
Persistent, Protected and Cached: Building Blocks for
Main Memory Data Stores

Iulian Moraru1, David G. Andersen1, Michael Kaminsky2,
Nathan Binkert3∗, Niraj Tolia3∗, Reinhard Munz1∗,Parthasarathy Ranganathan3

1 Carnegie Mellon University, 2 Intel Labs, 3 HP Labs
CMU-PDL-11-114

December 2011

∗Work done while the author was at the specified institution.

Parallel Data Laboratory
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

This paper presents three building blocks for enabling the efficient and safe design of persistent data stores for emerging non-volatile
memory technologies. Taking the fullest advantage of the low latency and high bandwidths of emerging memories such as phase
change memory (PCM), spin torque, and memristor necessitates a serious look at placing these persistent storage technologies on
the main memory bus. Doing so, however, introduces critical challenges of not sacrificing the data reliability and consistency that
users demand from today’s storage technologies. This paper introduces techniques for (1) robust wear-aware memory allocation,
(2) prevention of erroneous writes, and (3) consistency-preserving updates that are cache-efficient. We show through our evaluation
that these techniques are efficiently implementable and effective by demonstrating a B+-tree implementation modified to make full
use of our toolkit.

Acknowledgements: HP Labs, The Intel Science and Technology Center for Cloud Computing, Google, and the National Science Foundation
under award CCF-0964474.

Keywords: NVRAM, PCM, Main Memory

1 Introduction

For decades, with a few niche, expensive exceptions, fast memory has been volatile, and persistent storage
has been slow. The advent of non-volatile, byte-addressable memories may force an overhaul of program and
operating system structure comparable to that required to deal with multicore. There are multiple competing
technologies—Phase Change Memory, Spin Torque Transfer RAM, memristor—but the end result is the
same: a non-volatile, byte-addressable memory that, when placed directly on the memory bus, will be
almost as fast to access as DRAM.

We expect that uses for fast persistent memory will range from easy to program but low-performance
(e.g., using this memory as a replacement for Flash memory), to complex and challenging setups meant to
benefit performance-critical applications. In this paper we focus on the latter category. For reasons outlined
in Section 2.2, we argue that performance-critical applications will require placing fast non-volatile memory
on the memory bus alongside DRAM, and accessing both through CPU loads and stores.

Non-volatile main memory introduces a new challenge: Attaining high throughput while providing
strong durability guarantees. Many more things can go wrong when using the main memory bus to access
persistent storage. One challenge is wear-out: the non-volatile memories being developed now degrade with
writes. Although not nearly as rapid as wear-out with today’s NAND flash technologies, excessive writes to
a single non-volatile memory cell can still rapidly destroy it. A second challenge comes from the interface
presented to the application writer with respect to durability and safety. Today’s storage interfaces are
narrow and explicit: Writes to storage can only affect data; only the kernel can change filesystem metadata.
A write() makes data durable (in theory, depending on the implementation), and writes to hard disks
typically succeed or fail atomically on a page or sector granularity, enforced by hardware sector checksums.
With non-volatile memory, however, erroneous writes can affect persistent data or metadata. The order of
writes is unknown unless special attention is taken to flush writes, due to interactions with processor caches.

Decades of experience with filesystems and databases has shown that developing safe and fast per-
sistent data stores is challenging, and we do not believe that emerging memory technologies will change
this. This paper describes three building blocks to ease the task of the persistent data structure designer
(née filesystem or database designer), who develops libraries that would be linked against by application
developers (Figure 1). These building blocks help address some of the primary potential sources of data loss
and corruption when using non-volatile memory, while imposing minimal performance overhead.

Wear-aware memory allocation that is robust to erroneous writes. Hardware-based wear leveling for
non-volatile byte addressable memories [32, 33, 39] seems necessary, but does not provide a complete
solution. In particular, coping with frequent writes to the same or neighboring locations imposes, e.g.,
overheads higher than 100% when writing [33] as the hardware constantly shifts the data to new locations.
Maintaining maximal throughput therefore requires avoiding these pathological patterns with the help of
software. Traditional memory allocators do not avoid these pitfalls. At the same time, corruption of memory
allocator metadata can lead to permanent data loss and unrecoverable memory leaks. To address these
problems, we introduce a new memory allocator for NVRAM. Our allocator prevents the frequent reuse of
memory locations, and stores its frequently-changing metadata in DRAM. It adds checksums to detect and

Main memory

DRAM + NVRAM

Applications

OS
Persistence
 Library

Figure 1: System organization.

1

Parameter PCM DRAM
Read Latency 50 ns 20-50 ns
Write Latency 150 ns 20-50 ns
Read Bandwidth 1 GB/s/die 2 GB/s/die
Write Bandwidth 200 MB/s/die 2 GB/s/die
Write cycles 108 cycles ∞

Table 1: PCM and DRAM characteristics predicted for 2013 [31, 30].

recover from metadata corruption.

A low overhead mechanism for containing erroneous writes. With DRAM, the consequence of bugs or
memory corruption is typically an application crash. With NVRAM, however, erroneous writes can cause
permanent data loss. The larger the persistent memory area exposed to the application for direct access,
the higher the risk of corruption through erroneous writes. Using virtual memory protection to contain this
threat has been proposed previously in the context of databases [41] and reliable file system caches [8]. In
this paper, we show how to implement a similar scheme in a way that avoids the overhead of system calls
and context switches. This scheme complements the protection provided by our robust memory allocator:
VM protection prevents “long-range” erroneous writes to locations that clearly should not be written to; the
robust allocator metadata protects against far-reaching consequences from “short-range” off-by-one errors
or buffer overflows.

Cache-efficient, consistency-preserving updates. Making effective use of the CPU cache is critical for
overall program speed. However, ensuring the consistency of persistent data in the face of application
crashes and power failures requires careful control over the order of writes to persistent memory. Today’s
CPUs provide only coarse ways to achieve such control, e.g., by marking memory non-cacheable or by
flushing the cache, but these methods impose high costs. We propose a novel mechanism for implementing
consistency-preserving updates without sacrificing performance. Our solution requires application support,
as well as lightweight hardware modifications.

2 Background and Assumptions

This section briefly overviews non-volatile, byte addressable memories and enumerates the assumptions we
make about future systems support for these memories.

2.1 Non-Volatile RAM

Three emerging technologies hope to provide fast, persistent, byte addressable memories: phase change,
memristor, and spin torque transfer. We collectively refer to these memories as non-volatile RAM (NVRAM).
We focus primarily on phase-change memory, because it is now becoming commercially available and is
better characterized, to understand how these memories differ from conventional DRAM.

Phase Change Memory (PCM) is a non-volatile, random-access memory that stores bits by heating a
nanoscale piece of chalcogenide glass and allowing it to cool into either a crystalline (1) or an amorphous
state (0), each of which has a different electrical resistance. Heating is performed by injecting current
through the memory cell. Several of PCM’s most important characteristics can be derived from this method
of operation.

Byte programmable: Each cell can be read and written independently.

2

Fast reads: Cells can be read electrically by measuring their resistance. PCM read speed is comparable
to that of DRAM, and orders of magnitude faster than Flash memory. Read latency may be as low as
48 ns [4].

Limited write bandwidth: Because PCM is programmed by heating, its write bandwidth is limited by
the amount of power that can be delivered to the chip. Write bandwidth per die may be only 200 MB/s/die
versus read bandwidth of 1 GB/s per die [29]. These numbers are optimistic until the technology matures
further: A recent 1-gigabit prototype from Samsung achieves only 6.4MB/s program bandwidth. Write
latency may be as low as 150 ns [2, 4].

Wear-out: Heating causes physical expansion and contraction of the cell, which eventually leads to
wear-out. Cells may be limited to as few as 108 writes [31].

High storage density: PCM’s storage density may scale better than that of DRAM or Flash memory:
PCM has been demonstrated at a 20 nm process size and is expected to scale to 8 nm, while realizing Flash
and DRAM at this scale is difficult [1].

Table 1 presents the PCM parameters that we assume in this paper.
Two alternative technologies, memristor-based memory and spin-torque transfer memories are also

competing to be the next persistent storage technology. These technologies are further from production,
but may offer improvements in writing: memristor could have an order of magnitude better endurance, and
spin-torque, which is further yet from being realized, may have unlimited endurance. Both would benefit
from the memory protection and consistency provided by our toolbox.

Memristor-based memory is a “resistive RAM” (RRAM) device that has garnered recent attention. In
these devices, applying an electric field changes the resistance of the device, which can be later read to
indicate a 0 or 1. As with PCM, cells can be read and written independently. Early lab samples of memristor
memory suggest that its performance could be comparable to the DRAM performance shown in Table 1,
and its write endurance could be 1010 cycles. However, memristor is still in early development, with no
commercial availability.

Spin-Torque Transfer Memories use magnetic properties of certain materials and electric charges to
enable states of different resistance in memory cells. Their biggest advantage over PCM is the potential
for unlimited write cycles. Recent 32-megabit chip prototypes using tunneling magnetoresistance showed
read latencies of 32 ns and write latencies of 40 ns with a power consumption of 300 µA per cell [20].
Unfortunately, the outlook for shrinking cell sizes is extremely uncertain, with no reliable estimates for
when competitive sizes will be reached.

2.2 NVRAM on the Memory Bus

The latency of today’s external busses—PCI at a few hundred nanoseconds [17] and SATA and SAS
even slower—dominates that of NVRAM. This contrasts with Flash memory, whose approximately 40-
microsecond access time dominates bus latency. Similarly, accessing NVRAM through a file system or
system call interface incurs context switch and data copy overhead, potentially doubling—or worse—the
access latency.

Systems are unlikely to abandon DRAM: Because of the wear-out and slower-write limitations of
NVRAM, we assume that at least for write-intensive workloads, systems will instead use a combination of
DRAM and NVRAM, harnessing the best properties of each.

As prior work did [10], we assume that NVRAM devices will provide atomic writes at some granularity;
we assume this will be a cache line (64 B). Because CPUs are optimized to access DRAM at the granularity
of a cache line, we believe that performance considerations will lead to the same cache line granularity for
NVRAM.

3

2.3 Limitations of HW Wear Leveling

There are at least three reasons why software will be required to complement hardware solutions for avoiding
NVRAM wear out.

First, hardware wear leveling may not be available for low cost applications of NVRAM—e.g., in
sensor nodes and mobile devices, which are likely to be the first use of the technology [36].

Second, hardware wear leveling can affect performance. These solutions transparently modify the
mapping between physical NVRAM locations and the logical addresses exposed to the memory controller
[32, 33, 39]. To do so, they must copy content between physical locations, which both reduces write band-
width and contributes to overall wear. This overhead is small for well behaved workloads [32], but wear
leveling must also handle high write traffic to one or a small set of locations [39]. Doing so requires data
to be moved as often as once per every application write [33]. The newest adaptive schemes penalize only
those applications that concentrate many writes to few memory locations [33]. This solution is effective
for applications using NVRAM as a DRAM replacement, because most of writes with high locality are
absorbed by a large DRAM cache, but not for applications using NVRAM persistently, where NVRAM sits
behind only a small CPU cache. In this case, applications that desire high performance must avoid bad write
patterns.

Finally, software should still avoid generating unnecessary writes even with wear-leveling: each write
reduces the memory lifetime. As we show in Section 8, existing malloc implementations, designed for
DRAM, generate excessive writes when used for NVRAM.

The range of applications that could benefit from high-performance, persistent memory is large. Sen-
sor nodes and embedded platforms could benefit from the ability to execute code directly from persis-
tent memory, and the ability to suspend and resume execution nearly instantly by only flushing caches to
NVRAM. High-performance computing could snapshot rapidly to NVRAM. And as exemplified by sub-
stantial recent interest in developing database techniques to capitalize on flash memory, data-intensive ap-
plications and transaction processing system designs might be completely overhauled for byte-addressable,
high-throughput persistent memory.

Making effective use of NVRAM, however, will require software support: operating system support to
provide lower-level access to the memory, and library support to hide the complexities of using persistent
main memory from application developers.

2.4 Operating System Support

To support persistent main memory, operating systems will need to provide two basic functions: NVRAM
page management and a persistent namespace for non-volatile main memory.

Paging. We expect that existing virtual memory mechanisms will be used to map both volatile and non-
volatile memory into the processes address space. Processes will be able to request NVRAM pages from
the operating system, e.g., using an extension to the mmap system call. We assume that the basic unit for
NVRAM in operating systems will be the 4 KB page, with continuing CPU and operating system support
for large pages for efficiency.

Persistent namespace. To restore persistent application state, a process must be able to map the same
non-volatile memory pages across machine reboots. Therefore, operating systems must provide a way to
identify groups of pages under a persistent namespace. We do not believe a solution is needed beyond the
multiple existing workable proposals [38, 9, 44]. We assume that (1) it will be possible to map the same
NVRAM pages in different, not necessarily concurrent processes; and (2) operating systems will provide
access control to regions of NVRAM, perhaps akin to access control in file systems.

4

We do not address the concern of persistent memory pointers. There exist various solutions: making
mappings fixed [44], or using pointer swizzling [45, 21, 9]. Another simple solution could be using the CPU
support for segmentation (still present on x86 processors, for example): map each logical group of NVRAM
pages in its own segment and make every pointer to its contents be relative to that segment.

2.5 Application Library Support

Providing high-performance persistent storage on the memory bus introduces several challenges, alluded to
in earlier sections. Sections 3–5 describe three lower-level techniques which, together with the OS support
described above, enable applications to use NVRAM effectively. Using these techniques directly, how-
ever, has the potential to burden application developers with significant complexity. Rather, we propose
“hiding” these mechanisms behind user-space library—software building blocks—which provide persistent
main memory data structures and algorithms to higher-level applications.

3 Memory Allocation for NVRAM

The NVMalloc allocator helps address two of our three challenges for using NVRAM: preventing wear-out,
by minimizing writes and helping with wear-leveling, and increasing the allocator’s robustness to erroneous
writes.

3.1 Wear-Aware Memory Allocation

Not only are today’s memory allocators not optimized for NVRAM, they may actually contribute to wear-out
or performance degradation when used for NVRAM. Consider as a representative example GNU malloc

version 2.12.1. malloc and several other allocators [46] cache and reuse small allocations (“blocks”) in
LIFO order after they are freed. This concentrates writes in a few locations, which we verify experimentally
in Section 8.1.1. malloc furthermore maintains metadata in headers and footers of each allocated (or freed)
memory block, containing the size of that block. This metadata is updated for every merge and split of free
blocks, which can happen for any allocation or deallocation that is not small enough to be cached. As a
result, simple patterns such as a sequence of allocations followed by deallocations in the same order can
cause multiple writes to the first header and the last footer of a series of contiguous regions. Finally, these
in-place metadata updates, while memory efficient, cause additional writes that increase NVRAM wear-
out; we show in Section 8.1.1 that malloc may cause 50% more writes than our allocator. Note that these
malloc design decisions make sense for DRAM, providing memory efficiency and performance, but they
have unintended results when applied to NVRAM.

NVMalloc is a robust, wear-aware memory allocator that avoids these problems. NVMalloc is based
on two ideas: (1) limit the frequency with which any particular block of memory can be allocated, and
(2) maintain frequently changing metadata in DRAM, separate from the managed blocks of non-volatile
memory.

Allocator wear-leveling. NVMalloc will not reallocate a block as soon as it is freed. Instead, it timestamps
the block and adds it to a FIFO queue of recently freed blocks—the don’t-allocate list. On every allocation
or release, the allocator examines the block at the head of the queue; if it has been in the queue for at
least time T , it removes the block from the queue and marks it eligible for reallocation. Blocks will not be
allocated with a frequency higher than 1/T . Assuming that the sizes of allocation requests are smaller than
the available amount of non-volatile memory in the system, we can improve wear leveling by increasing T .
To avoid using extra space, the don’t-allocate list is implemented as a simple linked list, with the pointers
and the timestamps stored inside the free memory blocks themselves.

5

Reducing allocator metadata writes. The easiest step that NVMalloc takes to reduce writes is using
a minimum allocation size of 64 bytes—the minimum NVRAM write size. Smaller blocks cause write
amplification because writes would perturb the other bits in the write unit.

The more complex optimization reduces writes due to managing free space. Allocators reduce address
space fragmentation by satisfying allocations from appropriately sized individual free blocks. For example,
to allocate a 256 byte block, the allocator would only allocate from a new 4KB page if it could not find a 256
byte “hole” in otherwise allocated regions. To accomplish this, NVMalloc, like malloc and its predecessor
dlmalloc [24], uses segregated free lists—a free list for different size free blocks, with a common list for
large blocks.

NVMalloc reduces the number of writes to persistent memory by observing that tracking the informa-
tion needed to minimize fragmentation is an optimization, not something required for correctness. NVMal-
loc persistently stores the correct allocated/free state of every block, but relegates fragmentation information
to DRAM, and can rebuild this information if needed after a crash.

Traditional allocators store list pointers inside the headers and footers of freed blocks. When they
merge adjacent free blocks into a larger free region, they update those in-place pointers. NVMalloc instead
tracks the allocated/free state of each basic memory block using a DRAM bitmap. (Figure 2). To persist
allocation state across reboots, each memory block has a header with its size and allocation state. When
mapping a new NVRAM region, the allocator can rebuild the bitmap by scanning these headers plus the free
lists described below. Unlike malloc, however, NVMalloc does not update the headers when merging free
blocks, and no longer requires footers.

NVMalloc maintains its segregated free lists in DRAM. These lists may become inconsistent with the
real allocation state, potentially requiring a few extra reads during allocation, but substantially reducing the
number of writes. Upon freeing a block, the allocator examines the bitmap to find the maximal free region
that includes that block, updates the bitmap, and adds an entry to the list corresponding to the region’s size.
A new allocation request is satisfied by searching through the free list with blocks of the corresponding size
for the first entry that is still consistent with the information in the bitmap. If none is found, a larger free
block will be split, or the allocator will request more NVRAM pages from the operating system.

NVMalloc only updates memory block headers when the block is the start of a memory region that is
being allocated or when the block is freed by the application. The pointer and timestamp required for adding
the block to the don’t-allocate list are added in the same cache-line write as the header update. As a result,
NVMalloc guarantees that it will write each location at most twice per T seconds.

3.2 Robust Memory Allocation

Bugs such as off-by-one errors, uninitialized pointers, buffer overflows or buffer underflows can corrupt
memory allocator metadata. With non-volatile memory, corrupted memory allocator metadata can cause
permanent data loss or unrecoverable memory leaks. Consider for example a buffer underflow error that
overwrites the header of an allocated memory block. When the buffer is freed, the allocator may reclaim
more memory than it should, and a subsequent allocation will result in persistent application data and other
block headers being overwritten, etc.

Previous approaches protect allocator metadata by storing it separately from the space allocated for
use [25, 44]. While less likely, metadata corruptions could still occur (e.g., because of an uninitialized
pointer that uses the data of an old stack frame corresponding to a memory allocator call). Because the
consequences of corruption are larger for NVRAM, NVMalloc uses stronger techniques.

First, NVMalloc’s design is robust to errors in its DRAM-based data structures: they only optimize
allocation and can be rebuilt if needed. Second, every NVMalloc block header contains a checksum over
the size of the block, its state (allocated / free), and the position of the block relative to the beginning of the
current NVRAM mapping. The latter helps detect accidental copying of whole blocks, headers included,

6

DRAM

NVRAM

header:
state, size, checksum

...

...

NVRAM

...

010001...

bitmap

free lists

...

1 bl:

2 bl:

3 bl:

Figure 2: Memory allocator metadata example. Two of the six basic memory blocks depicted in the diagram
are allocated and four are free.

over other blocks. The allocator can thus detect incorrect headers when allocating or freeing a block, or when
scanning the block headers of a newly mapped NVRAM region. The allocator then isolates the corruption to
the one or few affected blocks by scanning forward through every subsequent basic memory block (64 bytes)
until it finds a new sequence of correct headers. It marks the corrupt header and notifies the application of
the corruption. A side benefit of this scheme is that the allocator can also detect some erroneous writes to
persistent data, something that cannot be achieved by simply separating the metadata.

NVMalloc provides containment, not prevention: It limits the extent of data loss to the directly modified
memory locations. The next section presents a safety mechanism to further reduce the possibility of data
corruption. Our solution does not prevent memory leaks; garbage collection to ameliorate this problem are
complementary to NVMalloc’s techniques.

4 Low-Overhead VM Protection

For speed, applications are likely to map the NVRAM storage (potentially tens or hundreds of gigabytes)
into their process address space. Doing so, however, eliminates many traditional safety mechanisms that
filesystems and databases offer. Erroneous actions by the process can corrupt not only data, but metadata,
where errors can potentially cause massive data loss or crashes. The interface through which errors can
affect persistently stored data is now much wider: instead of writing to a buffer and invoking an explicit
system call to persist that buffer, any stray memory store(s) could corrupt persistent data.1

Concerns about the vulnerability of persistent data mapped into process address spaces date back
decades, in the context of databases [41, 11] and reliable file system caches on battery-backed DRAM
[8]. Today, OS-mediated, CPU-enforced memory protection is widely used to protect parts of the address
space from corruption in JVMs [18], databases [37], and garbage collection [7]. Designers of persistent

1The decreasing cost of switching to kernel mode [42] makes it attractive to map persistent data in user space as read-only,
and then make a syscall whenever the application needs to modify it (since the data would be mapped read-write in kernel space).
However, this would make application data vulnerable to stray memory accesses by device driver code. Given the large variety of
third-party device drivers, we believe this would be even more difficult to control than stray accesses by the application itself.

7

data structures for NVRAM can follow this lead—but to enable them to do so, we must make this capability
low-overhead enough to use in the context of hyper-fast persistent storage.

The simplest way to write-protect virtual memory on a POSIX-compliant system is to call mprotect
after writing to a page. Subsequent (erroneous) writes to this page will then trigger an exception. Appli-
cations might then repair the error transparently, gracefully exit and restart, and/or simply generate a bug
report noting the software bug or faulty hardware component.

We improve upon the mprotect approach by (1) avoiding the system call context switch; (2) by ser-
vicing page protection requests in batches to amortize some of their costs; and (3) coalescing redundant
requests such as protection and unprotecting the same page. To accomplish this, the kernel and process
share a DRAM-based buffer used for a lockless producer-consumer queue [23]. The process inserts the
addresses of the non-volatile memory pages that require protection against writes, and a kernel thread pe-
riodically removes these requests from the queue to protect them. The kernel thread sorts the requests and
performs protection changes on ranges of pages; consolidation amortizes the cost of modifying the struc-
tures associated with the address space of the process (an expensive operation in Linux). The kernel thread
must now only flush the TLB once per batch of requests.

This approach works well for “optimizing” locking such as we use it here; to be fully general, it would
require a notification queue to tell the process when the protection request was complete.

The same approach is used to un-protect pages before the application writes: the application puts a
request in the unprotect queue, and then accesses the page, optimistically assuming that the page is (or
has become) writable. If the kernel thread has not yet performed the unprotect, a page fault exception is
generated. The kernel exception handler checks the unprotect queue, finds the unprotect request and changes
the protection of the page, transparently to the application. Putting the exception handler in the kernel saves
additional context switches. This mechanism works well for applications with some access locality: A lock
followed soon by an unlock will result in no protection changes or page faults. Applications such as garbage
collectors that can predict beforehand where they will write can issue asynchronous unprotect requests early.

5 Cache-Efficient Updates to
Persistent Main Memory

Using CPU caches effectively has been the primary way of bridging the gap between the speed of the CPU
and that of the memory. Making an application run faster often comes down to improving its use of the
caches. We expect the CPU caches to continue to play a critical role for main memory, volatile and non-
volatile alike. 2 Unfortunately, maintaining consistency in the face of crashes or power failures becomes
more difficult when accessing persistent main memory through CPU caches that themselves control the
order of writes to memory.

Continuously flushing the cache lines (essentially by-passing the cache) introduces high overhead (e.g.,
more than 4× —see Section 8.3). Bypassing the caches when writing is efficient only for those applications
that write only once to a location and do not read after write (as counterexamples, consider frequent updates
to a global counter—e.g., the global version of a multi-versioned data structure—or inserting ranges of
keys into a B tree), and presents additional concerns with respect to the wear-out and write bandwidth
limitations of non-volatile memories. Furthermore, modern processors and memory controllers have been
highly optimized for working with the CPU caches. We would like to use the CPU caches as normal,
without flushing, but still guarantee update consistency.

The solution that we propose follows logically from our stated goal: make applications aware of the
state of their writes in cache so that they can make the appropriate adjustments in software. For this, we re-

2CPU caches could perhaps be even more important for non-volatile memory, since non-volatile memory is expected to be even
slower than its volatile counterpart.

8

quire hardware support. Given a logical group of updates, an application can check whether all the updates
belonging to that group have been written out to memory—as a result of normal cache line replacement—
or if some are still in the caches. Applications can use this capability in many implementations of failure
atomicity: when performing shadowing, the software application will replace the original pointer with a
pointer to the shadow copy after all the updates to the shadow have reached memory; when working with
multi-versioned data structures, the application will increment the global version number only after the new
version has been completely flushed out of the CPU caches; when updating a log, it will increment the log
size only after the new record has entirely reached persistent memory, etc.

5.1 Cache Line Counters

To allow applications to check whether their writes have been flushed from the cache to NVRAM, we
propose light-weight hardware changes. The CPU is augmented with a set of counters, where each counter
keeps track of how many cache lines belonging to one logical update group are still in cache. To create a
new update group, the application calls a special sgroup instruction, which tells the CPU to choose a free
counter for the new group.3 The application can then use stores to write to NVRAM, and these stores are
considered part of the new update group.4

A counter is incremented when a store dirties a cache line, and decremented when a cache line tagged
with its ID is cleaned (either by normal write back during cache line replacement, or as a result of a clflush
call). A store to a cache line tagged with the ID of a counter other than the current counter will not modify
any counter values. Note that this behavior is appropriate for those situations where groups of updates must
be ordered (i.e., a group is only committed after all previous groups have been committed). Minor operating
system modifications are required to save and restore the register containing the current counter ID when
a thread is preempted and scheduled for execution, respectively. A second call to sgroup ends the update
group.

The application can retrieve the counter ID from a CPU register and use an scheck instruction to read
the value of the counter. If scheck returns a counter value of zero, that counter is marked as free.

Unlike previous proposals for hardware support for NVRAM (the BPFS epoch barriers mechanism
[10]), the modifications that we propose do not necessitate changes to the cache line replacement algorithm.
This is important because forcing cache line flushes goes against the trend of enhancing the behavior of the
CPU cache hierarchy with complex heuristics. Section 9 contains a more detailed comparison with BPFS.

One important implementation decision is how many counters to use. At the extreme, each cache line
could be associated with a different counter, which would require as many counters as there are cache lines
in the CPU caches. Die space limitations could make so many counters prohibitive. Provisioning fewer
counters risks running out of counters if many applications perform many small atomic groups of updates.
To solve this problem, we add a special virtual counter (we will call it C0) whose value is always zero. When
there are no more free counters, the CPU will use C0. A store when C0 is the current counter will behave
like a non-temporal write that bypasses the CPU caches. Running out of counters may affect performance,
but not correctness.5

3An sgroup instruction must therefore order stores to memory, just like the x86 sfence instruction.
4A special store instruction could be used for convenience (so that normal stores to DRAM, for example, don’t have any side

effects).
5This scheme has the drawback that one application might intentionally or unintentionally monopolize all the counters. Note,

however, that the same is true for the CPU caches themselves.

9

5.2 Implementing Cache Line Counters

Augmenting CPU caches has previously been proposed for improving cache performance [22], implement-
ing transactional memory [3, 28, 35], and even for ensuring update consistency in persistent main mem-
ory [10] (i.e., the same problem we are addressing). While we have not implemented in hardware the cache
line counter mechanism, we describe here one possible implementation path. Because the counters keep
track of dirty cache lines, the implementation consists mainly of a straightforward bookkeeping mechanism
and a few additions to the cache coherence protocol.

Cache line tags are extended with space for a counter ID. Dirtying a cache line causes the CPU to
increment the current counter and annotate the cache line with the counter ID. Cleaning a line decrements
the counter corresponding to the ID stored in the cache line’s tag. If the cleaning happens because of a
write-back to memory, the decrement is done only after the write is acknowledged.

For processors with inclusive shared last level caches, like the modern Intel Core i7 CPU, it is sufficient
for counters to track only the lines in the last level of the cache. This design has the advantages of avoiding
the high churn in smaller caches, the counter namespace is global, and the counters are only stored in the
larger cache. Reading counter values will have higher latency than if counters were stored in the smaller
caches, but since applications using counters are likely to be data intensive, this latency would be dwarfed
by the latencies of frequent memory accesses.

On a CPU where the last level caches are not inclusive, each core maintains a separate set of counters
in its L1 cache, in a direct-mapped structure. Cache tags in shared caches store both a counter ID and a core
ID. If the line cleaning/dirtying happens in a level of cache other than L1, the counter decrement/increment
message must be sent up to the core that owns the counter associated with that line.6 When an application
reads the value of a counter maintained by a core other than the one on which it is running, that counter
value is brought in through the cache subsystem, just like normal memory content—e.g., the counters are
memory mapped read-only.

As a concrete example of how one might instantiate cache line counters, consider a CPU like the Core
i7: a quad core CPU with 32KB private L1-D and L1-I caches, 256 KB private L2, and an 8 MB inclusive
L3 cache. Such a CPU might provide 8192 one byte wide counters.7 Each counter can count up to 255
cache lines, but special counters can combine the space of two or more normal counters to be able to count
up to the total number of lines. When a counter reaches its limit, the CPU can either automatically upgrade
it, or treat subsequent stores as non-cacheable. For 8192 counters, the cache line tags are extended by 13
bits. Overall, this amounts to a 216 KB space overhead, which is 2.28% overhead, incurred exclusively in
the L3 cache.

6 A B+ Tree Example

This section describes how the proposed techniques can be used to implement a modified B+ tree data struc-
ture, including the algorithmic changes that are required. To hide their complexity, we expect that data

6A special case occurs when a cache line is pulled into the private cache of a core (e.g., core B) other than the one that owns
the counter associated with that line (e.g., core A). In this case, the line is cleaned from all the caches accessible from core A, and
sent clean to core B. Thus, core A no longer keeps track of that line. Although flushing the cache line from the first core may cause
overheads for applications with this access pattern, this problem is not a new one, as applications already try to avoid expensive
cache line “ping-pong-ing.” This situation, however, can also occur as a result of a thread moving to a different core. In this case,
the operating system notifies the application through a signal so that it can track a new counter on the new core in addition the old
counter on the previous core until those lines are cleared. This mechanism introduces some awkwardness for programmers working
with counters, but we don’t expect this situation to be common since operating system schedulers try to maintain core affinity (and
applications can even ask that this be enforced).

7For 1 KB average update group sizes, this many counters would ensure that running out of counters is rare.

10

old node

bottom half top half

parent

Figure 3: Transient B+-tree state after a node split. The dots mark the only pointers updated at this stage.

structures such as this would be implemented in a “persistent storage” library for NVRAM, not necessar-
ily by individual application developers. We have applied these changes to an existing main-memory B+
tree [6].

Using NVMalloc. NVMalloc can be used as any other memory allocator, requiring no program mod-
ifications to function correctly. However, applications can take advantage of NVMalloc’s wear leveling
properties by making small adjustments. In our B+ tree, for example, whenever a node requires splitting,
we allocate two new nodes and free the original—otherwise the same memory location risks getting heavy
write traffic (see the experimental results in section 8.1.1). This simple modification is also necessary for
guaranteeing consistency with cache line counters, as explained below.

Using cache line counters. First, we define what consistency properties we want for our B+ tree: (1) after
a crash or power failure, we want the B+ tree to be consistent (i.e., no dangling pointers, no partially written
data), and (2) the B+ tree must be monotonic—that is, if a power failure occurred at time t1, the recovered
data would be a subset of the data that would be recovered if the failure occurred at time t2 > t1. This
condition means the B tree behaves intuitively: once data becomes “persistent” (i.e., recoverable), it cannot
be lost. To improve performance (achieve a higher insert throughput), we do not require data to be made
persistent right away. These consistency guarantees are reminiscent of soft updates for file systems [15].

We start by focusing on inserts. The changes that we make to the B+ tree are to ensure consistent
updates without having to flush CPU caches.

Change 1: Inserting at the end of nodes instead of keeping nodes internally sorted. In a typical B+
tree, new pointers to nodes or values are inserted into the node in sorted order, which may require shifting
some of the existing entries. Because some entries will cross cache line boundaries, even if the algorithm
is correct—it writes an entry in its new slot before overwriting the old slot—the unpredictability of cache
line write-back can still cause data loss on a power failure if the update to the old slot of the entry reaches
NVRAM before the update to the entry’s new slot. A consequence of this change is that searching in a node
becomes slower (linear instead of logarithmic time for a binary search).

Change 2: Using cache line counters to distinguish between data that has been written completely to
NVRAM and data that is not yet entirely durable. A counter tracks the cache lines dirtied by the data being
written (i.e., the new inserted value). After the counter reaches zero, we validate the data by writing the
corresponding key in the header of the data portion (using a normal cached write)—this will make it easy to
distinguish the valid data entries from the invalid ones after a power failure.8

Change 3: Ensuring that the B+ tree is always consistent in NVRAM during node splits. Figure 3
depicts the modified node-splitting process. A node is not immediately deleted after being split. Its parent
maintains its pointer to it, and the node itself is augmented with a pointer to the new node that contains the

8No change is needed for validating the B+ tree metadata after recovering from a crash or failure, as we identify valid node
entries by checking that the key information in the parent matches that in the node.

11

top half of its keys (the ones larger than the median key). The bottom half is inserted in the parent node
as usual (at the end). All subsequent inserts and searches will be performed on the new nodes. After the
old keys and pointers become persistent in the new nodes, and after the pointer to the bottom half becomes
persistent in the parent node (we keep track of all this using one cache line counter), the pointer to the new
top half node replaces the pointer to the old node in the parent.9 To prevent chains of pointers, if the top half
is split while in the transient state, we simply replace the pointer to it with a pointer to its top half (i.e., the
top half of the top half) in the old node. In summary, we ensure we do not lose older information by keeping
pointers to old versions until the new versions become persistent.

For deletes, we simply invalidate the pointer (we make it NULL) to a node that is to be removed, and
allow subsequent inserts to overwrite it. Moving entries from one leaf node to a neighbor and merging
nodes can be handled in one of two ways: (1) lazily, when the insert load is low, by forcing cache flushes,
or (2) using cache line counters: copying entries to their new node and invalidating the old one but without
removing it until the entries become persistent.

Using cache line counters in implementing our B+ tree algorithm required only small modifications to
the program structure. We use a circular buffer to store “counter-action” pairs. Along with every B+ tree
operation, we also check the value of the counter at the head of the buffer, and if 0, we perform the action,
which consists in updating a pointer, or writing a key to the header of a data record. If the counter demand
is high, we can check (and thus free) multiple counters in each round.

Using asynchronous memory protection required no modifications to the B+ tree algorithm. We simply
write the page address (or addresses) of the node (or data region) that we are about to update into the
unprotect buffer, and then into the protect buffer once the update is complete.

7 Implementation

7.1 NVMalloc

NVMalloc is implemented in 735 lines of C, and is drop-in compatible with GNUMalloc.

Allocation granularity. NVMalloc maintains a separate free list for each allocation size that is a mul-
tiple of 64 B (one cache line, the minimum allocation size), up to 4 KB; recall that these lists are hints
pointing to free regions of NVRAM of that size. Hints for free regions larger than 4 KB are placed on a
common list. NVMalloc does not handle large allocations as a special case, although extending it to do so
is straightforward and would reduce metadata (bitmap) overhead.

Header checksum. NVMalloc uses the CRC instruction, if available, to checksum the header. Otherwise,
it XORs the block size and position into a single byte.

Failures. To ensure that allocated memory is not lost because of a power failure, a program can either (a)
request that the allocator write the header of the allocated region to NVRAM before it returns, or (b) with
cache line counters, simply call sgroup before making the allocation request instead of after.

9We do not need to force this pointer update to NVRAM. As previously specified, we assume 64 byte atomic writes, so a pointer
will either point to the new or the old version of a node. Either way, the B+ tree will be consistent by our definition. The only
provision that we have to make is to not free the old node until the pointer update has been persisted, and we can do that either with
cache line counters or by relying on the delay with which our allocator reclaims space.

12

7.2 Asynchronous Memory Protection

We implemented the asynchronous memory protection mechanism described in Section 4 in the Linux ker-
nel, version 2.6.37. Applications mmap a special character device file to gain access to two buffers to which
they write page protect and unprotect requests respectively. A kernel thread processes these requests and
then sleeps for a set amount of time (see Section 8.2)

In Linux, a single lock controls access to the mm struct of a process (the data structure containing
information about the virtual address space of a process). We observed large performance penalties caused
by frequent contention for this lock: our kernel thread took the lock to perform page protection changes,
while kernel exception handlers took the lock to fault-in a new page. To mitigate this slowdown, our module
takes this lock only once for all the requests in a batch. 10

7.3 Simulating Cache Line Counters

To understand the benefits and overheads of cache line counters, we simulate their effects in software:
Reading the cache-line counters: We simulate this in the B+-tree implementation by maintaining a

8,192 entry table of pointers to B+ tree nodes and values (the “virtual” counters) that the tree code reads
and updates along with every insert operation. This corresponds to the application checking the value of the
earliest-allocated still-active counter and performing the associated action (i.e., copying a pointer or a key)
if the counter value is 0.

Counter allocation overhead (the sgroup instruction) is emulated using sfence, because the major
overhead of sgroup is that it implies a barrier for stores.

We do not model the event of running out of counters because applications that access gigabytes of data
per second cause cache line eviction to happen very often, and for large groups of updates (on the order of
kilobytes) the provisioned 8 K counters (see Section 5.2) are sufficient, while for smaller inserts it is easy to
save counters by associating multiple consecutive inserts to one counter. Even if the counters are exhausted,
the fall-back behavior (non-cacheable writes) ensures correctness, as explained in Section 5.

We do not model the counter logic overhead; we believe that counter operations are simple enough that
efficient implementations can hide the overhead.

8 Evaluation

We evaluate the techniques proposed in this paper on a desktop machine with an Intel Core i7 860 2.8 GHz
CPU, 8 GB of DRAM memory, running Ubuntu Linux, kernel version 2.6.37, and glibc version 2.12.1.
Since NVRAM devices for the memory bus are not yet available, we use DRAM as a proxy (Section 8.4
discusses how our results would change with NVRAM). For each performance test we report the mean (and
standard error, if significant) of one hundred runs. All the applications tested run single threaded, except for
the kernel thread that performs asynchronous memory protection operations.

8.1 NVMalloc

This section evaluates NVMalloc in terms of wear leveling, fragmentation, and the overhead that it imposes
on memory intensive applications.

10Particularly performance-conscious applications can eliminate nearly all of this overhead, if needed, by touching most of
the pages they are going to use in advance, preventing lock ping-ponging. We do not believe this is needed for the majority of
applications, however.

13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 50000 100000 150000

To
ta

l w
rit

es
 /

 6
4B

 b
lo

ck

Block number

malloc
NVMalloc

Figure 4: Writes per 64 B block for malloc and NVMalloc under the random alloc/free test (50,000 alloca-
tions and 50,000 random deallocations with sizes uniformly distributed between 10 B and 4 KB).

8.1.1 Wear Leveling

First, we evaluate the ability of our allocator to avoid NVRAM wear-out using a simple test program that
performs 100,000 random memory allocation and deallocation operations (50% allocations and 50% deal-
locations). The sizes are uniformly-distributed between 10 bytes and 4 kilobytes. For every allocation, the
program writes the entire allocated block exactly once. We instrument the program using Pin [26] to record
stores to the allocated memory, both when using malloc and when using NVMalloc. We record the number
of accesses to each 64 byte block of memory (the size of a cache line), coalescing consecutive stores to a
single block (Figure 4). These stores approximate writes to NVRAM.

NVMalloc distributes writes much more evenly than malloc. Increasing the time blocks spend on the
don’t-allocate list spreads the writes further. The current implementation sets this value to roughly 100 ms
of real time; when running under PIN, we approximate this target range by waiting 2 seconds of real time to
compensate for the overhead of using binary instrumentation.

Without hardware wear leveling, NVMalloc’s improved distribution is critical for avoiding wear-out.
With hardware wear leveling, malloc’s concentrated writes may require more internal remapping in the
NVRAM device, degrading throughput and increasing overall wear as explained in Section 3.1.

Second, we evaluate the total number of writes. malloc performs 1.3 times more writes to NVRAM
than NVMalloc (2.39 million versus 1.83 million), because malloc maintains frequently changing metadata
inside free blocks. With smaller allocation sizes (10 bytes to 256 bytes), malloc performs 1.5 times more
writes. Even if perfect hardware wear leveling was possible, NVMalloc can increase NVRAM lifetime by
30% to 50%.

Finally, we repeat the wear leveling test for our modified B+ tree. Figure 5 presents the cumulative
distribution of writes per cache line-sized block of memory in the metadata portion of the B+ tree (inner
nodes and leaf nodes) for one million insert operations. 11

11This is a realistic scenario, since most memory allocators perform large allocations in a separate part of the address space than
small allocations (for speed and fragmentation considerations).

14

 99

 100

 1 10 100 1000

 0

 20

 40

 60

 80

 100

 1 10 100 1000

Pe
rc

en
ta

ge
 o

f
ca

ch
e

lin
es

Number of writes per 64 byte block

NVMalloc, modified B+ tree
malloc, modified B+ tree
malloc, original B+ tree

Figure 5: CDF of writes per block in B+ tree metadata, for 1 million inserts (8 B keys). Original is the
classic B+ tree implementation, modified uses NVMalloc and cache line counters. The top graph zooms in
on the 99%-100% interval. The X axis is in log-scale.

#Free /
#Allocate malloc frag. NVMalloc frag. Slow-

ratio total (external) total (external) down

1/3 1.63% (0.32%) 2.14% (0.26%) 1.35
1/2 2.08% (0.51%) 2.29% (0.41%) 1.43
1/1 59.18% (10.68%) 10.45% (8.75%) 1.67

Table 2: Fragmentation and application slowdown for 1 million operations.

8.1.2 Fragmentation and Overhead

To compare the address space fragmentation of NVMalloc and malloc, we perform one million alloca-
tions and deallocations (in various ratios) of random, uniformly distributed sizes between 10 B and 4 KB,
recording the total and external fragmentation (see Table 2). 12 The results confirm that NVMalloc produces
equivalent or better fragmentation as a modern version of malloc.

Table 2 also shows the slowdown that NVMalloc imposes relative to malloc). malloc is faster for
several reasons: most importantly, NVMalloc cannot cache allocations because this would contravene our
wear leveling goals, and the malloc code is highly optimized after two decades of development. Our
benchmarking tool, which essentially performs only memory allocations and deallocations, is not the best
yardstick for measuring allocator overhead; therefore, we also perform tests on a real world data-intensive
application: Memcached [27].

Table 3 compares Memcached version 1.4.7 using (a) its own slab allocator, (b) malloc, and (c)
NVMalloc. The experiment sends put and delete requests in a loop embedded within the Memcached code
to avoid measuring RPC overhead. There are two sets of experiments: (1) requests of random, uniformly
distributed value sizes between 10 B and 4 KB, and (2) fixed 1 KB values. The keys are always 10 bytes.
Setting the don’t-allocate time to one second (from zero) influences results by at most 1.5%. We measured

12To make the comparison fair, we set the time that free blocks have to spend in the don’t-allocate list to zero—when set to
non-null values, the space consumption grew by exactly the rate of deallocations multiplied by this time setting (we tested for
10 ms and 50 ms and observed the expected results).

15

Allocator Allocation Avg. time [ms]
size (std. err.)

Memcached slab 10 B - 4 KB 1914 (7)
malloc 10 B - 4 KB 1997 (13)
NVMalloc 10 B - 4 KB 1856 (4)

Memcached slab 1 KB 1200 (5)
malloc 1 KB 1279 (6)
NVMalloc 1 KB 1258 (5)

Table 3: Time for 1 million memcached operations.

Method 256 B inserts 4 KB inserts
[ms] (overhead) [ms] (overhead)

No mprotect 470.7 (1×) 878.5 (1×)
Sync 4144.4 (8.8×) 4844.6 (5.5×)
Async (40 ms) 677 (1.43×) 2305.1 (2.62×)
Async (80 ms) 559.8 (1.18×) 1564.6 (1.78×)

Table 4: Time for 1 million B+ tree insertions.

the testing overhead at 1.4%. NVMalloc causes little overhead for memory intensive applications.

8.2 Asynchronous Memory Protection

We measure the performance benefits of asynchronous memory protection when compared to synchronous
memory protection by measuring the time it takes to insert one million key-value pairs in our modified B+
tree. In the asynchronous case, we make an unprotect request right before we start an update to a node
or a data record, and make a protect request as soon as we are done updating it. For the synchronous
mprotect, we also maintain a user-space bitmap that records the state of a page (protected/unprotected) to
avoid superfluous system calls. Table 4 shows the time to insert 1 million entries in random order (8 B
keys, 256 B and 4 KB values respectively) using different virtual memory protection techniques. For the
asynchronous case, we vary the kernel thread wait time. The asynchronous memory protection technique
imposes much less overhead than the synchronous memory protection (e.g., 1.8× versus 8.8×).

We also measure the latency to complete the protection request, from the time the application issues
the request until the kernel thread protects the page while performing 1 M inserts of 8 B keys and 256 B
values (Figure 6). Using Linux high resolution timers we can achieve low latencies (50 µs on average) at the
expense of throughput: the overhead for the 10 µs kernel thread wait time is 6.5×—up from 1.18× with the
40 ms wait time, but still smaller than that of synchronous memory protection.

8.3 Cache Line Counters

This section compares the insert throughput achieved by our modified B+ tree and original B+ tree imple-
mentation [6] as follows: (a) no modifications and therefore no consistency guarantees, (b) cache line flushes
to achieve consistency (by the definition given in Section 6), and (c) memory mapped so as to use the write-
combining memory access protocol, which guarantees that writes go (almost) immediately to memory.13

13Linux lacks user-space Page Attributes Table support. We ran the experiments in this section on Windows Vista 64, using
Visual C++ 2010 (on the same Core i7 machine), except for the tests that use SSE streaming writes instructions, which we have
only been able to implement using the GCC compiler. The performance of those tests that ran on both Windows and Linux were
very similar.

16

 0
 20
 40
 60
 80

 100

 100 200

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

s
ts

Latency [ms]

 0
 20
 40
 60
 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2

P
e

rc
e

n
ta

g
e

 o
f

re
q

u
e

s
ts

Latency [ms]

Figure 6: CDF of memory protection latency for the B+ tree using kernel thread wait times of 40 ms (left
graph, 119 ms mean delay) and 0.01 ms (right graph, 0.05 ms delay).

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

original

w
rite-com

bining

CLFLUSH

CLC-UB

CLC-LB

M
O
VNT

T
h
ro

u
g
h
p
u
t

[o
p
s/

m
s]

256 B
4 KB

Figure 7: Insert throughput for 1 million entries (8 B keys, 256 B and 4 KB values respectively) CLC
corresponds to cache line counters (LB = lower bound, UB = upper bound).

Additionally, we also compare with the B+ tree modified to use the streaming writes with a non-temporal
hint (MOVNTx Intel SSE instructions), even if they do not guarantee immediate write-back to memory,
to give a higher bound on what can be achieved with cache-bypassing techniques.14 These results use the
simulated cache line counter overhead described in the Implementation section.

The results are presented in Figure 7. Because a node split has a transient state (see Section 6) whose
duration depends on the cache line replacement rate, we present the results for the cache line counter enabled
B+ tree as two data series: one corresponding to transient states ending immediately (an upper bound for
performance), and one for transient states lasting indefinitely (a lower bound).

Cache line counters outperform the other consistency preserving mechanisms for inserts. However,
this comes at the expense of the read throughput: unlike the B+ tree versions using cache flushes and cache
bypassing writes, the nodes in our B+ tree do not maintain the keys in order. As a result, the read throughput
is 68% to 70% of that of the classic B+ tree for 256 B values, and 88% to 90% for 4 KB values. A possible
solution is to lazily sort nodes during periods of low update load, but we leave this for future work.

8.4 DRAM vs. NVRAM

Our evaluation used DRAM as a proxy for NVRAM. As discussed in Section 2, some of the characteristics
of DRAM are overly optimistic predictions for NVRAM. We believe, nevertheless, that “high-order bits” of

14Streaming writes may only update the cache if the targeted memory location is in the cache [19].

17

our results would remain when using NVRAM, were it available: VM page tables would still be maintained
in DRAM, so the mprotect overhead would be the same (in absolute value; the relative overhead might
be lower if NVRAM writes were relatively slower). NVMalloc’s write patterns would remain the same,
but, if NVRAM writes were appreciably slower than DRAM writes, NVMalloc’s decreased overall write
traffic would give it a performance advantage over traditional memory allocators. Finally, the performance
advantages of cache line counters would be more evident on NVRAM: by not forcing writes to go directly
to memory, we would decrease the number of memory bus transactions (which are likely to be slower with
NVRAM), as well as the required write bandwidth.

9 Related Work

Related work falls into three main categories: systems that use NVRAM as persistent storage on the memory
bus, memory management, and virtual memory protection.

NVRAM on the memory bus. Recent work has addressed some of the challenges of using NVRAM as
persistent storage on the memory bus. BPFS [10] is a file system designed specifically for NVRAM. As
we do, BPFS identifies cache-bypassing writes and cache flushes as an important source of inefficiency, and
proposes CPU modifications—epoch barriers—to allow applications to use normal stores while getting strict
guarantees for the order in which these stores will be persisted. Our cache line counter mechanism is a more
general and flexible solution: applications themselves control the ordering of updates by delaying making
those updates that depend on something still in the CPU caches. This allows for a less intrusive hardware
implementation when compared to epoch barriers: the cache line replacement logic does not change (which
is important, since otherwise this could negate the benefits of many years of CPU cache optimizations), and
the CPU never has to perform cache walks when a cache line has to be written back to memory. Moreover,
it is unclear if epoch barriers can work well in a general multi-process setting, outside of BPFS, because
barriers would impose false dependencies between unrelated processes.

NV-heaps [9] and Mnemosyne [44] extend the software transactional memory semantics to include
persistence. NV-heaps restrict the interface to NVRAM to an object-oriented programming model, and
provide garbage collection for persistent memory objects—this is important, because memory leaks are
especially problematic for non-volatile memory. We believe the techniques we presented in this paper
are complementary to the ones introduced by NV-heaps. Mnemosyne, like Rio Vista [25] before it, also
identifies the need for separating the memory allocator metadata from the allocated blocks of non-volatile
memory, but it stores this metadata unguarded in NVRAM—this scheme is therefore more vulnerable to
corruption and data loss than NVMalloc (see discussion in Section 3.2). NV-heaps uses the BPFS epoch
barriers for guarantees about ordering, while Mnemosyne relies on non-cacheable writes.

A versioned B+ tree implementation for NVRAM has been presented in [43]. It relies on cache line
flushes for maintaining write ordering. The aforementioned systems rely solely on external solutions for
wear-out prevention.

Memory Management. Throughout this paper, we extensively compare NVMalloc with the GNU C Li-
brary’s popular malloc implementation, which is based on dlmalloc [24]. Many other memory allocators
exist [5, 14, 16], but they are generally focused on multithread performance and their optimizations are or-
thogonal to ours. Some of their techniques work against our wear leveling goals (e.g., jemalloc’s expressed
goal to concentrate allocations into as few pages as possible), but most are optimizations orthogonal to ours.

The checksums that NVMalloc maintains for NVRAM block headers are similar to stack and heap
canaries [12, 34]. Canaries were used for preventing stack and heap attacks, while NVMalloc’s header
checksums were designed specifically for limiting and preventing data loss.

18

Dhiman et al. [13] presented an operating system page management technique for wear leveling page
allocations. By contrast, NVMalloc is a general-purpose memory allocator.

Virtual Memory Protection Protecting data mapped in the address spaces of processes using virtual
memory protection is a technique that has been employed successfully for over two decades in the context
of databases [41, 11] and reliable file system caches on battery-backed DRAM [8]. We improve the perfor-
mance of this technique by making the protect operations asynchronous. Our implementation is reminiscent
of FlexSC’s exception-less system calls [40].

10 Conclusions

Upcoming non-volatile memory technologies will soon provide an exciting, new way for applications to
store persistent data at near-DRAM speeds. Harnessing this speed, however, will require placing NVRAM
directly on the memory bus. Applications, supported by user-space libraries and the OS, must ensure that
this persistent data remains safe from wear-out and corruption. We believe that the techniques described
in this paper—a new memory allocator for NVRAM, a virtual memory protection scheme, and cache line
counters—can substantially ease the task of creating safe, high-performance persistent data structures for
emerging non-volatile memories.

References

[1] ITRS international technology roadmap for semiconductors, 2009.

[2] S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.Y. Lee, J.H.
Park, H. Horii, Y.H. Ha, J.H. Yi, B.J. Kuh, G.H. Koh, G.T. Jeong, H.S. Jeong, Kinam Kim, and B.I.
Ryu. Highly manufacturable high density phase change memory of 64Mb and beyond. In Electron
Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pages 907–910, 2004.

[3] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson, and Sean Lie. Un-
bounded Transactional Memory. IEEE Micro, 26:59–69, January 2006.

[4] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro, F. Pellizzer, F. Ottogalli, A. Pirovano,
M. Tosi, R. Bez, R. Gastaldi, and G. Casagrande. An 8Mb demonstrator for high-density 1.8V phase
change memories. In VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on, pages
442–445, 2004.

[5] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A scalable
memory allocator for multithreaded applications. In ASPLOS, pages 117–128, 2000.

[6] Timo Bingmann. STX B+ Tree C++ Template Classes. http://idlebox.net/2007/stx-btree/,
2008.

[7] Hans-J. Boehm. The Boehm-Demers-Weiser Conservative Garbage Collector. http://www.

research.ibm.com/ismm04/slides/boehm-tutorial.ppt, 2004.

[8] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gurushankar Rajamani,
and David Lowell. The Rio File Cache: Surviving Operating System Crashes. In ASPLOS, ASPLOS-
VII, pages 74–83, 1996.

19

http://idlebox.net/2007/stx-btree/
http://www.research.ibm.com/ismm04/slides/boehm-tutorial.ppt
http://www.research.ibm.com/ismm04/slides/boehm-tutorial.ppt

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent Objects Fast and Safe with Next-Generation, Non-
Volatile Memories. In Proceeding of the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’11, 2011.

[10] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger,
and Derrick Coetzee. Better I/O Through Byte-Addressable, Persistent Memory. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09, pages 133–146, New
York, NY, USA, 2009. ACM.

[11] G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The Case For Safe RAM. In Proceedings
of the 15th International Conference on Very Large Data Bases, VLDB ’89, pages 327–335, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[12] Crispin Cowan, Steve Beattie, Ryan Finnin Day, Calton Pu, Perry Wagle, and Erik Walthinsen. Pro-
tecting Systems from Stack Smashing Attacks with StackGuard. In In Linux Expo, 1999.

[13] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A Hybrid PRAM and DRAM Main Memory System.
In Design Automation Conference, 2009. DAC ’09. 46th ACM/IEEE, pages 664 –669, July 2009.

[14] Jason Evans. A Scalable Concurrent malloc(3) Implementation for FreeBSD. BSDCan - The BSD
Conference, 2006.

[15] Gregory Ganger, Yale Patt, Gregory R. Ganger, and Yale N. Patt. Soft updates: a solution to the
metadata update problem in file systems. ACM Transactions on Computer Systems, 18:127–153, 2000.

[16] Sanjay Ghemawat and Paul Menage. TCMalloc : Thread-Caching Malloc. http://

goog-perftools.sourceforge.net/doc/tcmalloc.html.

[17] Brian Holden. Latency comparison between HyperTransportTM and PCI-ExpressTM in communica-
tions systems. http://www.hypertransport.org/docs/wp/Low_Latency_Final.pdf, 2006.

[18] IBM WebSphere Real Time for Real Time Linux, version 2 Information Center. http://publib.

boulder.ibm.com/infocenter/realtime/v2r0/index.jsp, 2006.

[19] Intel 64 and IA-32 Architectures Developer’s Manual: Vol. 1. http://www.intel.com/content/

www/us/en/architecture-and-technology/, 2011.

[20] Takayuki Kawahara. Scalable spin-transfer torque ram technology for normally-off computing. IEEE
Design & Test of Computers, 28(1):52–63, 2011.

[21] Alfons Kemper, Donald Kossmann, and Lehrstuhl Fur Informatik. Adaptable Pointer Swizzling Strate-
gies in Object Bases: Design, Realization, and Quantitative Analysis, 1993.

[22] M. Kharbutli and Yan Solihin. Counter-based cache replacement and bypassing algorithms. Comput-
ers, IEEE Transactions on, 57(4):433 –447, april 2008.

[23] Leslie Lamport. Proving the Correctness of Multiprocess Programs. Software Engineering, IEEE
Transactions on, SE-3(2):125 – 143, March 1977.

[24] Doug Lea. A Memory Allocator. http://g.oswego.edu/dl/html/malloc.html, 2000.

20

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.hypertransport.org/docs/wp/Low_Latency_Final.pdf
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/index.jsp
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://www.intel.com/content/www/us/en/architecture-and-technology/
http://g.oswego.edu/dl/html/malloc.html

[25] David E. Lowell and Peter M. Chen. Free Transactions with Rio Vista. In Proceedings of the sixteenth
ACM Symposium on Operating Systems Principles, SOSP ’97, pages 92–101, New York, NY, USA,
1997. ACM.

[26] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa, and Reddi Kim Hazelwood. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In In Programming Language Design and Implementation, pages 190–
200. ACM Press, 2005.

[27] A distributed memory object caching system. http://memcached.org/, 2011.

[28] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: log-based transactional
memory. In High-Performance Computer Architecture, 2006. The Twelfth International Symposium
on, pages 254–265, February 2006.

[29] Numonyx. The basics of phase change memory (PCM) technology. http://www.numonyx.com/

Documents/WhitePapers/PCM_Basics_WP.pdf, 2008.

[30] Numonyx. Phase change memory. http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf,
2009.

[31] Numonyx. Phase change memory (PCM): A new memory technology to enable new memory usage
models. http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_
WhitePaper.pdf, 2009.

[32] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srinivasan, Luis Lastras,
and Bulent Abali. Enhancing Lifetime and Security of PCM-based Main Memory with Start-Gap Wear
Leveling. In Proc. ACM MICRO, 2009.

[33] Moinuddin K. Qureshi, Andre Seznec, Luis Lastras, and Michele Franceschini. Practical and Secure
PCM Systems by Online Detection of Malicious Write Streams. In Proc. HPCA, 2011.

[34] William Robertson, Christopher Kruegel, Darren Mutz, and Fredrik Valeur. Run-time Detection of
Heap-based Overflows. In In Proceedings of the 17th Large Installation Systems Administrators Con-
ference, pages 51–60. USENIX Association, 2003.

[35] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural Support for Software Trans-
actional Memory. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 39, pages 185–196, Washington, DC, USA, 2006. IEEE Computer Society.

[36] Samsung. Samsung Ships Industry’s First Multi-chip Package with a PRAM Chip for Hand-
sets. http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=

irnewsrelease&page=1&news_seq=18828&rdoPeriod=ALL&from_dt=&to_dt=&search_

keyword=, 2010.

[37] Virtualized SAP Performance with VMware vSphere 4. http://www.vmware.com/files/pdf/

perf_vsphere_sap.pdf, 2009.

[38] M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and James J. Kistler.
Lightweight Recoverable Virtual Memory. ACM Transactions on Computer Systems, 12:33–57, Febru-
ary 1994.

21

http://memcached.org/
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.numonyx.com/Documents/WhitePapers/PCM_Basics_WP.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_WhitePaper.pdf
http://www.numonyx.com/Documents/WhitePapers/Numonyx_PhaseChangeMemory_WhitePaper.pdf
http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&page=1&news_seq=18828&rdoPeriod=ALL&from_dt=&to_dt=&search_keyword=
http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&page=1&news_seq=18828&rdoPeriod=ALL&from_dt=&to_dt=&search_keyword=
http://www.samsung.com/us/aboutsamsung/news/newsIrRead.do?news_ctgry=irnewsrelease&page=1&news_seq=18828&rdoPeriod=ALL&from_dt=&to_dt=&search_keyword=
http://www.vmware.com/files/pdf/perf_vsphere_sap.pdf
http://www.vmware.com/files/pdf/perf_vsphere_sap.pdf

[39] Andre Seznec. A Phase Change Memory as a Secure Main Memory. IEEE Comp. Arch. Letters, 9:5–8,
2010.

[40] Livio Soares and Michael Stumm. FlexSC: Flexible system call scheduling with exception-less system
calls. In Proc. 9th USENIX OSDI, Vancouver, Canada, October 2010.

[41] Mark Sullivan and Michael Stonebraker. Using Write Protected Data Structures To Improve Software
Fault Tolerance in Highly Available Database Management Systems. In Proc. VLDB, 1991.

[42] How long does it take to make a context switch? http://blog.tsunanet.net/2010/11/

how-long-does-it-take-to-make-context.html.

[43] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy Campbell. Consistent
and Durable Data Structures for Non-Volatile Byte-Addressable Memory. In Proceedings of the 9th
USENIX Conference on File and Storage Technologies (FAST ’11), San Jose, CA, February 2011.

[44] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight Persistent Mem-
ory. In Proceedings of the 16th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’11, 2011.

[45] Paul R. Wilson. Pointer Swizzling at Page Fault Time: Efficiently Supporting Huge Address Spaces
on Standard Hardware. SIGARCH Computer Architecture News, 19:6–13, July 1991.

[46] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage allocation:
A survey and critical review. In Henry G. Baker, editor, IWMM, volume 986 of Lecture Notes in
Computer Science, pages 1–116. Springer, 1995.

22

http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html
http://blog.tsunanet.net/2010/11/how-long-does-it-take-to-make-context.html

	Introduction
	Background and Assumptions
	Non-Volatile RAM
	NVRAM on the Memory Bus
	Limitations of HW Wear Leveling
	Operating System Support
	Application Library Support

	Memory Allocation for NVRAM
	Wear-Aware Memory Allocation
	Robust Memory Allocation

	Low-Overhead VM Protection
	Cache-Efficient Updates to Persistent Main Memory
	Cache Line Counters
	Implementing Cache Line Counters

	A B+ Tree Example
	Implementation
	NVMalloc
	Asynchronous Memory Protection
	Simulating Cache Line Counters

	Evaluation
	NVMalloc
	Wear Leveling
	Fragmentation and Overhead

	Asynchronous Memory Protection
	Cache Line Counters
	DRAM vs. NVRAM

	Related Work
	Conclusions

