributed systems with NVMM.

4.4 Newer NICs
Although our cluster has old Mellanox ConnectX-3 NICs, our
results apply to clusters with newer NICs. (Unfortunately,
we cannot update the NICs on our NVMM cluster because
we do not have physical access to the cluster.) This is be-
cause although newer RDMA NICs such as ConnectX-4 and
ConnectX-5 NICs greatly improve the message rate and scal-
ability of RDMA [28, 35] by 5x or more, factors relevant to
our work such as network latency, PCIe latency, and PCIe
DMA accesses are largely unchanged.
For example, on our 56Gbps ConnectX-3 cluster, the me-

dian latency of an RDMA write is 1.4 µs, and the median
latency of an RDMA pwrite is 2.9 µs (Section 4.3). We re-
peat these latency tests on a different cluster that has newer
100Gbps ConnectX-5 InfiniBand NICs. Since this cluster
does not have NVMM, we keep the target buffers of RDMA
operations in DRAM, which gives our ConnectX-5 setup a
small (≈100 ns) latency advantage. With ConnectX-5, the
latency of an RDMA write is 1.3 µs, and the latency of an
RDMA read-after-write is 2.5 µs. Despite the advantage, these
latencies are only slightly better than the corresponding
ConnectX-3 latencies.

4.5 Future RDMA extensions
There is ongoing work to specify and create a new RDMA
primitive called “RDMA flush” for NVMM, available in an
RFC by Talpey et al. [44]. If the RDMA flush specified in this
RFC becomes available, one can use an RDMA write plus
RDMA flush instead of an RDMA write plus RDMA read to
achieve durability. In addition, the RDMA flush primitive
will allow keeping DDIO enabled system-wide because the

RDMA flush implementation will handle the flushing of CPU
caches.
Replacing the flushing RDMA read with an RDMA flush

will have lower latency than pwrites if NIC designers allow
merging the RDMA flush request into the preceding RDMA
write packet; Kim et al. [29] implement such an approach
by modifying an RDMA NIC’s firmware. Figure 2(d) shows
the network and PCIe operations used when the flush is
merged with the write. In contrast, the flushing RDMA read
in pwrites requires a separate packet. Similar to the RDMA
read, the RDMA flush operation will require issuing a DMA
read or atomic operation on the PCIe bus, which are the only
fast methods of flush pending DMA writes over PCIe.

However, we expect that the latency reduction from using
an RDMA flush instead of RDMA read will be small, and the
resultant latency to be not much better than RPCs. This is
because both approaches require similar network and PCIe
operations on their critical path. Comparing parts (c) and (d)
of Figure 2 conveys this idea visually.

4.6 Low-latency state machine replication
We next design and evaluate an example low-latency durable
distributed system—state machine replication—using RPCs.
State machine replication is an important low-latency ap-
plication in datacenters, often used to store small metadata
items. In the past, SMR systems that achieved microsecond-
scale latency stored their data in volatile memory [25, 28, 39].
NVMM allows microsecond-scale SMR latency with durabil-
ity.
Leader-based SMR protocols such as Raft [36] roughly

follow the following failure-free operation: a client sends a
state machine command to the leader. The leader records the
command in its log and forwards it to followers; followers
reply after recording the command in their own log. After
receiving acknowledgments from a majority of followers,
the leader replies to the client that the command has been
successfully replicated.

We add persistence support to the volatile, RPC-based Raft
state machine replication provided by Kalia et al. [28]. Their
implementation uses a production-grade Raft codebase [2],
so our results are relevant to real systems. Unlike Kalia et al.
[28]’s Raft implementation that stores the SMR command
log in DRAM, we store commands in NVMM. The key-value
store is volatile in our implementation, too: only the com-
mand log is persistent, which is sufficient to recreate the
key-value store after failure. We implement the command
log using a simple array. Saving an entry to our log requires
two dependent persistent writes: one to insert an entry into
the log, and one to update the log’s tail pointer. There are
four dependent persistent writes to NVMM on the end-to-
end critical path of each request issued by our client: two

110

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

Log storage Median (µs) 99% (µs)

DRAM 5.6 9.1
Optane DIMMs 6.6 10.2

Table 1: Three-way Raft replication latency

at the leader, and two at the followers. Followers work in
parallel, so only one of them is on the critical path.

We also use Kalia et al. [28]’s benchmarkworkload:We run
a three-way replicated key-value store that maps 16 B keys
to 64 B values. We use one client that issues PUT requests to
this store, keeping one request outstanding at a time. Since
we have only three machines in our NVMM cluster, we co-
locate the client with the third replica. We ensure that the
third replica is not the Raft leader, so the client’s request to
the leader goes over the network instead of looping back
through its NIC.

Table 1 compares the three-way replication latency of our
system measured at the client, with the SMR command log
stored either in DRAM or in NVMM. Using NVMM instead
of DRAM adds only 1 µs and 1.1 µs to the median and 99th
percentile latency, respectively.2

Comparison with one-sided RDMA. The current state-of-
the-art RDMA-based SMR system is DARE [39]. However,
DARE replicates to DRAM and its codebase does not support
NVMM. We chose to not port DARE to NVMM because the
best-case latency of such a system (named DARE-persistent)
would be substantially worse than ours. Replication in DARE-
persistent requires three network round trips: one volatile
RPC from the client to the SMR leader, and two dependent
persistent writes from the leader to followers for log replica-
tion. We measured that the median latency of volatile RPCs
in our cluster is 2.3 µs. The median latency of one persistent
write with one-sided RDMA is 2.9 µs (Figure 3). Therefore,
the end-to-end median latency of DARE-persistent is at least
8.1 µs (2.3 µs + 2×2.9 µs), substantially higher than the 6.6 µs
with RPCs. This comparison ignores other sources of latency
in DARE such as computation at the leader, which are in-
cluded in our system’s latency.

5 HIGH-BANDWIDTH BULKWRITES
We next study challenges and solutions for bulk writes to
remote NVMM for both networking approaches (i.e., RDMA
and RPCs). Efficient bulk writes are important for perfor-
mance in applications such as NVMM-based distributed file
systems [9, 31, 51, 53], distributed logging [12], backups, etc.
2The 99th percentile latency in our cluster with the command log in DRAM
is noticeably higher (by 44%) than in the evaluation of Kalia et al. [28]. This
is because our cluster uses older ConnectX-3 InfiniBand NICs, whereas Kalia
et al. [28] use newer and faster ConnectX-5 NICs.

We contribute new optimizations that improve the perfor-
mance of bulk writes to remote NVMM for both RDMA and
RPC approaches. The key takeaways from the experiments
in this section are as follows.
First, for RDMA writes, we find that, counter-intuitively,

disabling DDIO at the server improves bandwidth for bulk
writes. Put briefly, DDIO reduces bulk write bandwidth be-
cause it injects the sequential DMA writes into L3 cache,
which later evict into NVMM in near-random order, reduc-
ing performance. We discuss this mechanism in detail later
in this section.

Second, for RPCs, we find that existing RPC libraries pro-
vide low throughput for bulk writes to remote NVMM. This
happens because CPU cores are much slower than RDMA or
DMA engines at writing to NVMM. While eRPC can achieve
up to 75Gbps for bulk writes to remote volatile memory [28]
with one core, it achieves only 22Gbps for bulk writes to
remote NVMM. We show how RPC-based approaches can
use an on-CPU DMA engine to offload the copying of volatile
RPC buffers to NVMM buffers, improving bandwidth by 2.3x
(reaching line rate on our setup).

5.1 Discussion on disabling DDIO
In subsequent sections, we advocate disabling DDIO as a cru-
cial optimization for efficient bulk RDMA writes to remote
NVMM. Because disabling DDIO is necessary for durability
with one-sided RDMA with current power-safe technologies,
it might seem that all RDMA-based NVMM systems will
obviously disable DDIO. We emphasize that this is not the
case. Developers may choose to not disable DDIO in such
systems for four reasons.

(1) Recent RDMA-basedNVMMsystems such as Orion [51],
Assise [9] and PASTE [23] use RDMA (or PCIe DMA in
PASTE) writes to place network data in remote NVMM,
and then use the remote CPU to flush the written cache
lines to NVMM. These systems provide durability with-
out disabling DDIO. However, they suffer from the
DDIO-induced NVMM access pattern randomization.

(2) DDIO is an important optimization in volatile systems,
so developers may wish to keep it in NVMM-based
systems that do not require persistence, e.g., cases
where NVMM serves as a large DRAM, or in persistent
applications that require weak consistency.

(3) Disabling DDIO is unnecessary for durability in cur-
rent battery-backed servers [19], and in future plat-
forms in which CPU caches survive power failure [42].

(4) DDIO is on by default, and developers may misconfig-
ure the system by failing to disable it.

111

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

 0

 20

 40

 60

 80

 100

RDMA RDMA (no DDIO) RPCs

Ba
nd

w
id

th
 (G

b/
s)

Network throughput
NVMM media write throughput

44.8 45.6

22

84.8

45.6

22

Figure 4: The red bars show the bandwidth of bulk
writes to remote NVMM with one-sided RDMA (with
and without DDIO) and RPCs. The red line shows our
network’s line rate (56 Gbps). The blue bars show the
throughput of 256B writes to the DIMMs’ persistent
media, which can exceed network bandwidth due to
in-DIMM write amplification (Section 2.1.1).

5.2 Improving RDMA bandwidth
Wemeasure the performance of bulkwrites to remoteNVMM
with RDMA and RPCs as follows. We run a single-threaded
server and client process on two separate machines. The
client issues large writes to remote NVMM, pipelining its
write requests (implemented with either RDMA or asyn-
chronous RPCs) to avoid blocking. In the RPC mode, an
application-level request handler at the server manages all
NVMM access, i.e., we do not modify eRPC’s internals. Fig-
ure 4 shows the client’s throughput for 2MB writes with
RDMA (with and without DDIO) and RPCs. For each ap-
proach, we also show the throughput of writes to the per-
sistent media at the server, reported by the Optane DIMMs’
hardware counters. We discuss only RDMA throughput in
this section. In the next section, we show how we improve
the low throughput of RPCs.

RDMA writes achieve 45Gbps, which is close to the maxi-
mum achievable throughput on our 56Gbps InfiniBand net-
work. Although RDMA writes saturate our network, our
measurements using the Optane DIMMs’ hardware coun-
ters show that the RDMA writes are inefficient because they
cause a high in-DIMM write amplification of around 2x. This
means that 2x more bytes are written to the DIMM’s persis-
tent media than are received over the network (Section 2.1.1).
Figure 4 also shows that in our test, bandwidth of data writ-
ten to the Optane DIMMs is around 10.6 GB/s—2x higher
than the bandwidth achieved over the network.
This write amplification is problematic for two reasons.

First, even in servers where all six memory channels are pop-
ulated with Optane DIMMs, it leaves little bandwidth for use
by other applications. The six Optane DIMMs on our server

support a total write throughput of around 13GB/s [53], so
writing to the DIMMs at 10.6 GB/s leaves only 2.4 GB/s for
other applications. Second, because Optane DIMMs are ex-
pensive, we expect some datacenter operators to use fewer
DIMMs per server. We re-ran the previous experiment with
only one Optane DIMM at the server, which shifts the bot-
tleneck from the InfiniBand network to the Optane DIMM.
In this setup, the bulk RDMA write throughput is 1.15 GB/s,
half of the one DIMM’s peak 2.3 GB/s persistent media write
throughput.
We found that the high in-DIMM write amplification hap-

pens because the CPU cache is not optimized for NVMM. Specif-
ically, the DDIO feature of the L3 cache turns the sequen-
tial RDMA accesses into near-random writes to the Optane
DIMMs, as follows. With DDIO enabled, RDMA NICs inject
data into L3 cache, and the cache lines eventually evict to
the Optane DIMMs in some proprietary eviction order that
is near-random in practice. Although CPU caches typically
implement some form of least recently used eviction policy
within a cache set, consecutive cache lines typically map to
distinct cache sets. When an Optane DIMM fails to coalesce
a 64 B write with writes to adjacent locations, it issues 256 B
read-modify-write commands to its persistent media, result-
ing in write amplification. Yang et al. [53, Sec 5.2] make a
related observation for CPU cores writing data to caches
instead of writing directly to NVMM with non-temporal
stores.

Disabling DDIO eliminates the access pattern randomiza-
tion and write amplification. Figure 4 shows that disabling
DDIO makes bulk RDMA writes more efficient. Although
the network throughput is still near line rate, the write band-
width to the Optane DIMMs measured using the DIMMs’
hardware counters decreases from 84.8 Gbps to 45.6 Gbps.

Challenges for hardware designers. To our knowledge, ex-
isting proposals for cache eviction policies for NVMM oper-
ate at a cache line granularity [13, 40, 48]. Compared to evic-
tion policies for DRAM, these policies account for the higher
energy cost of writes than reads with NVMM. However, they
do not handle the important case where the NVMM’s block
size is larger than the 64 B cache line size, e.g., 256 B in the
case of Optane DIMMs. The results from this paper in the
networked context, and from Yang et al. [53] in the single
machine context, suggest that an efficient cache eviction
policy for NVMM should account for block sizes larger than
cache lines.

RPC performance. Figure 4 also shows that the RPC-based
approach achieves low performance—only around 22Gbps.
This is as expected: the server thread receives data over
the network at line rate (around 46Gbps), and copies it
to Optane DIMMs at around 34Gbps (equal to the single-
core NVMM write speed [53]). The resulting bandwidth is

112

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

(1/46+ 1/34)−1 = 19.5 Gbps, which is close to 22Gbps. Next,
we show how we can improve RPC throughput to match
the network speed by leveraging DMA engines present on
modern CPUs.

5.3 DMA engine background
An on-die DMA engine, such as Intel’s I/O Acceleration
Technology (IOAT) DMA engine, aims to accelerate memory
copies in applications such as high-speed networking and
storage. Processors have included a DMA engine for over a
decade, but these accelerators have seen little use. One no-
table recent use case is in high-speed networking at Google,
where the IOAT DMA engine copies network packets from
the NIC’s ring buffers to application buffers [32]. In contrast
to their use case that targets volatile buffers, our work fo-
cuses on DMA acceleration for NVMM. Prior to us, Assise [9]
uses on-die DMA engines to bypass cache coherence traf-
fic in cross-NUMA copies to Optane DIMMs. We focus on
DMA optimizations within one NUMA node, and present
new DMA engine techniques and measurements.

One reason why developers have ignored DMA accelera-
tion is that, until recently, their offered copy speed was fairly
low, even lower than the basic memcpy speed of a single CPU
core. For example, Intel’s evaluation of their IOAT DMA en-
gine on Broadwell processors, which were released in 2016,
finds that for bulk transfers, the DMA engine’s copy speed
(4.4 GB/s) is around half that of one CPU core (8.0 GB/s) [4].
Intel recently improved their DMA engine speed to ∼15GB/s
in Skylake and newer processors. DMA engines on AMD’s
second-generation EPYC processors offer even higher rates
up to 70GB/s [1], indicating that DMA acceleration is a
promising strategy for the faster networks and NVMMs in
the future, too.

Software support for IOAT DMA. We use a userspace driver
for the IOAT DMA engine from the DPDK library [24]. An
application thread interacts with the DMA engine with an
asynchronous, lock-free API by posting work descriptors to
per-thread DMA “channels.” One limitation of the IOATDMA
engine is that it operates on physical addresses. On Linux,
privileged applications can translate virtual addresses to
physical addresses by parsing /proc/self/pagemap. We use
2MB hugepages allocated at boot time, and cache physical
addresses after the first translation. This is safe because on
Linux, the kernel does not change the physical address of
such hugepages. In the steady state, our benchmarks do not
perform any virtual-to-physical translation.

5.4 IOAT DMAmicrobenchmarks
This section presents, to our knowledge, the first in-depth
study of the performance of the IOAT DMA engine on mod-
ern Intel CPUs. We focus on aspects that affect performance
of bulk DMA writes to NVMM.
Recall that we are using the IOAT DMA engine to im-

prove single-core RPC performance for bulk writes to re-
mote NVMM, which is substantially lower than RDMA (Fig-
ure 4). Therefore, our microbenchmarks compare the copy
performance of the IOAT DMA engine to software memcpy
running on one CPU core. We do so by measuring the speed
at which each approach can copy 1 kB–128 kB buffers to a
large 4GB buffer that is much larger than the CPU’s cache.
This benchmark is representative of real networked work-
loads that copy data from cached RPC message buffers to
in-memory logs or key-value stores.

Persistence of DMA operations. By default, the IOAT DMA
engine writes data to CPU cache using a feature called Direct
Cache Access (DCA). DCA for DMA engines is similar to
DDIO for NICs. We found that we can disable DCA, and
thereby force the engine’s writes to go directly to thememory
controller, achieving durability in theory. Although Intel does
not yet officially support this approach for durable writes
to NVMM with IOAT DMA, the mechanism likely works
because it is identical to RDMA writes with DDIO disabled.
(RDMA writes are also handled by a DMA engine on the
CPU.) By showing the large improvement from IOAT DMA
for NVMM access, we hope to convince CPU vendors to
officially support using DMA engines for durable NVMM
writes.

Ordering of IOAT DMA operations. For DMA measure-
ments, we found that keeping a window of multiple DMA
operations in flight improves performance; we show perfor-
mance with one (W = 1) and multiple (W = 8) outstanding
DMA operations in flight. We found that pipelining more
than eight DMAs did not further improve performance on
our CPUs.
NVMM applications often require ordered persistence,

i.e., a write should become persistent only after the previ-
ously issued write becomes persistent. For DMA operation
pipelining to be usable in NVMM applications that require
ordered persistence, the DMA engine should provide the
following guarantee: updates from an operation should not
be visible in the CPU’s memory subsystem before all updates
from previous operations on the same channel are visible.
The publicly-available IOAT DMA documentation does not
specify this guarantee. We created a stress test in which a
monitoring thread checks for ordering violations, and veri-
fied that the IOAT DMA engine upholds this guarantee in
practice.

113

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

 0

 5

 10

 15

 1 2 4 8 16 32 64 128

Ba
nd

w
id

th
 (G

B/
s)

Copy size (KB)

DMA (W = 1)
DMA (W = 8)

memcpy

Figure 5: Comparison of IOAT DMA and memcpy for
bulk writes to volatile memory

 0

 5

 10

 15

 1 2 4 8 16 32 64 128

Ba
nd

w
id

th
 (G

B/
s)

Copy size (KB)

ntstore
DMA without DCA

DMA with DCA

Figure 6: Comparison of IOAT DMA and ntstores for
bulk writes to NVMM. We keep eight writes in flight
for the DMA experiments. Unlike “ntstore” and “DMA
without DCA”, “DMA with DCA” (green line) does not
provide durability.

5.4.1 Volatile memory copy performance. To establish a base-
line of IOAT DMA performance without hitting the NVMM
write bandwidth bottleneck, we first run the experiment
with both source and destination buffers in volatile mem-
ory. Figure 5 shows the results with two window sizes (one
and eight). For 8 kB or larger writes, the DMA engine de-
livers around 13.3 GB/s with a window of eight writes in
flight, which is 44% higher than a 9.2 GB/s achieved by one
core with memcpy. Our results also show that, even for
moderately-sized copies of 4 kB or more bytes, pipelining
multiple DMA operations improves performance by up to
3x.

5.4.2 NVMM copy performance. We now run the previous
experimentwith the destination buffer inOptaneDIMMs. For
the software baseline, we use an optimized persistent mem-
cpy that uses AVX-512 non-temporal stores (ntstore) from
the Persistent Memory Development Kit library. Figure 6

shows the results. We find that the default IOAT DMA con-
figuration achieves at most 5.8 GB/s, which is only slightly
better than ntstores (4.3 GB/s). Our single-threaded ntstore
performance is the same as that reported previously by Yang
et al. [53].
We used the hardware counters on Optane DIMMs to

diagnose the DMA engine’s low performance. We found
that the default IOAT DMA configuration results in a high
in-DIMM write amplification of around 2x. We found that
the root cause is similar to DDIO’s randomization effect in
RDMA writes: by default, the IOAT DMA engine writes data
to CPU caches using DCA, which trickles down to the Optane
DIMMs in semi-random order. Recall that the fundamental
cause of this inefficiency is that the CPU cache is not optimized
for NVMM.

Disabling DCA for the IOAT DMA engine increases peak
throughput by 2x from 5.8 GB/s to 11.5 GB/s. Both with and
without DCA, the bottleneck lies in the Optane DIMMs’ write
throughput to persistent media (approximately 13GB/s for
the six Optane DIMMs in our system [53]). The difference is
that with DCA enabled, write amplification wastes almost
half the bandwidth.

For small 1–2 kB copies, disabling DCA reduces the DMA
engine’s performance. This happens likely because for small
copies, the throughput ismuch lower than theOptaneDIMMs’
peak write throughput, and DCA’s advantage of writing di-
rectly to caches makes the copies faster. However, DMAwith
DCA enabled does not provide durability.

5.5 Optimizing RPCs with DMA
We chose to add the DMA optimization in the application-
level RPC request handler at the server.We considered adding
DMA support inside eRPC by using DMA to directly copy ap-
plication data from the NIC’s receive ring buffers to NVMM.
However, receive ring buffers are MTU-sized and therefore
small—typically ≈1500 B on commodity Ethernet. The DMA
engine is more efficient for larger copies (Figure 6). Using
DMA at the application level allows us to work with large
de-fragmented messages instead of small packets, improving
performance.
Our solution involves the following steps at the server.

First, eRPC’s event loop running at the server receives pack-
ets from the network. It de-fragments packets into mes-
sages by copying them from ring buffers into the applica-
tion’s volatile buffer. Then, eRPC’s event loop invokes an
application-level request handler in the same thread. The
handler copies the message to NVMM asynchronously using
the DMA engine. The handler returns to eRPC before the
copy completes, overlapping network packet processing in-
side eRPC with the DMA copy. The server sends a response
message back to the client after the copy completes.

114

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

 0

 10

 20

 30

 40

 50

 1 2 4 8 16 32 64 128

Ba
nd

w
id

th
 (G

bp
s)

Copy size (KB)

RPC baseline
RPC + DMA, DCA enabled
RPC + DMA, DCA disabled

Figure 7: Effect of IOAT DMA acceleration on RPC
throughput. Unlike “RPC baseline” and “RPC + DMA,
DCA disabled”, “RPC + DMA, DCA enabled” does not
provide durability.

Figure 7 compares the performance of bulk writes to re-
mote NVMM with default RPCs, and with our DMA accel-
eration optimization (termed RPC + DMA). We show per-
formance for RPC+DMA both with Direct Cache Access
enabled and disabled. Note that RPC+DMA does not provide
durability when DCA is enabled. We make two observations:
(1) RPC+DMA with DCA disabled provides the highest

performance for 16 kB and larger writes. For smaller
writes, the RPC+DMA with DCA enabled performs
better. This is because the latter benefits from having
towrite data to only the CPU cache and not the NVMM,
which is faster when the NVMMDIMMs are under low
load (Section 5.4.2).

(2) RPC+DMA with DCA disabled achieves line rate with
32 kB or larger writes. The other approaches fail to
achieve line rate. For large 128 kB copies, RPC+DMA
is 2.3x faster than the eRPC baseline, and 32% faster
than RPC+DCA with DCA enabled. The latter fails
to achieve line rate because of NVMM access pattern
randomization caused by DCA.

6 PERSISTENT LOG
This section presents our findings on another important
primitive in distributed systems: Persistent logs are building
blocks of critical application such as transaction processing
systems [12, 18, 19], state machine replication, and remote
backups. We focus on small log records up to a few thousand
bytes in size, such as those generated by online transaction
processing workloads like TPC-C [45]. Techniques from the
previous section on optimizing bulk writes to remote NVMM
are useful for larger log writes.
In a straightforward log design, the log consists of two

parts: a log buffer, and an 8 B counter that holds the number
of bytes written to the log buffer. To append data to the log,

we first issue a durable write to the log buffer, followed by a
durable write to the counter. (A durable write includes a store
instruction, followed by a cache line flush using the clwb
instruction, and an sfence.) We found that this straightfor-
ward design performs poorly, which is surprising because
sequential writes to NVMM perform well [53].
We found that the repeated writes to the counter cause

the poor append performance. To understand the counter’s
performance in isolation, we wrote a benchmark that repeat-
edly issues durable writes to one 8 B location in NVMM. We
found that we can do only 1.3 million updates per second,
corresponding to 770 ns average latency per persistent write.
Note that a persistent write begins execution only after the
previous persistent write is complete, so inverse throughput
of persistent writes equals their average latency. For compar-
ison, the average latency of small sequential durable writes
to with Optane DIMMs is only around 120 ns.

6.1 Diagnosis: Cache line invalidation
Why are repeated writes to the same memory location slow?
This is an important question because such writes are com-
mon in networked systems, e.g., in log-based distributed
system components such as write-ahead logging and state
machine replication, in systems that use persistent times-
tamps [11], and in key-value stores while handling skewed
workloads [15].

At first, we wrongly hypothesized that slow repeated
writes are due to wear-leveling inside the Optane DIMMs:
Each persistent block in Optane DIMMs supports a finite
number of erase cycles. A controller inside the DIMM pre-
vents repeated erasures of the same block by spreading
out the writes over multiple blocks. Repeated writes to the
counter trigger wear-leveling, causing a slowdown. After
examining the DIMM’s hardware counters, we found that
this hypothesis in incorrect because the volatile power-safe
write-combining buffer inside the Optane DIMMs absorbs
almost all writes to the counter. The DIMMs’ hardware coun-
ters report that almost no writes to the log’s counter reach
the persistent media. In addition, our experiments showed
that the poor performance is not specific to NVMM Optane
DIMMs: We also see low performance when we use DRAM
for the 8 B location instead of NVMM, while still using the
store-clwb-sfence instruction combination.
The actual reason for poor performance of repeated writes

to the same cache line is that CPU caches are not optimized
for NVMM. Contrary to the expected behavior and com-
mon understanding, clwb invalidates and flushes the tar-
get cacheline [7]. clwb is supposed to improve upon the
older clflushopt instruction—which invalidates the target
cacheline—by retaining flushed cachelines in the CPU cache.
However, on current processors that support NVMM (i.e.,

115

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

11

Basic counter

11

Rotating counter

2 10

0 256 2304

Figure 8: A comparison of the basic counter design
and our rotating counter, showing the state of the
two counters after 11 increments. The blue numbers
show the addresses of the ten chunks in the rotating
counter.

up to Intel Cascade Lake CPUs), clwb behaves identically
to clflushopt. The unexpected behavior of clwb is correct,
however. Per the documentation of clwb: “The line may be
retained in the cache hierarchy in non-modified state.” (em-
phasis is ours). Repeated invalidation of the same cache line
results in poor performance.

6.2 Rotating counter
We designed a “rotating counter” that avoids repeated writes
to the same memory location by spreading writes to multi-
ple memory blocks. It internally uses ten contiguous 256 B
blocks in NVMM. Other values of the number of contiguous
blocks or the size of each block showed worse performance.
With 256 B blocks, blocks are striped across the six Optane
DIMMs, which contributes to the improved performance. We
write the first counter update to the 8 B “chunk” at the start
of the first block, the second to the start of the second block,
and so forth. After ten updates, we wrap around to the first
block. During normal operation, we maintain the counter’s
latest update in volatile memory, so reading its value is cheap.
During failure recovery, we restore the counter’s state by
reading from the persistent memory file, and taking the max-
imum update value across the ten chunks. Figure 8 diagrams
our rotating counter in comparison to a basic 8 B counter.
The rotating counter supports ten million updates per

second, 7.6x higher than using one 8 B location. The rotating
counter requires more space than the basic counter–2560 B
in NVMM instead of 8 B. This overhead may be negligible
for persistent logs in database applications, since such logs
typically store gigabytes or more of data.

6.3 Extension to rotating registers
The rotating counter technique above requires increasing up-
dates: taking the maximum value among the ten chunks does
not work if we wish to also support decrements to the 8 B
location. We created a novel method to extend our approach
by removing this limitation, thereby supporting arbitrary
updates. Our method works by using XOR instead of MAX as
the recovery function, and by cleverly constructing updates
to the chunks.

 0

 1

 2

 3

 64 128 256 512 1024 2048

Th
ro

ug
hp

ut
 (m

illi
on

s/
s)

Log entry size (bytes)

Basic log

Log with rotating counter

Figure 9: Throughput of a persistent log appends with
a basic 8B counter, and a rotating counter

Our persistent rotating register R consists of ten 256 B
chunks R[0], ..., R[9]. Assume that for the i th update,
we wish to set R = x. As in the rotating counter, we will write
to chunk j = i % 10 for this update. Instead of simply setting
R[j] = x, we set R[j] = R[0] ⊕ ... ⊕ R[j - 1] ⊕ x ⊕

R[j + 1] ⊕ ... ⊕ R[9]. (We assume j is between 2 and
7 for convenience in writing this expression.) During failure-
free operation, we maintain copies of the chunks in CPU
cache, so computing the right hand side of the expression is
cheap because it requires no NVMM accesses.
If the machine crashes after we set R[j], we need to re-

cover x without knowing j. (Persisting j for each update
would reduce performance.) The recovery works as follows.
Recall that any value XOR-ed with itself is zero. Therefore,
after the write to R[j] becomes persistent, R[0] ⊕ ... ⊕

R[9] = x. Each update maintains this invariant, starting
from the initial zero value of all chunks. During failure re-
covery, we obtain the latest value of of R by XOR-ing R[0]
through R[9].

6.4 End-to-end performance
We evaluate the benefit of the rotation technique described
above in a networked environment. We created a single-
threaded log server that receives log entries from multiple
remote clients via RPCs. On receiving a log entry, the server
thread appends it to a local log in NVMM. The server uses
either a single 8 B location or a rotating counter for the head
pointer of its log.

Figure 9 compares the persistent log append rate with the
two counter choices. For up to 512 B appends, using a rotat-
ing counter improves the append rate by 80–90%, reaching
2.6 million updates per second with 256 B updates. For larger
appends, most of the time is spent in writing to the log buffer,
so the choice of counter has little effect.

116

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

7 RELATEDWORK
Distributed systems with emulated or real NVMM. Several

recent distributed transaction processing systems use DRAM
as a placeholder for NVMM to store data and transaction
logs [18, 27, 49]. A key difference between the design of these
systems is the extent to which they use one-sided RDMA and
what they handle with RPCs. Our work shows that we must
revisit this longstanding RDMA-vs-RPC debate for NVMM.
For example, Wei et al. [49] find that one-sided RDMAwrites
are much faster than RPCs for logging to remote DRAM in
distributed transactions. However, using durable logging to
remote NVMM instead of volatile logging to remote DRAM
reduces the advantage of RDMA (Figure 3). Because RPC-
based designs have other advantages such as simplicity and
higher scalability [28, 32], the much-reduced latency benefit
of one-sided RDMA over RPCs for logging may shift the
balance in favor of RPCs.

The work of Yang et al. [52] on reducing the overhead of
registering huge NVMM memory regions with RDMA NICs
is orthogonal but complementary to ours. Our experiments
register only small memory NVMM regions (a few tens of
gigabytes) for RDMA, which was sufficient to expose the
inefficiencies in current CPU cache designs. File systems
such as Orion [51] and Assise [9] seek to bring the benefits
of NVMM to file operations. The bulk RDMA writes in these
systems could benefit from our optimizations (Section 5)

Single-machine NVMM systems. Our work is closest in
spirit to the work on empirical guidelines for NVMM use
by Yang et al. [53]. The primary distinction is that we focus
on systems issues that arise specifically in networked work-
loads. Similar to their conclusions, we find that prior results
in distributed systems that used emulated NVMM will need
re-evaluation. Mnemosyne [47] presents a novel “torn-bit”
log for NVMM that requires only one persistent write per log
append. They achieve this by using the atomicity of 8 B per-
sistent memory writes, and reserving one bit per 8 B word as
a marker. In contrast, our persistent log (Section 6) requires
a second write to the log’s head pointer. We plan to compare
the performance of the two log designs in the future. Our
design has the advantage that the log entries are intact in-
stead of garbled as in Mnemosyne’s torn-bit log. As a result,
it may be faster and simpler (e.g., during debugging) to read
from the log. In addition, our rotation technique applies to
applications other than logging, such as counters and times-
tamps. Concurrent to our work, Chen et al. [15] discovered
the poor performance of repeated durable writes to the same
cache line. They hypothesized that wear-leveling inside the
NVMM or some unexplained blocking of clwb causes the
low performance. Our work provides the exact reason for
the low performance, and an optimization for networked
counters and registers to achieve high performance.

8 CONCLUSION
Our work presents solutions to a variety of challenges that
arise when building networked systems with NVMM. Our
contributions include an empirical evaluation of networking
options for NVMM, new experiments and optimizations for
achieving low latency and high bandwidth access to remote
NVMM, and case studies of two high-performance NVMM-
based networked systems. We find that current CPU caches
are ill-optimized for NVMM, which causes several perfor-
mance regressions. Put together, these results highlight the
importance of careful attention to fundamental and distinc-
tive networking-related properties of real NVMM devices.

Acknowledgments. This work was supported by funding
from the National Science Foundation under award 1700521,
and by Intel via the Intel Science and Technology Center for
Visual Cloud Systems (ISTC-VCS). We are grateful to Intel
for providing us access to a cluster with Intel Optane DC
Persistent Memory.

REFERENCES
[1] 2019. Accelerating Intra-Host PVRDMA Storage Traffic in a Future

Dell AMD Server. Talk at VMWorld 2019.
[2] 2020. C implementation of the Raft Consensus protocol. https://github.

com/willemt/raft.
[3] 2020. Distributed Asynchronous Object Storage Stack. https://github.

com/daos-stack.
[4] 2020. Fast memcpy with SPDK and Intel I/OAT DMA En-

gine. https://software.intel.com/en-us/articles/fast-memcpy-using-
spdk-and-ioat-dma-engine.

[5] 2020. InfiniBand Architecture Specification Volume 1. https://cw.
infinibandta.org/document/dl/7859.

[6] 2020. Intel 64 and IA-32 Architectures Optimization Reference Man-
ual. https://software.intel.com/sites/default/files/managed/9e/bc/64-
ia-32-architectures-optimization-manual.pdf.

[7] 2020. Intel’s CLWB instruction invalidating cache lines.
https://stackoverflow.com/questions/60266778/intels-clwb-
instruction-invalidating-cache-lines.

[8] Aerospike 2020. Aerospike Performance on Intel Optane Persis-
tent Memory. https://www.aerospike.com/blog/performance-on-intel-
optane-persistent-memory/.

[9] Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan KostiÄĞ,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh,
and Emmett Witchel. 2019. Assise: Performance and Availabil-
ity via NVM Colocation in a Distributed File System. (2019).
arXiv:1910.05106 [cs.DC]

[10] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s
Talk About Storage and Recovery Methods for Non-Volatile Memory
Database Systems. In Proc. ACM SIGMOD. Melbourne, Australia.

[11] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-behind
logging. Proceedings of the VLDB Endowment.

[12] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wob-
ber, Michael Wei, and John D. Davis. 2012. CORFU: a shared log design
for flash clusters. In Proc. 9th USENIX NSDI. San Jose, CA.

[13] Nathan Beckmann, Phillip B. Gibbons, Bernhard Haeupler, and Charles
McGuffey. 2019. Writeback-Aware Caching (Brief Announcement). In

117

https://github.com/willemt/raft
https://github.com/willemt/raft
https://github.com/daos-stack
https://github.com/daos-stack
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://software.intel.com/en-us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://stackoverflow.com/questions/60266778/intels-clwb-instruction-invalidating-cache-lines
https://stackoverflow.com/questions/60266778/intels-clwb-instruction-invalidating-cache-lines
https://www.aerospike.com/blog/performance-on-intel-optane-persistent-memory/
https://www.aerospike.com/blog/performance-on-intel-optane-persistent-memory/
https://arxiv.org/abs/1910.05106

SoCC ’20, October 19–21, 2020, Virtual Event, USA Anuj Kalia, David Andersen, and Michael Kaminsky

The 31st ACM Symposium on Parallelism in Algorithms and Architec-
tures.

[14] Chiranjeeb Buragohain, Knut Magne Risvik, Paul Brett, Miguel Castro,
Wonhee Cho, Joshua Cowhig, Nikolas Gloy, Karthik Kalyanaraman,
Richendra Khanna, John Pao, Matthew Renzelmann, Alex Shamis,
Timothy Tan, and Shuheng Zheng. 2020. A1: A Distributed In-Memory
Graph Database. In Proc. ACM SIGMOD. Portland, OR, USA.

[15] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and
Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value
Storage Engine for Persistent Memory. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems.

[16] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.
2016. Fast and General Distributed Transactions Using RDMA and
HTM. In Proc. 11th ACM European Conference on Computer Systems
(EuroSys) (London, UK).

[17] DPDK 2017. Data Plane Development Kit (DPDK). http://dpdk.org/.
[18] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and

Miguel Castro. 2014. FaRM: Fast Remote Memory. In Proc. 11th USENIX
NSDI. Seattle, WA.

[19] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightin-
gale, Matthew Renzelmann, Alex Shamis, Anirudh Badam, and Miguel
Castro. 2015. No Compromises: Distributed Transactions with Consis-
tency, Availability, and Performance. In Proc. 25th ACM Symposium on
Operating Systems Principles (SOSP). Monterey, CA.

[20] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data Tiering in Heterogeneous Memory Systems. In
Proc. 11th ACM European Conference on Computer Systems (EuroSys)
(London, UK).

[21] Daniel Firestone et al. 2018. Azure Accelerated Networking: SmartNICs
in the Public Cloud. In Proc. 15th USENIX NSDI. Renton, WA.

[22] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. 2016. RDMA over Commodity
Ethernet at Scale. In Proc. ACM SIGCOMM. Florianopolis, Brazil.

[23] Michio Honda, Giuseppe Lettieri, Lars Eggert, and Douglas Santry.
2018. PASTE: A Network Programming Interface for Non-Volatile
Main Memory. In Proc. 15th USENIX NSDI. Renton, WA.

[24] Intel. 2013. Intel Data Plane Development Kit (Intel DPDK). http:
//www.intel.com/go/dpdk.

[25] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. 2016.
Consensus in a Box: Inexpensive Coordination in Hardware. In Proc.
13th USENIX NSDI. Santa Clara, CA.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using
RDMA Efficiently for Key-Value Services. In Proc. ACM SIGCOMM.
Chicago, IL.

[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST:
Fast, Scalable and Simple Distributed Transactions with Two-Sided
RDMA Datagram RPCs. In Proc. 12th USENIX OSDI. Savannah, GA.

[28] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2019. Datacen-
ter RPCs can be General and Fast. In Proc. 16th USENIX NSDI. Boston,
MA.

[29] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson,
Vyas Sekar, and Srinivasan Seshan. 2018. HyperLoop: Group-based
NIC-offloading to Accelerate Replicated Transactions in Multi-tenant
Storage Systems. In Proc. ACM SIGCOMM. Budapest, Hungary.

[30] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K Panda. 2004. High
performance RDMA-based MPI implementation over InfiniBand. In-
ternational Journal of Parallel Programming (2004).

[31] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017

USENIX Annual Technical Conference (USENIX ATC 17).
[32] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld,

Sean Bauer, Carlo Contavalli, Michael Dalton, Nandita Dukkipati,
William C. Evans, Steve Gribble, Nicholas Kidd, Roman Kononov,
Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,
Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi
Wang, and Amin Vahdat. 2019. Snap: A Microkernel Approach to
Host Networking. In Proc. 27th ACM Symposium on Operating Systems
Principles (SOSP). Waterloo, Canada.

[33] Memcached 2020. The Volatile Benefit of Persistent Memory. https:
//memcached.org/blog/persistent-memory/.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.
Revisiting Network Support for RDMA. In Proc. ACM SIGCOMM. Bu-
dapest, Hungary.

[35] Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying
Zhang, Haggai Eran, Boris Pismenny, Liran Liss, Michael Wei, Dan
Tsafrir, and Marcos Aguilera. 2019. Storm: a fast transactional data-
plane for remote data structures. In 12th ACM International Systems
and Storage Conference (SYSTOR). ACM, USENIX.

[36] Diego Ongaro and John Ousterhout. 2014. In Search of an Under-
standable Consensus Algorithm. In Proc. USENIX Annual Technical
Conference. Philadelphia, PA.

[37] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. 2011. Fast crash recovery in RAMCloud. In
Proc. 23rd ACM Symposium on Operating Systems Principles (SOSP).
Cascais, Portugal.

[38] Oracle TimesTen 2020. Using Intel Optane DC Persis-
tent Memory with Oracle TimesTen In-Memory Database.
https://blogs.oracle.com/timesten/using-intel-optane-dc-persistent-
memory-with-oracle-timesten-in-memory-database.

[39] Marius Poke and Torsten Hoefler. 2015. DARE: High-performance
state machine replication on RDMA networks. In HPDC.

[40] Hanfeng Qin and Hai Jin. 2017. Warstack: Improving LLC Replacement
for NVM with a Writeback-Aware Reuse Stack. In 25th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing, PDP.

[41] Redis Labs 2020. Break the Cost and Capacity Barrier with Intel Optane
DC Persistent Memory. https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/redis-enterprise-brief.pdf.

[42] Andy Rudoff. 2017. Persistent Memory Programming. USENIX ;login:
(2017).

[43] Shelby Thomas, Geoffrey M. Voelker, and George Porter. 2018.
Cachecloud: Towards Speed-of-Light Datacenter Communication. In
Proceedings of the 10th USENIX Conference on Hot Topics in Cloud Com-
puting.

[44] Tom Talpey RDMA Commit 2020. RDMA Extensions for Enhanced
Memory Placement. https://tools.ietf.org/id/draft-talpey-rdma-
commit-01.html.

[45] TPC-C 2010. TPC Benchmark C. http://www.tpc.org/tpcc/.
[46] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Towards Low-

Cost, Fast, and Scalable Disaggregated Persistent Memory Systems. In
2018 USENIX Annual Technical Conference.

[47] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proc. 16th Interna-
tional Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Newport Beach, CA.

[48] Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan
Xie, and Daniel A. Jiménez. 2013. WADE: Writeback-Aware Dynamic
Cache Management for NVM-Based Main Memory System. ACM
Trans. Archit. Code Optim. (2013).

118

http://dpdk.org/
http://www.intel.com/go/dpdk
http://www.intel.com/go/dpdk
https://memcached.org/blog/persistent-memory/
https://memcached.org/blog/persistent-memory/
https://blogs.oracle.com/timesten/using-intel-optane-dc-persistent-memory-with-oracle-timesten-in-memory-database
https://blogs.oracle.com/timesten/using-intel-optane-dc-persistent-memory-with-oracle-timesten-in-memory-database
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/redis-enterprise-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/redis-enterprise-brief.pdf
https://tools.ietf.org/id/draft-talpey-rdma-commit-01.html
https://tools.ietf.org/id/draft-talpey-rdma-commit-01.html
http://www.tpc.org/tpcc/

Challenges and Solutions for Fast Remote Persistent Memory Access SoCC ’20, October 19–21, 2020, Virtual Event, USA

[49] XingdaWei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Decon-
structing RDMA-enabled Distributed Transactions: Hybrid is Better!.
In Proc. 13th USENIX OSDI. Carlsbad, CA.

[50] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen.
2015. Fast In-memory Transaction Processing Using RDMA and HTM.
In Proc. 25th ACM Symposium on Operating Systems Principles (SOSP).
Monterey, CA.

[51] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A
Distributed File System for Non-Volatile Main Memory and RDMA-
Capable Networks. In Proc. USENIX Conference on File and Storage
Technologies. Boston, MA.

[52] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR:
Rethinking RDMA Networking for Scalable Persistent Memory. In
Proc. 17th USENIX NSDI. Santa Clara, CA.

[53] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and
Steven Swanson. 2020. An Empirical Guide to the Behavior and Use of
Scalable Persistent Memory. Technical Report. Santa Clara, CA.

[54] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017.
The End of a Myth: Distributed Transactions Can Scale. In Proc. VLDB.
Munich, Germany.

[55] Yiying Zhang and Steven Swanson. 2015. A study of application
performance with non-volatile main memory. In 31st Symposium on
Mass Storage Systems and Technologies (MSST). IEEE.

[56] Yiying Zhang, Jian Yang, Amirsaman Memaripour, and Steven Swan-
son. 2015. Mojim: A Reliable and Highly-Available Non-Volatile Mem-
ory System. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS âĂŹ15).

119

	Abstract
	1 Introduction
	2 Background
	2.1 Non-volatile main memory
	2.2 High-performance networking
	2.3 Goals of this paper

	3 Evaluation setup
	4 Low-latency writes
	4.1 Persistent RDMA background
	4.2 Durability guarantee of RDMA
	4.3 Measurements
	4.4 Newer NICs
	4.5 Future RDMA extensions
	4.6 Low-latency state machine replication

	5 High-bandwidth bulk writes
	5.1 Discussion on disabling DDIO
	5.2 Improving RDMA bandwidth
	5.3 DMA engine background
	5.4 IOAT DMA microbenchmarks
	5.5 Optimizing RPCs with DMA

	6 Persistent log
	6.1 Diagnosis: Cache line invalidation
	6.2 Rotating counter
	6.3 Extension to rotating registers
	6.4 End-to-end performance

	7 Related work
	8 Conclusion
	References

