Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur} @cmu.edu, rhardin@mit.edu

Abstract—Phase change memory (PCM) is a promising tech-
nology that can offer higher capacity than DRAM. Unfortunately,
PCM’s access latency and energy are higher than DRAM’s
and its endurance is lower. Many DRAM-PCM hybrid memory
systems use DRAM as a cache to PCM, to achieve the low access
latency and energy, and high endurance of DRAM, while taking
advantage of PCM’s large capacity. A key question is what data to
cache in DRAM to best exploit the advantages of each technology
while avoiding its disadvantages as much as possible.

We propose a new caching policy that improves hybrid
memory performance and energy efficiency. Our observation is
that both DRAM and PCM banks employ row buffers that
act as a cache for the most recently accessed memory row.
Accesses that are row buffer hits incur similar latencies (and
energy consumption) in DRAM and PCM, whereas accesses that
are row buffer misses incur longer latencies (and higher energy
consumption) in PCM. To exploit this, we devise a policy that
avoids accessing in PCM data that frequently causes row buffer
misses because such accesses are costly in terms of both latency
and energy. Our policy tracks the row buffer miss counts of
recently used rows in PCM, and caches in DRAM the rows that
are predicted to incur frequent row buffer misses. Our proposed
caching policy also takes into account the high write latencies of
PCM, in addition to row buffer locality.

Compared to a conventional DRAM-PCM hybrid memory
system, our row buffer locality-aware caching policy improves
system performance by 14% and energy efficiency by 10% on
data-intensive server and cloud-type workloads. The proposed
policy achieves 31% performance gain over an all-PCM memory
system, and comes within 29% of the performance of an all-
DRAM memory system (not taking PCM’s capacity benefit into
account) on evaluated workloads.

I. INTRODUCTION

Multiprogrammed workloads on chip multiprocessors re-
quire large amounts of main memory to support the working
sets of many concurrently executing threads. This memory
demand is increasing today as the number of cores on a chip
continues to increase and data-intensive applications become
more widespread. Dynamic Random Access Memory (DRAM)
is used to compose main memory in modern computers.
Though strides in DRAM process technology have enabled
DRAM to scale to smaller feature sizes and thus higher
densities (capacity per unit area), it is predicted that DRAM
density scaling will become costly as feature size continues to
reduce [33], [26], [16]. Satisfying increasingly higher memory
demands with DRAM exclusively will become expensive in
terms of both cost and energy.

Phase Change Memory (PCM) is an emerging random-
access memory technology that offers a competitive alternative
to DRAM. A PCM cell stores data as varying electrical
resistance, which is more amenable to extreme scaling than
a DRAM cell that stores data as a small amount of electrical
charge. Hence, PCM is expected to scale to smaller feature

Rachael A. Harding is currently a PhD student at the Massachusetts Institute
of Technology.

sizes (higher capacities) than DRAM [26], [12], [11]. PCM’s
non-volatility also leads to opportunities for lowering OS
overhead and increasing I/O performance through the use of
persistent memory [3], [4]).

However, PCM has a number of disadvantages that prevent
its adoption as a direct DRAM replacement. First, PCM
exhibits higher access latencies compared to DRAM. Second,
PCM has higher dynamic energy consumption than DRAM.
Finally, PCM has finite write endurance (memory cells wear
out with increasing write operations).

Hybrid memory systems comprising both DRAM and PCM
aim to benefit from the large memory capacity offered by
PCM, while achieving the low latency, low energy, and high
endurance of DRAM. Previous proposals employ modestly-
sized DRAM as a cache to large capacity PCM [24], or
use the DRAM to store frequently written data [5], [36]. A
key question in the design of a DRAM-PCM hybrid memory
system is how to place data between DRAM and PCM to
best exploit the strengths of each technology while avoiding
its weaknesses as much as possible.

In this work, we develop new mechanisms for deciding
how data should be placed in a DRAM-PCM hybrid memory
system. Our main observation is that both DRAM and PCM
banks employ row buffer circuitry. The row buffer acts as a
cache for the most recently accessed row in the bank, and
memory requests that hit in the row buffer incur similar la-
tencies and energies in DRAM and PCM [11], [12]. However,
requests that miss in the row buffer require loading (activating)
the requested row from the memory cell array to the row
buffer, which incurs higher latency and energy in PCM than
in DRAM. As a result, placing data that mostly leads to row
buffer hits (has high row buffer locality) in DRAM provides
little benefit over placing the same data in PCM, whereas
placing heavily reused data that leads to frequent row buffer
misses (has low row buffer locality) in DRAM avoids the high
latency and energy of PCM array accesses.

Based on this observation, we devise a hybrid memory
caching policy which caches to DRAM the rows of data for
which there are frequent requests (highly reused) that mostly
miss in the row buffer. To implement this policy, the memory
controller maintains a count of the row buffer misses for
recently used rows in PCM, and places in DRAM the data of
rows whose row buffer miss counts exceed a certain threshold
(dynamically adjusted at runtime). When a row is written to, its
row buffer miss count is incremented by a larger amount than
when it is read, expediting the caching of write data to avoid
the high write latency and energy of PCM. We observe that our
mechanism (1) mitigates the high access latency and energy
cost of PCM array accesses, (2) reduces memory channel
bandwidth consumption caused by the frequent movement of
data between DRAM and PCM, and (3) balances the memory

Word Line

Word Line i

Word Line

L] [on] [on])

DRAM PCM Data Out Data Out Data Out

Fig. 1: Memory cells organized in a 2D array of rows and columns.

access load between DRAM and PCM, altogether leading to

improved system performance and energy efficiency.
Contributions. We make the following contributions:

o We identify row buffer locality as a key metric for making
data placement decisions in a hybrid memory system.

e Based on our observation, we develop a row buffer locality-
aware hybrid memory caching policy to selectively cache
data with low row buffer locality and high reuse. Our
scheme also facilitates timely caching for write data to
account for PCM'’s high write latency and energy.

e We evaluate our proposed scheme using data-intensive
server and cloud-type workloads on a 16-core system.
Compared to a conventional caching policy that places
frequently accessed data in DRAM (oblivious of row buffer
locality), our scheme improves system performance by 14%
and energy efficiency by 10%. Our scheme shows 31%
performance gain over an all-PCM memory system, and
comes within 29% of the performance of an all-DRAM
memory system (not taking PCM’s capacity benefit into
account).

II. BACKGROUND
A. Memory Device Architecture: Row Buffers

The organization of a memory device is illustrated in Figure
1. Cells (memory elements) are typically laid out in arrays of
rows (cells sharing a common word line) and columns (cells
sharing a common bit line). Accesses to the array occur in the
granularity of rows. To read from the array, a word line is first
asserted to select a row of cells. Then through the bit lines, the
selected cells’ contents are detected by sense amplifiers (S/A)
and latched in peripheral circuitry known as the row buffer.

Once the contents of a row are latched in the row buffer,
subsequent memory requests to that row are served promptly
from the row buffer, without having to bear the delay of
accessing the array. Such memory accesss are called row buffer
hits. However, if a row different from the one latched in the
row buffer is requested, then the newly requested row is read
from the array to the row buffer (replacing the row buffer’s
previous contents). Such a memory access incurs the high
latency and energy of activating the array, and is called a row
buffer miss. Row Buffer Locality (RBL) refers to the repeated
reference to a row while its contents are in the row buffer.
Memory requests to data with high row buffer locality are
served efficiently (at low latency and energy) without having
to frequently activate the memory cell array.

B. Phase Change Memory

Phase Change Memory (PCM) is a non-volatile memory
technology that stores data by varying the electrical resistance
of a material known as chalcogenide [34], [26]. A PCM
memory cell is programmed by applying heat (via electrical

CPU

DRAM
Memory Channel | Ctlr.

snfall it
S winbln

(Low Capacity)
PCM

(High Capacity)
Fig. 2: Hybrid memory system organization.

PCM
Ctlr. Bank Row Buffer

current) to the chalcogenide and then cooling it at different
rates, depending on the data to be stored. Rapid quenching
places the chalcogenide into an amorphous state which has
high resistance, representing the bit ‘0’, and slow cooling
places the chalcogenide into a crystalline state which has low
resistance, representing the bit ‘1°.

A key advantage of PCM is that it is expected to offer
higher density (hence memory capacity) than DRAM. This is
due to two reasons: (1) a PCM cell stores data in the form of
resistance, which is expected to scale to smaller feature sizes
than charge-based storage in a DRAM cell, (2) PCM offers
multi-level cell capability (unlike DRAM), which stores more
than one bit of data per memory cell by achieving more than
two distinguishable resistance levels for each cell.

However, PCM has a number of disadvantages compared
to DRAM. The long cooling duration required to crystallize
chalcogenide leads to high PCM write latency, and read
(sensing) latency for PCM is also longer than that for DRAM.
A technology survey of nine recent PCM devices and pro-
totypes [11] reported PCM read and write latencies of 4-
6x and 6-32x those of DRAM, respectively. In addition,
PCM read and write energies were found to be 2x and 10—
140x those of DRAM, respectively. Furthermore, the repeated
thermal expansions and contractions of a PCM cell during
programming lead to finite write endurance, which is estimated
at 10® writes, an issue not present in DRAM.

C. DRAM-PCM Hybrid Memory Systems

DRAM-PCM hybrid memory systems [24], [5], [36], [17]
aim to combine the strengths of the two memory technologies.
Typical designs employ DRAM as a small cache or write
buffer to PCM of large capacity. PCM provides increased
overall memory capacity that leads to reduced page faults in
the system, while the DRAM cache serves a large portion
of the memory requests at low latency and low energy with
high endurance. The combined effect increases overall system
performance and energy efficiency [24].

Figure 2 illustrates the organization of a DRAM-PCM
hybrid memory system. Qureshi et al. [24] proposed using
DRAM as a 16-way set associative cache to PCM with 4 KB
block sizes. In their design, a 1 GB DRAM is managed by
hardware to cache data for 32 GB of PCM, using a tag store
of 1 MB in SRAM. More recent studies [15], [17] propose
alleviating the overhead of an SRAM tag store by storing the
tag information in (DRAM) memory, which also makes finer-
grained caching (smaller block sizes) more feasible. For each
DRAM cache block (4 KB), processor cache blocks (256 B)
that become dirty are tracked and selectively written back to
PCM when the DRAM cache block is evicted from DRAM.
Known as Line Level WriteBack, this technique reduces the
number of costly writes to PCM.

- - Conventional data mapping
Row | Row Buffer Locality DRAM P
A LOW A M
B LOW (-)
- - Row-C Row-A
C HIGH
D HIGH Row=3)
Bank 0 Bank 0
_ ! J ! J

Row access pattern to main memory:

Memory Service Timeline
Application Stall Time
6 PCM Device Accesses
=4200 cycles

IMiss ~ Miss
V| his |

prAM [€ Jef¢]

L P —
peM[A B]A]B]A]SB
"Miss Miss Miss Miss Miss Miss

Hits

Average Request Latency
DRAM: 267 cycles
PCM: 700 cycles
Overall: 483 cycles

A,B,C,C,C,A,B,D,D,D, A, B

Row buffer locality-aware data mapping

DRAM row miss: 400 cycles

DRAM PCM
. —\
Memory Latency (Simplified) Row-A Row-C
DRAM row hit: 200 cycles
Row-B

PCM row hit: 200 cycles

PCM row miss: 700 cycles Bank 0 Bank 0

\\ J

J

Application Stall Time
6 DRAM Device Accesses
= 2400 cycles

Miss Miss
| Miss | Missy

pram [A]B]a]B[A]s]
I Miss Hits Miss Hits |
1 1

Average Request Latency

Saved Cycles DRAM: 400 cycles
PCM: 367 cycles

1
1
1
1
!
1
1
1
1
1
1
1
1
1
1
1
1
1 Overall: 383 cycles

Fig. 3: Conceptual example showing the importance of row buffer locality-awareness in hybrid memory data placement decisions.

III. MOTIVATION

A key question in designing a high-performance hybrid
memory system is deciding what data to place in the DRAM
cache. Unlike an on-chip L1/L2 SRAM cache, an off-chip
DRAM cache exhibits significantly higher latencies (on the or-
der of hundreds of processor clock cycles). Furthermore, data
movements on the order of a kilobyte at a time occupy large
amounts of memory bandwidth. Influenced by these additional
factors, a hybrid memory system requires an effective DRAM
cache management policy to achieve high performance. Cur-
rent hybrid memory and on-chip cache management proposals
seek to improve the reuse of data placed in the cache and
reduce off-chip memory access bandwidth (e.g., [25], [7]).
We show in this paper that the row buffer locality of data
placed between the DRAM and PCM devices in a hybrid main
memory system can play a crucial role in determining average
memory access latency and system performance.

The example in Figure 3 illustrates how row buffer locality-
oblivious data placement can result in suboptimal application
performance. In this figure, there are twelve requests which
arrive at the memory system in the order shown and we display
the abstract service timelines of these requests assuming
conventional data mapping and row buffer locality-aware data
mapping. Note that the requests may not all be present at
the memory controller’s request buffer at the same time (i.e.,
the figure shows the order of requests, not necessarily arrival
times), so a memory scheduling policy that prioritizes row
buffer hit requests (e.g., [28], [37]) may not be able to take
advantage of row buffer locality present in the requests.! For
simplicity, we assume that requests from the processor access
rows A and B in such a way that requests to those rows never
hit in the row buffer (low row buffer locality) and access
rows C and D in such a way that the requests frequently
hit in the row buffer (high row buffer locality). If these
requests were issued from the same core, serving them more
quickly would allow the waiting core to stall less, resulting in
improved performance; if these requests were from different
cores, serving them more quickly would allow other requests
to in turn be served, improving system performance. Without
loss of generality, we assume, for this conceptual example, a
single core system where DRAM and PCM each have a single
bank.

With a conventional data mapping scheme which is unaware
of row buffer locality (such as previously proposed caching
policies [25], [7]), it is possible to map rows A and B to PCM

UIn all of our evaluations we assume an FR-FCFS memory scheduler [28],
[37], which prioritizes row buffer hit requests.

and rows C and D to DRAM (as shown in the top half of
Figure 3). Given the access pattern described, requests to rows
A and B mostly miss in the PCM row buffer and access the
PCM device at high array access latency and energy. Requests
to rows C and D frequently hit in the row buffer and thus
do not receive much benefit from being placed in DRAM,
compared to when being placed in PCM where the row buffer
hit latency and energy is similar [11], [12].

In contrast, a row buffer locality-aware caching mechanism
would map rows with high row buffer locality in PCM and
low row buffer locality in DRAM (bottom half of Figure 3).
This decision leads to a reduced amount of time and energy
taken to serve all memory requests. This is because the data
for accesses which frequently lead to row buffer misses is
placed in DRAM, where the array access latency and energy
are less than in PCM. These requests are now served faster,
and system performance and energy efficiency improves.”

The crucial observation is that DRAM and PCM devices
both employ row buffers which can be accessed at similar
latencies and energies: application stall time (and average
request latency) can be reduced if data which frequently misses
in the row buffer is placed in DRAM as opposed to PCM,
while placing data which frequently hits in the row buffer
in PCM does not increase application stall time compared to
placing that data in DRAM.

Our goal is to develop a mechanism that identifies rows
with low row buffer locality (and high reuse) which would
benefit from being placed in DRAM. Based on the observation
that both DRAM and PCM devices employ row buffers, we
design a dynamic caching policy for hybrid main memories
which identifies data that frequently incurs row buffer misses
and caches such data in DRAM.

IV. Row BUFFER LOCALITY-AWARE CACHING

Overview. We propose a Row Buffer Locality-Aware
(RBLA) caching mechanism that places in DRAM rows which
have low row buffer locality, to benefit from the lower array
access latency and energy of DRAM compared to PCM. To
do so, the numbers of row buffer misses that rows in PCM
experience are measured, and rows with high row buffer miss
counts (i.e., rows with low row buffer locality and high reuse)
are placed in DRAM. To determine what is a suitably high row
buffer miss count that indicates sufficiently low row buffer
locality, we develop a dynamic policy, RBLA-Dyn, which
determines the appropriate row buffer miss count level at

2Even though the figure shows some requests being served in parallel, if
the individual requests arrived in the same order at different times, the average
request latency would still be improved significantly.

runtime. This scheme adapts the RBLA mechanism to varying
workload and system characteristics of a many-core system.

A. Measuring Row Buffer Locality

The RBLA mechanism tracks the row buffer locality statis-
tics for a small number of recently-accessed rows, in a hard-
ware structure called the stats store in the memory controller.
The stats store is structurally organized as a cache, however
its data payload per entry is a single row buffer miss counter.

On each PCM access, the memory controller looks for an
entry in the stats store using the address of the accessed row.
If there is no corresponding entry, a new entry is allocated
for the accessed row, possibly evicting an older entry. If the
access results in a row buffer miss, the row’s row buffer miss
counter is incremented. If the access results in a row buffer
hit, no additional action is taken.

B. Triggering Row Caching

Rows that have low row buffer locality and high reuse
will have high row buffer miss counter values. The RBLA
mechanism selectively caches these rows by caching a row to
DRAM when its row buffer miss counter exceeds a threshold
value, MissThresh. Setting MissThresh to higher values
causes rows with lower row buffer locality to be cached.

Caching rows based on their row buffer locality attempts
to migrate data between PCM and DRAM only when it is
useful to do so. This affects system performance in several
ways. First, placing in DRAM rows which have low row
buffer locality improves average memory access latency, due
to the lower row buffer miss (array access) latency of DRAM
compared to PCM. Second, by selectively caching data that
benefits from being migrated to DRAM (data that frequently
hits in the row buffer is accessed as efficiently in PCM
as in DRAM), RBLA reduces unnecessary data movement
between DRAM and PCM. This reduces memory bandwidth
consumption, allowing more bandwidth to be used to serve
demand requests, and enables better utilization of the DRAM
cache. Third, allowing data that frequently hits in the row
buffer to remain in PCM contributes to balancing the memory
request load between the heavily contended DRAM cache and
the less contended PCM.

We increase a row’s row buffer miss count by a larger
increment for a write access than for a read access (for which
the increment is 1). This expedites the caching of write data
to avoid incurring high PCM write latency and energy. We
increment the row buffer miss count on a write access by 4,
which is the approximate array write latency to array read
latency ratio in the modeled PCM.

To prevent rows with low reuse from gradually building up
large enough row buffer miss counts over a long period of time
to exceed MissThresh, we apply a periodic reset to all of
the row buffer miss count values. We set this reset interval to
10 million cycles empirically.

An appropriate MissThresh value may be determined
through profiling the workload under a given system. However,
we empirically determined that no single static value provides
the best performance either within a single application or
across different applications [35]. In addition, finding a single
static value for every possible combination of co-running

3Updating the stats store is not on the critical path of memory access.

threads and system configuration is difficult for many-core
systems. We next propose a mechanism for dynamically
adjusting the value of MissThresh at runtime to adapt to
workload behavior.

C. Dynamic Threshold Adaptation

The RBLA-Dyn mechanism improves the adaptability of
RBLA to workload and system variations by dynamically de-
termining MissThresh. The key observation behind RBLA-
Dyn is that the number of cycles saved by caching rows
in DRAM should outweigh the bandwidth cost of migrating
that data to DRAM. RBLA-Dyn estimates, on an interval
basis, the first order costs and benefits of employing cer-
tain MissThresh values, and increases or decreases the
MissThresh value to maximize the net benefit.

Since data migration operations can delay demand requests,
for cost, we compute the number of cycles spent migrating
data across the memory channels (Equation 1). If these data
migrations are eventually beneficial, the access latency to main
memory will be reduced. Hence for benefit, we compute the
number of cycles saved by accessing the data from the DRAM
cache as opposed to PCM (Equation 2).

Cost =NumMigrations X tmigration (1)

- tread,dram)+ (2)
NumWrites gram X (twrite,pem

Benefit =NumReads gram X (tread,pem
- twrite,dram)

Over the course of an interval (10 million cycles in our
setup), a negative net benefit (Benefit — Cost) implies that
with the assumed MissThresh value, more cycles are spent
migrating data (preventing the memory bandwidth from being
used to serve demand requests) than saved by placing data in
the DRAM cache. In other words, the small benefit gained by
having data cached does not justify the large cost of migrating
that data. In such a situation, it is desirable to reduce the
number of data migrations performed and selectively migrate
the data that achieves higher benefit from being placed in
the DRAM cache. This is done by increasing the value of
MissThresh, which has the effect of requiring rows to have
lower row buffer locality in order to be cached in DRAM.

Conversely, a positive net benefit implies that with the
assumed MissThresh value, migrating data to DRAM saves
more cycles than those expended to migrate the data, which
benefits system performance. In such a situation, it could be
the case that increasing MissThresh gains further benefit by
more selectively migrating data and reducing the migration
cost. However, it could also be the case that decreasing
MissThresh (relaxing the row buffer locality condition on
caching) gains further benefit by caching more data and having
it accessed from DRAM, perhaps for a small amount of
additional bandwidth cost. We leverage these observations to
develop an algorithm that dynamically adjusts the value of
MissThresh.

RBLA-Dyn uses a simple hill-climbing algorithm that is
evaluated at the end of each interval to adjust MissThresh
in the direction of increasing net benefit, eventually con-
verging at the point of maximum net benefit (Algorithm 1).
MissThresh is incremented when the net benefit is negative
for the previous interval. If the net benefit is positive for
the previous interval, we check to see whether it is greater
than the net benefit for the interval before that. If so, the net

benefit is increasing and MissThresh is adjusted further in
the direction (increasing or decreasing) that it was heading in.
Otherwise, if the net benefit is decreasing, MissThresh is
steered in the opposite direction. This algorithm assumes that
net benefit as a function of MissThresh is concave, which
is the case across all the workloads we have tested.

Algorithm 1: Dynamic Threshold Adjustment

NetBenefit = Benefit - Cost
if (NetBenefit < 0)
MissThresh++
else if (NetBenefit > PreviousNetBenefit)
if (MissThresh was previously incremented)
MissThresh++
else
MissThresh--
else
if (MissThresh was previously incremented)
MissThresh--
else
MissThresh++
PreviousNetBenefit =

NetBenefit

V. IMPLEMENTATION AND HARDWARE COST

The primary hardware cost incurred in implementing a row
buffer locality-aware caching mechanism on top of an existing
hybrid memory system is the stats store. We model a 16-way
128-set LRU-replacement stats store using 5-bit row buffer
miss counters, which occupies 9.25 KB.* This store achieves
the system performance within 0.3% (and memory lifetime
within 2.5%) of an unlimited-sized stats store for RBLA-Dyn.

Logic in the memory controller is required to implement
dynamic threshold adjustment (Algorithm 1), and to trigger
the migration of a row from PCM to DRAM when a row’s
row buffer miss count exceeds the MissThresh value.

VI. EXPERIMENTAL METHODOLOGY

We use a cycle-level in-house x86 multi-core simulator,
whose front-end is based on Pin. The simulator models the
memory hierarchy in detail. Table I shows the major system
parameters used in our study.’

We formulate server- and cloud-type workloads for a 16-
core system. We run a single-threaded instance of a benchmark
on each core which is representative of many consolidated
workloads for large CMP systems. 18 server-type workloads
are formed using random selections of transaction processing
benchmarks (TPC-C/H), and 18 cloud-type workloads are
similarly formed using transaction processing, web server,
and video processing benchmarks (tabulated in Table II). The
representative phases of benchmarks were executed as profiled
by PinPoints [22]. Results were collected for one billion cycles
following a warmup period of one billion cycles.

We gauge multi-core performance using the weighted
speedup metric [30], which is the sum of the speedups of
the benchmarks when executed together on the multi-core
system, compared to when executed alone on the the same
system employing a frequency-based DRAM caching policy.
For multi-core fairness, we use the maximum slowdown [1],

“This is 0.11% of the total L2 cache size assumed in the evaluation. A
44-bit address space is assumed.

SWe evaluated the sensitivity to PCM row buffer size and found that the
trends of our findings remain the same.

[9], [10] metric, which is the highest slowdown (reciprocal of
speedup) experienced by any benchmark.

Processor | 16 cores, 4 GHz, 3-wide issue (maximum 1 memory
operation per cycle), 128-entry instruction window.
L1 cache | Private 32 KB per core, 4-way, 128 B blks.
L2 cache | Shared 512 KB per core, 8-way, 128 B blks, 16 MSHRs.
Memory | 2 controllers (DRAM and PCM) each with 64-bit
con- channel, 128-entry read/write request queues and 128-
troller entry migration buffer per controller, FR-FCFS request
scheduling ([28], [37]), DRAM employed as 16-way
LRU-replacement cache to PCM ([24]).
Memory | DRAM: 1 GB, 1 rank (8 banks), 16 KB row buffer.
PCM: 16 GB, 1 rank (8 banks), 4 KB row buffer.
Timing DRAM: row hit (miss) = 40 (80) ns.
PCM: row hit (clean miss, dirty miss) = 40 (128, 368) ns.
Energy DRAM: array read (write) = 1.17 (0.39) pl/bit.
PCM: array read (write) = 2.47 (16.82) pl/bit.
Both: row buffer read (write) = 0.93 (1.02) pJ/bit.

TABLE I: Major simulation parameters. Memory timings and ener-
gies are adapted from [11].

Benchmark| Description Server | Cloud
TPC-C/H | TPC-C: Online transaction proc. v v
TPC-H: Decision support, Qry 2
TPC-H: Decision support, Qry 6
TPC-H: Decision support, Qry 17
Apache Web server workload v
H.264 Video processing (compression) v

TABLE II: Composition of server- and cloud-type workloads.
VII. EXPERIMENTAL RESULTS

We compare our row buffer locality-aware caching policy
(RBLA) against a policy which caches frequently accessed
data (FREQ). This frequency-based caching policy is similar
in approach to those of prior works in on-chip and hybrid
memory caching, such as [7], [25], which aim to improve
temporal locality in the cache and reduce off-chip bandwidth
consumption by making a caching decision based on the
monitored reuse of data. The key idea is that data which is
accessed many times in a short interval will likely continue
to be accessed and thus would benefit from being cached.
Therefore, FREQ caches a row when the number of accesses
to the row exceeds the threshold value, FregqThresh.

For both FREQ and RBLA, we show results for the best
static threshold value (the best averaged across all benchmarks
as profiled on a single-core system) and results with the
dynamic threshold adjustment algorithm applied (FREQ-Dyn
and RBLA-Dyn, substituting MissThresh in Algorithm 1
with FregqThresh for FREQ-Dyn).

A. Performance

As shown in Figure 4(a), RBLA-Dyn provides the highest
performance (14% improvement over FREQ) among all eval-
vated caching techniques. RBLA places data with low row
buffer locality in DRAM where it can be accessed at the lower
DRAM array access latency, while keeping data with high
row buffer locality in PCM where it can be accessed at a low
row buffer hit latency. This can be observed in Figure 5 that
shows the total memory accesses and their types.® The policies
that are row buffer locality-aware (RBLA, RBLA-Dyn) lead to
more PCM row buffer hit accesses than the policies that are

6As we simulate for a fixed amount of time (cycles) the policies that
perform better lead to more memory accesses.

OFREQ WFREQ-Dyn BRBLA ERBLA-Dyn

OFREQ WFREQ-Dyn BRBLA ERBLA-Dyn

OFREQ WFREQ-Dyn BRBLA ERBLA-Dyn

14

o

12

12 § 1 g1
2 1 - 2 5
3 20.8* 208 1
208 - 5
] 206 | £06
30,6* E -E
204 - =04 7 S04
Foo Zo2 Eoo -
3 3 z

S 0 § 0- 0

z.

Cloud
Workload

(a) Weighted speedup.

Server Avg Server

OFREQ BFREQ-Dyn BRBLA ERBLA-Dyn

Workload
(b) Maximum slowdown.

OFREQ BFREQ-Dyn BRBLA ERBLA-Dyn

Cloud Cloud

Workload
(c) Energy efficiency.

Avg Server Avg

OFREQ EBFREQ-Dyn BRBLA mRBLA-Dyn

% 1.2 : 0.7
; 1+ 206 -
3 S
208 - 505
S

g <04 -
3 0.6 £

= §03 1
d 4

2 0.4 ;02 1
=

E 0.2 4 EO'I 1
E]

E 0 - 0 -
2 Server Cloud Avg Server

Workload

(d) Avg. Memory Latency.

Workload

(e) DRAM Channel Utilization.

0.3
=

10!

0.25

o
o

0.15

PCM Channel Utilizati
g

Cloud Cloud

‘Workload

(f) PCM Channel Utilization.

Avg Server Avg

Fig. 4: Various metrics comparing the caching techniques: FREQ, FREQ-Dyn, RBLA, and RBLA-Dyn.

ODRAM row hit ®DRAM row miss O16GB PCM BFREQ-Dyn mRBLA-Dyn 016GBPCM ®RBLA-Dyn ©16GB DRAM

EPCM row hit B PCM row miss 25 2
3 1.2 g 1.8
g 1 \% 20 1.2
< > 1.
208 EIS 12
£ | g 1
§ 0.6 z i 10 0.8 +— —

Aa
Zo4 Z) 0.6 +— —
3 |§ Es5 0.4 . .
£02 2 = 02 +— — —
Z 9 0 - 0
Server Cloud Avg Server Cloud Avg Weighted Speedup Max. Slowdown Perf. per Watt
Workload Workload Normalized Metric

Fig. 5: Memory access breakdown
(Normalized in each workload -cate-

gory).

not (FREQ, FREQ-Dyn). The fraction of memory accesses
that hit in the PCM row buffer is 6.6 times more with RBLA-
Dyn than with FREQ. This leads to reduced average memory
access latency (by 12% from FREQ to RBLA-Dyn as shown
in Figure 4(d)), resulting in improved performance.

In addition, we find that the row buffer locality-aware
techniques contribute to balancing the memory request load
between DRAM and PCM, alleviating contention at the
DRAM cache, which serves the majority of memory requests.
Figures 4(e) and 4(f) show increased PCM channel utilization
and decreased DRAM channel utilization for RBLA(-Dyn)
compared to FREQ(-Dyn).

We observe that with the dynamic threshold adaptation,
RBLA-Dyn achieves a 5% performance improvement over
RBLA with the static threshold (which alone achieves a
9% performance improvement over FREQ). This is because
with dynamic threshold adaptation, the caching threshold is
adjusted to suit the demands of different workloads at runtime,
as opposed to assuming one fixed threshold for all workloads.

B. Thread Fairness

RBLA-Dyn provides the highest thread fairness (6% im-
provement over FREQ) out of all the evaluated policies as
shown in Figure 4(b) (lower is better). As mentioned in
Section VII-A, the row buffer locality-aware caching tech-
niques reduce contention on the DRAM cache bandwidth.

tems.

Fig. 6: Memory lifetime for all-PCM,
FREQ-Dyn, and RBLA-Dyn memory sys-

Fig. 7: Performance, fairness, and energy effi-
ciency for all-PCM, RBLA-Dyn, and all-DRAM
memory systems.

Furthermore, RBLA-Dyn throttles back on unbeneficial data
migrations, reducing the amount of memory bandwidth con-
sumed due to such migrations. These qualities of RBLA-Dyn,
combined with the reduced average memory access latency,
reduce contention for memory bandwidth among co-running
threads, providing increased thread fairness.’

C. Energy Efficiency

Figure 4(c) shows that RBLA-Dyn achieves the highest
memory energy efficiency (10% improvement over FREQ) in
terms of performance per Watt, compared to other techniques.
This is because RBLA-Dyn places data which frequently
misses in the row buffer in DRAM, thereby ensuring that the
energy cost of row buffer miss accesses are lower than it would
be if such data was placed in PCM. Additionally, RBLA-Dyn
reduces the amount of unbeneficial data migrations, reducing
energy consumption caused by such migrations.

D. Lifetime

Figure 6 shows the average memory lifetime in years across
all workloads for three systems with 16 GB of PCM: an all-
PCM?® system, and systems with a 1 GB DRAM cache em-

7RBLA-Dyn also achieves an average slowdown of 3.99, compared to 4.17
for both RBLA and FREQ-Dyn, and 4.45 for FREQ.

8Equipped with 2 memory controllers, 1 rank each with 8 banks, for an
equal-channel/rank/bank-bandwidth comparison.

ploying either the FREQ-Dyn or RBLA-Dyn caching policies.
We assume a conservative cell lifetime of 10° writes and a
wear-leveling scheme which evenly distributes writes across
the entire PCM.

Results show that while employing PCM alone provides less
than a year of lifetime, both of the configurations employing
DRAM provide close to seven or more years of lifetime,
averaging across all workloads.” This increase in lifetime is
due to the coalescing of write data in the DRAM cache.

The higher lifetime of FREQ-Dyn compared to RBLA-Dyn
is due to two reasons. First, FREQ-Dyn executes instructions at
a slower rate than RBLA-Dyn (see Figure 4(a)), and therefore
observes fewer writes from the processor than RBLA-Dyn in
the same amount of time. Second, FREQ-Dyn performs more
data migrations to DRAM than RBLA-Dyn (RBLA-Dyn does
not migrate frequently accessed data to DRAM unless the data
is responsible for frequent row buffer misses), increasing its
ability to serve writes in the DRAM cache.

Though there are more row buffer hit accesses to PCM
in RBLA-Dyn than there are in FREQ-Dyn, RBLA-Dyn
has a higher total number of PCM accesses (balancing the
memory request load between DRAM and PCM), which incurs
increased wear in PCM.

E. Comparison to All-PCM and All-DRAM Systems

Figure 7 compares the performance, fairness, and energy
efficiency of RBLA-Dyn to all-PCM° and all-DRAM’® main
memory systems. For the all-DRAM system, we model a
16 GB memory capacity on par with the all-PCM system for
an equal-capacity comparison.

The difference in row buffer miss latency causes the all-
DRAM system to outperform the all-PCM system and pro-
vide higher fairness. RBLA-Dyn efficiently bridges this gap
in performance and fairness using a small (1 GB) DRAM
cache by exploiting the strengths of both DRAM and PCM.
Specifically, RBLA-Dyn achieves within 29% of the weighted
speedup of an equal-capacity all-DRAM system. Compared
to the all-PCM main memory, RBLA-Dyn improves weighted
speedup by 31% and reduces maximum slowdown by 18%.
RBLA-Dyn also achieves 5% higher energy efficiency than the
all-DRAM system due to the lower static power consumption
of the PCM device.'”

VIII. RELATED WORK

To our knowledge, this is the first work to observe that
row buffer hit latencies are similar in different memory tech-
nologies, and uses this observation to devise a caching policy
that improves the performance and energy efficiency of a
hybrid memory system. No previous work, as far as we know,
considered row buffer locality as a key metric for deciding
what data to cache and what not to cache.

Caching Based on Data Access Frequency: Jiang et al. [7]
proposed caching only the data that experiences a high number
of accesses in an on-chip DRAM cache (in 4-8 KB block
sizes), to reduce off-chip memory bandwidth consumption.
Johnson and Hwu [8] used a counter-based mechanism to track

9The minimum lifetimes observed for a workload are 3.23 and 2.89 years
for FREQ-Dyn and RBLA-Dyn respectively.

10PCM’s smaller row buffer size than DRAM leads to lower static energy
consumption and higher memory energy efficiency.

data reuse at a granularity larger than a cache block. Cache
blocks in a region with less reuse bypass a direct-mapped
cache if that region conflicts with another that has more reuse.
We propose taking advantage of row buffer locality in memory
banks when employing off-chip DRAM and PCM. We exploit
the fact that accesses to DRAM and PCM have similar average
latencies for rows that have high row buffer locality.

Ramos et al. [25] adapted a buffer cache replacement algo-
rithm to rank pages based on their frequency and recency of
accesses, and placed the highly-ranking pages in DRAM, in a
DRAM-PCM hybrid memory system. Our work is orthogonal
because the page-ranking algorithm can be adapted to rank
pages based on their frequency and recency of row buffer
misses (not counting accesses that are row buffer hits), for
which we expect improved performance.

Caching Based on Locality of Data Access: Gonzalez et
al. [6] proposed placing data in one of two last-level caches
depending on whether it exhibits spatial or temporal locality.
They also proposed bypassing the cache when accessing large
data structures with large strides (e.g., big matrices) to prevent
cache thrashing. Rivers and Davidson [27] proposed separating
out data without temporal locality from data with, and placing
it in a special buffer to prevent the pollution of the L1 cache.
These works are primarily concerned with on-chip L1/L2
caches that have access latencies on the order of a few to
tens of processor clock cycles, where off-chip memory bank
row buffer locality is less applicable.

There have been many works in on-chip caching to improve
cache utilization (e.g., a recent one uses an evicted address
filter to predict cache block reuse [29]), but none of these
consider row buffer locality of cache misses.

Hybrid Memory Systems: Qureshi et al. [24] proposed
increasing the size of main memory by adopting PCM, and
using DRAM as a conventional cache to PCM. The reduction
in page faults due to the increase in main memory size brings
performance and energy improvements to the system. We
propose a new, effective DRAM caching policy to PCM, and
study performance effects without page faults present.

Dhiman et al. [5] proposed a hybrid main memory system
that exposes DRAM and PCM addressability to the software
(OS). If the number of writes to a particular PCM page exceeds
a certain threshold, the contents of the page are copied to
another page (either in DRAM or PCM), thus facilitating PCM
wear-leveling. Mogul et al. [18] suggested the OS exploit
metadata information available to it to make data placement
decisions between DRAM and non-volatile memory. Similar
to [5], their data placement criteria are centered around the
write frequency to data. Our proposal is complementary and
row locality information, if exposed, can be used by the OS
in placing pages to DRAM or PCM.

Bivens et al. [2] examined the various design concerns of a
heterogeneous memory system such as memory latency, band-
width, and endurance requirements of employing storage class
memory (PCM, MRAM, Flash, etc.). Their hybrid memory
organization is similar to ours and that in [24], in that DRAM
is used as a cache to a slower memory medium, transparently
to software. Phadke et al. [23] proposed profiling the memory
access patterns of individual applications in a multi-core
system, and placing their working sets in the particular type
of DRAM that best suits the application’s memory demands.

In contrast, our mechanism dynamically makes fine-grained
data placement decisions at a row granularity, depending on
the row buffer locality characteristics.

Exploiting Row Buffer Locality: Many previous works
exploit row buffer locality to improve memory system per-
formance, but none (to our knowledge) develop a cache data
placement policy that considers the row buffer locality of the
block to be cached.

Lee et al. [11] proposed using multiple short row buffers
in PCM devices, much like an internal device cache, to
increase row buffer hit rate. Sudan et al. [32] presented a
scheme of identifying frequently referenced sub-rows of data
and migrating them to reserved rows. By co-locating these
frequently accessed sub-rows, this scheme aims to increase
the row buffer hit rate of memory accesses, and improve
performance and energy consumption. DRAM-aware last-level
cache writeback schemes [31], [13] have been proposed which
speculatively issue writeback requests that hit in the row
buffer. Our proposal is complementary to these works and can
be applied together because it targets a different problem.

Row buffer locality is also commonly exploited in memory
scheduling algorithms. The First-Ready First Come First Serve
algorithm (FR-FCFS, assumed in our evaluations) [28], [37]
prioritizes memory requests that hit in the row buffer, improv-
ing the latency, throughput, and energy cost of serving memory
requests. Many other memory scheduling algorithms [21],
[20], [9], [10], [14] build upon this “row-hit first” principle.

Finally, Muralidhara et al. [19] used a thread’s row buffer
locality as a metric to decide which channel the thread’s
pages should be allocated to in a multi-channel memory
system. Their goal was to reduce memory interference between
threads, and as such their technique is complementary to ours.

IX. CONCLUSION

This paper observes that row buffer access latency (and
energy) in DRAM and PCM are similar, while PCM array
access latency (and energy) is much higher than DRAM array
access latency (and energy). Therefore, in a hybrid memory
system where DRAM is used as a cache to PCM, it makes
sense to place in DRAM data that would cause frequent row
buffer misses as such data, if placed in PCM, would incur the
high PCM array access latency. We develop a caching policy
that achieves this effect by keeping track of rows that have
high row buffer miss counts (i.e., low row buffer locality, but
high reuse) and places only such rows in DRAM. Our final
policy dynamically determines the threshold used to decide
whether a row has low locality based on cost-benefit anal-
ysis. Evaluations show that the proposed row buffer locality
aware caching policy provides better performance, fairness,
and energy-efficiency compared to caching policies that only
consider access frequency or recency. Our mechanisms are
applicable to other hybrid memory systems consisting of
different technologies, a direction we intend to explore in the
future.

ACKNOWLEDGMENT

We acknowledge the support of AMD, HP, Intel, Oracle,
and Samsung. This research was partially supported by grants
from NSF (CCF-0953246, CCF-1212962), GSRC, Intel URO,
and ISTC on Cloud Computing. HanBin Yoon is partially sup-
ported by the Samsung Scholarship. Rachata Ausavarungnirun
is supported by the Royal Thai Government Scholarship.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]
[15]

[16]
(17]
(18]
[19]

[20]
[21]
(22]
[23]
[24]
[25]
[26]
[27]

(28]
[29]

REFERENCES

M. Bender et al. Flow and stretch metrics for scheduling continuous
job streams. Symp. on Discrete Alg. 1998.

A. Bivens et al. Architectural design for next generation heterogeneous
memory systems. Intl. Memory Workshop 2010.

J. Coburn et al. NV-Heaps: making persistent objects fast and safe with
next-generation, non-volatile memories. ASPLOS 2011.

J. Condit et al. Better I/O through byte-addressable, persistent memory.
SOSP 2009.

G. Dhiman et al. PDRAM: a hybrid PRAM and DRAM main memory
system. DAC 2009.

A. Gonzilez et al. A data cache with multiple caching strategies tuned
to different types of locality. ICS 1995.

X. Jiang et al. CHOP: adaptive filter-based dram caching for CMP server
platforms. HPCA 2010.

T. L. Johnson and W.-m. Hwu. Run-time adaptive cache hierarchy
management via reference analysis. ISCA 1997.

Y. Kim et al. ATLAS: a scalable and high-performance scheduling
algorithm for multiple memory controllers. HPCA 2010.

Y. Kim et al. Thread cluster memory scheduling: exploiting differences
in memory access behavior. MICRO 2010.

B. C. Lee et al. Architecting phase change memory as a scalable DRAM
alternative. ISCA 2009.

B. C. Lee et al. Phase-change technology and the future of main memory.
IEEE Micro, 30, January 2010.

C.J. Lee et al. DRAM-aware last-level cache writeback: reducing write-
caused interference in memory systems. Tech. report, UT-Austin, 2010.
C. J. Lee et al. Prefetch-aware DRAM controllers. MICRO 2008.

G. H. Loh and M. D. Hill. Efficiently enabling conventional block sizes
for very large die-stacked DRAM caches. MICRO 2011.

J. A. Mandelman et al. Challenges and future directions for the scaling
of dynamic random-access memory (dram). /BM J. Res. Dev., 46, 2002.
J. Meza et al. Enabling efficient and scalable hybrid memories using
fine-granularity DRAM cache management. Comp. Arch. Letters 2012.
J. C. Mogul et al. Operating system support for NVM+DRAM hybrid
main memory. HotOS 2009.

S. P. Muralidhara et al. Reducing memory interference in multicore
systems via application-aware memory channel partitioning. MICRO
2011.

O. Mutlu et al. Parallelism-aware batch scheduling: enhancing both
performance and fairness of shared DRAM systems. ISCA 2008.

O. Mutlu et al. Stall-time fair memory access scheduling for chip
multiprocessors. MICRO 2007.

H. Patil et al. Pinpointing representative portions of large Intel Itanium
programs with dynamic instrumentation. MICRO 2004.

S. Phadke et al. MLP aware heterogeneous memory system. DATE
2011.

M. K. Qureshi et al. Scalable high performance main memory system
using phase-change memory technology. ISCA 2009.

L. E. Ramos et al. Page placement in hybrid memory systems. ICS
2011.

S. Raoux et al. Phase-change random access memory: a scalable
technology. IBM J. Res. Dev., 52, 2008.

J. Rivers and E. Davidson. Reducing conflicts in direct-mapped caches
with a temporality-based design. ICPP 1996.

S. Rixner et al. Memory access scheduling. ISCA 2000.

V. Seshadri et al. The evicted-address filter: A unified mechanism to
address both cache pollution and thrashing. PACT 2012.

A. Snavely et al. Symbiotic jobscheduling for a simultaneous multi-
threading processor. ASPLOS 2000.

J. Stuecheli et al. The virtual write queue: coordinating DRAM and
last-level cache policies. ISCA 2010.

K. Sudan et al. Micro-pages: increasing DRAM efficiency with locality-
aware data placement. ASPLOS 2010.

The International Technology Roadmap for Semiconductors. Process
integration, devices, and structures, 2010.

H. Wong et al. Phase change memory. Proc. of the IEEE, 2010.

H. Yoon et al. DynRBLA: A high-performance and energy-efficient row
buffer locality-aware caching policy for hybrid memories. Technical
report, Carnegie Mellon University, 2011.

'W. Zhang et al. Exploring phase change memory and 3D die-stacking for
power/thermal friendly, fast and durable memory architectures. PACT
2009.

W. K. Zuravleff et al. Controller for a synchronous DRAM that
maximizes throughput by allowing memory requests and commands to
be issued out of order. U.S. Patent Number 5,630,096, 1997.

