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ABSTRACT
Non-Volatile Memories (NVMs) can significantly improve the per-
formance of data-intensive applications. A popular form of NVM
is Battery-backed DRAM, which is available and in use today with
DRAMs latency and without the endurance problems of emerging
NVM technologies. Modern servers can be provisioned with up-to
4 TB of DRAM, and provisioning battery backup to write out such
large memories is hard because of the large battery sizes and the
added hardware and cooling costs. We present Viyojit, a system
that exploits the skew in write working sets of applications to pro-
vision substantially smaller batteries while still ensuring durability
for the entire DRAM capacity. Viyojit achieves this by bounding the
number of dirty pages in DRAM based on the provisioned battery
capacity and proactively writing out infrequently written pages to
an SSD. Even for write-heavy workloads with less skew than we
observe in analysis of real data center traces, Viyojit reduces the
required battery capacity to 11% of the original size, with a per-
formance overhead of 7-25%. Thus, Viyojit frees battery-backed
DRAM from stunted growth of battery capacities and enables servers
with terabytes of battery-backed DRAM.

CCS CONCEPTS
• Hardware → External storage; Batteries; Enterprise level and
data centers power issues;
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1 INTRODUCTION
Availability of non-volatile memory (NVM) enables significant per-
formance improvements in data-intensive systems. For example, its
use as a cache in storage, file and database servers greatly reduces
request response times as well as storage device traffic, which in
turn reduces I/O system cost and wear (for Flash SSDs). As such,
some NVM is used in most data centers and its use is growing.

Although truly NVM technologies, for e.g., 3D XPoint [8], are ex-
pected soon, the prevailing NVM approach is battery-backed DRAM
(also referred to as Non-Volatile DRAM or NV-DRAM in short). 1

A server’s DRAM can be made effectively non-volatile by provision-
ing sufficient battery capacity to ensure that the server can operate,
after a power loss event, long enough to write out all of the DRAM
contents to a non-volatile storage device (e.g., a Flash SSD). This
approach has been used for storage systems, for many years, and is
becoming common for general-purpose servers as more applications
demand NVM performance [32].

Unfortunately, battery-backed DRAM creates major problems
for data centers operators. While straightforward in theory, ever-
increasing memory sizes make deploying battery power expensive
in several ways. In advanced data center designs, the batteries are
co-located with the servers, and their size and maintenance needs
alone create issues. More importantly, batteries must be enclosed
and cooled so as to address the thermal and safety hazards that they
create, which becomes a major problem as their size grows (as well
as a long-term sustainability problem). Moreover, their size grows
rapidly, because battery energy density grows much more slowly
than DRAM densities—for example, it has only increased three-
folds in the last 25 years, during which DRAM density has grown
by more than 50,000× (Fig. 1).

This paper describes Viyojit, which is a system to provide battery-
backed DRAM at a small fraction of the battery requirements. The
key insight is that skewed write patterns allow most pages to be kept
in a clean state without excessive overhead. The NV-DRAM write
working set is generally much smaller than the total NV-DRAM
capacity. So, it is possible to decouple the amount of provisioned
battery capacity from server DRAM capacity, addressing the size
problems discussed above. Moreover, under skewed write patterns,
the fraction of pages that are frequently updated naturally shrinks as
the memory size grows, since more of the added capacity generally

1Even after such NVM technologies become available at commodity prices, some
amount of battery-backed DRAM will be an important tool for hiding their higher
expected latencies and addressing wear concerns associated with some of these
technologies.
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hold even less-frequently-written pages (Fig. 5). But, of course, it
is not safe to simply assume that there will not be too many dirty
pages—the system must ensure that there is no more data that needs
to be written out than provisioned battery capacity can accommodate.

Viyojit provides an mmap-like API for explicit management of
battery-backed DRAM. It adds support to track and explicitly bound
the total amount of dirty data that must be written out upon power
failure, safely presenting the illusion of full-sized battery-backed
DRAM at a fraction of the battery needs. Whenever a new region
is allocated in battery-backed DRAM, Viyojit write-protects the
initialized pages. Whenever a page is written, a fault handler adds it
to a list of dirty pages and, if necessary, writes out a page to keep
the number of dirty pages below the upper bound. To avoid that
case, of course, Viyojit writes out infrequently written pages in the
background in order to maintain slack for absorbing write bursts.
Write popularity is determined by periodically checking and clearing
the page table dirty bits for known-to-be-dirty pages.

Experiments confirm both our insights that write skew should
be expected and that Viyojit is able to efficiently bound battery
requirements. Analysis of several real data access traces from Mi-
crosoft data-center workloads confirm the presence of both skewed
write patterns and the expected large fraction of read-only data in
NV-DRAM, beyond the DRAM capacity that does not need non-
volatility (e.g., cached files and executable images). In almost all
cases, battery would be needed for less than 15% of NV-DRAM
allocated capacity, with proper management. Experiments with a
version of the Redis [14] key-value store modified to use NVM and
linked to Viyojit show that Viyojit performs well. Under various
Yahoo! Cloud Serving Benchmark (YCSB) workloads, we find that
efficient bounding of dirty NV-DRAM data is effective, even assum-
ing much less skewed NV-DRAM write patterns than observed in the
trace analyses. We vary the amount of provisioned battery assumed,
and observe that end-to-end performance is reduced only by 7-25%
when using a battery as little as 11% of the full-battery-backup case.

This paper makes three primary contributions. First, it introduces
a solution to the battery scaling problem for battery-backed DRAM,
based on explicit bounding of dirty NV-DRAM data and thereby en-
abling data center operators to provision much less battery capacity.
Second, it describes Viyojit, a real implementation of this solution.
Third, it presents analyses of real workload traces and results from
real system experiments demonstrating the efficacy of Viyojit’s ap-
proach to bounding battery requirements for data centers providing
NVM via battery-backed DRAM today and in the future.

The rest of this paper is organized as follows. Section 2 presents
the background on battery-backed DRAM and motivates the need
for Viyojit. Section 3 presents an analysis of Microsoft data-center
traces to quantify write skew. Sections 4 and 5 describe the design
and implementation of Viyojit. Section 6 presents evaluation results.
Section 7 discusses related work. Section 8 discusses additional
benefits from using Viyojit and Section 9 concludes the paper.

2 BACKGROUND & MOTIVATION
Applications historically obtain persistence via SSDs or HDDs.
These technologies require 10s of microseconds to a few millisec-
onds to ensure durability for data. Furthermore, these technologies
can be addressed only at block granularities of 0.5KB (or multiples
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Figure 1: DRAM growth is out-pacing Lithium’s. Battery den-
sity (joules per unit volume) has grown only by 3.3x in the last
25 years. In the same period, DRAM grew by more than four
orders of magnitude (GB/RU). Today, it is already not practical
to backup all the DRAM in large-memory systems that are fast
becoming commodity.

of it) at a time. This imposes strict lower bounds on the amount
of data moved between memory and the durable medium, which
necessitates the usage of software interfaces in the critical path
that further increases the latency. Non-volatile main memories aim
to solve both these problems by using materials that are not only
fundamentally faster than NAND and magnetic drives but also are
efficiently addressable at finer granularities, such as cache-lines.
Therefore, a few CPU instructions – typically a store instruction
followed by a CPU flush instruction – are enough for providing dura-
bility. Use of non-volatile memory can drastically reduce the latency
of file systems [17, 27, 34, 46, 64], data bases [21, 36, 38], trans-
actional memory systems [24, 26, 30, 58, 59], and their replicated
versions [33, 41, 65].

2.1 Why Battery-Backed DRAM?
Unlike NVM technologies that rely on material science breakthroughs [8,
44], battery-backed DRAM (NV-DRAM) is a practical form of NVM
available and in use today. For example, NV-DRAM DIMMs [1, 5,
11, 16, 20] typically contain some DRAM chips, a NAND chip,
an ASIC or an FPGA controller, and an alternative power source
such as a battery or a super-capacitor. Unfortunately, due to the non-
commodity nature of such parts, the cost ($/GB) is quite high even
when compared to DRAM. Apart from NV-DRAM DIMMs, high-
end file servers, disk arrays, and database servers have used large,
integrated batteries to allow their DRAM to be used as non-volatile
write-back cache for disks.

Use of such large battery racks or rooms in data centers has
become fairly common to survive transient power blips and allow
controlled shutdowns of critical services. More recently, system
designers have begun integrating commodity batteries into individual
servers [10] and using custom firmware on commodity server boards
to realize NV-DRAM with DRAM and SSDs [32]. The cost of such
server-integrated NV-DRAM is low, because it is a small value-
added feature on top of parts that a typical data center normally
provisions.

Breakthrough NVM technologies such as 3D-XPoint [8] promise
to scale beyond DRAM, consume less energy than DRAM, and
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provide two orders magnitude faster speeds compared to NAND.
However, the solid state nature of such devices naturally implies wear
issues and an asymmetry between reads and writes. Therefore, NV-
DRAM offers an attractive trade-off of smaller capacity and higher
performance without wear issues, even when the new technologies
become available at commodity costs. Unfortunately, however, the
scaling bottlenecks in batteries hinder system designers from backing
up large amounts of DRAM.

2.2 Battery Scaling Challenges
Current NV-DRAM designs expect DRAM and battery to scale pro-
portionately. But, in reality, battery scaling poses lot of challenges.
First, battery real-estate is a key limiting factor for NV-DRAM in
current data centers. Big data centers (including Microsoft [10]
Google [4] and Facebook [6]) have already moved from centralized
battery rooms (Lead-acid) to distributed server-level batteries (typi-
cally Li-ion) for several reasons, including lower cost, higher energy
density, improved availability, modularity and serviceability.

Li-ion batteries, despite benefiting from massive economies of
scale in the consumer electronics and electric vehicle markets, still
struggle to keep pace with DRAM density scaling. For instance, Li-
ion batteries have only tripled in density (joules per unit volume) in
the last twenty-five years during which DRAM density has increased
by four orders of magnitude. Figure 1 shows the disparity in battery
and DRAM scaling over the last 25 years. The DRAM trend line
tracks tracks the memory capacity of a typical high-end 1RU server
while the battery trend line tracks the capacity (in joules per unit
volume) of a typical phone-sized battery at that time. 2. Indeed,
the battery scaling issue is known to be a fundamental limitation
associated with the battery chemistry [22], making future scaling
prospects look bleak.

On the other hand, DRAM has enjoyed significant scaling due
to engineering advancements in cooling, 3D stacking, and trading
performance and reliability for higher capacity. As a concrete ex-
ample, we quantify this challenge using a prototype one rack-unit
server in our lab, which holds 4 TB DRAM (32×128GB DDR4
LRDIMMs [15]). Assuming 4 GBPS SSD write bandwidth and a
modest 300W server power, one would require a battery with ˜300KJ
of energy for backing up the entire 4 TB DRAM, which is about 10x
the volume of a typical smart phone battery (2000mAh).

Moreover, battery usage needs and reliability characteristics cause
available battery capacity to vary over time due to variations in ex-
ternal power fluctuations, aging, ambient temperature and humidity
variation, depth of discharge, etc. As a consequence, battery ca-
pacity can also vary dynamically. Further, additional battery cells
are typically provisioned for redundancy and for other battery use-
cases, such as peak-shaving [37, 42, 66], brief power blips and
brownouts [62], and for addressing power/energy mismatch with
newer power supplies like fuel cells [47] and renewable energy.
Therefore, ensuring sufficient battery for safe NV-DRAM support re-
quires over-provisioning for the peak need and worst-case conditions,
adding another multiplier to the battery size.

Note that this is still a conservative estimate since data center bat-
teries typically use ˜30% less dense battery material [22] to support

2Collected from various sources including but not limited to [18], [69], [52], [49] and
newegg.com.

higher power levels compared to consumer electronics. Increasing
battery energy density typically has thermal implications, especially
within servers that house high wattage components like CPUs. Data-
centers already spend lot of energy and cost on removing heat from
servers, which will be exacerbated with additional battery cells,
which heat up during charges/discharges [35]. Further, it poses relia-
bility challenges for both the battery cells themselves and for other
server components.

Additionally, high-power density batteries such as the ones used
in the data center are usually not discharged below 50% to make
them last for 3–4 years. We assume as depth of discharge of 50%
on batteries to ensure a four year lifetime [37, 43] which leaves
effective capacity to be halved.

Realistically, a volume of over 25x the size of a smart-phone
battery (i.e. the real-estate equivalent of 10–15 smart phones) is
needed for each data center server to account for these factors. Con-
versations with data center engineers indicate that making that much
space is an unrealistic expectation. Even more so when the DRAM
growth further out-paces Lithium growth in the next several years.

Lastly, batteries are not cheap. Using our estimates, each server’s
battery may cost over 250$ while accounting for lithium, packaging,
safety and charging circuitry, and maintenance overheads resulting
in several million dollars increase in capital expenditure per data
center. Battery disposal and carbon footprint costs are additional.

Although NV-DRAM offers significant performance advantages,
its success will depend on adapting to battery scaling challenges.
Therefore, we ask the following question: Can we design an NV-
DRAM solution where battery capacity need not scale with DRAM
capacity?

3 EXPLOITING ACCESS SKEW TO REDUCE
BATTERY CAPACITY

Reducing the battery demand of NV-DRAM requires reducing the
duration of time that operation must continue, after a power failure,
in order to flush NV-DRAM contents. An important observation in
this regard is that only “dirty” pages—pages that are not already
present on the backing device—need to be flushed from DRAM to
the backing device upon a power outage.

A key workload characteristic for enabling reduced battery de-
mand is skew in the write access pattern. Most data access patterns
are skewed, such that some portions of the data are used more than
others, which is a key building block of caches and efficiency for
the virtual memory system. We expect (and find) that this expected
behavior exists when focusing only on update accesses as well: some
pages are updated frequently, but most are not. If pages that are not
updated frequently and recently are proactively written out to the
backing store, by a background process, only frequently updated
pages will need to be written out in the event of external power
failure. Hence, for workloads with skewed access patterns, battery
capacity corresponding to only a fraction of the total NV-DRAM
capacity would suffice. The inherent write skew in real applications
and the benefits thereof are key insights behind Viyojit.

To quantitatively support our claim of skewed write patterns, we
present an analysis of real workload traces from a production data-
center at Microsoft. We procured and analyzed file system level
traces for four sizable applications running in the data center:

newegg.com
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(a) Azure blob storage
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(d) Search index serving

Figure 2: Data written to as a fraction of the total volume size for different interval lengths. For a majority of the scenarios, the
fraction of data written is less than 15%.

• Azure blob storage [3]: Online data blob store similar to
Amazon S3 storage [2].

• Cosmos [25]: Map-Reduce [31] like framework for serving
massive data-parallel workloads.

• Page rank: Algorithm for building a search index.
• Search index serving: System used for answering search

queries from users.

For each application, except for Cosmos, the trace spans a contin-
uous duration of 24 hours. For Cosmos, the trace corresponds to a
non-contiguous duration of 3.5 hours. For each application, the trace
was collected on a single machine serving that application. Each
machine, however, had multiple file system volumes.

The file system volumes were originally hosted on hard disks and
SSDs in production. We consider the scenario in which all volumes
on a machine are instead hosted on NV-DRAM. As discussed in
Section 2, servers with 4 TB/RU of DRAM are available today, and
larger capacity severs are expected soon. Hence, it is realistic to
assume that a handful of file system volumes amounting to a few
hundred gigabytes can be kept entirely in NV-DRAM.

The workload traces are file system level traces that contain in-
formation about reads and writes in files and do not provide any
information about the actual pages touched in the NV-DRAM, which
is determined by the underlying file system. In order to be conser-
vative, we begin by assuming an adversarial scenario in which all
application writes always go to a unique page in the NV-DRAM
file system. Log-structured file systems [55] are examples of file
systems that would result in such behavior.

With the above assumptions, the first metric we look at is the
(worst case) amount of data written in a given duration of time as
a fraction of the total file system volume size. We slice the entire
trace duration into multiple intervals of (say) ten minutes each and
determine the amount of data written during each interval in the
trace by treating each NV-DRAM page write as a write to an unique
NV-DRAM page. Among all the intervals within a trace, we fur-
ther consider the worst interval, i.e. the interval with the maximum
amount of data written across all intervals. Fig. 2 presents the results
for all four workloads, along with the results for interval durations
of one minute and one hour.

For a majority of the workloads, the fraction of data written is
always less than 15%. This suggests that even in the worst case in
which each write to a file is considered as a write to a unique NV-
DRAM page, only around 15% of the total NV-DRAM file system
would be written to within an hour in most cases. This data confirms
our expectation of write skew in real applications.

The analysis suggests that decoupling the battery and NV-DRAM
capacity is not just viable, but rather an appealing option. State-of-
the-art NV-DRAM systems would require a battery capacity corre-
sponding to the entire NV-DRAM file system volume. However, our
analysis shows that battery capacity corresponding to merely 15%
of the total NV-DRAM file system volume capacity would be more
than sufficient for a majority of the applications.

So far, the analysis shows that writes, as a whole, are a small
fraction of total volume size in general. Next, we further quantify
the skew within the writes. To that end, we look at the distribution of
writes across the pages in a file system volume. For this analysis, we
are not concerned with the actual pages written to in the NV-DRAM.
Rather, we focus on the logical pages in the file system volumes.

To identify the write skew within a volume, we do the following
analysis. We first count the number of writes to logical pages in a
given volume. Next, we count the number of pages that contribute
to (say) 90% of the total writes on that particular volume during the
entire trace duration. Finally, we divide this number of pages by the
total number of pages touched (read or written) during the entire
trace. Note that the total number of pages touched is not equal to,
and always less than, the total volume size. We repeat the analysis
for 95% and 99% of the total writes and present the results in Fig. 3.

The analysis brings out some interesting patterns. First, for most
of the volumes across different applications, when the volumes have
a low fraction of writes to begin with (e.g., volume A for Azure
blob storage), the fraction of pages required to account for 90%
or 99% of the total writes is quite high. This means that while the
total number of writes are small, the writes happen to mostly unique
pages. Second, for certain volumes, such as volumes B and C in
from the Cosmos application, while the total number of writes are
small to begin with, those writes are even further skewed since the
fraction of pages required to account for 99% of the total writes is
just ≈30%. Third, for volumes such as volume F in Cosmos, while
the total fraction of writes is close to 70%, the writes are highly
skewed with roughly 10% of the pages accounting for 99% of the
writes. Finally, there are also volumes, such as volume E in Cosmos
where the total fraction of writes is high and the writes are to mostly
unique pages.

Based on the above classification, reducing battery capacity is
most appealing for the second category of workloads with low frac-
tion of writes that are even further skewed. Similarly, the first and
third category of workloads would also benefit from reducing battery
capacity because of the write skew. For the fourth category of work-
loads, however, reducing battery capacity might not be worthwhile



Viyojit: Decoupling Battery and DRAM Capacities for Battery-Backed DRAM ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

A B C D E F G H
Filesystem Volumes

0

20

40

60

80

100

Pa
ge

s 
(%

 o
f t

ot
al

 p
ag

es
 to

uc
he

d) 90th  %-ile
95th  %-ile
99th  %-ile

(a) Azure blob storage

A B C D E F G
Filesystem Volumes

0

20

40

60

80

100

Pa
ge

s 
(%

 o
f t

ot
al

 p
ag

es
 to

uc
he

d)

90th  %-ile
95th  %-ile
99th  %-ile

(b) Cosmos

A B C D E F
Filesystem Volumes

0

20

40

60

80

100

Pa
ge

s 
(%

 o
f t

ot
al

 p
ag

es
 to

uc
he

d)

90th  %-ile
95th  %-ile
99th  %-ile

(c) Page rank

A B C D E F
Filesystem Volumes

0

20

40

60

80

100

Pa
ge

s 
(%

 o
f t

ot
al

 p
ag

es
 to

uc
he

d)

90th  %-ile
95th  %-ile
99th  %-ile

(d) Search index serving

Figure 3: Number of pages required as a percentage of the total pages touched to account for different percentiles of the total writes.
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Figure 4: Number of pages required as a percentage of the total pages total to account for different percentiles of the total writes.

since such workloads are likely to require a battery capacity corre-
sponding to a relatively high fraction of the total DRAM capacity,
thereby reducing the benefits of such a scheme. Fig. 4 presents the
same results but represents the pages as percentages of the total
pages in the volume as opposed to the touched pages. As expected,
the percentages are lower than the case when the number of pages
required are expressed as a percentage of the touched pages. The
trends, however, are similar to the previous results, which leads to
a similar classification and interpretation. To sum, the analysis sug-
gests that there is a significant write skew under certain workloads.
This presents an opportunity to reduce the amount of battery capacity
required and address the battery scaling challenges, contingent on
the workload.

While the actual skew in different workloads vary, access skew
is typically described by rules of thumb like the 80/20 rule and the
Zipf distribution. It is worth noting that for workloads that confirm
to such skewed access patterns, the fraction of pages used at a given
percentile of writes, say 90%, decreases proportionately as the total
number of pages increase. We show this pattern using synthetically
generated Zipf distribution in Fig. 5. This fact offers hope that the
fraction of NV-DRAM that would be frequently updated will de-
crease as the NV-DRAM size increases, thereby making battery and
DRAM capacity decoupling even more appealing.

Viyojit is designed to exploit write access skew, as is seen in the
above analyses, to reduce battery requirements for NV-DRAM. It
enforces an upper bound on the number of dirty pages in NV-DRAM,
thereby allowing a cap on the battery requirement, but suffers little
penalty because most pages are updated infrequently. By decoupling
the battery and DRAM capacities, Viyojit would enable NV-DRAM
capacity to scaled with DRAM as opposed to being bounded by
battery scaling.

4 DESIGN CONSIDERATIONS
This section presents design goals for Viyojit, which implements a
NV-DRAM solution to decouple the battery capacity from offered

Figure 5: Number of pages as a fraction of the total pages re-
quired to account for different percentiles of writes under Zipf
write distribution. The fraction of the pages required decreases
as the total number of pages increase.

DRAM capacity so as to address the battery scalability concerns
discussed in section 2.

As described earlier, state-of-the-art NV-DRAM solutions require
battery capacity to be tightly coupled to the NV-DRAM3 capacity
since battery is provisioned to handle the worst case scenario where
the entire DRAM has to be backed up on a power failure. The goal
of Viyojit is to achieve de-coupling of battery and DRAM capacity
by restricting battery usage to a pre-defined backup energy budget
(say in Joules converted to a certain number of DRAM pages), while
allowing NV-DRAM capacity to be scaled almost independently.

Viyojit’s first and foremost design goal is durability. Even if the
provisioned or allocated battery budget is insufficient to back up
the entire NV-DRAM, all data in NV-DRAM should survive arbi-
trary power cycle events. While durability is a strict guarantee from
Viyojit, other desirable but not necessary design goals include per-
formability and portability. Performability ensures that the overall

3We refer to the DRAM portion intended to be non-volatile as NV-DRAM. We expect
systems with both volatile (working memory) and non-volatile DRAM (persistent
storage) regions, although the ideal capacity split between the two is orthogonal and
beyond the scope of this paper.
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system performance is not adversely affected in comparison to base-
line NV-DRAM performance with full battery capacity. Portability
ensures that Viyojit works with un-modified applications and does
not require significant changes in existing systems. We now discuss
these design goals and how Viyojit achieves the same in detail.

4.1 Durability
Battery energy is utilized in the event of a power outage to write
out the data from the NV-DRAM onto persistent storage. Given a
reasonable power model of system components such as the CPU,
DRAM and persistent medium and a conservative bandwidth esti-
mate between DRAM and persistent medium, the amount of battery
backup energy required is directly proportional to the amount of
data which needs to be written out on a power failure. Viyojit uses
this relationship to compute a dirty budget – the maximum amount
of data which can remain dirty in NV-DRAM (inconsistent with
the persistent medium) at any point of time, for a given battery
budget. Viyojit ensures durability by restricting the amount of dirty
NV-DRAM data within the dirty budget at all times.

A seemingly plausible approach to enforce the dirty budget is to
periodically count the number of dirty pages in NV-DRAM and per-
form flushes to persistent medium when the dirty count approaches
the dirty budget. This, however, may not guarantee durability since
the number of dirty pages in NV-DRAM could exceed the dirty
budget in between two successive dirty count checks.

Viyojit is able to strictly enforce the dirty budget by tracking and
having a synchronous view of the state of all DRAM data, whether
dirty or not, at any given point of time. Viyojit tracks the dirty data
in NV-DRAM at a page granularity. Since Viyojit is only concerned
with the state of the page, whether dirty or clean, it is sufficient for
Viyojit to have information about only the first write to a NV-DRAM
page since the same page written repeatedly will only result in a
single write flush to the persistent storage. To enforce durability
using the dirty budget, Viyojit keeps a running count of the number
of dirty pages in NV-DRAM along with their addresses. This counter
is incremented whenever a page is dirtied (i.e. written for the first
time) and decremented when a page is copied to persistent storage.
Viyojit then ensures that this counter stays below the dirty budget at
all points in time, as described in Section 5.

4.2 Performability
For Viyojit to be practically viable, it is not sufficient to just ensure
durability. It is also important for Viyojit to not drastically affect
the application performance because of the overhead of managing
and restricting dirty data. There are two key aspects on which the
performability of Viyojit depends: how much data needs to be fre-
quently flushed and when is it flushed. If a large fraction of the total
NV-DRAM capacity is frequently dirtied and needs to be flushed,
then the overall system throughput would be determined by the band-
width to the persistent storage, which is orders of magnitude worse
than the DRAM bandwidth. Secondly, even with a small fraction of
dirty data, a delayed flush of a dirty page can cause a NV-DRAM
write could potentially block on a write to the persistent storage
leading to a high performance overhead. Particularly, if the number
of dirty pages in the system is equal to the dirty budget, then every

write which dirties a new page would block on a write to the per-
sistent storage, severely impacting the latency as well as the overall
system throughput.

With regards to the fraction of data frequently updated, we make
the observation, supported by our analysis of Microsoft data-center
application traces as presented in Section 3, that most application
writes are skewed. That is, only a small portion of the entire data set
is dirtied over and over again with a long tail of infrequent writes.
Given this skew, battery capacity corresponding to only a small
fraction of the total NV-DRAM capacity is sufficient to ensure that
Viyojit’s throughput is not bottlenecked on the bandwidth to the
persistent medium.

With regards to avoiding NV-DRAM writes blocking on writes
to the persistent storage, Viyojit proactively copies dirty pages to
the persistent medium and avoids reaching a state where the number
of dirty pages in NV-DRAM is exactly equal to the dirty budget.
Such proactive copying is analogous to the virtual memory system,
with the physical memory size being analogous to the dirty budget,
and swapping out a page from physical memory proactively due
to memory pressure being analogous to copying out a page and
removing it from the dirty page set. However, unlike virtual memory,
Viyojit keeps a copy of the page in NV-DRAM even after it is written
to persistent storage which provides DRAM latency reads to all the
pages in NV-DRAM.

4.3 Portability
Widespread adoption of Viyojit depends on its ability to easily appli-
cable to existing systems and applications. NV-DRAM from Viyojit
must appear to the rest of the system exactly like any other NVM.
Further, any server with a reasonable number of SSD program erase
cycles must be able to benefit from Viyojit’s battery reduction with-
out overwhelming the SSD with write traffic generated due to dirty
budgeting.

For portability, we implemented Viyojit as a shared library, that
applications can link against and use the exposed mmap-like API.
Since the API is similar to mmap, with a mmap and munmap func-
tion, NV-DRAM with under-provisioned battery appears to the rest
of the system just as if it were NV-DRAM with full battery provision-
ing. Further, our design reserves the provisioned battery for the most
frequently written pages of NV-DRAM while the less frequently
written pages are copied to the SSD. By its very nature, this design
minimize the SSD write traffic.

5 IMPLEMENTATION
We implement Viyojit using software management of x86 64 page
tables. Viyojit exposes an API similar to the mmap API for allocating
and accessing NV-DRAM. There are three key components in our
implementation of Viyojit:

• Identifying and enforcing the dirty budget by tracking dirty
pages.

• Choosing the target pages to be copied by maintaining the
least recently updated list.

• Proactively copying pages based on the dirty page pressure.

We now describe each of these components in the context of our
software system. Towards the end of this section, we discuss an
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alternative hardware-assisted implementation which requires modifi-
cations to the Memory Management Unit (MMU) along with the OS
virtual memory manager. Throughout this section, we assume that a
server has been provisioned with some fixed battery capacity, poten-
tially determined using an analysis of the expected workloads similar
to the one with Section 3, that is a fraction of the total NV-DRAM
capacity.

5.1 Identifying and enforcing the dirty budget
Given a provisioned battery capacity, the dirty budget corresponding
to the same is computed as follows. Using the peak power usage
of different system components (CPU, DRAM, SSD, etc), we de-
termine the amount of time the provisioned battery can support the
entire system. Multiplying this time with a conservative estimate
of the SSD write bandwidth gives the dirty budget. Note that the
need for a conservative estimate of the SSD write bandwidth and
the peak power usage of system components is not unique to Viyojit.
Even traditional NV-DRAM systems need to estimate the above in
order to provision battery corresponding to the entire NV-DRAM
capacity. Viyojit on the other hand identifies the dirty budget for a
given battery capacity using these estimates.

Having identified the dirty budget, Viyojit enforces the same
by tracking and limiting the dirty pages in NV-DRAM. Figure 6
presents a flowchart of our software implementation. During startup,
before exposing the NV-DRAM as non-volatile to any application,
we use the MMU to write protect all the NV-DRAM pages (step
1). Upon a write to a NV-DRAM page (step 2), the MMU raises an
write-protection violation interrupt which is handled by our system
(step 3). The interrupt handler determines the address of the faulting
page which is about to be written. We increment the NV-DRAM dirty
pages count and update the list of all the dirty page addresses (step
4). We check the count of dirty pages in NV-DRAM and compare it
to the dirty budget (step 5).

If the dirty count is lower than the budget, we immediately un-
protect the page to allow all subsequent writes to this page go through
in an unhindered manner. If the dirty count is equal to the budget, a
target page is chosen based on a least recently updated policy imple-
mentation described below. We write protect the target page again
(step 6) and write it to secondary storage (step 7). Following that,
we remove the target page from the dirty page list. Write protecting
the page before writing it to secondary storage is important because
of the following reason. Pages present in the dirty page list are not
write protected so as to allow future writes to a once-written page to
proceed without requiring an interrupt. Under this setting, if a con-
current thread were to update the page content in NV-DRAM while
the page was being written to secondary storage, marking the page
clean upon completion of the secondary storage write would lead to
an incorrect state and eventual data loss. Hence, we write protect the
page in NV-DRAM before writing it to secondary storage.

Note that steps 6 and 7 described above are optional and occur
only when the dirty budget is reached. In both the cases, either after
performing steps 6 and 7, or directly from step 5, the system reaches
step 8 where the write protection from the faulting page is removed,
the dirty page count is incremented and the faulting page address
is added to the dirty page list. After removing that write protection

2
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4
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7
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1

Figure 6: Flow chart describing Viyojit’s implementation for
tracking dirty pages and enforcing the dirty budget.

from the faulting page, the handler returns. The MMU then retries
the original write which now completes successfully.

We implemented a kernel module to manipulate the page table
entries and set or reset the write protection bits. Note that whenever
the write protection of a page is changed, the TLB entry correspond-
ing to the page needs to be removed. This is required to ensure that
the next access to the page is a TLB miss and the updated page table
entry corresponding to the page is read from memory. The TLB
misses are an additional overhead over and above the overhead of
the traps caused due to write protection. We quantify the effects of
all these overheads later in this section 6.

5.2 Choosing target pages
As discussed in section 4.3, it is important to write out the pages
which are not written frequently. We describe Viyojit’s target page
selection policy and rationale by making an analogy to the well
understood virtual memory subsystem.

In order to identify targets for pages to copy out, Viyojit uses a
least recently updated policy which is similar to the Least Recently
Used (LRU) policy used by the virtual memory subsystem to choose
targets for swapping out pages. While the virtual memory subsystem
is interested in swapping out the pages which are least useful in terms
of future reads as well as writes, we are interested in copying out
pages which are least useful for future writes, since Viyojit always
has a (potentially write protected, but never read protected) copy of
all the pages in NV-DRAM. Hence, instead of accounting for read
as well as write page references, and employing a least recently used
policy, Viyojit accounts only for write page references and uses a
least recently updated policy.

We use the x86 64 dirty bit to track page updates. We use an
epoch based mechanism wherein we check and clear the dirty bit
of all the pages in NV-DRAM on every epoch boundary by doing a
page table walk. If the dirty bit for a page is found to be set while
doing a page table walk at a given epoch boundary, it can be inferred
that the page was updated during the last epoch. Using these periodic
walks, Viyojit stores a history of the last 64 epochs for all the pages.
Based on these histories, Viyojit sorts the pages according to update
times and chooses the least recently updated pages as targets. It is
important to note here that resetting dirty bits is not safe in general
because that is the only information available to the virtual memory
manager to infer the state of any page. However, since Viyojit keeps
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the list of dirty page addresses separately and does not rely on the
virtual memory manager for ensuring durability, it is safe to reset
dirty bits.

One interesting aspect of maintaining the least recently updated
list is that reading up-to-date dirty bit information from the page
table requires all the TLB entries to be flushed. If the TLB entries
were not flushed, Viyojit may read stale dirty bit values, which
may result in flushing frequently updated pages (as opposed to least
updated ones). Although TLB flushes and subsequent TLB misses
are additional sources of overhead 4, we empirically found that the
benefit of reading updated dirty bits, and being able to identify better
target pages, far outweighs the cost of TLB misses.

5.3 Proactive copying
The next implementation detail concerns with the number of pages
to keep in dirty state. As discussed in Section 4.2, for performabil-
ity, the system needs to start copying pages to secondary storage
proactively in order to avoid NV-DRAM writes blocking on writes
to secondary storage. We are then faced with the following question:
what should be the dirty pages threshold for triggering flushes to
persistent medium? If the threshold is very close to the dirty budget,
a burst of new dirty pages would cause high write latencies. On the
other hand, if the threshold is too low, Viyojit would unnecessarily
copy data to secondary storage which may result in undesirable IO
bandwidth contention Moreover, if the secondary storage device
suffers from write wear (such as SSDs), aggressive copying would
adversely affect the lifetime of the secondary storage device, which
goes against the goal of portability, as discussed in section 4.3.

We use an online algorithm to tune our threshold of dirty pages at
runtime. As mentioned above, Viyojit uses an epoch based approach
to identify target pages. Viyojit also counts the number number of
new dirty pages in each epoch. This does not lead to any additional
overhead because Viyojit already performs a page table walk to
check and reset the dirty bits. Given the count of new dirty pages in
each epoch, Viyojit use an exponentially decaying average to predict
the number of new dirty pages expected in the next epoch, which we
refer to as the dirty page pressure. Viyojit assigns a weight of 0.75
to the number of dirty pages in the current epoch and a weight of
(1−0.75 =)0.25, to the previously predicted value to estimate the
dirty page pressure. Finally, Viyojit sets the threshold as the dirty
budget minus the dirty page pressure. By doing so, Viyojit tries to
ensure that the system would be able to absorb all these new dirty
pages without reaching the dirty budget.

5.4 Alternative Implementation: Offloading to the
MMU

We implemented the system as described above in Linux as a shared
library with 1,500 lines of code. The implementation inherently in-
curs the trap overhead for the first write to a page, which although
minimized by the optimizations discussed, cannot be avoided al-
together. This leaves the desire for offloading some components
to MMU in the future. More specifically, we are exploring how to
design a MMU that can enforce dirty limits with little overhead.

4Flushing all the TLB entries takes ˜3.5 ms on our development machine with Intel
Nehalem Class Core i7 processor [7] and 16 GB DRAM. Setting and clearing the write
protection bits also take roughly 3ms each.

Existing MMUs already set the dirty bit whenever a page is
written. In order to count the number of dirty pages, the MMU can
additionally check the dirty bit before setting it and increment a
counter if the dirty bit was not already set. Next, the MMU could
raise an interrupt whenever the number of dirty pages reach the OS
specified dirty budget or threshold described above, so as to facilitate
proactive copying. The OS could then handle such interrupts in a
manner similar to Viyojit.

In order to safely implement a target selection policy such as the
least recently updated policy, which relies on resetting the dirty bit
in page table entries, the MMU could further support a shadow dirty
bit. The shadow dirty bit could be set whenever the dirty bit is set.
The OS could then read and reset this shadow bit to track recency,
similar to Viyojit.

6 EVALUATION
We now present the experiments and results of our evaluation of Viy-
ojit. The goal of our evaluation is to show that a significant reduction
of the battery capacity is possible while still providing a comparable
overall system performance and to show that proactively flushing to
an SSD is an acceptable trade-off with respect to wear. Combined,
these two make decoupling battery and NV-DRAM capacities a
viable option with minimal resource overheads.

6.1 Experimental Setup
We performed out experiments on Microsoft Azure [9] Virtual Ma-
chines (VMs). We allocated VMs with 140 GB DRAM, 20 cores and
280 GB SSD. We ran our experiments on Ubuntu 16.04 with 4.4.0-
45-generic Linux kernel. The SSD supported a maximum throughput
of 625 K-IOPS. From the 140 GB DRAM, we emulated a region of
60 GB to be NV-DRAM.

In all our evaluations, we use the dirty budget, as described in
section 4, as a proxy for the battery capacity. As discussed earlier,
in a system where different components have fixed power usage
and the main memory and secondary storage have constant read and
write bandwidths, battery capacity is directly proportional to the
dirty budget. Both these requirements are reasonable to assume from
any given system in steady state. We begin by evaluating the impact
of dirty limiting on the throughput and latency of cloud applications
built for NV-DRAM.

We evaluate Viyojit with NV-DRAM being used as a persistent
heap by an in-memory key-value store, Redis [14] modified to per-
sistently store all of its data (and metadata) in NV-DRAM. Redis,
being volatile in nature by default, is typically used as a front end
cache by databases for serving data quickly from memory. However,
after a power cycle, either planned or unplanned, Redis loses all of
its data and has to start as a cold cache. The non-volatility of NV-
DRAM can help Redis start as a warm cache which would improve
the performance of the back-end database.

We modified Redis to store it’s key-value pairs along with the
associated metadata in a non-volatile heap using Intel’s Persistent
Memory Library (PMEM) [13]. We then emulate a region of DRAM
as NV-DRAM by using Linux persistent memory emulation [12].
For the baseline, we consider the case where the battery capacity
provisioned is sufficient to back up the entire NV-DRAM, i.e. 60
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(b) YCSB-B
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(c) YCSB-C
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(d) YCSB-D
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(e) YCSB-F
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Figure 7: Throughput for different YCSB workloads. The overhead of Viyojit for battery capacity corresponding to 11% of the NV-
DRAM capacity varies from 7% for to 25%. The values on the top y-axis represents the dirty budget as a percentage of the initial
heap size.
GB. For Viyojit, we vary the battery capacity by varying the dirty
budget.

We use the following representative cloud benchmarks from the
Yahoo! Cloud Serving Benchmark (YCSB) [28] suite as the work-
loads.

• YCSB-A: update heavy workload with 50% reads and 50%
updates. This usage pattern represents interactive applica-
tions that create new content rapidly.

• YCSB-B: read mostly workload with 95% reads and 5%
updates. This usage pattern represents document serving
applications where documents are accessed frequently but
edited rarely.

• YCSB-C: read only workload with 100% reads. This usage
pattern represents image serving front-end servers that act
as a cache for serving images to the wide area. Note that
while the application is read-only, internally, Redis still
performs several store instructions as part of the internal
logic for metadata operations.

• YCSB-D: read latest workload 95% reads and 5% inserts
with newly inserted records read with higher probability.
This usage pattern represents social media posts where
there are a few updates that are read by a vast number of
users.

• YCSB-F: read-modify-write workload with 50% reads and
50% read-modify-writes. This usage pattern represents
record stores in user record data bases that are read and
modified.

We could not run YCSB-E because it requires cross key transac-
tions which we do not support for now. We wish to add this to our
NV-DRAM based Redis in the future. For each of the workloads, we
initially created a database for which a 17.5 GB heap was allocated
in NV-DRAM. In the results and discussion that follows, we describe
the dirty budget as a fraction of this initial heap size. For e.g. we
treat 2 GB dirty budget as 11% battery capacity. This is because a
baseline system would guarantee durability of the entire Redis heap
with a battery capacity corresponding to only 17.5 GB. The actual
NV-DRAM capacity of 60 GB is arbitrary and hence is not used for
computing the fraction of battery capacity. Note that for YCSB-D
which consists of insert operations in addition to read operations, the
total Redis heap and hence the required battery capacity for baseline,
is more actually than the initial heap size of 17.5 GB. However, even
for YCSB-D, we use the initial heap size of 17.5 GB for computing
the battery fraction percentages so as to maintain uniformity across
our results and discussions.

We configured all the benchmarks to perform 10 million oper-
ations. Unless mentioned otherwise, each data point is averaged
over three runs and the error bars represent the root mean square
error. We present the results with our system configured have no
more than 16 outstanding IO requests at any point of time and an
epoch duration of 1 ms. We experimented with other values for both
of these parameters and the results were similar, hence we do not
present them here.
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(a) YCSB-A update latency
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(b) YCSB-B update latency
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(c) YCSB-C read latency

2 4 6 8 10 12 14 16 18
Dirty Budget (GB)

1.0

1.5

2.0

2.5

3.0

3.5

La
te

nc
y 

(m
s)

Viyojit: 99%-ile
Viyojit: Average
NV-DRAM: 99%-ile
NV-DRAM: Average

11% 23% 34% 46% 57% 69% 80% 91%103%
Dirty Budget (% of initial dataset)

(d) YCSB-D insert latency
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Figure 8: Average and 99th %-ile latencies for different operations in YCSB workloads. While the tail latencies are always higher
than the baseline, the average latencies are close to the baseline for large enough battery capacity fractions. The high tail latencies
are due to the write traps required to track dirty pages.

6.2 Results
We vary the dirty budget from 1GB to 19GB and measure the
throughput of the workloads. Fig. 7 presents the results for the
different workloads as well as a summary of all the workloads for
select battery capacities.5

For read heavy workloads, i.e. YCSB-B and YCSB-C, with even
as little as 11% battery which corresponds to a 2 GB dirty budget,
the loss in throughput is only 8% and 7% respectively. For YCSB-C,
with approximately 45% battery capacity, which corresponds to a
dirty budget of 8 GB, the throughput is roughly the same as that of
the baseline. On the other hand, for workloads with significant write
operations, such as YCSB-A, YCSB-D and YCSB-F, the overhead
of restricting battery sizes are more severe. With 11% battery, corre-
sponding to 2 GB dirty budget, the throughput decreases by 25%,
10% and 17% compared to the baseline for YCSB-A, YCSB-D and
YCSB-F respectively.

Next, we look at the average and 99th percentile latency for the
different workloads. Since different workloads perform different
operations, we focus on the latency of different operations for each
workload. For YCSB-A and YCSB-B, we look at the update latency,
whereas for YCSB-C, YCSB-D and YCSB-F, we look at the read,
insert and read-modify-write latency respectively. Note that write,
insert and read-modify-write operations are more prone to overheads
arising from Viyojit because of the write traps caused by the writes

5 The NV-DRAM throughput presented is also an average of three runs and has some
variance (around 2% for YCSB-B and less than 1% for all others), but this variance is
not presented in the graphs for clarity.

performed by these operations. Hence, for workloads YCSB-A,
YCSB-B, YCSB-D and YCSB-F, which consist of read operations as
well, we are presenting results for the more conservative operations
so as to highlight the overheads due to Viyojit. Since YCSB-C is a
read-only workload, we present the read latency results for YCSB-C.
The results are shown in Fig. 8.

Across all the battery capacities, the 99th percentile latency with
Viyojit is always slightly higher than the baseline, even when the
battery capacity is higher than the Redis heap size. This is because
Viyojit is affected only by the total NV-DRAM capacity and not by
the heap sizes of individual applications. Hence, the write protection
is always needed for correctness and that affects the tail latency by
generating write faults. The fact that the experimental workloads
happen to be the only applications using the NV-DRAM, which
makes it safe to turn of write protection once the dirty budget exceeds
the heap size, is an artifact of our experimental setting and we do
not modify Viyojit to treat this as a special case.

The average latencies, on the other hand, are close to the baseline
latencies for large dirty budgets. Once the dirty budget is large
enough, for example 12 GB for YCSB-A and 8 GB for YCSB-C,
majority of the pages being written to are already maintained in the
dirty state and hence the average latency is close to the baseline
latency.

6.3 Discussion
The overheads observed arise because of three factors: traps on first
write to write protected pages, NV-DRAM writes being throttled
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Figure 9: Average write rate during the duration of the experi-
ments. Even the highest write rate of 200 MB/s corresponding
to the write heavy workload YCSB-A with ˜11% battery capac-
ity can be easily sustained by modern SSDs.

by writes to the SSD and maintaining the least recently updated list
which requires TLB flushes as discussed in section 5.2. The first two
sources affect write heavy workloads more severely than read heavy
workloads which leads to larger drop in throughput of write heavy
workloads. It should be noted here that even the read only workload
YCSB-C is impacted by these overheads because the workload is
read-only from the application perspective, but consists of metadata
updates performed by Redis.

We found the overhead imposed by TLB flushes in order to main-
tain the least recently updated list well worth the benefits. We per-
formed experiments in which we turned off the TLB flushing which
lead to reading stale dirty bit information from the page tables. The
impact of having an imprecise least recently updated list caused
the throughput to drop by more than half in cases with low battery
provisioning such as with 2 or 3 GB dirty budget.

While the performance impact from reducing the battery capacity
is highly workload dependent, it is acceptable across the board. Write
heavy workloads require a battery capacity which corresponds to
more than 50% of their total NV-DRAM heap allocations in order to
achieve performance within 10% of the baseline. Read heavy work-
loads can achieve the same performance with approximately 11%
battery capacity. Under-provisioning the battery capacity, however,
has a consistent effect on the tail latency. This is implementation de-
pendent and we believe that a hardware implementation as described
in section 5.4 could eradicate such tail latency overheads.

The results make evident an interesting trade-off between battery
capacity and performance. For example, write heavy workloads can
either opt for a significant reduction in battery capacity of up-to 10x
at the cost of 20-30% performance overhead or they can opt for a
lower reduction in battery capacity of 2x with a lower performance
overhead.

We envision Viyojit being used by cloud providers in order to
reduce their battery capacity requirements and we make a case
for such cloud providers to treat battery as a first class resource,
much like DRAM itself. In such a setting, tenants can buy battery
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Figure 10: Performance overheads for different battery capac-
ity fractions for different YCSB workloads across two initial
heap sizes: 17.5 GB and 52.5 GB. The overheads decrease with
an increase in the heap size which confirms our hypothesis that
with increasing dataset sizes, the write skew becomes more se-
vere.

capacity based on their expected workload and required performance.
Further, cloud providers can employ techniques similar to memory
ballooning [60], to reallocate battery/dirty-budget among co-located
tenants to benefit from inherent statistical multiplexing effects.

In order to quantify the effect on secondary storage bandwidth due
to Viyojit, we measured the amount of data copied out of NV-DRAM
during the duration of the workload and computed the average write
rate by dividing it by the workload duration. We present the results
for the same in Fig. 9. Note that the write rate computed also consists
of the writing out the entire heap at the end of the experiment. These
writes, at the end of the experiments, would be required by the
baseline system as well. Further, YCSB benchmarks correspond
to sustained high bandwidth applications whereas real applications
are often bursty. Nonetheless, for a reasonable experimental setting
of ours with 10 million operations, even the highest write rate of
roughly 200 MB/s can be easily sustained by current SSDs.

To sum, the results show that decoupling the battery and NV-
DRAM capacity is indeed a viable option. Doing so allows under-
provisioning the battery capacity which would enable the amount
of battery-backed DRAM per server to scale at the rate of DRAM
capacities per server rather than being bounded by the rate of Lithium
scaling.

6.4 Experiments with larger heap size
For the results presented in the above sections, the allocated heap
was of a relatively small size of 17.5 GB. However, NV-DRAM
is typically present at a much larger scale in real systems and we
expect the write skew to be more apparent as the total NV-DRAM
capacity grows, as discussed in Section 3.

To quantitatively support our argument, we present results from
experiments with an initial heap size of 52.5 GB, i.e. 3x the original
data-set size, for the same benchmarks. In Fig. 10, we compare the
throughput overhead for YCSB-A, YCSB-B, YCSB-C and YCSB-F
between the two data-set sizes. We could not perform experiments
with larger heap size for YCSB-D because the heap for YCSB-D at
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the end of the benchmark, which performs insert operations thereby
increasing the heap size further from 52.5 GB, exceeds the total
NV-DRAM capacity of 60 GB. We present the results for battery
capacities corresponding to 11%, 23% and 46%.6

The results clearly show that the overhead decreases with an
increase in the heap size, thereby confirming our intuition of increas-
ing skew with increased heap sizes. This makes Viyojit even more
appealing for high capacity NV-DRAM systems.

7 RELATED WORK
Battery-backed DRAM: Batteries have been used as a backup
power source to ensure durability of data in DRAM for a long
time [29, 48, 54, 61]. More recently, the massive economies of scale
in battery sales for consumer electronics has significantly reduced
the price of battery backup [10, 32]. Based on this trend and the
low cost of NAND, several vendors have designed Non-Volatile
DIMMs that ensure durability of DRAM data when connected to a
battery [1, 5, 11, 16, 20].

Unfortunately, however, these parts are specially designed for
enterprise class servers and do not enjoy the massive economies of
scale typically expected of data center parts. Therefore, system de-
signers have proposed using commodity data center DRAM DIMMs,
SSDs and batteries to implement battery-backed DRAM [32]. How-
ever, such systems are faced with the uphill challenge of bridging the
gap between DRAM and Lithium capacities inside servers. Viyojit
bridges this gap by decoupling these two entities by limiting the
dirty data in DRAM.

Limiting dirty data: Prior works have proposed limiting dirty
data in processor caches to improve cache performance and simplify
the implementation of other cache optimizations [56, 57]. Our work
is closest in spirit to these works, but focussed on limiting dirty data
in main memory as opposed to processor caches. To the best of our
knowledge, ours is the first work which proposes a mechanism for
limiting dirty data in main memory.

Viyojit can also perform dirty tracking and limiting at a finer
byte-level granularity using Mondrian Memory Protection [63], us-
ing the same dirty budgeting mechanism as proposed in this paper.
This would not only enable better utilization of provisioned battery
capacity but also reduce the write traffic to secondary storage. The
write bandwidth to secondary storage could be further reduced by
using compression and de-duplication [50, 68].

Memory management techniques: Existing memory managers [19]
keep an approximate count of the dirty data in memory, but do not
have any synchronous visibility in to the pages being dirtied. Mech-
anisms proposed in this paper are required to accurately track the
dirty data in memory. Identifying target pages to swap out in face of
memory pressure is a challenge common to all memory managers
and also to Viyojit. Multiple target selection policies have been pro-
posed in literature [23, 39, 40, 45, 51, 53, 67] for the same. Viyojit
use a target selection policy similar to the LRU, which is one of the
most widely used and policies, to copy pages to secondary storage.

6 Note that the dirty budget for the same battery capacity fraction would be different
between the two data-set sizes. For example, the dirty budget corresponding to 11%
battery capacity for the 17.5 GB case is 2 GB, while the corresponding dirty budget for
52.5 GB case is 5 GB.

8 ADDITIONAL BENEFITS WITH VIYOJIT
This section outlines two additional benefits of decoupling battery
capacity from DRAM capacity: reduction of reboot times and ability
to deal with battery capacity changes.

Increased availability: As the amount of DRAM increases in a
system with a given PCIe bandwidth, the time needed for backing
up the entire DRAM to an SSD on a power outage increases. For
instance, writing out 4 TB of DRAM onto an SSD at 4 GBPS flush
rate requires close to 17 minutes. Reloading the DRAM contents
takes a similar amount of time. This means that, in the worst case
(i.e., if the entire DRAM needs to be written out), a reboot would
require 17 minutes to shutdown followed by 17 minutes to start up
again. The start up time can be optimized by fetching pages from
SSD to DRAM on demand while sequentially reading data in the
background after the OS boots. Unfortunately, shutdown has no
such respite. Bounding the number of dirty pages in DRAM in turn
bounds the flush time during shutdown, allowing Viyojit to reduce
shutdown times, which in turn leads to higher availability.

Handling battery cell failures: Batteries, much like SSDs, wear
out over time and lose capacity [22]. The capacity can also fluctuate
based on the surrounding environment, such as the ambient tempera-
ture. Over-provisioning can help alleviate problems related to wear
out and fluctuation, but it leads to increased costs. The infrastructure
to limit the dirty data by the battery capacity enables tuning of the
dirty budget at runtime according to changes in battery capacity.
Such a design allows a server to deal with uncertainty better than by
simply stopping operation when battery availability drops by more
than over-provisioning.

9 CONCLUSION
Viyojit significantly reduces the battery needed to back up DRAM
being used as NVM, by decoupling battery required from DRAM ca-
pacity. It exploits the write skew inherent in real-world applications
to efficiently bound the number of dirty NVM pages based on the
battery capacity provisioned. Viyojit tracks all dirty pages, identifies
the least recently updated pages, and proactively copies some of
them to the backing SSD to free up battery capacity for more fre-
quently updated pages. Analyses of file system traces of Microsoft
services show that most real applications update less than 15% of
the total dataset over long durations of time. Experiments with a
cloud key-value store using Viyojit show that all of the allocated
heap can be treated as non-volatile, while using a small fraction
of the battery capacity normally required, with little performance
overhead. For example, with a battery capacity of only ˜11%, the
key-value store throughput reduces by 7% for read heavy workloads
and 25% for write heavy workloads. By decoupling the battery and
DRAM capacities, Viyojit enables servers to scale to terabytes of
NV-DRAM.
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