
MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices

Arash Tavakkol†, Juan Gómez-Luna†, Mohammad Sadrosadati†, Saugata Ghose‡, Onur Mutlu†‡

†ETH Zürich ‡Carnegie Mellon University
Abstract

Solid-state drives (SSDs) are used in a wide array of
computer systems today, including in datacenters and en-
terprise servers. As the I/O demands of these systems
continue to increase, manufacturers are evolving SSD ar-
chitectures to keep up with this demand. For example,
manufacturers have introduced new high-bandwidth in-
terfaces to replace the conventional SATA host–interface
protocol. These new interfaces, such as the NVMe proto-
col, are designed specifically to enable the high amounts
of concurrent I/O bandwidth that SSDs are capable of
delivering.

While modern SSDs with sophisticated features such
as the NVMe protocol are already on the market, exist-
ing SSD simulation tools have fallen behind, as they do
not capture these new features. We find that state-of-the-
art SSD simulators have three shortcomings that prevent
them from accurately modeling the performance of real
off-the-shelf SSDs. First, these simulators do not model
critical features of new protocols (e.g., NVMe), such as
their use of multiple application-level queues for requests
and the elimination of OS intervention for I/O request
processing. Second, these simulators often do not accu-
rately capture the impact of advanced SSD maintenance
algorithms (e.g., garbage collection), as they do not prop-
erly or quickly emulate steady-state conditions that can
significantly change the behavior of these algorithms in
real SSDs. Third, these simulators do not capture the
full end-to-end latency of I/O requests, which can incor-
rectly skew the results reported for SSDs that make use
of emerging non-volatile memory technologies. By not
accurately modeling these three features, existing sim-
ulators report results that deviate significantly from real
SSD performance.

In this work, we introduce a new simulator, called
MQSim, that accurately models the performance of
both modern SSDs and conventional SATA-based SSDs.
MQSim faithfully models new high-bandwidth protocol
implementations, steady-state SSD conditions, and the
full end-to-end latency of requests in modern SSDs. We
validate MQSim, showing that it reports performance re-
sults that are only 6%-18% apart from the measured ac-
tual performance of four real state-of-the-art SSDs. We
show that by modeling critical features of modern SSDs,
MQSim uncovers several real and important issues that
were not captured by existing simulators, such as the per-
formance impact of inter-flow interference. We have re-
leased MQSim as an open-source tool, and we hope that
it can enable researchers to explore directions in new and
different areas.

1 Introduction
Solid-state drives (SSDs) are widely used in today’s
computer systems. Due to their high throughput, low re-

sponse time, and decreasing cost, SSDs have replaced
traditional magnetic hard disk drives (HDDs) in many
datacenters and enterprise servers, as well as in consumer
devices. As the I/O demand of both enterprise and con-
sumer applications continues to grow, SSD architectures
are rapidly evolving to deliver improved performance.

For example, a major innovation has been the intro-
duction of new host interfaces to the SSD. In the past,
many SSDs made use of the Serial Advanced Technology
Attachment (SATA) protocol [67], which was originally
designed for HDDs. Over time, SATA has proven to be
inefficient for SSDs, as it cannot enable the fast I/O ac-
cesses and millions of I/O operations per second (IOPS)
that contemporary SSDs are capable of delivering. New
protocols such as NVMe [63] overcome these barriers
as they are designed specifically for the high through-
put available in SSDs. NVMe enables high throughput
and low latency for I/O requests through its use of the
multi-queue SSD (MQ-SSD) concept. While SATA ex-
poses only a single request port to the OS, MQ-SSD pro-
tocols provide multiple request queues to directly expose
applications to the SSD device controller. This allows
(1) an application to bypass OS intervention for I/O re-
quest processing, and (2) the SSD controller to schedule
I/O requests based on how busy the SSD’s resources are.
As a result, the SSD can make higher-performance I/O
request scheduling decisions.

As SSDs and their associated protocols evolve to keep
pace with changing system demands, the research com-
munity needs simulation tools that reliably model these
new features. Unfortunately, state-of-the-art SSD simu-
lators do not model a number of key properties of mod-
ern SSDs that are already on the market. We evaluate
several real modern SSDs, and find that state-of-the-art
simulators do not capture three features that are critical
to accurately model modern SSD behavior.

First, these simulators do not correctly model the
multi-queue approach used in modern SSD protocols. In-
stead, they implement only the single-queue approach
used in HDD-based protocols such as SATA. As a result,
existing simulators do not capture (1) the high amount of
request-level parallelism and (2) the lack of OS interven-
tion in modern SSDs.

Second, many simulators do not adequately model
steady-state behavior within a reasonable amount of sim-
ulation time. A number of fundamental SSD main-
tenance algorithms, such as garbage collection [11–
13, 23], are not executed when an SSD is new (i.e., no
data has been written to the drive). As a result, manufac-
turers design these maintenance algorithms to work best
when an SSD reaches the steady-state operating point
(i.e., after all of the pages within the SSD have been
written to at least once) [71]. However, simulators that
cannot capture steady-state behavior (within a reasonable

1

simulation time) perform these maintenance algorithms
on a new SSD. As such, many existing simulators do
not adequately capture algorithm behavior under realistic
conditions, and often report unrealistic SSD performance
results (as we discuss in Section 3.2).

Third, these simulators do not capture the full end-to-
end latency of performing I/O requests. Existing sim-
ulators capture only the part of the request latency that
takes place during intra-SSD operations. However, many
emerging high-speed non-volatile memories greatly re-
duce the latency of intra-SSD operations, and, thus, the
uncaptured parts of the latency now make up a signif-
icant portion of the overall request latency. For exam-
ple, in Intel Optane SSDs, which make use of 3D XPoint
memory [9, 25], the overhead of processing a request and
transferring data over the system I/O bus (e.g., PCIe) is
much higher than the memory access latency [16]. By
not capturing the full end-to-end latency, existing simu-
lators do not report the true performance of SSDs with
new and emerging memory technologies.

Based on our evaluation of real modern SSDs, we find
that these three features are essential for a simulator to
capture. Because existing simulators do not model these
features adequately, their results deviate significantly
from the performance of real SSDs. Our goal in this
work is to develop a new SSD simulator that can faith-
fully model the features and performance of both modern
multi-queue SSDs and conventional SATA-based SSDs.

To this end, we introduce MQSim, a new simulator that
provides an accurate and flexible framework for evaluat-
ing SSDs. MQSim addresses the three shortcomings we
found in existing simulators, by (1) providing detailed
models of both conventional (e.g., SATA) and modern
(e.g., NVMe) host interfaces; (2) accurately and quickly
modeling steady-state SSD behavior; and (3) measuring
the full end-to-end latency of a request, from the time
an application enqueues a request to the time the request
response arrives at the host. To allow MQSim to adapt
easily to future SSD developments, we employ a mod-
ular design for the simulator. Our modular approach
allows users to easily modify the implementation of a
single component (e.g., I/O scheduler, address mapping)
without the need to change other parts of the simulator.
We provide two execution modes for MQSim: (1) stan-
dalone execution, and (2) integrated execution with the
gem5 full-system simulator [8]. We validate the perfor-
mance reported by MQSim using several real SSDs. We
find that the response time results reported by MQSim
are very close to the response times of the real SSDs,
with an average (maximum) error of only 11% (18%) for
real storage workload traces.

By faithfully modeling the major features found in
modern SSDs, MQSim can uncover several issues that
existing simulators are unable to demonstrate. One such
issue is the performance impact of inter-flow interference
in modern MQ-SSDs. For two or more concurrent flows
(i.e., streams of I/O requests from multiple applications),
there are three major sources of interference: (1) the
write cache, (2) the mapping table, and (3) the I/O sched-
uler. Using MQSim, we find that inter-flow interference
leads to significant unfairness (i.e., the interference slows

down each flow unequally) in modern SSDs. This is
a major concern, as fairness is a first-class design goal
in modern computing platforms [4, 17, 19, 31, 37, 56–
60, 66, 73–76, 80, 84, 88]. Unfairness reduces the pre-
dictability of the I/O latency and throughput for each
flow, and can allow a malicious flow to deny or delay
I/O service to other, benign flows.

We have made MQSim available as an open source
tool to the research community [1]. We hope that
MQSim enables researchers to explore directions in sev-
eral new and different areas.

We make the following key contributions in this work:
• We use real off-the-shelf SSDs to show that state-

of-the-art SSD simulators do not adequately capture
three important properties of modern SSDs: (1) the
multi-queue model used by modern host–interface
protocols such as NVMe, (2) steady-state SSD behav-
ior, and (3) the end-to-end I/O request latency.

• We introduce MQSim, a simulator that accurately
models both modern NVMe-based and conventional
SATA-based SSDs. To our knowledge, MQSim is
the first publicly-available SSD simulator to faithfully
model the NVMe protocol. We validate the results re-
ported by MQSim against several real state-of-the-art
multi-queue SSDs.

• We demonstrate how MQSim can uncover important
issues in modern SSDs that existing simulators cannot
capture, such as the impact of inter-flow interference
on fairness and system performance.

2 Background
In this section, we provide a brief background on multi-
queue SSD (MQ-SSD) devices. First, we discuss the in-
ternal organization of an MQ-SSD (Section 2.1). Next,
we discuss host–interface protocols commonly used by
SSDs (Section 2.2). Finally, we discuss how the SSD
flash translation layer (FTL) handles requests and per-
forms maintenance tasks (Section 2.3).

2.1 SSD Internals
Modern MQ-SSDs are typically built using NAND flash
memory chips. NAND flash memory [11, 12] supports
read and write operations at the granularity of a flash
page (typically 4 kB). Inside the NAND flash chips, mul-
tiple pages are grouped together into a flash block, which
is the granularity at which erase operations take place.
Flash writes can take place only to pages that are erased
(i.e., free). To minimize the write latency, MQ-SSDs per-
form out-of-place updates (i.e., when a logical page is
updated, its data is written to a different, free physical
page, and the logical-to-physical mapping is updated).
This avoids the need to erase the old physical page dur-
ing a write operation. Instead, the old page is marked as
invalid, and a garbage collection procedure [11–13, 23]
reclaims invalid physical pages in the background.

Figure 1 shows the internal organization of an MQ-
SSD. The components inside the MQ-SSD are divided
into two groups: (1) the back end, which includes the
memory devices; and (2) the front end, which includes
the control and management units. The memory de-
vices (e.g., NAND flash memory [11, 12], phase-change

2

Host DRAMHost DRAM
HIL

Device-level
I/O Request Queue

FTL

C
ac

h
ed

WRQ

RDQ

Front end

Chip 0 Chip 1

Back end

Request i,
 Page 1

GC-WRQ

GC-RDQ

Channel0

Chip 3 Queue

M
Q

-S
SD

Request i,
 Page M

SQ 1
CQ 1

SQ: I/O Submission Queue
CQ: I/O Completion Queue

PCIe Bus

SQ 2
CQ 2

SQ N
CQ N

Root
Complex

PCIe
Switch i

DRAM

Write
Cache

PPALPA

Chip 0 Queue

Chip 2 Queue

Chip 1 Queue

FCCFCC

Chip 2 Chip 3
Channel1

FCCFCC

LPA

 Multi-queue request
processing in MQSim

• Detailed request processing delay model, and
• Support for multi-queue-aware cache and

address mapping in MQSim

Fast and efficient
preconditioning in MQSim

Detailed host-to-device
data transmission model

in MQSim

Address
Translation

Address
Translation

Transaction
Scheduling
Transaction
Scheduling

Cache
Management

Cache
Management

D
ie

 0

Plane0
Plane1

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

B
u

s In
terface

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

1 2
3

3

Figure 1: Organization of an MQ-SSD. As highlighted in the figure (1 , 2 , 3), our MQSim simulator captures
several aspects of MQ-SSDs not modeled by existing simulators.

memory [42], STT-MRAM [40], 3D XPoint [9]) in the
back end are organized in a highly-hierarchical manner
to maximize I/O concurrency. The back end contains
multiple independent bus channels, which connect the
memory devices to the front end. Each channel con-
nects to one or more memory chips. For a NAND flash
memory based SSD, each NAND flash chip is typically
divided into multiple dies, where each die can indepen-
dently execute memory commands. All of the dies within
a chip share a common communication interface. Each
die is made up of one or more planes, which are arrays of
flash cells. Each plane contains multiple blocks. Multi-
ple planes within a single die can execute memory oper-
ations in parallel only if each plane is executing the same
command on the same address offset within the plane.

In an MQ-SSD, the front end includes three major
components [47]. (1) The host–interface logic (HIL)
implements the protocol used to communicate with the
host (Section 2.2). (2) The flash translation layer (FTL)
manages flash resources and processes I/O requests (Sec-
tion 2.3). (3) The flash chip controllers (FCCs) send
commands to and transfer data to/from the memory chips
in the back end. The front end contains on-board DRAM,
which is used by the three components to cache applica-
tion data and store data structures for flash management.

2.2 Host–Interface Logic
The HIL plays a critical role in leveraging the inter-
nal parallelism of the NAND flash memory to provide
higher I/O performance to the host. The SATA pro-
tocol [67] is commonly used for conventional SSDs,
due to widespread support for SATA on enterprise and
client systems. SATA employs Native Command Queu-
ing (NCQ), which allows the SSD to concurrently exe-
cute I/O requests. NCQ allows the SSD to schedule mul-
tiple I/O requests based on which back end resources are
currently idle [29, 50].

The NVM Express (NVMe) protocol [63] was de-
signed to alleviate the bottlenecks of SATA [90], and to
enable scalable, high-bandwidth, and low-latency com-
munication over the PCIe bus. When an application is-
sues an I/O request in NVMe, it bypasses the I/O stack
in the OS and the block layer queue, and instead directly
inserts the request into a submission queue (SQ in Fig-
ure 1) dedicated to the application. The SSD then selects
a request from the SQ, performs the request, and inserts

the request’s job completion information (e.g., ack, read
data) into the request completion queue (CQ) for the cor-
responding application. NVMe has already been widely
adopted in modern SSD products [30, 64, 79, 85, 86].

2.3 Flash Translation Layer
The FTL executes on a microprocessor within the SSD,
performing I/O requests and flash management proce-
dures [11, 12]. Handling an I/O request in the FTL re-
quires four steps for an SSD using NVMe. First, when
the HIL selects a request from the SQ, it inserts the re-
quest into a device-level queue. Second, the HIL breaks
the request down into multiple flash transactions, where
each transaction is at the granularity of a single page.
Next, the FTL checks if the request is a write. If it is,
and the MQ-SSD supports write caching, the write cache
management unit stores the data for each transaction in
the write cache space within DRAM, and asks the HIL
to prepare a response. Otherwise, the FTL translates the
logical page address (LPA) of the transaction into a phys-
ical page address (PPA), and enqueues the transaction
into the corresponding chip-level queue. There are sepa-
rate queues for reads (RDQ) and for writes (WRQ). The
transaction scheduling unit (TSU) resolves resource con-
tention among the pending transactions in the chip-level
queue, and sends transactions that can be performed to its
corresponding FCC [20, 78]. Finally, when all transac-
tions for a request finish, the FTL asks the HIL to prepare
a response, which is then delivered to the host.

The address translation module of the FTL plays a
key role in implementing out-of-place updates. When
a transaction writes to an LPA, a page allocation scheme
assigns the LPA to a free PPA. The LPA-to-PPA mapping
is recorded in a mapping table, which is stored within the
non-volatile memory and cached in DRAM (to reduce
the latency of mapping lookups) [24]. When a trans-
action reads from an LPA, the module searches for the
LPA’s mapping and retrieves the PPA.

The FTL is also responsible for memory wearout
management (i.e., wear-leveling) and garbage collection
(GC) [11–13, 23]. GC is triggered when the number
of free pages drops below a threshold. The GC proce-
dure reclaims invalidated pages, by selecting a candidate
block with a high number of invalid pages, moving any
valid pages in the block into a free block, and then eras-
ing the candidate block. Any read and write transactions

3

generated during GC are inserted into dedicated read
(GC-RDQ) and write (GC-WRQ) queues. This allows
the transaction scheduling unit to schedule GC-related
requests during idle periods.

3 Simulation Challenges for
Modern MQ-SSDs

In this section, we compare the capabilities of state-of-
the-art SSD simulators to the common features of the
modern SSD devices. As shown in Figure 1, we identify
three significant features of modern SSDs that are not
supported by current simulation tools: 1 multi-queue
support, 2 fast modeling of steady-state behavior, and
3 proper modeling of the end-to-end request latency.

While some of these features are also present in some
conventional SSDs, their lack of support in existing sim-
ulators is more critical when we evaluate modern and
emerging MQ-SSDs, resulting in large deviations be-
tween simulation results and measured performance.

3.1 Multi-Queue Support
A fundamental difference of a modern MQ-SSD from a
conventional SSD is its use of multiple queues that di-
rectly expose the device controller to applications [90].
For conventional SSDs, the OS I/O scheduler coordi-
nates concurrent accesses to the storage devices and en-
sures fairness for co-running applications [66, 68]. MQ-
SSDs eliminate the OS I/O scheduler, and are them-
selves responsible for fairly servicing I/O requests from
concurrently-running applications and guaranteeing high
responsiveness. Exposing application-level queues to the
storage device enables the use of many optimized man-
agement techniques in the MQ-SSD controller, which
can provide high performance and a high level of both
fairness and responsiveness. This is mainly due to the
fact that the device controller can make better schedul-
ing decisions than the OS, as the device controller knows
the current status of the SSD’s internal resources.

We investigate how the performance of a flow1

changes when the flow is concurrently executed with
other flows on real MQ-SSDs. We conduct a set of ex-
periments where we control the intensity of synthetic
workloads that run on four new off-the-shelf MQ-SSDs
released between 2016 and 2017 (see Table 4 and Ap-
pendix A). In each experiment, there are two flows,
Flow-1 and Flow-2, where each flow always keeps its
I/O queue full with only sequential read accesses of 4 kB
average request size. We control the intensity of a flow
by adjusting its I/O queue depth. A deeper I/O queue
results in a more intensive flow. We hold the I/O queue
depth of Flow-1 constant in all experiments, setting it to
8 requests. We sweep eight different values for the I/O
queue depth of Flow-2, ranging from 8 to 1024 requests.

To quantify the I/O service fairness of each device, we
measure the average slowdown of each executed flow,
and then use the slowdown to calculate fairness using
Equation 1. We define the slowdown of a flow fi as
S fi =RT shared

fi
/RT alone

fi
, where RT shared

fi
is the response time

of fi when it is run concurrently with other flows, and

1We assume that each I/O flow uses a separate I/O queue.

RT alone
fi

is the response time of fi when it runs alone. Fair-
ness (F) is calculated as [22, 56, 58]:

F =
MIN

i
{S fi}

MAX
i
{S fi}

(1)

According to the above definition: 0 < F ≤ 1. Lower F
values indicate higher differences between the minimum
and maximum slowdowns of all concurrently-running
flows, which we say is more unfair to the flow that is
slowed down the most. Higher F values are desirable.

Figure 2 depicts the slowdown, normalized throughput
(IOPS), and fairness results when we execute Flow-1
and Flow-2 concurrently on our four target MQ-SSDs
(which we call SSD-A, SSD-B, SSD-C, and SSD-D).
The x-axes in all of the plots in Figure 2 represent the
queue depth (i.e., the flow intensity) of Flow-2 in the ex-
periments. For each SSD, we show three plots from left
to right: (1) the slowdown and normalized throughput of
Flow-1, (2) the slowdown and normalized throughput of
Flow-2, and (3) fairness.

 0

 5

 10

 15

 20

 25

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1
S

lo
w

do
w

n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-A

 0

 5

 10

 15

 20

 25

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 7

 14

 21

 28

 35

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-B

 0

 7

 14

 21

 28

 35

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 6

 12

 18

 24

 30

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-C

 0

 6

 12

 18

 24

 30

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 0.4

 0.8

 1.2

 1.6

 2

8 16 32 64 128 256
 0

 0.3

 0.6

 0.9

 1.2

 1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-D

 0

 0.4

 0.8

 1.2

 1.6

 2

8 16 32 64 128 256
 0

 0.3

 0.6

 0.9

 1.2

 1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

Figure 2: Performance of Flow-1 (left) and Flow-2

(center), and fairness (right), when flows are concur-
rently executed with different intensities on four real
MQ-SSDs.

We make four major observations from Figure 2.
First, in SSD-A, SSD-B, and SSD-C, the throughput of
Flow-2 substantially increases proportionately with the
queue depth. Aside from the maximum bandwidth avail-
able from the SSD, there is no limit on the through-
put of each I/O flow. Second, Flow-1 is slowed down
significantly due to interference from Flow-2 when the
I/O queue depth of Flow-2 is much greater than that
of Flow-1. Third, for SSD-A, SSD-B, and SSD-C, the
slowdown of Flow-2 becomes almost negligible (i.e., its

4

value approaches 1) as the intensity of Flow-2 increases.
Fourth, SSD-D limits the maximum throughput of each
flow, and thus the negative impact of Flow-2 on the per-
formance of Flow-1 is well controlled. Further experi-
ments with a higher number of flows reveal that one flow
cannot exploit more than a quarter of the full I/O band-
width of SSD-D, indicating that SSD-D has some level
of internal fairness control. In contrast, one flow can un-
fairly exploit the full I/O capabilities of the other three
SSDs.

We conclude that (1) the relative intensity of each
flow significantly impacts the throughput delivered to
each flow; and (2) MQ-SSDs with fairness controls, such
as SSD-D, perform differently from MQ-SSDs with-
out fairness controls when the relative intensities of
concurrently-running flows differ. Thus, to accurately
model the performance of MQ-SSDs, an SSD simula-
tor needs to model multiple queues and enable multiple
concurrently-running flows.

3.2 Steady-State Behavior
SSD performance evaluation standards explicitly clar-
ify that the SSD performance should be reported in the
steady state [71].2 As a consequence, pre-conditioning
(i.e., quickly reaching steady state) is an essential re-
quirement for SSD device performance evaluation, in or-
der to ensure that the results are collected in the steady
state. This policy is important for three reasons. First, the
garbage collection (GC) activities are invoked only when
the device has performed a certain number of writes,
which causes the number of free pages in the SSD to
drop below the GC threshold. GC activities interfere
with user I/O activity and can significantly affect the
sustained device performance. However, a fresh out-of-
the-box (FOB) device is unlikely to execute GC. Hence,
performance results on an FOB device are unrealistic as
they would not account for GC [71]. Second, the steady-
state benefits of the write cache may be lower than the
short-term benefits, particularly for write-heavy work-
loads. More precisely, in the steady state, the write cache
is filled with application data and warmed up, and it is
highly likely that no free slot can be allocated to new
write requests. This leads to cache evictions and in-
creased flash write traffic in the back end [33]. Third,
the physical data placement of currently-running appli-
cations is highly dependent on the device usage history
and the data placement of previous processes. For exam-
ple, which physical pages are currently free in the SSD
depends on how previous I/O requests wrote to and in-

2Based on the SNIA definition [71], a device is in the steady state
if its performance variation is limited to a deterministic range.

validated physical pages. As a result, channel- and chip-
level parallelism in SSDs is limited in the steady state.

Although a number of works do successfully precon-
dition and simulate steady-state behavior, many previous
studies have not explored the effect of steady-state be-
havior on their proposals. Instead, their simulations start
with an FOB SSD, and never reach steady state (e.g.,
when each physical page of the SSD has been written
to at least once). Most well-known storage traces are not
large enough to fill the entire storage space of a modern
SSD. Figure 3 shows the total write volume of popular
storage workloads [6, 53–55, 61]. We observe that most
of the workloads have a total write volume that is much
smaller than the storage capacity of most SSDs, with an
average write volume of 60 GB. Even for the few work-
loads that are large enough to fill the SSD, it is time con-
suming for many existing simulators to simulate each I/O
request and reach steady state (see Section 5). Therefore,
it is crucial to have a simulator that enables efficient and
high-performance steady-state simulation of SSDs.

3.3 Real End-to-End Latency
Request latency is a critical factor of MQ-SSD perfor-
mance, since it affects how long an application stalls on
an I/O request. The end-to-end latency of an I/O request,
from the time it is inserted into the host submission queue
to the time the response is sent back from the MQ-SSD
device to the completion queue, includes seven different
parts, as we show in Figure 4. Existing simulation tools
model only some parts of the end-to-end latency, which
are usually considered to be the dominant parts of the
end-to-end latency [3, 26, 27, 35, 38].

Figure 4a illustrates the end-to-end latency diagram
for a small 4 kB read request in a typical NAND flash-
based MQ-SSD. It includes I/O job enqueuing in the sub-
mission queue (SQ) 1 , host-to-device I/O job transfer
over the PCIe bus 2 , address translation and transac-
tion scheduling in the FTL 3 , read command and ad-
dress transfer to the flash chip 4 , flash chip read 5 ,
read data transfer over the Open NAND Flash Interface
(ONFI) [65] bus 6 , and device-to-host read data transfer
over the PCIe bus 7 . Steps 5 and 6 are assumed to be
the most time-consuming parts in the end-to-end request
processing. Considering typical latency values for an
8 kB page read operation, the I/O job insertion (< 1 µs, as
measured on our real SSDs), the FTL request processing
on a multicore processor (1 µs) [47] (assuming a mapping
table cache hit), and the I/O job and data transfer over the
PCIe bus (4 µs) [41, 46] make negligible contributions
compared to the flash read (50-110 µs) [49, 51, 52, 69]
and the ONFI NV-DDR2 [65] flash transfer (20 µs).

However, the above assumption is unrealistic due to
two major reasons. First, for some I/O requests, FTL re-

 0

 40

 80

 120

 160

 200

fin1
fin2

w
srch-1

w
srch-2

w
srch-3

dev
exchange

m
snfs

m
sncfs

rad-be

rad-ps

tpcc
tpce

hm
-0
hm

-1
m

ds-0

m
ds-1

prn-0
prn-1

proj-0

proj-1

proj-2

proj-3

proj-4

prxy-0

prxy-1

rsrch-0

rsrch-1

rsrsch-2

src1-0

src1-1

src1-2

src2-0

src2-1

src2-2

stg-0
stg-1

ts-0
usr-0

usr-1
usr-2

w
eb-0

w
eb-1

w
eb-2

w
eb-3

w
ebdev-0

w
ebdev-1

w
ebdev-2

w
ebdev-3

M
ean

To
ta

l W
ri

te
V

o
lu

m
e

(G
B

)

7
2

4

8
0

9

Figure 3: Total amount of data written by commonly-used storage workloads [6, 53–55, 61].

5

Enqueue I/O job
in the SQ

ti
m

e

Request
processing

ONFI data
Xfer (TONFI Xfer)

I/O job Xfer
over PCIe 5

Fl
as

h
 r

ea
d

(T
Fl

a
sh

 R
ea

d
)

Response data
Xfer over PCIe

Highest contribution
to end-to-end latency

6

3
2

7

1 Read request
Xfer to chip

4

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

User
Application

NAND flash
Chip

(a) NAND flash memory

3D
 X

p
o

in
t

re
ad

(T

3
D

X
p

o
in

t
R

ea
d
)

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

Enqueue I/O job
in the SQ

ti
m

e

Request
processing

User
Application

3D Xpoint
Chip

I/O job Xfer
over PCIe

5

Response data
Xfer over PCIe

Highest contribution
to end-to-end latency

6

3

2

7

1

Read request
Xfer to chip

4

Fast data
Xfer (TFast Xfer)

(b) 3D XPoint memory

Figure 4: Timing diagram for a 4 kB read request in
(a) NAND-flash and (b) 3D XPoint MQ-SSDs.

quest processing may not always be negligible, and can
even become comparable to the flash read access time.
For example, prior work [26] shows that if the FTL uses
page-level address mapping, then a workload without lo-
cality incurs a large number of misses in the cached map-
ping table (CMT). In case of a miss in the CMT, the user
read operation stalls until the mapping data is read from
the SSD back end and transferred to the front end [24].
This can lead to a substantial increase in the latency of
Step 3 in Figure 4a, which can become even longer than
the combined latency of Steps 5 and 6 . In an MQ-SSD,
as a greater number of I/O flows execute concurrently,
there is more contention for the CMT, leading to a larger
number of CMT misses.

Second, as shown in Figure 4b, cutting-edge non-
volatile memory technologies, such as 3D XPoint [7, 9,
16, 48], dramatically reduce the access and data trans-
fer times of the MQ-SSD back end, by as much as
three orders of magnitude compared to that of NAND
flash [25, 40, 42, 43]. The total latency of the 3D
XPoint read and transfer (< 1 µs) contributes less than
10% to the end-to-end I/O request processing latency
(<10 µs) [7, 16]. In this case, a conventional simulation
tool would be inaccurate, as it does not model the major
steps contributing to the end-to-end latency.

In summary, a detailed, realistic model of end-to-end
latency is key for accurate simulation of modern SSD de-
vices with (1) multiple I/O flows that can potentially lead
to a significant increase in CMT (cached mapping table)
misses, and (2) very-fast NVM technologies such as 3D
XPoint that greatly reduce raw memory read/write laten-
cies. Existing simulation tools do not provide accurate
performance results for such devices.

4 Modeling a Modern MQ-SSD with
MQSim

To our knowledge, there is no SSD modeling tool that
supports multi-queue I/O execution, fast and efficient
modeling of the SSD’s steady-state behavior, and a full
end-to-end request latency estimation. In this work, we
present MQSim, a new simulation framework that is de-
veloped from scratch to support all of these three im-
portant features that are required for accurate perfor-
mance modeling and design space exploration of mod-
ern MQ-SSDs. Although mainly designed for MQ-SSD
simulation, MQSim also supports simulation of the con-
ventional SATA-based SSDs that implement native com-
mand queuing (NCQ). Our new simulator models all of
the components shown in Figure 1, which exist in mod-
ern SSDs. Table 1 provides a quick comparison between
MQSim and previous SSD simulators.

MQSim is a discrete-event simulator written in C++
and is released under the permissive MIT License [1].
Figure 5 depicts a high-level view of MQSim’s main
components and their interaction. In this section, we
briefly describe these components and explain their novel
features with respect to the previous simulators.

Front endFront end Back end

Data Cache Manager

N
V

M
 C

h
an

n
e

l

N
V

M
 C

h
ip

Flash Block Manager

Cached Mapping Table

Address Mapping Unit

GC and WL Unit

N
V

M
 P

H
Y

Input Stream Manager

Request Fetch Unit

Host Interface

Tr
an

sa
ct

io
n

Sc

h
ed

u
lin

g
U

n
it

 (
TS

U
)

FTL

Figure 5: High-level view of MQSim components.

4.1 SSD Back End Model
MQSim provides a simple yet detailed model of the flash
memory chips. It considers three major latency compo-
nents of the SSD back end: (1) address and command
transfer to the memory chip; (2) flash memory read/

Table 1: A quick comparison between MQSim and existing SSD modeling tools.

Tool Multi-Queue Support Preconditioning End-to-end Latency Built-in Implementation
of SSD Components

MQSim Multi-queue scheduling
and prioritization

Fast and automatic
(enabled by default)

Detailed model of the
end-to-end latency

All major components that
exist in modern SSDs

Existing Tools Not supported Manual, optional,
and long execution time

Missing some constant- or
variable-latency components

Implementation is missing for
some major components

6

write execution for different technologies that store 1,
2, or 3 bits per cell [32]; and (3) data transfer to/from
memory chips. MQSim’s flash model considers the con-
straints of die- and plane-level parallelism, and advanced
command execution [65]. One important new feature of
MQSim is that it can be configured or easily modified to
simulate new NVM chips (e.g., those that do not need
erase-before-write). Due to decoupling of the NVM chip
communication interface from the chip’s internal imple-
mentation of the memory operations, one can modify the
NVM chip of MQSim without the need to change the
implementation of the other MQSim components.

Another new feature of MQSim is that it decouples the
sizes of read and write operations. This feature helps to
exploit large page sizes of modern flash memory chips in
that can enable better write performance, while prevent-
ing the negative effects of large page sizes on read per-
formance. For flash chip writes, the operation is always
page-sized [11, 12]. MQSim’s data cache controller can
delay writes to eliminate write-back of partially-updated
logical pages (where the update size is smaller than the
physical page size). When a partially-updated logical
page should be written back to the flash storage, the un-
changed sub-pages (sectors) of the logical page are first
read from the physical page that stores page data. Then,
unchanged and updated pieces of the page are merged. In
the last step, the entire page data is written to a new free
physical page. For flash chip reads, the operation could
be smaller than the physical page size. When a read op-
eration finishes, only the data pieces that are requested
in the I/O request are transferred from flash chips to the
SSD controller, avoiding the data transfer overhead of
large physical pages.

4.2 SSD Front End Model
The front end model of MQSim includes all of the basic
components of a modern SSD controller and provides
many new features that do not exist in previous SSD
modeling tools.

4.2.1 Host–Interface Model
The host interface component of MQSim provides both
NVMe multi-queue (MQ) and SATA native command
queue models for a modern SSD. To our knowledge,
MQSim is the first modeling tool that supports MQ I/O
request processing. There is a request fetch unit within
the host interface of MQSim that fetches and schedules
application I/O requests from different input queues. The
NVMe host interface provides users with a parameter,
called QueueFetchSize, that can be used to tune the
behavior of the request fetch unit, in order to accurately
model the behavior of real MQ-SSDs. This parameter
defines the maximum number of I/O requests from each
SQ that can be concurrently serviced in the MQ-SSD.
More precisely, at any given time, the number of I/O re-
quests that are fetched from a host SQ to the device-level
queue is always less than or equal to QueueFetchSize.
This parameter has a large impact on the MQ-SSD multi-
flow request processing characteristics discussed in Sec-
tion 3.1 (i.e., on maximum achievable throughput per
I/O flow and probability of inter-flow interference). Ap-

pendix A.3 analyzes the effect of this parameter on per-
formance.

MQSim also models different priority classes for host-
side request queues, which are part of the NVMe stan-
dard specification [63].

4.2.2 Data Cache Manager
MQSim has a data cache manager component that im-
plements a DRAM-based cache with the least-recently-
used (LRU) replacement policy. The DRAM cache can
be configured to cache (1) recently-written data (de-
fault mode), (2) recently-read data, or (3) both recently-
written and recently-read data. A new feature of
MQSim’s cache manager, compared to previous SSD
modeling tools, is that it implements a DRAM access
model in which the contention among the concurrent ac-
cesses to DRAM chips and the latency of DRAM com-
mands are considered. The DRAM cache models in
MQSim can be extended to make use of detailed and
fast DRAM simulators, such as Ramulator [2, 39], to
perform detailed studies of the effect of DRAM cache
performance on the overall MQ-SSD performance. We
leave this to future work.

4.2.3 FTL Components
MQSim implements all the main FTL components, in-
cluding (1) the address translation unit, (2) the garbage
collection (GC) and wear-leveling (WL) unit, and (3) the
transaction scheduling unit. MQSim provides different
options for each of these components, including state-of-
the-art address translation strategies [24, 78], GC candi-
date block selection algorithms [10, 18, 23, 45, 81, 91],
and transaction scheduling schemes [34, 87]. MQSim
also implements several state-of-the-art GC and flash
management mechanisms, including preemptible GC I/O
scheduling [44], intra-plane data movement from one
physical page to another physical page using copyback
read and write command pairs [27], and program/erase
suspension [87] to reduce the interference of GC op-
erations with application I/O requests. One novel fea-
ture of MQSim is that all of its FTL components sup-
port multi-flow (i.e., multi-input queue) request process-
ing. For example, the address mapping unit can partition
the cached mapping table space among the concurrently
running flows. This inherent support of multi-queue-
aware request processing facilitates the design space ex-
ploration of performance isolation and QoS schemes for
MQ-SSDs.

4.3 Modeling End-to-End Latency
In addition to the flash operation and internal data trans-
fer latency (steps 3 , 4 , 5 , and 6 in Figure 4), there
is a mix of variable and constant latencies that MQSim
models to determine the end-to-end request latency.
Variable Latencies. These are the variable request pro-
cessing times in FTL that result from contention in the
cached mapping table and the DRAM write cache. De-
pending on the request type (either read or write) and the
request’s logical address, the request processing time in
FTL includes some of the following items: (1) the time
required to read/write from/to the data cache, and (2) the

7

time to fetch mapping data from flash storage in case of
a miss in the cached address mapping table.
Constant Latencies. These include the times required to
transmit the I/O job information, the entire user data, and
the I/O completion information over the PCIe bus, and
the firmware (FTL) execution time on the controller’s
microprocessor. The PCIe transmission latencies are cal-
culated based on a simple packet latency model provided
by Xilinx [41] that considers: (1) the PCIe communica-
tion bandwidth, (2) the payload and header sizes of the
PCIe Transaction Layer Packets (TLP), (3) the size of
the NVMe management data structures, and d) the size
of the application data. The firmware execution time is
estimated using both a CPU and cache latency model [1].

4.4 Modeling Steady-State Behavior
The basic assumption of MQSim is that all simulations
should be executed when the modeled device is in steady
state. To model the steady-state behavior, MQSim, by de-
fault, automatically executes a preconditioning function
before starting the actual simulation process. This func-
tion performs preconditioning in a short time (e.g., less
than 8 min when running tpcc [53] on an 800 GB MQ-
SSD) without the need to execute additional I/O requests.
During preconditioning, all available physical pages of
the modeled SSD are transitioned to either a valid or in-
valid state, based on the steady-state valid/invalid page
distribution model provided in [82] (only very few flash
blocks are assumed to remain free and are added to the
free block pool). MQSim pre-processes the input trace to
extract the LPA (logical page address) access characteris-
tics of the application I/O requests in the trace, and then
uses the extracted information as inputs to the valid/in-
valid page distribution model. In addition, input trace
characteristics, such as the average write arrival rate and

the distribution of write addresses, are used to warm up
the write cache.

4.5 Execution Modes
MQSim provides two modes of operation: (i) standalone
mode, where it is fed a real disk trace or a synthetic work-
load, and (ii) integrated mode, where it is fed disk re-
quests from an execution-driven engine (e.g., gem5 [8]).

5 Comparison with Previous Simulators
The increasing usage of SSDs in modern computing sys-
tems has boosted interest in SSD design space explo-
ration. To this end, several simulators have been devel-
oped in recent years. Table 2 summarizes the features of
MQSim and popular existing SSD modeling tools. The
table also shows the average error rates for the perfor-
mance of real storage workloads reported by each simu-
lator, compared to the performance measured on four real
MQ-SSDs (see Appendix A.1 for our methodology).

Existing tools either do not model some major com-
ponents of modern SSDs or provide very simplistic com-
ponent models that lead to unrealistic I/O request latency
estimation. In contrast, MQSim provides detailed imple-
mentations for all of the major components of modern
SSDs. MQSim is written in C++ and has 13K lines of
code (LOC). Next, we discuss the main advantages of
MQSim compared to the previous tools.
Host–Interface Logic. As Table 2 shows, most of the
existing simulators assume a very simplistic HIL model
with no explicit management mechanism for the I/O re-
quest queue. This leads to an unrealistic SSD model re-
garding the requirements of both NVMe and SATA pro-
tocols. As we mention in Section 3, the concurrent exe-
cution of I/O flows presents many challenges for perfor-
mance predictability and fairness in MQ-SSDs. No ex-

Table 2: Comparison of MQSim with previous SSD modeling tools.

Simulator

HIL Protocol Execution Mode End-to-End Latency Front-End Components Simulation Error (%)
NVMe SATA

A
lo

ne
1

Fu
ll2

E
m

ul
3

Pr
ec

4

N
V

M
R

/W
5

N
V

M
X

fe
r

FT
L

Pr
oc

6

C
ac

he
A

cc
.7

H
os

tX
fe

r8

M
ap

P9

M
ap

H
10

G
C

W
ri

te
C

ac
he

T
SU

11

W
R

L
12

M
Q

FT
L

13

L
O

C
14

SS
D

-A

SS
D

-B

SS
D

-C

SS
D

-D

MQ NCQ

MQSim X X X X X X X X X X X X X X X X X 13K 8 6 18 14

SSDModel [3] X X X X X X X 1K 91 155 196 136

FlashSim [38] X X X X X X X X 8K 99 259 310 138

SSDSim [27] X X X X X X 5K 70 68 74 85

NANDFlashSim [32] X X 7K – – – –

VSSIM [92] X X X X X X X X 6K – – – –

WiscSim [26] X X X X X X X X X 7K 95 277 324 135

SimpleSSD [35] X X X X X X X X 7K – – – –

1 Standalone execution 2 Integrated execution with full-system simulator 3 SSD emulation for real system
4 Fast and accurate preconditioning of the modeled SSD to enable accurate steady-state results
5 Flash (NVM) read/write timing 6 FTL request processing overhead 7 Accurate modeling of write cache access latency
8 Host-to-device and device-to-host data transfer delay 9 Page-level address mapping 10 Hybrid address mapping
11 FTL transaction scheduling unit 12 FTL wear-leveling unit 13 Built-in support for multi-queue-aware request processing in FTL
14 Lines of source code

8

isting simulator implements NVMe and multi-queue I/O
request management, and, hence, accurately models the
behavior of MQ-SSDs. Also, except for WiscSim, we
find that no existing simulator implements an accurate
model of the SATA protocol and NCQ request process-
ing. This leads to unrealistic SATA device simulation, as
NCQ-based I/O scheduling plays a key role in the per-
formance of real SSD devices [15, 26].
Steady-State Simulation. To our knowledge, accurate
and fast steady-state behavior modeling is not provided
by many existing SSD modeling tools. Among the tools
listed in Table 2, only SSDSim provides a function,
called make aged, to change the status of a set of phys-
ical pages to valid before starting the actual execution
of an input trace. This simple method cannot accurately
replicate the steady-state behavior of an SSD for two rea-
sons. First, after the execution of make aged, the phys-
ical blocks would include only valid pages or only free
pages. This is far from the steady-state status of blocks
in real devices, where each non-free block has a mix of
valid and invalid pages [28, 81, 82]. Second, the steady-
state status of the data cache is not modeled, i.e., the sim-
ulation starts with a completely empty write cache.

In general, it is possible to bring these simulators to
steady state. However, there is no fast pre-conditioning
support for them, and pre-conditioning must be per-
formed by executing traces. Preconditioning an exist-
ing simulator requires users to generate traces with a
large enough number of I/O requests, and can signifi-
cantly slow down the simulator, especially when a high-
capacity SSD is modeled. For example, our studies with
SSDSim show that pre-conditioning may increase the
simulation time up to 80x if an 800 GB SSD is modeled.3

Detailed End-to-End Latency Model. As described in
Section 3.3, the end-to-end latency of an application I/O
request includes different components. Table 2 shows
that latency modeling in existing simulators is mainly fo-
cused on the latency of the flash chip operation and the
SSD internal data transfer. As we explain in Section 3.3,
this is an unrealistic model of the end-to-end I/O request
processing latency, even for a conventional SSD.

To study the accuracy of the existing tools in model-
ing real devices, we create four models for the four real
SSDs shown in Table 4 in each simulator, and execute
three real traces, i.e., tpcc, tpce, and exchange. We
exclude the simulators that do not support trace-based
execution. The four rightmost columns of Table 2 show
the average error rate of each simulator in modeling the
performance (i.e., read and write latency) of these four
real devices. The error rates of the four evaluated simu-
lators are almost one order of magnitude higher than that
of MQSim. We believe that these high error rates are due
to four major reasons: (1) the lack of write cache or inac-
curate modeling of the write cache access latency, (2) the
lack of built-in support for steady-state modeling, (3) in-
complete modeling of the request processing latency in
FTL, and (4) the lack of modeling of the host-to-device
communication latency.

3The increase in simulation time depends on the access pattern, in-
tensity, and mix of I/O requests (read vs. write) of the workload.

6 Research Directions Enabled by MQSim
MQSim is a flexible simulation tool that enables differ-
ent studies on both modern and conventional SSD de-
vices. In this section, we discuss two new research di-
rections enabled by MQSim, which could not be ex-
plored easily using existing simulation tools. First, we
use MQSim to perform a detailed analysis of inter-flow
interference in a modern MQ-SSD (Section 6.1). We ex-
plain how sharing different internal resources in an MQ-
SSD, such as the write cache, cached mapping table, and
back end resources, can introduce fairness issues. Sec-
ond, we explain how the full-system simulation mode
of MQSim can enable detailed application-level studies
(Section 6.2).

6.1 Design Space Exploration of Fairness
and QoS Techniques for MQ-SSDs

As we describe in Section 1, fairness and QoS should be
considered as first-class design criteria for modern dat-
acenter SSDs. MQSim provides an accurate framework
to study inter-flow interference, thus enables the ability
to devise interference-aware MQ-SSD management al-
gorithms for sharing of the internal MQ-SSD resources.
As we show in Section 3.1, concurrently running two
I/O flows might lead to disproportionate slowdowns for
each flow, greatly degrading fairness and proportional
progress. This is particularly important in high-end SSD
devices, which provide higher throughput per I/O flow,
as we show in Appendix A.3.

We find that this inter-flow interference is mainly the
result of contention that takes place at three locations in
an MQ-SSD: 1) the write cache in the front end, 2) the
cached mapping table (CMT) in the front end, and 3) the
storage resources in the back end. In this section, we
use MQSim to explore the impact of these three points
of contention on performance and fairness, which cannot
be explored accurately using existing simulators.

6.1.1 Methodology
MQ-SSD Configuration. Table 3 lists the specification
of the MQ-SSD that we model in MQSim for our con-
tention studies.
Metrics. To measure performance, we use weighted
speedup (WS) [70] of the average response time (RT),
which represents the overall efficiency and system-level

Table 3: Configuration of the simulated SSD.

SSD Organization

Host interface: PCIe 3.0 (NVMe 1.2)
User capacity: 480 GB
Write cache: 256 MB, CMT: 4 MB
8 channels, 4 chips per channel
QueueFetchSize = 512

Flash Communication ONFI 3.1 (NV-DDR2)
Interface Width: 8 bit, Rate: 333 MT/s

Flash
Microarchitecture

8 KiB page, 448 B metadata per page,
256 pages per block, 2048 blocks per
plane, 2 planes per die

Flash Access
Parameters

Read latency: 75 µs, Program
latency: 750 µs, Erase latency: 3.8 ms

9

throughput [21] provided by an MQ-SSD during the con-
current execution of multiple flows:

WS = ∑
i

RT alone
i

RT shared
i

(2)

where RT alone
i and RT shared

i are defined in Section 3.1.
To demonstrate the effect of inter-flow interference on

fairness, we report slowdown and fairness (F) metrics, as
defined in Section 3.1.

6.1.2 Contention at the Write Cache

One point of contention among concurrently-running
flows in an MQ-SSD is the write cache. For flows with
low to moderate write intensity (where the average depth
of the I/O queue less than 16), or with high spatial lo-
cality, the write cache decreases the response time of
write requests, by avoiding the need for the requests to
wait for the write to complete to the underlying mem-
ory. For flows with high write intensity or with highly-
random accesses, the write requests fill up the limited
capacity of the write cache quickly, causing significant
cache thrashing and limiting the decrease in write re-
quest response time. Such flows not only do not ben-
efit from the write cache themselves, but also prevent
other lower-write-intensity flows from benefiting from
the write cache, leading to a large performance loss for
the lower-write-intensity flows.

To understand how the contention at the write cache
affects system performance and fairness, we perform a
set of experiments where we run two flows, Flow-1
and Flow-2, both of which perform only random-access
write requests. In both flows, the average request size is
set to 8 kB. We set Flow-1 to have a moderate write in-
tensity, by limiting the queue depth to 8 requests. We
vary the queue depth of Flow-2 from 8 requests to
256 requests, to control the write intensity of the flow.
In order to isolate the effect of write cache interference
in our experiments, we (1) assign each flow to a ded-
icated subset of back end resources (i.e., Flow-1 uses
Channels 1–4, and Flow-2 uses Channels 5–8), to avoid
introducing any interference in the back end; and (2) use
a perfect CMT, where all address translation requests are
hits, to avoid interference due to limited CMT capacity.

Figure 6a shows the slowdown of each flow when the
two flows run concurrently, compared to when each flow
runs alone. Figure 6b shows the fairness and perfor-
mance of the system when the two flows run concur-
rently. We make four key observations from the figures.
First, Flow-1 is slowed down significantly when Flow-2
has a high write intensity (i.e., its queue depth is greater
than 16), indicating that at high write intensities, Flow-2
induces write cache trashing. Second, the slowdown of
Flow-2 is negligible, because of the low write intensity
of Flow-1. Third, fairness degrades greatly, as a result
of the write cache contention, when Flow-2 has a high
write intensity. Fourth, write cache contention causes an
MQ-SSD to be inefficient at concurrently running multi-
ple I/O flows, as the weighted speedup is reduced by over
50% when Flow-2 has a high write intensity compared
to when it has a low write intensity.

 0

 7

 14

 21

 28

 35

 42

8 16 32 64 128 256

S
lo

w
do

w
n

Queue Depth of Flow-2

Flow-1

 0

 7

 14

 21

 28

 35

 42

8 16 32 64 128 256

S
lo

w
do

w
n

Queue Depth of Flow-2

Flow-2

(a) Slowdown of Flow-1 (left) and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256

W
ei

gh
te

d
S

pe
ed

up

Queue Depth of Flow-2

(b) Fairness (left) and system performance (right)

Figure 6: Impact of write cache contention.

We conclude that write cache contention leads to
unfairness and overall performance degradation for
concurrently-running flows when one flow has a high
write intensity. In these cases, the high-write-intensity
flow (1) does not benefit from the write cache; and
(2) prevents other, lower-write-intensity flows from tak-
ing advantage of the write cache, even though the other
flows would otherwise benefit from the cache. This mo-
tivates the need for fair write cache management algo-
rithms for MQ-SSDs that take inter-flow interference and
flow write intensity into account.

6.1.3 Contention at the Cached Mapping Table
As we discuss in Section 3.3, address translation can no-
ticeably increase the end-to-end latency of an I/O re-
quest, especially for read requests. We find that for
I/O flows with random access patterns, the cached map-
ping table (CMT) miss rate is high due to poor reuse of
address translation mappings, which causes the I/O re-
quests generated by the flow to stall for long periods of
time during address translation. This is not true for I/O
flows with sequential accesses, for which the CMT miss
rate remains low due to spatial locality. However, when
two I/O flows run concurrently, where one flow has a
random access pattern and another flow has a sequential
access pattern, the poor locality of the flow with the ran-
dom access pattern may cause both flows to have high
CMT miss rates.

To understand how contention at the CMT affects sys-
tem performance and fairness, we perform a set of ex-
periments where we concurrently run two flows that is-
sue read requests with an average request size of 8 kB. In
these experiments, Flow-1 has a fully-sequential access
pattern, and Flow-2 has a random access pattern for a
fraction of the total execution time, and has a sequential
access pattern for the remaining time. We vary the ran-
domness (i.e., the fraction of the execution time with a
random access pattern) of Flow-2. To isolate the effects
of CMT contention, we assign Flow-1 to Channels 1–4
in the back end, and assign Flow-2 to Channels 5–8.

Figure 7a shows the slowdown and change in CMT hit
rate of each flow when Flow-1 and Flow-2 run concur-

10

rently, compared to when each flow runs alone. Figure 7b
shows the fairness and overall performance of the sys-
tem when the two flows run concurrently. We make two
observations from the figures. First, as the randomness
of Flow-2 increases, the CMT hit rate of Flow-1 de-
creases, while the CMT hit rate of Flow-2 remains con-
stant. This indicates that the randomness of Flow-2 in-
troduces contention at the CMT, which hurts the CMT hit
ratio of Flow-1. Second, as the CMT hit rate of Flow-1
decreases, the flow experiences a greater slowdown, with
a 2.1x slowdown when Flow-2’s access pattern is com-
pletely random. Third, as the randomness of Flow-2
increases, both fairness and overall system performance
decrease, as the interference introduced by Flow-2 hurts
the performance of Flow-1 without providing any no-
ticeable benefit to Flow-2.

0.0

0.5

1.0

1.5

2.0

2.5

0% 20% 40% 60% 80% 100%
0.0

0.2

0.5

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 C
M

T
 H

it
R

at
e

Randomness of Flow-2

Flow-1

0.0

0.5

1.0

1.5

2.0

2.5

0% 20% 40% 60% 80% 100%
0.0

0.2

0.5

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 C
M

T
 H

it
R

at
e

Randomness of Flow-2

Flow-2

(a) Slowdown and CMT hit rate (normalized to the hit rate when
Flow-2 randomness is 0%) for Flow-1 (left) and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

0% 20% 40% 60% 80% 100%

F
ai

rn
es

s

Randomness of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

0% 20% 40% 60% 80% 100%

W
ei

gh
te

d
S

pe
ed

up

Randomness of Flow-2

(b) Fairness (left) and system performance (right)

Figure 7: Impact of CMT contention.

We conclude that the CMT contention induced by an
I/O flow with a random access pattern disproportionately
slows down concurrently-running flows with sequential
access patterns, which would otherwise benefit from the
CMT, leading to high unfairness and system performance
degradation. To avoid such unfairness and performance
loss, an MQ-SSD should use CMT management algo-
rithms that are aware of inter-flow interference.

6.1.4 Contention at the Back End Resources
A third point of contention is at the back end resources
within an MQ-SSD (see Section 2.1). A high-intensity
flow can use up most of the back end resources if the
flow issues a large number of requests in a short period
of time. This stalls the requests issued by a low-intensity
concurrently-running flow, as the requests cannot be ser-
viced before the back end resources finish servicing re-
quests from the high-intensity flow.

To understand how contention at the back end re-
sources affects system performance and fairness, we per-
form a set of experiments where we concurrently run two
I/O flows that issue random reads with a request size of
8 kB. Flow-1 is a low-intensity I/O flow, as we limit
its submission queue size (see Section 2.2) to 2 requests.

We vary the submission queue size of Flow-2 from 2 re-
quests to 256 requests, to control the flow intensity. In or-
der to isolate the effect of back end resource contention,
we disable the write cache, and simulate a CMT where
address translation requests always hit.

Figure 8a shows the slowdown when Flow-1 and
Flow-2 run concurrently, and the change in the aver-
age chip-level queue depth (i.e., the number of requests
waiting to be serviced by the back end; see Section 2.3)
for each flow during concurrent execution, compared to
the depth when each flow runs alone. Figure 8b shows
the fairness and overall performance of the system when
the two flows run concurrently. We make four observa-
tions from the figures. First, the average chip-level queue
depth of Flow-1 increases significantly when the inten-
sity of Flow-2 increases. Second, Flow-1 is slows down
significantly when we increase the host-side queue depth
of Flow-2 beyond 16. For example, when Flow-2 is at
the highest intensity that we test (with a host-side queue
depth of 256 requests), Flow-1 slows down by 14.4x.
Third, the effect of inter-flow interference on Flow-2 is
negligible, as its slowdown is almost equal to 1 for host-
side queue depths larger than 4. Fourth, the asymmetric
slowdowns (i.e., the large slowdown for Flow-1 and the
lack of slowdown for Flow-2) cause both fairness and
the overall system performance to decrease.

 0

 4

 8

 12

 16

2 4 8 16 32 64 128256
 1

 10

 100

 1000

 10000

S
lo

w
do

w
n

Δ
C

hi
p-

Le
ve

l Q
ue

ue
 D

ep
th

Queue Depth of Flow-2

Flow-1

 0

 2

 4

 6

 8

2 4 8 16 32 64 128256
 1

 10

 100

 1000

 10000

S
lo

w
do

w
n

Δ
C

hi
p-

Le
ve

l Q
ue

ue
 D

ep
th

Queue Depth of Flow-2

Flow-2

(a) Slowdown and average chip-level queue depth of Flow-1 (left)
and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16 32 64 128 256

W
ei

gh
te

d
S

pe
ed

up

Queue Depth of Flow-2

(b) Fairness (left) and system performance (right)

Figure 8: Impact of back end resource contention.

We conclude that a high-intensity flow can signifi-
cantly increase the depth of the chip-level queues and
thus lead to a large slow-down for concurrently-running
low-intensity flows. The FTL transaction scheduling unit
must be aware of the inter-flow interference at the MQ-
SSD back end to make the per-flow performance more
fair and thus keep the overall performance high.

6.2 Application-Level Studies
To study the effect of SSD device-level design choices on
application-level performance metrics, such as instruc-
tions per cycle (IPC), an SSD simulator must be inte-
grated and run together with a full-system simulator. We
integrate MQSim with gem5 [8] to provide a complete

11

model of multi-queue I/O execution and a complete com-
puter system. As Table 2 shows, among existing SSD
simulators, only SimpleSSD [35] is integrated with a
full-system simulator, and SimpleSSD does not simu-
late multi-queue I/O execution. In this section, we show
the effectiveness of our integrated simulator, by studying
how changes to QueueFetchSize (see Section 4.2.1) af-
fect the IPC of concurrently-executing applications due
to storage-level interference.

We conduct a set of experiments, running instances of
file server (fs) [77], mail server (ms) [77], web server
(ws) [77], and IOzone large file access (io) [62] appli-
cations using the integrated execution mode of MQSim.
We first execute each application alone (i.e., without
interference from other applications), and then con-
currently execute the application with a second appli-
cation to study the effect of inter-application interfer-
ence. To isolate the effect of inter-flow interference,
where each flow belongs to one application, we assign
each application to a single processor core and a sin-
gle memory channel. We test two different values of
QueueFetchSize (16 entries and 1024 entries) to exam-
ine how QueueFetchSize affects inter-application in-
terference. For these experiments, we measure appli-
cation slowdown (Sapp), which is calculated as Sappi =

IPCalone
appi

/IPCshared
appi

, and use application slowdown to de-
termine fairness using Equation 1.

Figure 9 shows the slowdown of each application
and the system fairness for six pairs of concurrently-
executing applications. On the x-axis, we list the ap-
plications used in each pair, along with the value of
QueueFetchSize that we use. We make two obser-
vations from the figure. First, for application pairs
where one of the applications is ms or ws, the impact
of QueueFetchSize on fairness is negligible. Both ms
and ws benefit mainly from caching a large part of their
data set in main memory, and hence issue very few re-
quests to the SSD. This keeps storage-level interference
low, as ms and ws do not contend often for access to
the SSD with the other applications that they are paired
with. Second, fs and io have high storage access in-
tensities, and hence interfere significantly when they are
paired together. In this case, we observe that a large
QueueFetchSize value leads to 60% fairness reduction.

 0

 1

 2

 3

 4

 5

fs-ms-16

fs-ms-1024

fs-ws-16

fs-ws-1024

fs-io-16
fs-io-1024

ms-ws-16

ms-ws-1024

ms-io-16

ms-io-1024

ws-io-16

ws-io-2014

0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

F
ai

rn
es

s

Application Mixes
4

E
rr

or
 R

at
e

App1 App2 Fairness

Figure 9: Application-level impact of QueueFetchSize.

We conclude that full-system behavior can greatly im-
pact the fairness and performance of I/O flows on an MQ-
SSD, as it affects the storage-level intensity of each flow.

7 Related Work
To our knowledge, MQSim is the first simulator that
(1) accurately simulates both modern and conventional
SSDs, (2) faithfully models modern host–interface pro-
tocols such as NVMe, and (3) supports the accurate sim-
ulation of SSDs that use emerging ultra-fast memory
technologies. We compare MQSim to existing state-
of-the-art SSD simulation tools in Section 5, and show
that MQSim provides greater capabilities and accurate
results. In this section, we provide a brief summary of
other related works.

A number of prior works consider the performance
and implementation challenges of MQ-SSDs [5, 31, 89,
90]. Xu et al. [89] analyze the effect of MQ-SSDs on
the performance of modern hyper-scale and database ap-
plications. Awad et al. [5] evaluate the impact of differ-
ent NVMe host-interface implementations on the system
performance. Vučinić et al. [83] show that the current
NVMe protocol will be a performance bottleneck in fu-
ture PCM-based storage devices. The authors modify the
NVMe standard in order to improve its performance for
future PCM-based SSDs.

Other works [31, 72] focus on managing multiple
flows in modern SSDs. Song and Yang [72] partition
the SSD back end resources among concurrently-running
I/O flows to provide performance isolation and allevi-
ate inter-flow interference. Jun and Shin [31] propose
a device-level scheduling technique for MQ-SSDs with
built-in virtualization support.

None of these previous studies provide a simulation
framework for MQ-SSDs or study the sources of inter-
flow interference inside MQ-SSDs.

8 Conclusion
We introduce MQSim, a new simulator that accurately
captures the behavior of both modern multi-queue SSDs
and conventional SATA-based SSDs. MQSim faith-
fully models a number of critical features absent in
existing state-of-the-art simulators, including (1) mod-
ern multi-queue-based host–interface protocols (e.g.,
NVMe), (2) the steady-state behavior of SSDs, and
(3) the end-to-end latency of I/O requests. MQSim can
be run as a standalone tool, or integrated with a full-
system simulator. We validate MQSim against real off-
the-shelf SSDs, and demonstrate that it provides highly-
accurate results. By accurately modeling modern SSDs,
MQSim can uncover important issues that cannot be
modeled accurately using existing simulators, such as
the impact of inter-flow interference. We have released
MQSim as an open-source tool [1], and we hope that
MQSim enables researchers to explore new ideas and di-
rections.

Acknowledgments
We thank our shepherd Haryadi Gunawi and the anony-
mous referees for their feedback on this work. We thank
our industrial partners, especially Google, Huawei, Intel,
and VMware, for their generous support.

12

References
[1] MQSim GitHub Repository. https://github.

com/CMU-SAFARI/MQSim.

[2] Ramulator GitHub Repository. https://github.
com/CMU-SAFARI/ramulator.

[3] AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., DAVIS, J. D., MANASSE, M. S., AND PAN-
IGRAHY, R. Design Tradeoffs for SSD Perfor-
mance. In USENIX ATC (2008).

[4] AUSAVARUNGNIRUN, R., CHANG, K. K.-W.,
SUBRAMANIAN, L., LOH, G. H., AND MUTLU,
O. Staged memory scheduling: Achieving high
performance and scalability in heterogeneous sys-
tems. In ISCA (2012).

[5] AWAD, A., KETTERING, B., AND SOLIHIN, Y.
Non-Volatile Memory Host Controller Interface
Performance Analysis in High-Performance I/O
Systems. In ISPASS (2015).

[6] BATES, K., AND MCNUTT, B. UMass Rrace
Repository. http://traces.cs.umass.edu/.

[7] BILLI, E. How NVMe and 3D XPoint Will Create
a New Datacenter Architecture. In FMS (2016).

[8] BINKERT, N., BECKMANN, B., BLACK, G.,
REINHARDT, S. K., SAIDI, A., BASU, A., HES-
TNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M.,
VAISH, N., HILL, M. D., AND WOOD, D. A. The
gem5 Simulator. SIGARCH Comput. Archit. News
(2011).

[9] BOURZAC, K. Has Intel Created a Universal Mem-
ory Technology? IEEE Spectrum (2017).

[10] BUX, W., AND ILIADIS, I. Performance of
Greedy Garbage Collection in Flash-Based Solid-
State Drives. Perform. Eval. (2010).

[11] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y.,
AND MUTLU, O. Error Characterization, Mitiga-
tion, and Recovery in Flash-Memory-Based Solid-
State Drives. Proc. IEEE (2017).

[12] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y.,
AND MUTLU, O. Errors in Flash-Memory-Based
Solid-State Drives: Analysis, Mitigation, and Re-
covery. arXiv:1711.11427 [cs:AR], 2017.

[13] CHANG, L.-P., KUO, T.-W., AND LO, S.-W.
Real-Time Garbage Collection for Flash-Memory
Storage Systems of Real-Time Embedded Systems.
TECS (2004).

[14] CHEN, F., HOU, B., AND LEE, R. Internal Paral-
lelism of Flash Memory-Based Solid-State Drives.
TOS (2016).

[15] CHEN, F., LEE, R., AND ZHANG, X. Essential
Roles of Exploiting Internal Parallelism of Flash
Memory Based Solid State Drives in High-Speed
Data Processing. In HPCA (2011).

[16] COULSON, R. 3D XPoint Technology Drives Sys-
tem Architecture. In SNIA Storage Industry Summit
(2016).

[17] DAS, R., MUTLU, O., MOSCIBRODA, T., AND
DAS, C. R. Application-Aware Prioritization
Mechanisms for On-Chip Networks. In MICRO
(2009).

[18] DESNOYERS, P. Analytic Modeling of SSD Write
Performance. In SYSTOR (2012).

[19] EBRAHIMI, E., LEE, C. J., MUTLU, O., AND
PATT, Y. N. Fairness via Source Throttling: A
Configurable and High-Performance Fairness Sub-
strate for Multi-Core Memory Systems. In ASPLOS
(2010).

[20] ELYASI, N., ARJOMAND, M., SIVASUBRAMA-
NIAM, A., KANDEMIR, M. T., DAS, C. R., AND
JUNG, M. Exploiting Intra-Request Slack to Im-
prove SSD Performance. In ASPLOS (2017).

[21] EYERMAN, S., AND EECKHOUT, L. System-Level
Performance Metrics for Multiprogram Workloads.
IEEE Micro (2008).

[22] GABOR, R., WEISS, S., AND MENDELSON, A.
Fairness and Throughput in Switch on Event Mul-
tithreading. In MICRO (2006).

[23] GAL, E., AND TOLEDO, S. Algorithms and Data
Structures for Flash Memories. CSUR (2005).

[24] GUPTA, A., KIM, Y., AND URGAONKAR, B.
DFTL: A Flash Translation Layer Employing
Demand-Based Selective Caching of Page-Level
Address Mappings. In ASPLOS (2009).

[25] HANDY, J. 3D XPoint: Speed at What Cost? In
FMS (2017).

[26] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. The Unwritten
Contract of Solid State Drives. In EuroSys (2017).

[27] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO,
H., AND ZHANG, S. Performance Impact and
Interplay of SSD Parallelism Through Advanced
Commands, Allocation Strategy and Data Granu-
larity. In ICS (2011).

[28] ILIADIS, I. Rectifying Pitfalls in the Performance
Evaluation of Flash Solid-State Drives. Perform.
Eval. (2014).

[29] INTEL CORPORATION. Intel SSD DC S3500 Series
Datasheet, 2015.

[30] INTEL CORPORATION. Intel 3D NAND SSD DC
P4500 Series Datasheet, 2017.

13

https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
http://traces.cs.umass.edu/

[31] JUN, B., AND SHIN, D. Workload-Aware Budget
Compensation Scheduling for NVMe Solid State
Drives. In NVMSA (2015).

[32] JUNG, M., CHOI, W., GAO, S., WILSON III,
E. H., DONOFRIO, D., SHALF, J., AND KAN-
DEMIR, M. T. NANDFlashSim: High-Fidelity,
Microarchitecture-Aware NAND Flash Memory
Simulation. TOS (2016).

[33] JUNG, M., AND KANDEMIR, M. Revisit-
ing Widely Held SSD Expectations and Rethink-
ing System-Level Implications. In SIGMETRICS
(2013).

[34] JUNG, M., AND KANDEMIR, M. T. Sprinkler:
Maximizing Resource Utilization in Many-Chip
Solid State Disks. In HPCA (2014).

[35] JUNG, M., ZHANG, J., ABULILA, A., KWON,
M., SHAHIDI, N., SHALF, J., KIM, N. S., AND
KANDEMIR, M. SimpleSSD: Modeling Solid
State Drives for Holistic System Simulation. CAL
(2017).

[36] KIM, J., KIM, J., PARK, P., KIM, J., AND KIM,
J. SSD Performance Modeling Using Bottleneck
Analysis. CAL (2017).

[37] KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND
HARCHOL-BALTER, M. Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Ac-
cess Behavior. In MICRO (2010).

[38] KIM, Y., TAURAS, B., GUPTA, A., AND UR-
GAONKAR, B. FlashSim: A Simulator for NAND
Flash-Based Solid-State Drives. In SIMUL (2009).

[39] KIM, Y., YANG, W., AND MUTLU, O. Ramula-
tor: A Fast and Extensible DRAM Simulator. CAL
(2016).

[40] KÜLTÜRSAY, E., KANDEMIR, M., SIVASUBRA-
MANIAM, A., AND MUTLU, O. Evaluating STT-
RAM as an Energy-Efficient Main Memory Alter-
native. In ISPASS (2013).

[41] LAWLEY, J. Understanding Performance of PCI
Express Systems. XILINX White Paper, 2014.

[42] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER,
D. Architecting Phase Change Memory as a Scal-
able DRAM Alternative. In ISCA (2009).

[43] LEE, B. C., ZHOU, P., YANG, J., ZHANG, Y.,
ZHAO, B., IPEK, E., MUTLU, O., AND BURGER,
D. Phase-Change Technology and the Future of
Main Memory. IEEE Micro (2010).

[44] LEE, J., KIM, Y., SHIPMAN, G. M., ORAL,
S., AND KIM, J. Preemptible I/O Scheduling of
Garbage Collection for Solid State Drives. TC
(2013).

[45] LI, Y., LEE, P. P., AND LUI, J. Stochastic Mod-
eling of Large-Scale Solid-State Storage Systems:
Analysis, Design Tradeoffs and Optimization. In
SIGMETRICS (2013).

[46] LIU, J., MAMIDALA, A., VISHNU, A., AND
PANDA, D. K. Performance Evaluation of Infini-
Band with PCI Express. In CONNECT (2004).

[47] MARVELL. Marvell 88SS1093 Flash Memory
Controller, 2017.

[48] MICRON TECHNOLOGY, INC. Breakthrough
Nonvolatile Memory Technology. https:
//www.micron.com/products/advanced-
solutions/3d-xpoint-technology.

[49] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MT29E64G08CECBB Datasheet, 2009.

[50] MICRON TECHNOLOGY, INC. M500 2.5-Inch
SATA NAND Flash SSD Series Datasheet, 2013.

[51] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MLC+ MT29F256G08CKCAB Datasheet,
2014.

[52] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MT29E128G08CBCCB Datasheet, 2016.

[53] MICROSOFT CORPORATION. Microsoft Enterprise
Traces. http://iotta.snia.org/traces/130.

[54] MICROSOFT CORPORATION. Microsoft Produc-
tion Server Traces. http://iotta.snia.org/
traces/158.

[55] MICROSOFT CORPORATION. Microsoft Research
Cambridge Traces. http://iotta.snia.org/
traces/388.

[56] MOSCIBRODA, T., AND MUTLU, O. Memory Per-
formance Attacks: Denial of Memory Service in
Multi-Core Systems. In USENIX Security (2007).

[57] MUTLU, O. Memory Scaling: A Systems Archi-
tecture Perspective. In IMW (2013).

[58] MUTLU, O., AND MOSCIBRODA, T. Stall-Time
Fair Memory Access Scheduling for Chip Multi-
processors. In MICRO (2007).

[59] MUTLU, O., AND MOSCIBRODA, T. Parallelism-
Aware Batch Scheduling: Enhancing Both Perfor-
mance and Fairness of Shared DRAM Systems. In
ISCA (2008).

[60] MUTLU, O., AND SUBRAMANIAN, L. Research
Problems and Opportunities in Memory Systems.
SUPERFRI (2015).

[61] NARAYANAN, D., THERESKA, E., DONNELLY,
A., ELNIKETY, S., AND ROWSTRON, A. Migrat-
ing Server Storage to SSDs: Analysis of Tradeoffs.
In EuroSys (2009).

14

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388

[62] NORCOTT, W. D., AND CAPPS, D. IOzone
Filesystem Benchmark, 2003.

[63] NVM EXPRESS WORKGROUP. NVM Express
Specification, Revision 1.2, 2014.

[64] OCZ. RD400/400A Series Datasheet, 2016.

[65] ONFI WORKGROUP. Open NAND Flash Interface
Specification, Revision 4.0, 2014.

[66] PARK, S., AND SHEN, K. FIOS: A Fair, Efficient
Flash I/O Scheduler. In FAST (2012).

[67] SATA-IO. Serial ATA Revision 3.3. http://www.
sata-io.org, 2016.

[68] SHEN, K., AND PARK, S. FlashFQ: A Fair
Queueing I/O Scheduler for Flash-Based SSDs. In
USENIX ATC (2013).

[69] SK HYNIX INC. F26 32Gb MLC NAND Flash
Memory TSOP Legacy, 2011.

[70] SNAVELY, A., AND TULLSEN, D. M. Symbiotic
Jobscheduling for a Simultaneous Multithreaded
Processor. In ASPLOS (2000).

[71] SNIA TECHNICAL POSITION. Solid State Storage
(SSS) Performance Test Specification (PTS) Enter-
prise, version 1.1, 2013.

[72] SONG, X., YANG, J., AND CHEN, H. Archi-
tecting Flash-Based Solid-State Drive for High-
Performance I/O Virtualization. CAL (2014).

[73] SUBRAMANIAN, L., LEE, D., SESHADRI, V.,
RASTOGI, H., AND MUTLU, O. The Blacklisting
Memory Scheduler: Achieving High Performance
and Fairness at Low Cost. In ICCD (2014).

[74] SUBRAMANIAN, L., LEE, D., SESHADRI, V.,
RASTOGI, H., AND MUTLU, O. BLISS: Balancing
Performance, Fairness and Complexity in Memory
Access Scheduling. TPDS (2016).

[75] SUBRAMANIAN, L., SESHADRI, V., GHOSH, A.,
KHAN, S., AND MUTLU, O. The Application
Slowdown Model: Quantifying and Controlling the
Impact of Inter-Application Interference at Shared
Caches and Main Memory. In MICRO (2015).

[76] SUBRAMANIAN, L., SESHADRI, V., KIM, Y.,
JAIYEN, B., AND MUTLU, O. MISE: Provid-
ing Performance Predictability and Improving Fair-
ness in Shared Main Memory Systems. In HPCA
(2013).

[77] TARASOV, V., ZADOK, E., AND SHEPLER, S.
Filebench: A Flexible Framework for File System
Benchmarking. USENIX; login (2016).

[78] TAVAKKOL, A., MEHRVARZY, P., ARJOMAND,
M., AND SARBAZI-AZAD, H. Performance Eval-
uation of Dynamic Page Allocation Strategies in
SSDs. TOMPECS (2016).

[79] TOSHIBA CORPORATION. PX04PMB Series
Datasheet, 2016.

[80] USUI, H., SUBRAMANIAN, L., CHANG, K. K.-
W., AND MUTLU, O. DASH: Deadline-Aware
High-Performance Memory Scheduler for Het-
erogeneous Systems with Hardware Accelerators.
TACO (2016).

[81] VAN HOUDT, B. A Mean Field Model for a Class
of Garbage Collection Algorithms in Flash-based
Solid State Drives. In SIGMETRICS (2013).

[82] VAN HOUDT, B. On the Necessity of Hot and Cold
Data Identification to Reduce the Write Amplifica-
tion in Flash-Based SSDs. Perform. Eval. (2014).

[83] VUČINIĆ, D., WANG, Q., GUYOT, C., MA-
TEESCU, R., BLAGOJEVIĆ, F., FRANCA-NETO,
L., LE MOAL, D., BUNKER, T., XU, J., SWAN-
SON, S., AND BANDIĆ, Z. DC Express: Shortest
Latency Protocol for Reading Phase Change Mem-
ory Over PCI Express. In FAST (2014).

[84] WALDSPURGER, C. A., AND WEIHL, W. E. Lot-
tery Scheduling: Flexible Proportional-Share Re-
source Management. In OSDI (1994).

[85] WESTERN DIGITAL CORPORATION. HGST Ultra-
star SN200 Series Datasheet, 2017.

[86] WESTERN DIGITAL CORPORATION. SanDisk
Skyhawk & Skyhawk Ultra NVMe PCIe SSD
Datasheet, 2017.

[87] WU, G., AND HE, X. Reducing SSD Read Latency
via NAND Flash Program and Erase Suspension. In
FAST (2012).

[88] XIANG, X., GHOSE, S., MUTLU, O., AND
TZENG, N.-F. A Model for Application Slowdown
Estimation in On-Chip Networks and Its Use for
Improving System Fairness and Performance. In
ICCD (2016).

[89] XU, Q., SIYAMWALA, H., GHOSH, M.,
AWASTHI, M., SURI, T., GUZ, Z., SHAYESTEH,
A., AND BALAKRISHNAN, V. Performance
Characterization of Hyper-Scale Applications on
NVMe SSDs. In SIGMETRICS (2015).

[90] XU, Q., SIYAMWALA, H., GHOSH, M., SURI,
T., AWASTHI, M., GUZ, Z., SHAYESTEH, A.,
AND BALAKRISHNAN, V. Performance Analy-
sis of NVMe SSDs and Their Implication on Real
World Databases. In SYSTOR (2015).

[91] YANG, M.-C., CHANG, Y.-M., TSAO, C.-W.,
HUANG, P.-C., CHANG, Y.-H., AND KUO, T.-
W. Garbage Collection and Wear Leveling for
Flash Memory: Past and Future. In SMARTCOMP
(2014).

[92] YOO, J., WON, Y., HWANG, J., KANG, S.,
CHOIL, J., YOON, S., AND CHA, J. VSSIM:
Virtual Machine Based SSD Simulator. In MSST
(2013).

15

http://www.sata-io.org
http://www.sata-io.org

A MQSim Validation
A.1 Evaluation Methodology
To validate the accuracy of MQSim, we compare its per-
formance results to four state-of-the-art MQ-SSDs (SSD-
A, SSD-B, SSD-C, and SSD-D) manufactured between
2016 and 2017. Table 4 lists key properties of the four
MQ-SSDs. We precondition each device with full-load
write traffic to write to 70% of the available logical
space [71]. The device preconditioning process includes
two 4-hour phases. In the first phase, we perform se-
quential writes, while in the second phase, we perform
random writes. We perform real-system experiments on
a server that contains an Intel Xeon E3-1240 v6 3.70GHz
processor and 32 GB of DDR4 main memory. The sys-
tem uses Ubuntu 16.04.2 with version 2.6.27 of the Linux
kernel, and the OS is stored in a 500 GB Western Digital
HDD. We run the fio benchmark tool for performance
evaluations, and all storage devices are connected to the
PCIe bus as add-in cards.

Table 4: Key characteristics of real MQ-SSDs.

Code Production Year Capacity Flash Technology

SSD-A 2016 800 GB MLC
SSD-B 2016 256 GB MLC
SSD-C 2017 1 TB TLC
SSD-D 2016 512 GB TLC

We validate our simulator with four different con-
figurations that correspond to our four real MQ-SSDs.
To this end, we extract the main structural parameters
of each real SSD using a microbenchmarking program.
This program analyzes and estimates the SSD’s inter-
nal configuration (e.g., NAND flash page size, NAND
flash read/write latency, number of channels in the SSD,
address mapping strategy, write cache size) based on
the methods described in prior SSD modeling stud-
ies [14, 15, 36]. We have open-sourced our microbench-
mark [1]. For garbage collection (GC) management, we
enable all of the advanced GC mechanisms described in
Section 4.2.3, except write suspension, in MQSim. Ac-
cording to the specifications of the flash chips used in two
of the SSD devices, write suspension is not supported.

A.2 Performance Validation
We validate MQSim against real devices using both syn-
thetic and real workloads. Our synthetic workloads is-
sue random accesses, and consist of only read requests
or only write requests, where we set the queue depth to
1 request.

Figure 10 compares the read and write request re-
sponse time4 measured on our four real MQ-SSDs with
the latencies reported by MQSim for our synthetic work-
loads. The plots in Figure 10a and 10b show the read
and the write latencies, respectively. The x-axes reflect
different I/O request sizes, ranging from 4 kB to 1 MB.
The blue curves show the error percentage of the simula-
tion model. We observe that across all request sizes, the
response times reported by MQSim match very closely

4Response time is defined as the time from when a host request is
enqueued in the submission queue to when the SSD response is en-
queued in the completion queue.

0.0

0.2

0.4

0.6

0.8

4 8 16 32 64 128
256

512
1024

R
ea

d
R

T
 (

m
s)

I/O Request Size (kB)

SSD-A

0.0

0.1

0.2

0.3

0.4

0.5

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.1

0.2

0.3

0.4

0.5

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.2

0.4

0.6

0.8

4 8 16 32 64 128
256

512
1024

R
ea

d
R

T
 (

m
s)

I/O Request Size (kB)

SSD-C

0.0

0.3

0.6

0.9

1.2

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-D

0%
20%
40%
60%
80%
100%

E
rr

or
 R

at
e

Real MQSim Error

(a) Read

0

6

12

18

24

4 8 16 32 64 128
256

512
1024

W
rit

e
R

T
 (

m
s)

I/O Request Size (kB)

SSD-A

0.0

0.6

1.2

1.8

2.4

3.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.6

1.2

1.8

2.4

3.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.4

0.8

1.2

1.6

2.0

4 8 16 32 64 128
256

512
1024

W
rit

e
R

T
 (

m
s)

I/O Request Size (kB)

SSD-C

0.0

0.2

0.4

0.6

0.8

1.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-D

(b) Write
Figure 10: Average response time (RT) for read (a) and
write (b) requests, reported by MQSim, compared to
RT measured on four real MQ-SSD devices, for syn-
thetic workloads. The blue curves show the error rates
of MQSim’s reported latency.

with the measured response times of the real devices, es-
pecially for SSD-B and SSD-D. Averaged across all four
MQ-SSDs and all I/O request sizes, the error rates for
read and write requests are 2.9% and 4.9%, respectively.

Figure 11 shows the accuracy of the request response
time reported by MQSim as a cumulative distribution
function (CDF), for three real workloads [53]: tpcc,
tpce, and exchange. We observe that MQSim’s re-
ported response times are very accurate when compared
to the response times measured on the real MQ-SSDs.
The average error rates for SSD-A, SSD-B, SSD-C, and
SSD-D are 8%, 6%, 18%, and 14%, respectively.

We conclude that MQSim accurately models the per-
formance of real MQ-SSDs.

A.3 Multi-Queue Simulation
To validate the accuracy of the multi-queue I/O execu-
tion model in MQSim, we conduct a set of simulation
experiments using two I/O flows, Flow-1 and Flow-2,
where each flow generates only sequential read requests.
We maintain a constant request intensity for Flow-1, by
setting its I/O queue depth to 8 requests. We vary the
intensity of Flow-2 across our experiments, by varying
the I/O queue depth between 8 entries and 256 entries.

16

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-A

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-B

exchange-real
exchange-MQSim

tpce-real
tpce-MQSim

tpcc-real
tpcc-MQSim

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-C

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-D

exchange-real
exchange-MQSim

tpce-real
tpce-MQSim

tpcc-real
tpcc-MQSim

Figure 11: Comparison of response time CDF when run-
ning real workloads on MQSim and on real MQ-SSDs.

For each Flow-2 I/O queue depth, we test two differ-
ent values (16 and 1024) of QueueFetchSize (see Sec-
tion 4.2.1).

Figure 12 shows the slowdown and normalized
throughput (IOPS) of Flow-1 (left) and Flow-2 (center),
and the fairness (see Section 3.1) of the system (right).
We make two key observations from the figure.

 0

 3

 6

 9

 12

 15

8 16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

 0

 3

 6

 9

 12

 15

8 16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0
0.2
0.5
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

(a) QueueFetchSize = 1024

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256
0.0

0.3

0.6

0.9

1.2

1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256
0.0

0.3

0.6

0.9

1.2

1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0
0.2
0.5
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

(b) QueueFetchSize = 16

Figure 12: MQSim successfully models the multi-queue
I/O processing model in (a) SSD-A, SSD-B, and SSD-C,
and (b) SSD-D (compare with Figure 2).

First, we find that MQSim successfully models the be-
havior of real MQ-SSDs that are optimized for higher
per-flow throughput (e.g., SSD-A, SSD-B, SSD-C) when
the value of QueueFetchSize is equal to 1024. Fig-
ure 12a shows similar trends for slowdown, through-
put, and fairness to the measurements we perform on
real MQ-SSDs, which we show in Figure 2. When
QueueFetchSize is set to 1024, a higher number of
I/O requests from each flow are fetched into the device-
level queue of the MQ-SSD. In both our MQSim results
and the measured results on real MQ-SSDs, we observe
that as the intensity of Flow-2 increases, its through-
put increases significantly with little slowdown, while
the throughput of Flow-1 decreases significantly, caus-
ing Flow-1 to slow down greatly. This occurs because
when Flow-2 has a high intensity, it unfairly uses most
of the back end resources in the MQ-SSD, causing re-

quests from Flow-1 to wait for longer latencies before
they can be serviced.

Second, MQSim accurately models the behavior of
real MQ-SSD products that implement mechanisms to
control inter-flow interference, such as SSD-D, when
QueueFetchSize is set to 16. We see that the trends
in Figure 12b are similar to those observed in our
measured results from SSD-D in Figure 2. When
QueueFetchSize is set to 16, only a limited number of
I/O requests for each concurrently-running flow are ser-
viced by the back end, preventing any one flow from un-
fairly using most of the resources within the MQ-SSD.
As a result, even when Flow-2 has a high intensity,
Flow-1 does not experience significant slowdown.

We conclude that by adjusting QueueFetchSize,
MQSim successfully models different multi-queue I/O
processing mechanisms in modern MQ-SSD devices.

A.4 Steady-State Behavior Modeling
As we discuss in Section 4.4, MQSim pre-conditions the
flash storage space and warms up the SSD data cache
based on the characteristics of the co-running workloads.
To validate the steady-state model in MQSim, we con-
duct a set of experiments using MQSim under high write
intensity, and compare the results to those from real MQ-
SSD devices. Figure 13 plots the read and write response
times for (1) actual I/O execution on SSD-B (which is
representative of the general behavior of the state-of-
the-art SSDs we examine); (2) MQSim-NoPrec, where
MQSim is run without pre-conditioning, and (3) MQSim-
Prec, where MQSim is run with pre-conditioning.

0

50

100

150

200

40 80 120 160 200

R
ea

d
R

T
 μ

s)

Simulated Time (m)

0

1

2

3

4

5

40 80 120 160 200

W
rit

e
R

T
 (

m
s)

Simulated Time (m)

0
1
2
3
4
5

40 80 120 160 200W
rit

e
R

T
 (

m
s)

Simulated Time (m)

MQSim-Prec
MQSim-NoPrec

Actual SSD-B

Figure 13: MQSim accurately models the steady-state
read and write response times (RT) of SSD-B, using fast
preconditioning.

We make two observations from the figure. First,
MQSim with pre-conditioning successfully follows the
response time results extracted from SSD-B. Second,
MQSim without pre-conditioning reports lower response
time results at the beginning of the experiment, since the
simulated SSD is not yet in steady state. Once the whole
storage space is written, the response time results be-
come similar to the real device, as garbage collection and
write cache evictions now take place in simulation at a
rate similar to the rate measured on SSD-B. We conclude
that MQSim’s pre-conditioning quickly and accurately
models the steady-state behavior of real MQ-SSDs.

17

	Introduction
	Background
	SSD Internals
	Host–Interface Logic
	Flash Translation Layer

	Simulation Challenges forModern MQ-SSDs
	Multi-Queue Support
	Steady-State Behavior
	Real End-to-End Latency

	Modeling a Modern MQ-SSD with MQSim
	SSD Back End Model
	SSD Front End Model
	Host–Interface Model
	Data Cache Manager
	FTL Components

	Modeling End-to-End Latency
	Modeling Steady-State Behavior
	Execution Modes

	Comparison with Previous Simulators
	Research Directions Enabled by MQSim
	Design Space Exploration of Fairness and QoS Techniques for MQ-SSDs
	Methodology
	Contention at the Write Cache
	Contention at the Cached Mapping Table
	Contention at the Back End Resources

	Application-Level Studies

	Related Work
	Conclusion
	MQSim Validation
	Evaluation Methodology
	Performance Validation
	Multi-Queue Simulation
	Steady-State Behavior Modeling

