
Network Support for Network-Attached Storage

David F. Nagle, Gregory R. Ganger, Jeff Butler, Garth Goodson, and Chris Sabol

Carnegie Mellon University, Pittsburgh, PA 15213-3891
{bassoon, ganger}@ece.cmu.edu http://www.pdl.cs.cmu.edu

1 Introduction

Storage systems represent a vital market with storage
densities growing at 60%/year, resulting in 35%-50%/year
decreases in the cost per byte. In recent years, the amount of
storage sold almost doubled each year and is expected to
sustain annual growth of at least 60%. Secondary storage
has a healthy place in future computer systems.

While many storage products are directly attached to
personal computers, most disk array products (65% and ris-
ing) are deployed in local area network file servers. This
centralization of storage resources enables effective sharing,
better administrative control and less redundancy. However,
it also increases dependence on network and file server per-
formance. With the emergence of high-performance cluster
systems based on commodity personal computers and scal-
able network switching, rapidly increasing demands on stor-
age performance are anticipated. Specifically, storage
performance must cost-effectively scale with customer
investments in client processors, network links and storage
capacity.

Unfortunately, current distributed file system architec-
tures severely limit scalable storage. In current distributed
file systems, all storage bytes are copied through file server
machines between peripheral buses (typically SCSI) and cli-
ent LANs. In essence, these file server machines act as
application-level inter-network routers, converting name-
spaces (disk block versus file range) and protocol layers
(SCSI versus RPC/UDP/IP). This is a critical limitation for
cost-effective scalable storage. Specifically, the sustained
bandwidth of storage devices is rapidly outstripping
installed interconnection technologies and rendering store-
and-forward servers impractical. With disk data rates grow-
ing at 40% per year, 25-40 MB/s sustained disk bandwidths
will be a reality by the end of the decade. With this much
bandwidth from each commodity drive, conventional server
architectures can not be cost-effective.

Storage devices, however, are already effective net-
work data transfer engines. For example, Seagate’s Fibre
Channel Baracuda drives burst packetized SCSI at 1 Gbps.
Moreover, through careful hardware support for interlayer
processing, the marginal cost of these network-attached disk
drives is expected to be similar to that of high-end drive
interfaces, such as differential SCSI [Anderson95]. It is our
contention that cost-effective scalable storage performance
depends on eliminating the file server’s role as an inter-net-
work router. Instead, we advocate exploiting the drive’s
ability to inject packets directly into the clients’ network at
high-bandwidth. With effective network-attached storage,
striping of data over multiple devices can effectively scale
storage bandwidth [Patterson88, Hartman93].

The other dimension to delivering scalable storage
bandwidth is efficient networking. Networking technolo-
gies, such as Fibre Channel, are specifically designed for
storage systems. However, traditional client-server protocol
stacks and operating system software layers often copy data
several times in delivering it to applications, significantly
reducing network-attached storage performance. Newer
technologies, such as user-level networking, avoid this
problem by allowing applications to directly access the net-
work. Hence, user-level networking could be an ideal sub-
strate for network-attached storage.

This papers examines networking requirements for
storage and the integration of user-level networking with
network-attached storage (NAS). To provide context for the
networking demands of NAS, we begin by describing alter-
native network-attached storage architectures and CMU’s
network-attached storage system. Next, we survey storage’s
networking requirements and describe how one user-level
networking architecture, the VI Architecture (VIA), can be
effectively mapped onto our network-attached storage pro-
totype.

2 Managing Network-Attached Storage

The fundamental goal of our network-attached storage
research is to enable scalable storage systems while mini-
mizing the file manager bottleneck. One solution is to use
homogeneous clusters of trusted clients that issue
unchecked commands to shared storage. However, few
environments can tolerate such weak integrity and security
guarantees. Even if only for accident prevention, file protec-

Point of contact: Prof. David Nagle, Department of Electrical and Computer Engi-
neering, Carnegie Mellon Univ, Pittsburgh, PA 15213.

This work was supported in part by DARPA contract N00174-96-0002, by an NSF
Graduate Research Fellowship, and by the Parallel Data Consortium member compa-
nies (3COM, Clariion, Hitachi, HP, IBM, Intel, LSI Logic, Novell, Quantum, Seagate,
Siemens, Wind River Systems). The US government has certain rights in this mate-
rial. This work was performed in part according to the National Storage Industry Con-
sortium (NSIC) NASD project agreement. The views contained in this document are
those of the authors and should not be interpreted as representing the policies, either
expressed or implied, of any supporting agency.

Proceedings of Hot Interconnects 1999, August 18 - 20, 1999, Stanford University, Stanford, California, U.S.A.

2

tions and data/metadata boundaries should be checked by a
small number of administrator-controlled file manager
machines.

To provide this more appropriate degree of integrity
and security, we identify two basic architectures for direct
network-attached storage [Gibson97]. The first, NetSCSI,
makes minimal changes to the hardware and software of
SCSI disks, while allowing NetSCSI disks to send data
directly to clients, similar to the support for third-party
transfers already supported by SCSI [Miller88, Drapeau94].
Drives’ efficient data-transfer engines ensure that each
drive’s sustained bandwidth is available to clients. Further,
by eliminating file management from the data path, man-
ager workload per active client decreases. Cryptographic
hashes and encryption, verified by the NetSCSI disks, can
provide for integrity and privacy. The principal limitation of
NetSCSI is that the file manager is still involved in each
storage access; it translates namespaces and sets up the
third-party transfer on each request.

The second architecture, Network-Attached Secure
Disks (NASD, see Figure 1), relaxes the constraint of mini-
mal change from the existing SCSI interface. The NASD
architecture provides a command interface that reduces the
number of client-storage interactions that must be relayed
through the file manager, thus avoiding a file manager bot-
tleneck without integrating file system policy into the disk.
In NASD, data-intensive operations (e.g., reads and writes)
go straight to the disk, while less-common policy making
operations (e.g., namespace and access control manipula-
tions) go to the file manager.

1

2
Backplane Bus

Local Area Network

5 3 4

Figure 1: Network-attached secure disks (NASD) are designed to
offload more of the file system’s simple and performance-critical
operations. For example, in one potential protocol, a client, prior to
reading a file, requests access to that file from the file manager (1), which
delivers a capability to the authorized client (2). So equipped, the client
may make repeated accesses to different regions of the file (3, 4) without
contacting the file manager again unless the file manager chooses to force
reauthorization by revoking the capability (5).

5

NASD File Manager

Access Control

Network Interface

Network Protocol

Network Driver

Object Storage

Controller

Network Security
Security

Because clients directly request their data, a NASD
drive must have sufficient metadata to map and authorize a
request for disk sectors. Authorization, in the form of a
time-limited capability applicable to a given file’s map and
contents, is provided by the file manager to protect the man-
ager’s control over storage access policy. The storage map-
ping metadata is maintained by the drive, allowing smart
drives to better exploit detailed knowledge of their own
resources to optimize data layout, read-ahead, and cache
management [Cao94, Patterson95, Golding95]. This is pre-
cisely the type of value-add opportunity that nimble storage
vendors can exploit for market and customer advantage.

With mapping metadata at the drive controlling the lay-
out of files, a NASD drive exports a “namespace” of file-
like objects. Because control of naming is more appropriate
to the higher-level file system, pathnames are not under-
stood at the drive, and pathname resolution is split between
the file manager and client. While a single drive object will
suffice to represent a simple client file, multiple objects
may be logically linked by the file system into one client
file. Such an interface provides support for banks of striped
files [Hartman93], Macintosh-style resource forks, or logi-
cally-contiguous chunks of complex files [deJong93].

3 NASD Implementation

To experiment with the performance and scalability of
NASD, we designed and implemented a prototype NASD
storage interface, ported two popular distributed file sys-
tems (AFS and NFS) to use this interface, and implemented
a striped version of NFS on top of this interface
[Gibson97b]. The NASD interface offers logical partitions
containing a flat name space of variable length objects with
size, time, security, clustering, cloning, and uninterpreted
attributes. Access control is enforced by cryptographic
capabilities authenticating the arguments of each request to
a file manager/drive secret through the use of a digest.

In the NASD/AFS and NASD/NFS filesystems, fre-
quent data-moving operations and attribute read operations
occur directly between client and NASD drive, while less-
frequent requests are handled by the file manager. NFS’s
simple distributed filesystem model of a stateless server,
weak cache consistency, and few mechanisms for filesys-
tem management made it easy to port to a NASD environ-
ment; based on a client’s RPC request opcode, RPC
destination addresses are modified to deliver requests to the
NASD drive. Our AFS port was more interesting, specifi-
cally in maintaining the sequential consistency guarantees
of AFS, and in implementing volume quotas. In both cases,
we exploited the ability of NASD capabilities to be revoked
based on expired time or object attributes (e.g., size).

Using our implementations1, we compared NASD/AFS
and NASD/NFS performance against the traditional Server-
Attached Disk (SAD) implementations of AFS and NFS.

3

Our perfectly load-balanced large-read benchmark (512K
chunks) showed that NASD is able to scale linearly, up to
the drive’s aggregate transfer bandwidth, while SAD NFS
and AFS systems are limited by the data throughput of the
server to just three drives.

To demonstrate the ability of striping to automatically
load balance requests in a NASD environment, we imple-
mented a striped NFS prototype. In this implementation,
striping is transparent to both NASD/NFS file manager and
NASD drives, encapsulating striping control in a separate
striping manager that exports a NASD interface to the
NASD/NFS file manager. Figure 2 shows the results for a
data mining application consisting of 1 to 8 clients. Striped
NASD/NFS scales linearly while SAD’s throughput satu-
rates quickly.

4 Network Support for Network-Attached Storage

The success of the NASD architecture depends criti-
cally on its networking environment. Clearly, support for
high-bandwidth, large data transfers is essential. Unfortu-
nately, traditional client-server communication paths do not
support efficient network transport. For example, measure-
ments of our NASD prototype drive (running DCE/RPC
over UDP/IP) show that non-cached read or write requests
can easily be serviced by modest hardware. However,

requests that hit in the drive cache incur order-of magnitude
increases in service time due to the NASD drive and client
both spending up to 97% of their time in the network stack
[Gibson98].

This problem with traditional protocol stacks forces
network-attached storage to explore alternative techniques
for delivering scalable bandwidth to client applications. In
the next section, we discuss a solution: the integration of
user-level networking with NASD. Several other network
issues are also important to consider in a NASD environ-
ment. These include:

File system traffic patterns: Network file access
entails significant small message traffic: attribute manipula-
tion, command and status, small file access, and metadata
access. In our NASD prototype, modest size messages
(between 100 and 300 bytes) account for over 75% of the
total messaging in the storage system. Network protocols
that impose significant connection overhead and long code-
paths will be a primary determinant of cached storage
response time and overall storage system scalability.

Drive Resources: Disk drives are price-conscious,
resource-constrained devices. Current drives contain only 1-
4 MBytes of RAM but are capable of streaming 25 MB/sec
and bursting at 100 MBytes/sec. This efficiency is achieved
with hardware-based network support and streamlined pro-
tocols. However, network trends are increasing the resource
requirements and complexity of drives. For example, Fibre-
Channel’s rich set of service classes requires significant
support that is unnecessary for many storage applications; a
much smaller subset can be deployed to meet storage’s
essential needs [HP99].

Cluster SAN, LAN and WAN: High-performance
clusters will be based on commodity system area networks
(SANs), which will support protocols optimized for high-
bandwidth and low-latency. Such SANs are a natural fit for
the needs of scalable storage in a cluster environment.

LAN-based workgroups, however, typically access dis-
tributed file systems using internet-based protocols (e.g.,
RPC/UDP/IP), forcing them to suffer significant protocol
processing overhead. Incorporating client LANs into a clus-
ter SAN can overcome this problem. Specifically, using the
same media and link layers for both cluster and workgroup
storage will increase SANs’ commodity advantages, enable
thin protocols, and improve support for small messages.
When necessary, remote access to cooperating workgroups’
storage can use optimized servers or gateway protocol con-
verters.

Reliability: Storage requires reliable delivery of data
for most applications. Ideally, the network should provide
reliability between client and storage. However, in most
cluster SANs, errors are rare enough that the cost of com-
plex hardware-based error handling is outweighed by the

1 The experimental testbed contained four NASD drives, each
one a DEC Alpha 3000/400 (133MHz, 64 MB, Digital UNIX
3.2g-3) with a single 1.0 GB HP C2247 disk. We used four
Alpha 3000/400’s as clients. All were connected by a 155
Mb/s OC-3 ATM network (DEC Gigaswitch/ATM).

Figure 2: Scaling of a parallel data mining application. Measurements
from our original NASD prototype running DCE-RPC over UDP show
aggregate bandwidth computing frequent sets from 300 MB of sales
transactions. All configurations show the maximum achievable bandwidth
with the given number of disks or NASD drives and up to 10 clients. The
NASD line shows the bandwidth of clients reading from a single NASD file
striped across n drives and scales linearly to 45 MB/s. The comparable NFS
line shows the performance all the clients reading from a single file striped
across n disks on the server and bottlenecks near 20 MB/s. This
configuration causes poor read-ahead performance inside the NFS server,
so we add the NFS-parallel line where each client reads from a separate file
on an independent disk through the same server. This configuration
performs better than the single file case, but only raises the maximum
bandwidth from NFS to 22.5 MB/s, still a factor of two from what NASD
provides.

2 4 6 8
Number of Disks

0.0

10

20

30

40

50

T
hr

ou
gh

pu
t (

M
B

/s
)

NASD
NFS
NFS-parallel

4

flexibility of efficiently exposing infrequent errors to
higher-level software or firmware (e.g., Fibre Channel
Class 3). Essential to efficient software error handling is
hardware support to quickly identify errors (e.g., hardware
checksum) and support for network problems that endpoint
software cannot solve alone (e.g., switch buffer overflow).
This provides both the efficiency and flexibility applica-
tions need for handling errors.

Failure Detection/Recovery: Large storage systems
are designed to detect and handle drive failures (e.g.,
RAID). Client-based RAID over network-attached storage
requires that the system expose both drive and network fail-
ures. Efficient recovery requires rapid remapping of com-
munication channels to alternative storage devices.

Multicast: On-site and off-site redundancy is widely
used for ensuring data integrity and availability. Current
solutions either force clients to transmit copies of data to
each storage replica or require one replica to transmit the
data to other replicas. This creates significant bandwidth
requirements in the client memory system, the client net-
work interface, and/or the storage node responsible for rep-
lication. Network support for multicast, either in a NIC that
automatically replicates data or in the network fabric, can
significantly reduce bandwidth requirements.

5 Mapping NASD to User-level Networks

Effective network-attached storage requires efficient
delivery of data to client applications, efficient in-drive
implementations, and effective physical network support for
storage traffic. In this section, we discuss our integration of
NASD with modern networking techniques to deliver scal-
able bandwidth.

Research focused on providing applications with high-
bandwidth has emphasized reducing data copies using two
basic solutions: 1) integrating buffering/caching in the OS
[Rodrigues97, Pai99] or 2) direct user-level access to the
network [vonEicken95, Buzzard95, Kaashoek97]. Buffer
integration is very effective in environments where caching
plays a central role (e.g., small or high-locality data sets).
High-bandwidth applications, however, are better served by
direct access to the data stream. Hence, user-level network-
ing provides an excellent opportunity for delivering scalable
storage bandwidth to client applications.

To investigate the effectiveness of user-level network-
ing for NASD, we have experimented with NASD on top of
the VI-Architecture (VIA) interface (Figure 3; for a com-
plete description of VIA see http://www.viarch.org). While
numerous user-level networking architectures currently
exist [Bhoedjang98], we chose VIA for three reasons. First,
VIA integrates user-level NIC access with protection mech-
anisms, providing a simple application/NIC interface with
basic send and receive primitives as well as remote DMA
for reads and writes. Second, commercial VIA implementa-

tions are now available, providing applications with full
network bandwidth while consuming less than 10% of a
modern CPU’s cycles [Giganet98]. Third, VIA is receiving
significant industrial support from software and hardware
vendors. These characteristics make VIA a potentially pow-
erful substrate for commodity network-attached storage,
which requires both high-performance and wide-spread
adoption.

Integrating VIA with NASD presents several interest-
ing differences from traditional workstation-based client-
server implementations. Within the drive, the NASD soft-
ware runs in kernel mode2, making drive-based user-level
networking unnecessary. The drive, however, must support
the external VIA interface and semantics. This requires the
drive to support VI connections for each client application
requesting data from the storage device. In large-scale
NASD systems, this can result in 100s of connections per
drive, each requiring approximately 2KBytes of state. Fur-
ther, each VI connection must provide buffers for receiving
data transfers (writes) from client applications. Using an
aggressive flow-control mechanism similar to [Chun99],
each connection would require approximately four 8KByte
buffers for a Gigabit stream of data. To support 100 connec-
tions, a drive would need to commit over 3 MBytes of RAM
— a significant increase over modern disk drives.

At the interface level, mapping client read commands
to VIA is straightforward. A client application preposts a set
of buffers (wired memory) matching the read request size,
and then issues a NASD read command to the drive. The
drive returns the data, in order, to the client’s preposted
buffers. File system writes follow a similar path, but poten-
tially require the drive to provide a significant amount of
buffering (preposted buffers) to absorb large bursts (100
MB/second today over Fibre Channel and 200 MB/second
in the near future). Ironically, modern drives are only capa-
ble of writing data to disk platters at 25 MB/sec peak.
Therefore, network bursts often copy data from client RAM
to drive RAM where it sits for milliseconds before being
committed to stable storage. Moreover, many operating sys-
tems buffer disk writes for some period of time (e.g., 30
seconds in Unix) before sending writes to storage, creating
sudden and often unnecessary bursts of write traffic that tax
on-drive memory resources.

VIA’s Remote DMA (RDMA) support provides an
interesting solution to reducing the write-burst problem
while minimizing on-drive buffer resources. Instead of cli-
ents sending data to the drive with a write command, a cli-

2 The original implementations of the NASD drive support both
a user-level and kernel-level drive running over DCE-
RPC/UDP. Our new version of NASD replaces UDP with
VIA while using the user-level drive — however, production
NASDs would run an embedded operating system with the
NASD drive software running in “kernel” mode.

5

ent could send only a write command with a pointer to the
data stored in the client’s pinned memory. The drive could
then use the VIA RDMA read command to pull data out of
the client’s memory (without interrupting the client CPU),
enabling drive-based scheduling of data transfers. With net-
work latencies much lower than disk access times, the drive
would treat the client’s RAM as an extended cache/buffer,
co-scheduling network transfers and disk transfers to mini-
mize buffer requirements on the drive.

Client-side write-back caching can also benefit from
VIA’s RDMA. Client writes could cache data in the client
write-back cache, while forwarding the write command to
the drive. The drive can schedule these writes during idle
periods, using VIA RDMA reads to pull the data out of the
client cache. Writes could thus be committed to disk
between sync periods, significantly reducing the amount of
data burst to the drive during a sync. Perhaps more impor-
tantly, the drive can request data in any order, since RDMA
uses a memory model rather than a stream model. This
allows the drive to read data from the client in an order opti-
mized for disk scheduling. Optimized disk scheduling also
applies to file reads, were the drive can use RDMA writes to
send data into an application’s memory in any order, mini-
mizing the amount of on-drive buffering.

It is also important to efficiently support mirrored stor-
age. Currently, mirroring requires two VI connections (one
per drive) and clients must send two separate copies of the
data. This imposes a significant load on the client’s memory
system and network interface. To avoid this problem, some
existing systems ask the storage device to mirror the data
[EMC98]. This creates a large window of failure and dou-
bles the replicating node’s load. An alternative is to support
multicast in the network interface or in a network switch.
We are currently exploring both solutions.

Figure 3 depicts our current implementation of NASD
over VIA. Both the client and NASD drive use a streams
layer to interface the NASD RPC to the underlying VIA
library interface (VIPL). This streams layer provides credit

based flow control, buffer management and a stream of
bytes abstraction. All of the VI commands, except RDMA,
are currently supported and we are extending the system to
support RDMA.

5.1 Network Striping and Incast

File striping across multiple storage devices provides
significant bandwidth gains for applications. Instead of hid-
ing striping behind a server machine, NASD exposes it to
the client. Clients use a middleware layer, called Cheops, to
aggregate multiple NASD objects into a single (striped)
application object. Figure 2 shows Cheops performance.

Unfortunately, current networks do not provide ade-
quate support for striped storage’s incast (i.e., many-to-one)
traffic pattern. Ideally, a receiving client should receive
equal bandwidth from each source. However, without link-
level flow control, network buffer overruns occur fre-
quently, forcing costly retransmissions and significantly
increasing latency. Worse, even with link-level flow con-
trol, network fabrics can create uneven distributions of
bandwidth. Figure 4 demonstrates this problem using a
Myrinet M2F-SW8, 8-port full-crossbar LAN switch. For
some configurations (i.e., 1, 2, 3, 5, 7 sources) bandwidth is
evenly distributed, while for 4 or 6 sources, there is a 3X
variation in bandwidth between sources. One solution is to
utilize network-based flow control mechanisms (i.e., credit-
based) to correct the bandwidth discrepancy. Unfortunately,
network-managed credit-based flow control does not under-
stand the higher-level notion of striping. VIA sidesteps this
problem by pushing flow control to the application level,
allowing application-level striping software to manage
credit-based flow control across the striped storage.
Figure 4 (synchronized) shows the same Myrinet switch and
incast traffic pattern, but with stripe-conscious flow control
at the storage management layer, which balances the flow
of data from senders to receiver.

Streams Layer

VI Kernel
Agent

S
E

N
D

R
E

C
V

C
O

M
P

LE
T

IO
N

User-Level Sends,
Receives, and CreditOpen,

Connect,
Register
Memory

CQ Thread
Blocking read, write,

Asynchronous
Notification

Nonblocking read,write

NASD Client RPC

Dispatch

NASD Server
NASD RPC Layer

VI
S

E
N

D

R
E

C
V

VI

CQ

VI Network Adapter

Streams Layer

VI Kernel
Agent

S
E

N
D

R
E

C
V

C
O

M
P

LE
T

IO
N

User-Level Sends,
Receives, and CreditOpen,

Connect,
Register
Memory

CQ Thread
Blocking read, write,

Nonblocking
Reads

Nonblocking read,write

VI

S
E

N
D

R
E

C
V

VI

CQ

VI Network Adapter

Thread
Pool

Disks

Command
Figure 3: NASD over VIA
Both the client and NASD drive use a streams
layer to interface the NASD RPC to the
underlying VIA library interface (VIPL). This
streams layer provides credit based flow
control, buffer management and a stream of
bytes abstraction. In addition, streams provides
blocking and nonblocking read and write calls
and call-backs when nonblocking reads or
writes become possible. The drive uses these
call-backs with non-blocking reads to
implement command dispatching. NASD
threads handle the request through a
combination of blocking and nonblocking
operations. The client RPC layer handles RPC
requests using blocking streams operations.

6

6 Conclusions

High-performance, low-latency networking is essential
to achieving the potential of scalable network-attached stor-
age. User-level networking solutions, such as VIA, have the
potential to do this, but must be mindful of the amount of
on-drive resources required — connection state and buffer-
ing can consume considerable resources. However, Remote
DMA can help minimize drive resources while providing a
great deal of flexibility in drive scheduling and buffer man-
agement. Further, VIA’s application-level flow control
enables aggregation of flow control across arbitrary storage
components, something low-level network flow control is
not designed to support.

Bibliography

[Anderson95] Anderson, D., Seagate Technology Inc., Personal
communication, 1995.

[Bhoedjang98] Bhoedjang, R.A.F., et al., “User-Level Network
Interface Protocols”, IEEE Computer, November
1998, pp. 53-60.

[Buzzard95] Buzzard, G., et al., “Hamlyn: a high performance
network interface with sender-based memory
management”, HotIO III, August 1995.

[Cao94] Cao, P., et al., “The TickerTAIP parallel RAID
Architecture,” ACM Transactions on Computer
Systems 12(3). August 1994, 236-269.

[Chun97] Chun, B., et al., “Virtual Network Transport Pro-
tocols for Myrinet,” Hot Interconnects V,.
August 1997.

[Drapeau94] Drapeau, A.L. et al., “RAID-II: A High-Band-
width Network File Server”, 21st ISCA, 1994,
pp.234-244.

[deJonge93] de Jonge, W., Kaashoek, M. F., Hsieh, W.C.,
“The Logical Disk: A New Approach to Improv-
ing File Systems,” 14th SOSP, Dec. 1993.

[EMC98] EMC Corporation, “No Data Loss Standby Data-
base”, White Paper, September 1998.

[Gibson97] Gibson, G.A., et al., “File Server Scaling with
Network-Attached Secure Disks,” SIGMET-
RICS 1997, June 1997.

[Gibson97b] Gibson, G.A., et al., “Filesystems for Network-
Attached Secure Disks,” in preparation, CMU-
CS-97-118.

[Gibson98] Gibson, G. A., et. al., “A Cost-Effective, High-
Bandwidth Storage Arch.”, 8th ASPLOS, 1998.

[Giganet98] Giganet. http://www.giganet.com.
[Golding95] Golding, R., et al., “Attribute-managed storage,”

Workshop on Modeling and Specification of I/O,
San Antonio, TX, October 1995.

[Hartman93] Hartman, J.H., Ousterhout, J.K., “The Zebra
Striped Network File System”, 14th SOSP, Dec.
1993, pp. 29-43.

[HP99] Hewlett Packard, “Tachyon TL 33 MHz PCI to
Fibre Channel Controller”, Technical Data, April
1999.

[Kaashoek97] Kaashoek, M.F., et al., “Application Performance
and Flexibility on Exokernel Systems”, Sixteenth
ACM Symposium on Operating System Princi-
ples, December 1997.

[Miller88] Miller, S.W., “A Reference Model for Mass Stor-
age Systems”, Advances in Computers 27, 1988,
pp. 157-210.

[Pai99] Pai, V., Druschel, P., Zwaenepoel, W., “IO-Lite:
A Unified I/O Buffering and Caching System”,
OSDI 99, New Orleans, LA, February 1999.

[Patterson88] Patterson, D.A., et. al., “A Case for Redundant
Arrays of Inexpensive Disks (RAID)”, 1988
SIGMOD, June 1988, pp. 109-116.

[Patterson95] Patterson, R.H. et al., “Informed Prefetching and
Caching”, 15th SOSP, Dec. 1995.

[Rodrigues97] Rodrigues, S.H., Anderson, T.E., Culler D.E.,
“High-Performance Local Area Communication
with Fast Sockets”, USENIX97, 1997.

[vonEicken95] von Eicken, T., et al., “U-Net: A User level Net-
work Interface for Parallel and Distributed Com-
puting” Department of Computer Science.
Cornell University. Ithaca, NY. 14853. 8/21/95.

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
Unsyncronized Clients

Number of Clients

Th
ro

ug
hp

ut
 p

er
 C

lie
nt

 (M
B/

s)

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80
Synchronized Clients

Number of Clients

Th
ro

ug
hp

ut
 p

er
 C

lie
nt

 (M
B/

s)

max

min

Figure 4: Incast Traffic Pattern
For a striped workload, the graph shows the average client bandwidths using 3 data points per configuration (average, minimum and maximum). The line
passes through the average bandwidth across all the sending clients. The min and max data points denote the maximum and minimum average bandwidth
seen at the corresponding sending clients. For the 1, 2, 3, 5, and 7 client configurations, the average, min and max data points are almost identical,
demonstrating that link-level + network credit flow control provides even distribution of bandwidth among the sending clients. However, the
“Unsynchonized Clients” graph shows that the 4 and 6 client configurations suffer significant variation. The “Synchronized Clients” graph shows how
moving credit-based flow control into the storage management layer guarantees even bandwidth at all sending machines (clients).

