

Network-Attached Storage Devices: Is It Time For A New Storage Paradigm?

Paul Massiglia
Network Storage Strategist
Quantum Corporation
500 McCarthy Boulevard
Milpitas, CA 95035
paul.massiglia@quantum.com

Today's I/O Systems

- A lot that's good:
 - cost-effective generic devices
 - mature, robust interconnects and software
 - well understood failure tolerance model
 - mature device and file models

but...

- The model is not tracking technology
 - **system topologies**
 - wire speed utilization
 - device capabilities

Shortcoming 1: **Too Many "Hops" in the I/O Path**

- Each hop represents
 - a trip across a wire.....fast and getting faster
 - a "store and forward" step.....
- minor slowdown bottleneck

- ➤a "software stack".....

 - wire protocol conversion
 - operating system protocols

7/24/99

Network Storage 99

Shortcoming 2: **Not Well Suited To Clusters**

- Servers must be involved in
 - data ownership
 - data access synchronization
 - I/O load balancing
 - -failure recovery
- This limits
 - **scaling**
 - performance
 - availability

Who serves what data to which clients?

How does one RAID controller know what the other is doing?

Who owns the disks?

Enabler 1: Fibre Channel

- Performance
 - **bandwidth: 100 MBPS**
 - latency: device-to-device data transfer
- Availability
 - dual loop, "hot" plugging, zoned switching
- Scaling
 - more devices, longer distances
- These have combined to create the "SAN" concept
- Question: does the conventional "block server" disk model utilize SANs effectively?

7/24/99

Enabler 2: "Smarter" Devices

- Academic & industrial research
 - **SWARM --U of AZ**
 - **►GFS--U** of Minn
 - Petal/Frangipani--DEC
 - **►NASD/Active Disks CMU**
 - ► NASD/Active Disks CMU
 - **etc.**

Network Attached Secure Devices

- Principles
 - make the disks "smarter"
 - wire clients directly to data
- Challenges
 - keeping data secure
 - using the "smart" in the smart disks beneficially

A Precursor: MangoSoft's *Medley*

- "Server-less" client-server computing
 - dynamic disk resource sharing
 - global file system
 - redundancy—-mirroring of data objects
- Approximates the NASD model
 - disk intelligence is in the workgroup members

T/24/99

Block 3722

Block 3722

Block 3722

Block 2598

Block 2596

Block 2596

Block 1102

LBA space

Block 0121

Block 0121

Block 0119

Network Storage 99

File System Functions Namespace Management

NASD: The Basic Idea

- A NASD "knows about" extents
- A "NASD File Manager" grants a client access to an extent
- Data transfers directly between NASD and client

7/24/99

NASD Functional Partitioning

- Disk space management
- Namespace management
- File access control
- Data access control

7/24/99

Network Storage 99

The "Secure" in NASD

- File Manager and NASD share a secret
- Secret is encrypted and handed to client
 - Key point: File manager and NASD need not communicate to establish client's access to a file

NASD Benefits

- Shorter I/O paths
 - data moves directly between storage and client
 - direct device-to-device transfers are possible
- "Smart" devices should be able to self-optimize
 - **for performance**
 - for failure tolerance
 - **for security**
- No loss of function
 - all conventional file system functions can be implemented without negating NASD advantages

Making NASD Happen

- Technical challenges
 - failure tolerance
 - server
 - network
 - devices
 - squeezing NASD functionality into disk-like cost
- Non-technical challenges
 - installed base transition from the block server model
 - motivation for the incumbents
 - RAID, OS, file system and database vendors

Making NASD Happen

- There is progress
- NSIC (National Storage Industry Consortium) working group
 - "INSIC/NASD"
 - members: CMU, Seagate, Quantum, IBM, StorageTek
 - meeting ~monthly to develop a NASD-like standards proposal
 - called "Object Based Disks"
 - roughly: SCSI commands for NASD function with security deferred
 - ~quarterly public meetings (next: Millbrae on 8/17/99)
 - target: ANSI X3T10 proposal in fall 1999

What's "Beyond" NASD

- NASD isn't even "here" yet—why ask what's beyond it?
- NASD does two important things
 - replaces the conventional block access disk paradigm
 - demonstrates the usefulness of intelligence in storage devices
- **but...** a NASD is still a fixed-function device

7/24/99 Network Storage 99 19

Beyond NASD

- What if storage device behavior could be adjusted in the field?
- Would obviate questions of the "right" device capabilities
 - if a device's capabilities don't suit an application, download different capabilities
- Supporting research
 - CMU: Active Disk Project
 - **UCB: "I-Disk" Project**
- 7/24/99 Microsoft Research Group/oronosal- "Cuberbricks"

Sample Uses for "Active" Disks

- Data warehousing
 - 1000's of active disks search themselves simultaneously
- Database
 - 1000's of little transaction engines
- HSM/backup
 - each disk figures out what data needs to be moved or backed up
- **Application customizations**
 - "smart" caching, metered delivery, ...

Conclusion

- It's time for the block access disk to evolve
 - the technology is there
 - the need is there
- CMU NASD work shows the possibilities
 - potential benefits are great
 - performance, scaling, system cost, upgrade granularity
 - significant challenges remain
- The question:
 - will NASD become the next "disk", or is a more radical storage device paradigm change the right step?

NSIC/NASD and **SNIA**

- **INASD** Goals
 - timeliness: get a proposal to X3T10 in 1999
 - **—guality**
- Aligning with SNIA could be beneficial
 - **lots more perspectives**
 - potentially lots more "cycles"
- Aligning with SNIA could be disruptive
 - bringing the new people up to speed
- My "charter" from NSIC/NASD
 - get us aligned without delaying the submission