
Abstract1

Switched system-area networks enable thousands of storage
devices to be shared and directly accessed by end hosts,
promising databases and filesystems highly scalable, reli-
able storage. In such systems, hosts perform access tasks
(read and write) and management tasks (storage migration
and reconstruction of data on failed devices.) Each task
translates into multiple phases of low-level device I/Os, so
that concurrent host tasks accessing shared devices can
corrupt redundancy codes and cause hosts to read inconsis-
tent data. Concurrency control protocols that scale to large
system sizes are required in order to coordinate on-line
storage management and access tasks. In this paper, we
identify the tasks that storage controllers must perform, and
propose an approach which allows these tasks to be com-
posed from basic operations—called base storage transac-
tions (BSTs)—such that correctness requires only the
serializability of the BSTs and not of the parent tasks. We
present highly scalable distributed protocols which exploit
storage technology trends and BST properties to achieve
serializability while coming within a few percent of ideal
performance.

1. Introduction

Traditional I/O subsystems, such as RAID arrays, use a sin-
gle centralized component to coordinate access to storage
when the system includes multiple storage devices. A sin-
gle storage controllerreceives an application’s read and
write requests and coordinates them so that applications see
the appearance of a single shared disk. In addition to per-
forming storage access on behalf of clients, the storage con-
troller also performs other “management” tasks. Storage
management tasks include migrating data to balance load or
utilize new devices [18], adapting storage representation to
access pattern [25], backup, and the reconstruction of data
on failed devices.

One of the major limitations of today’s I/O subsystems is
their limited scalability caused by shared controllers that
data must pass through, typically from server to RAID
controller, and from RAID controller to device. Emerging
shared, network-attached storage arrays, like the one shown
in Figure 1(a), enhance scalability by eliminating the shared
controllers and enable direct host access to potentially
thousands of storage devices [9, 18] over cost-effective
switched networks [4, 15]. In these systems, each host acts
as the storage controller on behalf of the applications
running on it, achieving scalable storage access bandwidths
[9].

Unfortunately, such shared storage arrays lack a central
point to effect coordination. Because data is striped across
several devices and often stored redundantly, a single
logical I/O operation initiated by an application may
involve sending requests to several devices. Unless proper
concurrency control provisions are taken, these I/Os can
become interleaved so that hosts see inconsistent data or
corrupt the redundancy codes. These consistencies can
occur even if the application processes running on the hosts
are participating in an application-level concurrency control
protocol, because storage systems can impose hidden
relationships among the data they store, such as shared
parity blocks.

For example, consider two hosts in a cluster as shown in
the timeline of Figure 1(b). Each host is writing to a
separate block, but the blocks happen to be in the same
RAID stripe, thereby sharing the same parity block. Both
hosts pre-read the same parity block and use it to compute
the new parity. Later, both hosts write data to their
independent blocks but overwrite the parity block such that
it reflects only one host’s update. The final state of the
parity block is, therefore, not the cumulative XOR of the
data blocks. A subsequent failure of a data disk, say device
2, will lead to reconstruction that does not reflect the last
data value written to a device. In general, races can occur
between concurrent host accesses, or between concurrent
accesses and management operations such as migration or
reconstruction.

Scalable storage access and management is crucial in
today’s storage marketplace [11]. In current storage
systems, management operations are either done manually
after taking the system off-line, use a centralized
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implementation [25], or assume a simple redundancy
scheme [18]. The paramount importance of storage system
throughput and availability leads to the employment of ad-
hoc management techniques, contributing to annual storage
management costs that are 6-12 times the purchase cost of
storage [11].

In this paper, we address the challenges of building a
scalable distributed storage system that enables high
concurrency between access and management tasks while
ensuring correctness. In particular, we characterize the
tasks that storage controllers perform and break these tasks
down into sets of basic two-phased operations, which we
call base storage transactions(BSTs). We claim that
overall correctness requires ensuring only theserializability
of the component BSTs and not of the parent tasks. We
present distributed concurrency control protocols that
exploit BST properties and technology trends toward more
device functionality to provide serializability with good
scalability. The protocols we present come within a few
percent of the performance of an ideal zero-overhead
protocol that would perform no concurrency control work
and provide no correctness guarantees. We further argue
that only a limited form of atomicity, and not “all or
nothing” atomicity, is required from BSTs.

The rest of the paper is organized as follows: Section 2
describes in more detail the kind of tasks that are carried
out at the storage layer (by the storage controllers). In
Section 3, we show how these tasks can be composed out of
a few BSTs. We further show that the serializability of the
BSTs ensures correctness for the parent tasks. In Section 4,
we present distributed concurrency control protocols
specialized to BSTs. We compare their performance to
centralized variants and to the zero-overhead protocol. We
conclude the paper in Section 5.

2. Storage system description

Large collections of storage commonly employ redundancy
that is transparent to applications, so that simple and com-
mon device failures can be tolerated without invoking

expensive higher-level failure and disaster recovery mecha-
nisms. For example, in RAID level 5, a parity-based redun-
dancy code is computed across a group of data blocks and
stored on a separate parity device. This allows the system to
tolerate anysingle self-identifying device failureby recov-
ering data from the failed device using the other data blocks
in the group and the redundant code [23]. The block of par-
ity that protects a set of data blocks is called a parity block.
A set of data blocks and their corresponding parity block is
called a parity stripe. Because it is one of the most complex
of common storage redundancy schemes, we focus for the
rest of this paper on RAID level 5 as our case study and
evaluation architecture.

Figure 1(a) shows the kind of system that concerns us. A
shared storage system is composed of multiple disks and
hosts, connected by a scalable network fabric. The devices
store uniquely named blocks and act independently of each
other. Each host acts as a storage controller for its
applications. The controller function can be implemented in
software as an operating system device driver or could be
delegated to a network interface card.

Hosts perform exactly four operations, divided into
access tasksand management tasks. The access tasks are
reads and writes (hostread and hostwrite operations).
These tasks provide semantics essentially identical to
reading and writing a disk drive or array. The management
tasks are reconstruction and data migration (reconstruct
andmigrate operations respectively). Each high-level task
is mapped onto one or more low-level I/O requests to
(contiguous) physical blocks on a single device (devread
anddevwrite). Depending on the striping and redundancy
policy, and whether a storage device has failed, ahostread
or hostwrite may break down into different low-level
devreadsand devwrites, and some form of computation
may be needed, such as computing parity. We refer to low-
level device requests that are part of the same high-level
task assiblings.

The hostread and hostwrite tasks are addressed to
virtual objects, which may be files, or whole volumes.

Dev 1 Dev 2
X0TA: hostwrite (XA) TB: hostwrite (YB)

Y0

Dev 3 (parity)
P0=X0+Y0

Host A

devread(data): Y0

devread(parity): P0

devwrite(data): YB

devwrite(parity):

devread(data): X0
devread(parity): P0
devwrite(data): XA
devwrite(parity):
(XA+Y0)

Host B

(X0+YB)

XA YB P=X0+YB

Figure 1: A shared storage system (a), and a timeline showing two concurrent small writes from two hosts (b). No concurrency control
provisions are taken. Although host A is updating device 1 and host B is updating device 2, both must read, modify and update the same
parity block on device 3. Both hosts read the same version of the parity block and the final writer leaves parity inconsistent.
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Blocks within a virtual object are mapped onto physical
block ranges on one or more physical storage devices. The
representation of a virtual object is described by astripe
map which specifies how the object is mapped, what
redundancy scheme is used, and what BSTs to use to read
and write the object. Stripe maps are cached by storage
controllers to enable them to carry out the access tasks.
Each host’s controller performs access tasks on behalf of
the applications running on it.

Management functions will occasionally change the
contents of stripe maps—for example, during data
migration or reconstruction. However, hosts cache copies of
the maps, which must be kept coherent. There are several
ways to maintain this coherence, such as using leases and
invalidation callbacks on the cached data or other methods
[10]; we do not consider this issue further in this paper.

3. Shared storage management

Concurrency is an essential property of shared storage. In
large clustered systems, for example, many clients often use
stored data at the same time. In addition, the reconstruction
or copying of large virtual objects can take a long time.
However, it is hard to ensure correctness when concurrent
storage controllers share access to data on multiple devices
Device failures, which can occur in the midst of concur-
rently executing tasks, complicate this further.

Transaction theory, which was originally developed for
database management systems, handles this complexity by
grouping primitive read and write operations into
transactions that exhibit ACID properties (Atomicity,
Consistency, Isolation and Durability) [13]. Databases,
however, must correctly perform arbitrary transactions
whose semantics are application-defined. Storage
controllers, on the other hand, perform only four tasks, and
the semantics of these tasks are well known. This a priori
knowledge enables powerful specialization of transaction
mechanisms for storage tasks [7].

In the following discussion, we will describe the
consistency of storage controller tasks in terms of a durable
serial execution, where tasks are executed one at a time and

failures only occur while the system is idle (in the gaps
between task executions). We then discuss how traditional
atomicity and isolation properties can be interpreted for
storage tasks to cope with concurrent execution and failure.

3.1. Base Storage Transactions

BSTs are transactions specialized to storage controller
tasks. An access task,hostread or hostwrite, is executed
using one BST. Which BST is chosen depends on the state
of the system and exactly which blocks are being accessed.
Storage management tasks,reconstruct and migrate are
usually composed of a series of short-running BSTs. This
reduces the impact on time-sensitive host access tasks and
enables a variety of performance optimizations [14, 20].

Each virtual object is in one of four modes: FAULT-FREE

(the usual state), DEGRADED (when one device has failed),
RECONSTRUCTING (when recovering from a failure) or
MIGRATING (when moving data). The first two modes are
accessmodes, where only access tasks are performed, and
the second two aremanagementmodes, where both
management and access tasks are allowed. Different BSTs
are used in different modes, partly to account for device
failures and partly to exploit knowledge about concurrent
management and access tasks. Table 1 shows the BSTs
used to perform each allowed task in each of these modes.

The BSTs for FAULT-FREE and DEGRADED modes are
straightforward, and are shown in Figure 2 and Figure 3
respectively. The other two modes are described below.

3.1.1. RECONSTRUCTING mode.This mode is used when
recovering from a disk failure (Figure 4). The system
declares a new block on a new disk to be the replacement
block, then uses thereconstruct task to recover the con-
tents of that block. This can occur in parallel withhostread
andhostwrite tasks. All these tasks are aware of both the
old and new mappings for the stripe, but the read BSTs use
the “original array”, ignoring the replacement block alto-
gether.Hostwrite tasks use BSTs that behave as if the orig-
inal array were in DEGRADED mode, but also update the
replacement block whenever the failed block is written to.
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(a) fullStripeWrite

B1 B2 B3

Mode = FAULT-FREE

PDD
B1 B2 B3

(c) readModifyWrite

Loc=(B1,B2,B3)

Figure 2: BSTs used in FAULT-FREE mode. Only one narrow
stripe is shown for simplicity. Ahostwrite invokes one of three
BSTs (a-c), and ahostread invokes thereadBST (d). An arrow
directed towards a device represents adevwrite; an arrow away
from a device represents a read; all reads precede all writes.
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Figure 3: BSTs invoked in DEGRADED mode. The
reconstructWriteBST (a) is invoked when the failed disk is being
updated. In this case, the data blocksnot being updated are read
and XORed with the new data to compute and update the parity
block. ThedegradedReadBST reconstructs the data on the failed
block using all the other data and parity blocks in the stripe.
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The reconstruct task rebuilds the data on the
replacement block using therebuildRangeBST, which
reads the surviving data and parity blocks in a stripe,
computes the contents of the failed data block and writes it
to the replacement disk. When thereconstruct task is done,
the replacement block will reflect the data from the failed
block, parity will be consistent, and the stripe enters
FAULT-FREE mode. Note that reconstruction concurrent
with host accesses may result in unnecessary, but still
correct, work.

3.1.2. MIGRATING  mode.To simplify exposition, assume a
non-redundant virtual object as shown in Figure 5. In this
mode, the stripe map for the virtual object specifies the old
and new physical locations.Hostwrite tasks update the old
and new physical locations by invoking amultiWrite BST.
Thus, at any point during the migration, the target physical
blocks are either empty (not yet written to) or contain the
same contents as their associated source physical blocks.
Hostread tasks invoke thereadBST, which reads the phys-

ical blocks from their old locations. ThereadBST does not
access the target physical blocks because they may be still
empty. Themigrate task can be ongoing in parallel using
thecopyBST. This can be easily generalized to a redundant
scheme by cloning the part of each write BST that updates
the source to also update the target with the same value.

3.2. BST Properties

BSTs specialize general transaction ACID properties to the
limited tasks of shared storage controllers.

3.2.1. BST Consistency.In the context of shared redundant
storage, consistency means that redundant storage blocks
contain data that correctly encodes the corresponding data
block values. For RAID 5, this means that after each BST,
the value of the parity block (P) is the XOR of all the values
of the last writes to each of the corresponding data blocks
(D). Each of the BSTs shown in Figures 2—5 has the
property that, provided storage is consistent when they start
and does not fail while they are executing, and provided
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Figure 4: BSTs invoked in RECONSTRUCTINGmode. Block B6 is allocated as the
replacement block. ThedegradedReadBST (a) is invoked by ahostread task if
the failed device is being accessed. ThereadModifyWriteBST (shown in Figure
3) is invoked by ahostwrite task if the failed device is not being updated. The
replacementWriteBST, which is areconstructWriteBST that in addition updates
the replacement block, is invoked if the failed device is being updated. The
rebuildRangeBST (c) is invoked by thereconstruct task to reconstruct the data
on the failed device and write to the replacement one.
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MODE

FAULT -FREE

(Figure 2)
DEGRADED

(Figure 3)
RECONSTRUCTING

(Figure 4)
MIGRATING

(Figure 5)

hostread read failed block:degradedRead
else:read

failed block:degradedRead
else:read(old location)

read
(old location)

hostwrite small:readModifyWrite
large:largeWrite
full stripe: fullStripeWrite

failed block:reconstructWrite
other failed:readModifyWrite
parity failed:parityFailedWrite

failed block:replacementWrite
other failed:readModifyWrite
parity failed:reconstructWrite
(new location)

multiWrite
(and cloning)

reconstruct — — rebuildRange —

migrate — — — copy

Table 1 : BSTs used for different tasks in different modes. The BST chosen depends on the “size” of the write, as a fraction of the
blocks in the stripe, and on whether the block being accessed has failed, some other data block has failed, or the parity block has failed.



that BSTs execute one at a time, then storage is consistent
after the completion of the BST.

3.2.2. BST Durability.Because the primitive operations of
BSTs transform stable storage (typically magnetic disks),
durability of changes is not difficult. Storage regions
written by a successful BST maintain the last written data
and never switch back to older data values. Durability is
preserved even after single device failures: RAID 5
reconstruction, combined with BSTs preserving data-parity
consistency, ensures that the data values reconstructed on
new storage are the same as the last written values.

3.2.3. BST Atomicity.This is the property that a
transaction, once started, either completes entirely or
terminates without changing any storage values. In the
absence of knowledge of the function of a transaction,
database systems must provide full atomicity by logging
values to be changed before making any changes. It
preserves the logs until all changes are made, and re-applies
the log of committed changes to recover from a failure [13].

However, for storage tasks we have full knowledge both
of the specific semantics needed by storage tasks and the
structure of the BSTs that will implement them.
Specifically, all BSTs can be represented as directed acyclic
graphs (Figure 7), in which it is possible to ensure that no
device write begins until after all device reads are complete
[7]. This point, immediately before the initiation of any
writes, is thecommit point. The notion of the commit point
allows us to relax our previous assumption that failures
occur only between BST executions. Note that we still
assume a single device failure, and the occurrence of more
than one failure, or other untimely host failures, is
catastrophic and can result in data loss.

Before reaching the commit point, any BST
encountering a device failure (during a read) simply
terminates, and its parent task reissues a new BST for
DEGRADED mode. After the commit point, a BST
encountering a single device failure (during a write) simply
completes. This is correct because an observer cannot
distinguish between a single failure occurring after the
commit point and the failure of that device immediately
after the BST completes.

If a host fails after the commit point but before data has
been sent to all devices, atomicity will be violated because
some blocks have been written, and the values that should
have been written to the others have been lost with the loss
of the host’s memory. All existing (non-database) storage
systems have this problem. Our system, in this case,
protects parity consistency by detecting the host failure and
initiating a rebuildRangeBST to update the parity to
correspond to this possibly corrupted data. (Note that to
detect a failure and take these actions, storage system code
not on the failed host must know which BST was active.

This is accomplished by piggybacking notification on the
concurrency control protocol of Section 4.)

3.2.4. BST Isolation.We can now relax our assumption
that BSTs execute serially. In showing that consistency,
durability, and atomicity are correctly maintained when
executing BSTs, we only required isolation between the
effects of one BST’s execution and those of others.
Serializableexecution of BSTs both allows concurrency
and provides this level of isolation by ensuring that the
results of the concurrent execution are identical to the
results of some serial execution sequence [22].

The following sections analyze four serializability
algorithms for shared storage systems.

4. Concurrency control algorithms for BSTs

A protocol that provides serializability is commonly called
a concurrency control protocol. We discuss two commonly
used centralized concurrency control protocols,server lock-
ing andcallback locking, and present our new device-sup-
ported distributed protocols,device-served lockingand
timestamp ordering. We show how the distributed protocols
benefit from specialization to BST properties and storage
technology trends. We evaluate performance relative to the
ideal performance of a zero-overhead protocol, which per-
forms no concurrency control.

4.1. Evaluation environment

We implemented our protocols in fully detailed simulation,
using the Pantheon simulator system [25]. We simulate a
cluster system consisting of hosts and disks connected by a
network. Table 2 shows the baseline parameters of the
experiments. Although the protocols were simulated in
detail, the service times for hosts, controllers, links and
storage devices were derived from simple distributions
based on observed behavior of Pentium-class servers com-
municating with 1997 SCSI disks [24] over a fast switched
local area network (like FibreChannel). Host clocks were

Baseline simulation parameters

System
size

20 devices, 16 hosts, RAID level 5, stripe width = 4
data + parity, 1000 blocks per device.

Host
workload

random think time (normally distributed with mean
80 ms, var. 10ms), 70% reads, access size uniformly
random between 1-4 blocks, target address random.

Service
times

Disk: 8ms positioning, 16MB/sec transfer rate.
Network: 1-2ms overhead per message,
10 MBytes/sec switched Ethernet. 750µsec mean
host/lock server message processing time.

Table 2 : Baseline simulation parameters. Host data is striped
across the parity group. We assume modern disk drives and a
switched network of 10MB links. Runs are repeated five times.
Each run lasts 500 seconds to keep variance small.



allowed to drift within a practical few milliseconds of real-
time [19]. We compared the performance of the protocols
under a variety of synthetically generated workloads and
environmental conditions. The baseline workload repre-
sents the kind of sharing that is characteristic of OLTP
workloads and cluster applications (databases and file serv-
ers), where load is dynamically balanced across the hosts or
servers in the cluster resulting in limited locality and mostly
random accesses. This baseline system applies a moderate
to high load on its storage devices, yielding about 50% sus-
tained utilization. We report the performance of the proto-
cols in FAULT-FREE mode since it is representative of their
general performance. Moreover, the relative performance of
the protocols under DEGRADEDmode was found to be simi-
lar to that under FAULT-FREE mode.

4.2. Centralized locking protocols

Lock ing is the
most commonly
employed mecha-
nism for imple-
ment ing
concurrency con-
trol. Although it
prov ides a task
w i th exc lus ive
access to a data
i tem, execut ion
may not be serial-
izable and dead-
locks can occur
when a task needs
to lock multiple
blocks and does so
carelessly. Further,

locking can severely limit concurrency. In practice, serializ-
ability of tasks that obtain multiple locks is achieved with
two-phase locking, a programming discipline in which no
lock can be released before the last lock has been obtained
[12]. The effect on concurrency can be limited by locking
only the minimum necessary items, and holding the locks
for as short a time as possible. Deadlock is handled either by
avoidance, such as a discipline of acquiring locks in a strict
published order in all tasks, or by a detection and recovery
mechanism, which detects (likely) deadlock and aborts
some lock-holding tasks. We discuss two locking algo-
rithms: simple server locking and its caching variant, call-
back locking. The protocols have the two-phase property
and hence ensure serializability. They are also free from
deadlocks.

4.2.1. Server locking.Under this scheme, a centralized
lock server provides locking on low-level storage block
ranges. A BST executing at a host acquires an exclusive

(for adevwrite) or a shared (for adevread) lock on a set of
target ranges by sending a singlelock messageto the lock
server. The lock server queues a host’s request if there is an
existing lock on any part of the requested range. Once
conflicting locks have been released, the server grants the
request. The host may then issue the low-level I/O requests
to the devices (devreads or devwrites). When all I/O
requests in the BST complete, the host sends anunlock
messageto the lock server. As there is only one lock and
one unlock message per BST, the protocol is trivially two-
phase and therefore serializable. Because all locks are
acquired in a single request, lock acquisition latency is
minimized and deadlocks are avoided. However, server
locking introduces a potential bottleneck at the server and
delays issuing low-level I/O requests for at least one round
trip of messaging to the lock server.

4.2.2. Callback locking.This is a popular variant of server
locking that delays the unlock message, effectively caching
the lock at the host, in the hope that the host will generate
another access to the same block(s) in the near future and
be able to avoid sending subsequent lock messages to the
server [16, 17, 6]. If a host requests a lock from the lock
server that is currently cached by another host, the server
asks the host holding the cached lock (this is thecallback
message) to relinquish it before granting the lock to the
newly requesting host. A common optimization to callback
locking is to have locks automatically expire after a “lease”
period so that callback messages are sent only to reclaim
recently cached locks. Our implementation uses a lease
period of four seconds.

4.2.3. Performance.Figure 6 highlights the scalability
limitation of centralized locking protocols. It plots the
average host-end task latency against total offered
throughput (by varying the number of hosts) using the
simulation parameters of Table 2. The plots of Figure 6
show that the locking protocols deliver only 30% or 50% of
the full throughput of the I/O system, as defined by the
zero-overhead protocol (which performs no concurrency
control work and provides no consistency guarantees). The
protocols bottleneck at a fraction of the attainable
throughput because the lock server’s CPU saturates
handling lock and unlock requests (750µsec per message
sent or received.) While there are several ways to increase
lock server throughput, by streamlining the server’s
network processing and request handling for example, they
do not eliminate the bottleneck.

Callback locking can reduce lock server load and lock
acquisition latencies when locks are commonly reused by
the same host multiple times before a lease expires. The
false sharing induced by shared parity blocks can reduce
this benefit somewhat. Figure 6 shows that at the baseline
workload, callback locking reduces latency relative to
simple locking by 20% but is still 33% larger than the zero-
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overhead protocol. This benefit is not from locality—the
workload contains little of it—but from the dominance of
read traffic, which allows concurrent cached read locks at
all hosts until the next write. In the worst case, however,
each lock is used once by a host, and then is called back by
a conflicting use at another host. This will induce the same
number of messages as simple server locking, but lock
acquisition latency can be much worse: for example, a write
lock request that conflicts with a read lock shared by many
hosts must wait for all of those hosts to respond to their
callbacks. Callback locking also is more sensitive to
contention than server locking. In other experiments, we
found that callback locking gives worse latency than server
locking at high contention due to its longer lock hold times.

4.3. Parallel lock servers

The scalability bottleneck of centralized locking protocols
can be avoided by distributing the locking work across mul-
tiple parallel lock servers. Locks can be partitioned across
multiple lock servers according to some static or dynamic
scheme, and hosts send lock requests, consistent with two-
phase locking rules, directly to the appropriate servers.

However, multiple lock servers lack a key benefit of
centralized locking: simple deadlock avoidance. Using
parallel lock servers, deadlocks can be avoided by acquiring
locks one at a time, but this increases the locking latency
and lock holding time substantially. This in turn increases
the probability of lock conflicts.

Instead, deadlocks can be detected via request time-outs.
If a lock request cannot be granted at a lock server within a
given time, that server presumes deadlock and denies the
request. The host BST then releases any acquired locks, and
retries from the beginning. We present a specialized
implementation of this scheme in the following section.

4.4. Device-served locking

Given the opportunity of increasing storage device intelli-
gence [9, 18], we investigated embedding lock servers in
the storage devices [21]. Device-served locking reduces the
cost of a scalable serializable storage array by eliminating
the need for dedicated lock server hardware, and decreases
latency and the total number of messages by exploiting the
two-phase nature of BSTs to piggy-back lock messaging on
I/O requests.

In device-served locks, each device serves locks for the
blocks stored on it. This enhances scalability by balancing
lock load over all the devices. While widely-parallel
locking like this can introduce many lock and unlock
messages, device-served locking mitigates this somewhat
by piggy-backing these messages on I/O requests as shown
in Figure 7.

For single-phase reads, lock acquisition can be piggy-
backed on the reads, reducing pre-I/O latency, but a

separate unlock phase is required. Fortunately, the second
phase latency can be hidden from the application since the
data has been received. For two-phase writes, locks can be
acquired during the first I/O phase (by piggy-backing the
lock requests on thedevread requests) and released during
the second I/O phase (by piggy-backing the unlock
messages onto thedevwrite requests) totally hiding the
latency and messaging cost of locking. We require that a
host not issue anydevwrites until all locks have been
acquired in order to preserve atomicity, although it may
issuedevreads. Restarting a BST in the lock acquisition
phase, therefore, does not require undoing writes (since no
data has been written yet).

The efficiency of device-supported parallel locking
eliminates the need for leased callback locks. Two-phase
writes have no latency overhead associated with locking,
and the overhead of unlocking for single phase reads is not
observable. Only single phase writes would benefit from
lock caching, and we feel that the simplicity of simple
device-served locks outweighs the possible performance
improvement. Our experiments show that device-served
locking is more effective than the centralized locking
schemes. With the baseline workload, it achieves latencies
only 10% larger than minimal and a peak throughput equal
to 94% of maximum.

Despite its scalability, device-served locking is
vulnerable to poor performance under high contention
because of its susceptibility to deadlocks and the difficulty
of properly tuning the critical lock request timeout. Under
low to moderate contention, which we induced by
controlling the fraction of storage addressed by all hosts,
device-served locking did better than centralized locking,
but when contention was high (hosts accessing only 2% of
the active disk space), the system became unstable. This
was because many BSTs restarted, either because of actual

Figure 7: The implementation of BSTs with device-served
locking and the piggy-backing optimization. A node represents a
message exchange with a device. An “L” node stands for alock
operation; a “U” node stands for anunlock operation. “LR”
represents the lock-and-devread operation, while “WU”
represents thedevwrite-and-unlock. The edges represent
control dependencies. A “B” node represents a commit point at
the host, where the host blocks until all preceding operations
complete, restarting from the beginning if any of them fail. Lock
operations can fail if the device times out before it can grant the
lock (“A”).
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deadlocks or a too-short timeout setting, thus causing
device overload.

4.5. Timestamp ordering

Developed for highly concurrent databases, timestamp
ordering protocols are an attractive mechanism for distrib-
uted concurrency control over storage devices since they
place no overhead on reads and are not susceptible to dead-
locks. These protocols select an a priori order of transaction
execution using some form of timestamps and then enforce
that order [5]. Most database implementations verify times-
tamp order each time a transaction executes an access to the
database, but more optimistic variants delay all checks until
commit time [1].

In the simplest timestamp ordering approach, each
transaction is tagged with a unique timestamp at the time it
starts. In order to verify that reads and writes are
proceeding in timestamp order, the blocks are tagged with a
pair of timestamps,rts and wts, which correspond to the
largest timestamp of a transaction that read or wrote the
block, respectively. A read by transactionT with timestamp
opts(T)to blockv is accepted ifopts(T)>wts(v), otherwise it is
immediately rejected. A write is accepted ifopts(T)>wts(v)
and opts(T)>rts(v). If an access is rejected, its parent
transaction is aborted and restarted with a new larger
timestamp.

In order to avoid cascading aborts, in which the abort of
one transaction causes a rippling abort of many others,
reads are not allowed to access data written by active
(uncommitted) transactions. When an active transaction
wants to update a block, it first submits aprewrite to
storage declaring its intention to write but without actually
updating the data. Storage accepts aprewrite only if
opts(T)>wts(v) and opts(T)>wts(v). When the active
transactionT commits, awrite is issued for each submitted
prewrite . Only then is the new value updated and made
visible to other readers. A transaction that issued a
prewrite may abort, in which case itsprewrites are
discarded and appropriate blocked requests are unblocked.
Readers are blocked behind any activeprewrite request at a
device until the write commits or aborts.

4.5.1. Timestamp ordering for BSTs.As described above,
timestamp ordering works by having hosts independently
determine a total serial order to which the effect of
concurrent execution should be equivalent. BST timestamp
ordering depends on devices capable of maintaining tags
and queues as described above, and on BSTs providing
information about that order (in the form of a timestamp) in
each I/O request. Since I/O requests are tagged with an
explicit order according to which they have to be processed
(if at all) at each device, deadlocks cannot occur and all
allowed schedules are serializable. Instead, out-of-order

requests will be rejected, causing their parent transaction
(BST) to be aborted and retried with a larger timestamp.

As in the general case, since each device is performing a
local check, a write request may pass the check in some
devices, but the BST may abort due to failed checks in other
devices. Because of the simple structure of BSTs, splitting
the write protocol into a prewrite phase followed by a write
phase ensures that the host has all device decisions before
issuing any write, allowing it to reach a commit point
without changing the contents of any storage. New
timestamps are generated at a host by sampling a local
clock which is loosely synchronized with the rest of the
cluster, then appending the host’s unique identifier to the
least significant bits of the clock value.

As an example, consider thereadModifyWriteBST since
it employs the piggy-backing optimization and is of
reasonable complexity, as shown in Figure 8. This protocol
reads data and parity in a first phase, uses this data together
with the “new data” to compute the new parity, then updates
both data and parity. The BST execution starts with the host
locally generating a new timestamp,opts, then sends low-
level devread requests to the data and parity devices,
tagging each request withopts,and bundling each request
with aprewrite request.

The device receiving aread-and-prewrite request
performs the necessary timestamp checks both for a read
and aprewrite , accepting the request only if both checks
succeed; that is,opts>rts and opts>wts for each affected
block. An accepted request is queued if there is an
outstandingprewrite with a lower timestamp, otherwise
data is returned to the host andrts is updated ifopts>rts.
When the host has received all requested data, it computes
the new parity and sends the new data and parity in
devwrites also tagged with opts. The devices are
guaranteed by the acceptance of theprewrite to do the

begin BST

begin BST

begin BST

RP RP RP

W W W

P P P

W W W

R R R

end BST

end BSTend BST

Figure 8: The composition of host operations in the optimized
timestamp ordering protocol.Devread, devwrite, andprewrite
requests are denoted by “R”, “W” and “P” nodes respectively.
“RP” denotes a read-and-prewrite request. A “B” node
represents the commit point at the host, where the host blocks
until all preceding operations complete, restarting from the
beginning if any of them fail. In a two-phase write, the
prewrite requests are piggy-backed on the reads. Hence, both
reads and two-phase writes use the minimal amount of
messaging.
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write, updatewts, and discard the correspondingprewrite
request from the queue. The request queue is then inspected
to see if anyread or read-and-prewrite requests can now
be completed.

Under normal circumstances, thereadModifyWriteBST
does not induce any overhead, just like piggy-backed
device-based locking, because reads arriving while other
writing BSTs are in progress is rare. We discuss
optimizations to the basic timestamp ordering protocol
next, which lend themselves to efficient implementation.
These optimizations were implemented in our simulation,
and the results reflect their effects.

4.5.2. Avoiding timestamp accesses.Our protocol requires
that the pair of timestamps,rts and wts, associated with
each disk block be durable: read before any disk operation
and written after every disk operation. A naive
implementation might store these timestamps on disk, near
the associated data. However, this would result in one extra
disk access after reading a block (to update the block’srts),
and one extra disk access before writing a block (to read the
block’s previouswts).

Doubling the number of disk accesses is not consistent
with our high-performance goal. Because all clocks are
loosely synchronized and message delivery latency should
be bounded, a device need not accept a request
timestamped with a value much smaller than its current
time. Such a transaction would have timed out, aborted, and
restarted with a later timestamp. Hence, per-block
timestamp information older thanT seconds, for some
value toT, can be discarded and a value of “current time
minusT” used instead. Moreover, if a device is reinitiating
after a “crash” or power cycle, it can simply wait timeT
after its clock is synchronized before accepting requests, or
record its initial synchronized time and reject all requests
with earlier timestamps. Therefore, timestamps only need
volatile storage, and only enough to record a few seconds of

activity. The use of loosely synchronized clocks and
efficient timestamp management for concurrency control
has been demonstrated in the Thor client-server object-
oriented database management system [1].

4.5.3. Performance

As shown in Figure 9, timestamp ordering is highly
scalable: the average task latency for timestamp ordering
and device-served locking is only 10% higher than that of
the zero-overhead protocol. In addition, it uses the smallest
amount of messaging compared to all other protocols. It has
no messaging overhead on reads, and with the piggy-
backing optimization, it can also eliminate the messaging
overhead associated with two-phase write BSTs, resulting
in, at worst, the same number of messages as the best
locking protocol.

4.6. Blocking/retry behavior

In any of the protocols, when several BSTs attempt to
access a conflicting range, some of them will be delayed
either directly on a lock, or indirectly by suffering an abort
and a retry.

The probability of delay depends in part on the level of
contention. Shown in Figure 10, the fraction of BSTs
delayed is highest for callback locking because it has the
largest window of vulnerability to conflict (lock hold time).
Both the distributed device-based protocols do better than
centralized locking approaches because they exploit piggy-
backing of lock/ordering requests on the I/O requests,
thereby avoiding the latency of communicating with the
lock server before starting the I/O and shortening the
window of vulnerability to conflict.

This delay also depends on environmental factors, such
as network reordering of messages. Reordering can cause
deadlocks and restarts for device-served locks, and
rejections and retries for timestamp ordering because
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Figure 10: The performance of the protocols
under high contention. When the hosts are
restricted to only 2% of the active portion of
the disk, device-served locking suffers from
disk queues and latency growing without
bound due to timeout-induced restarts.
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sibling requests are serviced in a different order at different
devices.

To explore the effect of reordering on the delay and
latency behavior of the protocols, we conducted an
experiment where we changed the variability of network
message latency and measured its effect on delay and
latency. Message latency was modeled as a uniformly
distributed random variable over a given window size,
extending from 1 tow milliseconds. A larger window size
implies highly variable message latencies and leads to a
higher probability of out-of-order message arrival. It also
increases the mean message latency. Figure 11 show the
increase in average latency as the message variability is
increased. Although timestamp ordering and device-based
locking are sensitive to message reordering, the end effect
on host latency is less noticeable; indeed, the gap between
the zero-overhead protocol and these two protocols remains
approximately constant, indicating little effect from
reordering.

5. Conclusions

Shared storage arrays enable thousands of storage devices
to be shared and directly accessed by end hosts over
switched system-area networks. In such systems, concur-
rent host tasks can lead to inconsistencies in redundancy
codes and for data read by end hosts. In this paper, we pro-
pose a novel storage-specialized transactional approach that
enables high concurrency between access and management
tasks in a distributed storage system. Our approach breaks
down the storage access and management tasks performed
by storage controllers into simple two-phased transactions
(BSTs) in which data logging is not needed because no disk
value is changed before the commit point. We present two
distributed concurrency control protocols—device-served
locks and timestamp ordering—that exploit intelligence in
storage devices to provide serializability for BSTs with
high scalability. These protocols use message batching and
piggy-backing to reduce BST latencies relative to central-
ized lock server protocols. In particular, both device-served
locking and timestamp ordering achieve 40% higher
throughput than server and callback locking for a small (20
device) system. Both distributed protocols exhibit superior
scaling, falling short of the ideal protocol’s throughput by
only 5-10%. At very high contention, timestamp ordering is
more robust than device-served locking because it does not
depend on a timeout mechanism for deadlock detection.
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