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Abstract

By providing direct data transfer between storage and client, network-attached storage devices have the
potential to improve scalability (by removing the server as a bottleneck) and performance (through net-
work striping and shorter data paths). Realizing the technology’s full potential requires careful consider-
ation across a wide range of file system, networking and security issues. To address these issues, this
paper presents two new network-attached storage architectures. (1) Networked SCSI disks (NetSCSI)
are network-attached storage devices with minimal changes from the familiar SCSI interface (2) Net-
work-attached secure disks (NASD) are drives that support independent client access to drive provided
object services. For both architectures, we present a sketch of repartitionings of distributed file system
functionality, including a security framework whose strongest levels use tamper-resistant processing in
the disks to provide action authorization and data privacy even when the drive is in an physically inse-
cure location.

Using AFS and NFS traces to evaluate each architecture’s potential to decrease file server workload, our
results suggest that NetSCSI can reduce file server load during a burst of AFS activity by a factor of
about 2; for the NASD architecture, server load (during burst activity) can be reduced by a factor of
about 4 for AFS and 10 for NFS.
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Introduction

Evolving distributed storage technology for higher performance computing

Distributed file systems provide remote access to common file storage in a networked envi-
ronment. They enable users of groups of computers to operate as though they were sharing a
single large file system [Sandberg85, Howard88, Minshall94].

A principal measure of a distributed file system’s cost is the computational power required
from the servers to provide adequate performance for each client’s work [Howard88,
Nelson88]. AFS helps reduce server load by using each client’s local disk to cache a subset
of the global system’s files, allowing a client’s local file system cache to handle a large frac-
tion of its distributed file system accesses without contacting the server. This enables AFS
servers to support more clients than those distributed file systems, like NFS, whose client
caching is limited to the client’s in-memory file buffer cache. Of course, in systems that pro-
vide strong caching semantics (e.g., AFS), maintaining the consistency of client caches
introduces a new, albeit much smaller, computational load on file servers. This load
increases as clients cache more aggressively. In addition, there are limits to the effectiveness
of client caching — if nothing else, servers must still serve first-reference reads and misses
caused by invalidations in client caches.

In large shared file systems, this remaining workload is too large for a single traditional file
server. One way to handle the load is to use multiple servers. Multiple-server distributed file
systems attempt to balance the load by replicating static, commonly used files and by parti-
tioning the namespace of the remaining files (that is, locating files that are clustered in the
same area of the global directory tree on the same server). Namespace balancing is effective
when it divides files into sets corresponding to essentially non-overlapping organizational
units, but such units are often too large to be serviced by a single low-cost server. Hence,
many installations either split the namespace of a single organizational unit over multiple
servers or resort to specialized super-fileservers that are large enough to centrally manage all
storage for an organizational unit [Hitz90, Drapeau94]. Splitting the namespace leads to the
“hotspot” problem familiar from multiple-disk mainframe experience [Kim86], and can
require frequent user-directed namespace adjustment. Super-fileservers can provide good
performance, but are an expensive solution.

Experience with disk arrays suggests another solution. If the data is striped over multiple
independent controllers, then a high-concurrency workload where individual accesses are
small relative to the unit of interleaving, will be balanced with high probability [Linvy87,
Chen90]. Striping metadata provides similar load-balancing for metadata operations
[Dahlin95].

Lowering and balancing the workload applied to servers by each client through client cach-
ing and storage striping, respectively, provide excellent cost control, but do not ensure high-
performance for clients. With exponential increases in microprocessor performance and the
improvements in workstation memory bandwidth required to support them (such as Ram-
Bus [Rambus92], or Synchronous DRAM [Toshiba]), ubiquitous personal workstations are
increasingly capable of high-performance data processing. Relying on caching to satisfy the
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data throughput needs of such high-performance clients would require cache miss rates to
decrease proportionately. Unfortunately, increasing computation sizes, file sizes, and work-
group sharing are all blocking the needed decrease in miss rates [Ousterhout85, Baker91],
while increased client cache sizes are making those misses more bursty. Thus, if client per-
formance is to improve, the performance of distributed file systems, while servicing client
cache misses, must also improve.

This is the argument that led storage subsystem designers to develop disk arrays: striping
storage promises parallel transfer of large files and load balancing of high concurrency
workloads [Patterson88]. For distributed file systems, striping storage over multiple servers
promises scalable storage bandwidth [Hartman93] as long as the network can sustain the
communication load. Cost and scalability concerns prohibit the use of a single shared-media
network whose peak capacity meets the maximum communication load. However, with the
wide acceptance of switched network fabrics based on point-to-point links, such as switched
Fast Ethernet, switched FDDI, ATM, and Myrinet, whose links have 100 Mbit/sec to 800
Mbit/sec capacities, striped storage bandwidth can scale up to the limitations of client links,
independent of other traffic in the same fabric [Arnould89, Siu95, Boden95]. Of course, a
client’s network performance is limited by far more than its link’s raw bandwidth. Fortu-
nately, there has been substantial research progress toward overcoming many of these per-
formance limitations. Powerful interface board designs [Steenkiste94, Cooper90, FORE94],
integrated layer processing for network protocols [Clark89], direct application access to the
network interface [vonEiken92, Maeda93], copy avoiding buffering schemes [Druschel93],
and routing support for high-performance best-effort traffic [Ma96, Traw95] are all increas-
ing the bandwidth available to client applications.

In practice, distributed file systems are often built as a series of many small purchases made
by small groups. Invariably, these small groups are primarily interested in buying client
machines. However, the economics of providing a high-performance striped distributed file-
system are like those of purchasing an expensive centralized mainframe: a large investment
requiring the financial collaboration of many small groups. One way to avoid synchronizing
purchasing and “taxing” the budget of the purchaser of each new machine in the distributed
file system domain is to instead tax the machine itself; the xFS filesystem distributes code,
metadata and data over all clients, eliminating the need for a centralized storage system
[Dahlin95]. This scheme naturally matches increasing client performance with increasing
server performance. Instead of reducing the server workload, it takes the required computa-
tional power from another, frequently idle, client. The network-attached storage architec-
tures presented in this paper significantly reduce the demand for server computation and
eliminate file server machines from the storage data path without coupling overall file sys-
tem integrity to the security of each client machine.

Storage technology’s concurrent evolution

As distributed file system technology has improved, so have the storage technologies
employed by these systems. Primarily fixed-surface, flying-head magnetic (hard) disks, a
technology developed over three decades ago, storage devices have evolved to provide
increasing density, increasing data and seek speeds, and increasing embedded intelligence.
Storage density increases, long a predictable 25% per year, have been delivering 60%
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increases per year during the 90s. Prior to the mid-80s, data rates were constrained by stor-
age interface definitions, but they have increased by about 40% per year in the 90s
[Grochowski96].

The primary reason for storage’s recent accelerated rate of evolution has been the broad
acceptance of the Small Computer System Interface (SCSI) standard, which abstracted the
device as a linear array of fixed-size blocks with an embedded command-interpreting con-
troller and a shared, relatively high-speed bus linking devices to a computer’s I/O bus
through a “host-bus adapter” [ANSI86]. In contrast to pre-SCSI storage devices, whose
interfaces exposed data rates, disk geometry [McKusick84], data-dependent addressing
[Ahearn72], and bufferless speed matching (causing so-called rotational positioning recon-
nect miss delays [Buzen86]), SCSI decouples storage component interfaces from the host’s
storage interface, enabling rapid introduction of incremental technology advances.

Moreover, the adoption of SCSI (and its less-expensive contemporary, IDE) across a broad
range of the marketplace has increased competition among disk drive manufacturers by
eliminating the customer’s compelling motivation to purchase storage from the vertically
integrated provider of the rest of the computer system. The result, 60% per year density
increases and 40% per year data rate increases, is now yielding surface densities over 1.3
Gbit per square inch [IBM96], unit capacities over 10 GBytes [Seagate96b] and sustained
data rates up to 12 MBytes/sec [Seagate96a]. At this rate of improvement, we can expect
data rates in excess of 40 MBytes/sec by the end of the decade.

The level of indirection introduced by SCSI has also led to transparent improvements in
storage performance; a device can provide better availability and functionality while export-
ing the same interface. Notable examples include Redundant Arrays of Inexpensive Disks
(RAID); transparent failure recovery; real-time geometry-sensitive scheduling; buffer cach-
ing, readahead, and writebehind; compression; dynamic mapping and representation migra-
tion [Patterson88, Gibson92, Massiglia94, StorageTek94, Wilkes95, Ruemmler91,
Varma95].

Currently, smart storage subsystems contain tens to hundreds of GBytes of storage, service
thousands of accesses per second, and easily saturate double and quadruple speed SCSI
buses. With this pressure on the performance of SCSI’s physical interconnect, the industry is
today (1996) experiencing uncertainty about, and rapid development in, peripheral intercon-
nect technologies [Sachs94]. On one hand, traditional SCSI advocates are deploying shorter,
faster, wider buses with data rates of 20, 40, and 80 MBytes peak (increasing addressability
primarily through hierarchical storage controllers) [ANSI95]. Others, particularly interested
in increasing the number and multiplicity of devices and hosts interconnected, have replaced
the physical implementation of SCSI with high-speed serial, packetized, ring interconnects
such as Fibre Channel (up to 100 MBytes/sec) [Benner96] and SSA (up to 40 MBytes/sec

per link1) [SSA]. The disk drive industry anticipates the marginal cost for Fibre Channel and
SSA interfaces on the disk to be typical of today’s Ethernet adapters while their host adapter

1. In SSA, independence of links attached to each node allows multiple point-to-point transfers in
parallel where these transfers are physically non-overlapping.
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costs are expected to be comparable to high-performance SCSI adapters (between the cost
of ethernet and ATM or FDDI interfaces) [Anderson95].

To take advantage of these improvements in network and storage technology, we can attach
storage directly to the network. Distributed file systems using network-attached storage
scale more cost-effectively for two reasons: server off-loading and network striping. By off-
loading simple, expensive, and data-intensive operations from file server machines, more
clients and drives can be supported by each file manager machine. By coupling file access
computation and network transfer bandwidth to each drive, aggregate transfer bandwidth
scales with drives (rather than server memory and network bandwidth) and data avoids a
store-and-forward copy through the server machine. In the remainder of this paper, we
present an overview of network-attached storage, a taxonomy of network-attached storage,
and experiments that attempt to evaluate the performance of the proposed architectures.

Network-Attached Storage

What is Network-Attached Storage?

Figure 1 gives an overview of network-attached storage. This technology, called network-
based storage in a trend-predicting paper by Katz [Katz92], is not new.. The Mass Storage
System Reference Model (MSSRM), an early architecture for hierarchical storage sub-
systems, has advocated the separation of control and data paths for almost a decade
[Miller88, IEEE94]. Using a high-bandwidth network that supports direct transfers for the
data path is a natural consequence [Kronenberg86, Drapeau94, Long94, Lee95,
Menascé96]. In the High Performance Storage System (HPSS) [Watson95], the MSSRM
model has been implemented and augmented with socket-level striping of file transfers,
called the Parallel Transport Protocol [Berdahl95, Wiltzus95], over the multiple network
interfaces found on mainframes and supercomputers.

Local Area Network

Distributed File Manager

Network-Attached Disks

(Peripheral Control Network)

Figure 1: Network-attached storage, in general, provides a direct network connection between client and storage. It may
or may not separate higher-level file system function from storage into a file manager machine. It may or may not have a
private peripheral network linking file manager and storage devices. Although pictured here as a single-actuator disk
drive, a network-attached disk is any device attached to the network and offering storage functionality. That is, for the
purposes of this paper, a RAID subsystem can be considered a network-attached disk.
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Our notion of network-attached storage is consistent with these projects. However, our anal-
ysis focuses on the evolution of commodity storage systems rather than supercomputing
systems, and on the interaction of network-attached storage with common distributed file
systems. Our goal is to chart the way network-attached storage is likely to appear in prod-
ucts, estimate its scalability implications, and characterize the security and file system
design issues in its implementation.

Following Van Meter’s [VanMeter96] definition of network-attached peripheral, we con-
sider networks that are shared with general local area network traffic and not single-vendor
systems whose backplanes are fast, isolated local area networks [Horst95, IEEE-SCI92].

A taxonomy of network-attached storage architectures

Simply attaching storage to a network underspecifies network-attached storage’s role in the
distributed file system architecture. In the following subsections we present a taxonomy for
the functional composition of network-attached storage.

Case 0, the base case, is the familiar local area network with storage privately connected to
the system’s file server —we call thisserver-attached disks. Case 1 represents a wide vari-
ety of current products,server-integrated disks, that specialize hardware and software into
an integrated file server product. In Case 2, with current generation disk drives already
attaching to peripheral networks, the obvious network-attached disk design,network SCSI,
minimizes modifications to the drive command interface, hardware and software. Finally,
given the rapidly increasing processor capability of the disk-embedded controllers, there is
an opportunity to restructure the drive command interface to more effectively off-load data
access functionality. In Case 3, we call these higher-function storage devicesnetwork-
attached secure disks.

Case 0: Most storage systems today are Server-Attached Disks (SAD)

This is the system familiar to office and campus local area networks, and is illustrated in
Figure 2. Storage is attached privately to general-purpose machines that are dedicated to dis-
tributed file service function.

Case 1: Optimized implementations: Server Integrated Disks (SID)

Since file server machines often do little other than service distributed file system requests,
it makes sense to construct specialized systems that perform only file system functions and
do not perform general-purpose computation. This architecture is not fundamentally differ-
ent from server-attached disk (hence, it is not separately illustrated). Data must still move
through the server machine before it reaches the network, but specialized servers can move
this data more efficiently than general-purpose machines. Since high performance distrib-
uted file service benefits the productivity of most users, this architecture occupies a high
margin (profitable) market niche [Hitz90, Hitz94]. However, this approach binds the client
to the chosen distributed file system, its semantics, and its performance characteristics. For
example, most server-integrated disks provide NFS file service whose inherent performance
has long been criticized [Howard88]. Since the marketplace has not selected a single, high-
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performance distributed file system, this architecture does not facilitate the development of
a SCSI-like commodity market. Also, a critical feature of scalable storage, server striping, is
not well-supported by any of the existing popular distributed file systems, so binding the cli-
ent storage interface to an existing distributed file system is at least premature.

Case 2: Network SCSI (NetSCSI)

An approach at the other extreme from server-integrated disks is to retain as much as possi-
ble of the current dominant storage device protocol, SCSI. This is the natural evolution path
for storage devices; Seagate’s Barracuda FC is already providing packetized SCSI through
Fibre Channel network ports to directly attached hosts [Seagate96a]. Network SCSI
(NetSCSI), shown in Figure 3, is a network-attached storage architecture that makes mini-
mal changes to the hardware and software of SCSI disks. A file manager machine translates
its clients’ file system requests into SCSI commands for its disks, but rather than returning
data to the file manager to be forwarded, the NetSCSI disk sends data directly to the client.
The SCSI COPY command already supports such third-party transfers. By eliminating the
file manager from the data’s path, its workload per active client decreases. The efficient data
transfer engines typical of fast drives ensure that the drive’s sustained bandwidth is available
to the clients through the network, and that the file manager machine need not be replicated
when striping files over many disks for higher bandwidth still. However, the use of third-
party transfer changes the drive’s role in the overall security of a distributed file system,
itself varying from simple accident avoidance in NFS to privacy for all transfers in AFS.

There are four levels of security within the NetSCSI disk model: (1) accident-avoidance
with a second private network between file manager and disk, both locked in a physically
secure room; (2) data transfer authentication with clients and drives additionally equipped

Disk
Controller

Network File System Protocol

Network Protocol

Network Device
Driver

Local Filesystem

Disk Driver

Network
Interface

System
Memory

1

3 24
Backplane Bus

Network

(Packetized) SCSI

Figure 2: Server-attached disk is the familiar local-area-network distributed file system. A client wanting data from
storage sends a message to the file server (1), which parses it and sends a message to storage (2), which accesses the
data and sends it back to the file server (3), which finally sends the requested data back to the client (4). Server-
integrated disk is logically the same structure, except that the hardware and software in the file server machine is
specialized to the file service function.

3

2

1

4

File Server (outlined by dotted line)
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with a strong one-way hash function; (3) data transfer privacy with clients and drives addi-
tionally equipped with encryption and; (4) secure key management, where a secure copro-
cessor removes the need for the disk to be remain physically secure.

Figure 3 shows the weakest NetSCSI security enhancement: a second network port on each
disk. Since SCSI disks execute every command they receive without an explicit authoriza-
tion check, even well-meaning clients can generate arbitrary commands and accidentally
damage arbitrary parts of the file structure on disk. The drive’s second network port pro-
vides accident avoidance while allowing SCSI command interpreters to continue following
their execution model; a NetSCSI drive executes all commands arriving over the private net-
work port, rejecting all commands arriving on the general network. This is the architecture
employed in the HPSS and SIOF projects at LLNL [Wiltzius95, Watson95]. Assuming that
file manager and NetSCSI disks are locked in a secure room, this mechanism is acceptable
for the trusted network security model of the NFS distributed file system (which trusts the
bits in a packet’s header to specify the originating address for authentication) [Sandberg85].

Because file data still travels over the general network which is potentially hostile, NetSCSI
disks are likely to demand greater security than the accident avoidance provided by a private
network. Cryptographic protocols can strengthen the security of NetSCSI. At a minimum, a
strong one-way hash function, such as SHA [NIST94], computed at the drive and at the cli-
ent may allow data transfer authentication, in that the correct data was received only if the
sender and receiver compute the same strong one-way hash on the data. Since error-correct-
ing code hardware is already applied to all data transferred to and from a disk’s magnetic
media, it should be possible to interpose a strong one-way hash function at the drive without
reducing sustained transfer bandwidth.

Data transfer authentication between drive and client is not sufficient to provide transfer pri-
vacy. To provide privacy, a NetSCSI disk must be able to encrypt data. With encryption,

Net

Controller

Net Security

Net

Net Security

Access Control

File System

File Manager
Net

Controller

Net Security

Private Peripheral Channel

Local Area Network

1

2

3

5

4 6

Figure 3: Network SCSI (NetSCSI) is a network-attached disk architecture designed for minimal change in the disk’s
command interface. However, because the network port on these disks may be connected to the hostile, broader
internet, integrity for the file system structure on disk requires a second port to a private, file manager-owned, network.
If a client wants data from a NetSCSI disk, it sends a message (1) to the distributed file system’s file manager which
processes the request normally (2), sending a message over the private network to the NetSCSI disk (3). The disk
accesses data, transfers it directly to the client (4), and sends its completion status to the file manager over the private
network (5). Finally, the file manager completes the request with a status message to the client (6).
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NetSCSI drives can use cryptographic protocols to construct secure virtual channels over
the untrusted network. However, since keys will be stored in devices vulnerable to physical
attack, the servers must still be stored in physically secure environments, such as a locked
room. If we go one step further and equip NetSCSI disks with a secure coprocessor that can
securely store keys [Tygar95], data can be stored in encrypted form on the disk, allowing the
disks to be used in a variety of physically open environments. There are now a variety of
secure coprocessors [Cylink95, NIST94a, Weingart87, White87, Telequip95, National94
]available, some of which provide cryptographic accelerators sufficient to support single-
disk bandwidths [National96].

Case 3: Network-attached Secure Disks (NASD)

With network-attached secure disks, shown in Figure 4, we relax the goal of minimal
change from the existing SCSI interface and implementation. Instead we focus on selecting
a command interface that off-loads more of the file manager’s work onto the disk without
integrating file system policy into the disk. Fast-path operations, like reads and writes, go
straight to the disk, and less-common ones, like namespace manipulations, go to the file
manager. The disk can present a flat namespace for file-like objects, with pathname resolu-
tion split between the file manager and client. While a single drive object will suffice to rep-
resent a simple, client file, multiple objects may be logically linked by the file system into
one client file. For example, banks of striped files [Hartman93], Macintosh-style forks, file
data and metadata, or logically-contiguous chunks of complex files [deJong93].

Clients directly request access to data regions in objects, so a NASD drive must have suffi-
cient metadata on hand to map an object region to a set of magnetic media sectors. This
metadata could be provided by the file manager dynamically or it could be maintained by

NASD File Manager

Network Protocol

Network Device
Driver

Access Control,

Network
Interface

1

3Backplane Bus

Network

NASD Object Storage

Network Protocol

Network Device

Disk Cache

Disk Hardware

2 4 5

Namespace, and
Consistency

Figure 4: Network-attached secure disks are designed to off-load more of the file system’s simple, expensive, and
performance critical operations to the storage devices. For example, in one potential protocol a client prior to reading a
file, requests access to that file from the file manager (1), which installs into the NASD drive a capability for access to
the targeted file (2) and delivers this capability to the authorized client (3). So equipped, this client may make repeated
accesses to different regions of the file (4, 5) without further contacting the file manager.

2
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the drive. While the latter approach asks distributed file system authors to surrender detailed
control over layout of the files they create, it enables smart drives to better exploit detailed
knowledge of their own resources to optimize data layout, readahead, and cache manage-
ment [deJonge93, Patterson95]. This is precisely the type of value-added opportunity that
nimble storage vendors can exploit for market and, more importantly, customer advantage.

As opposed to NetSCSI, where all drive commands come implicitly authorized from the file
manager, NASD drives must authenticate clients and enforce the access control decisions of
their file manager on client requests. NASD drives need encryption to provide client authen-
tication, access control enforcement, and data privacy and integrity. If they are further
equipped with secure coprocessors, NASD drives can also provide secure key management.

As an example of a possible NASD access sequence, consider a file read (Figure 4). Before
a client issues its first read against a file, the client authenticates itself with the file manager
and requests access. If the access is granted by the file manager, the client receives the net-
work location(s) of the NASD drive(s) containing the file’s objects and time-limited capabil-
ities to present to these drive(s). If the client is new to a drive, it will also obtain a time-
limited key for establishing a secure communications channel to the drive. When granting
an object capability or communications key to a client, the file manager also informs the
corresponding drive using an (independent) channel. After this point the client may directly
request access to data on NASD drives, presenting the appropriate capability for each drive
to check against the copy provided to it by the file manager.

In addition to off-loading file read operations from the distributed file manager, later sec-
tions will show that NASD should off-load to the drive file writes and the reads of file
attributes (just another region of a drive’s object). Of course, high level file system functions
such as access control lists and consistency protocols remain the purview of the file manager
which enforces its decisions through its control of the capabilities available in each NASD
drive.

Experimental Methodology

To develop an understanding of the performance parameters critical to network-attached
storage, we performed a series of measurements to: (1) characterize the behavior and cost of
AFS and NFS distributed file server functionality; and, (2) provide data for analytic models
of the SAD, NetSCSI and NASD storage architectures.

We began by analyzing AFS and NFS file system traces to determine the types and fre-
quency of operations performed by distributed file systems (Table 1 and Table 2). The NFS
traces [Dahlin94] record the activity of an Auspex file server supporting 237 clients over a
seven day period at the University of California at Berkeley. These were collected using a
packet filter program, rpcspy. The AFS traces record the activity of our laboratory’s Sparcs-
tation 20 AFS file server supporting 25 client workstations over a four day period. The AFS
traces were collected using a modified version of the AFS logging facility, ViceLog. Both
the NFS and AFS traces document every client file system request processed by the file
server, recording for each request event an arrival timestamp, a unique client host id, and the
type of primitive file system request (e.g., read, write, get/set attributes, open, close).
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These traces capture the types and relative frequency of client requests, but they do not
include the amount of work done by the file server for each request. To estimate this cost
information, we measured NFS and AFS code paths on a current high performance worksta-
tion. Specifically, we used Digital Equipment’s ATOM binary annotation tool
[Srivastava94] to identify the code paths traversed by each type of primitive file system
operation on an Alpha workstation, and the Alpha’s on-chip cycle counters to measure the
amount of work (in CPU cycles) required for each type of primitive operation.

Cost measurements were taken in two steps. For NFS, the entry and exit points of each pro-
cedure in the Digital Unix 3.2c kernel were annotated with ATOM to produce a dynamic
call graph. The file server machine (a DEC 3000/400 with a 133 MHz Alpha 21064 proces-
sor and 64 MB of RAM, running Digital’s NFS versthereion 3 server) ran the annotated ker-
nel while NFS client requests were made to the file server, producing a dynamic call graph
for each type of primitive NFS operation. We repeated the process for AFS, ATOMizing the
AFS user-level server code to produce AFS server call graphs (using a DEC 3000/500 with
a 150 MHz Alpha 21064 processor and 128 MB of RAM, running Transarc’s AFS version
3.4 server).

After identifying the specific AFS or NFS routines invoked for each type of primitive file
system operation, the kernel (and AFS server code) was re-annotate, limiting annotation to
the critical components of each primitive operation’s code path. This significantly reduced
ATOM overhead, minimizing measurement distortion. Primitive file system requests were
applied to the selectively annotated kernel (and AFS server) 100 times, generating traces
that recorded the code-path execution time. The Alpha’s on-chip counters provided single-
cycle accuracy for these measurements. For NFS, we calculated and removed the ATOM
tracing overhead (although, for AFS, the variability of operation times was too large for cal-
culation and elimination of ATOM overhead). We repeated this process for each operation
type to generate the average cost for each primitive file system request, parameterized by
request size where appropriate.

Experimental Results

Relative importance of NFS and AFS server operations

Table 1 and Table 2 report the frequency distribution of various server operations for the
NFS and AFS traces, respectively. The top of each of these tables lists the operation names,
describes their functions, then reports their frequencies and total number of occurrences in
the corresponding trace. This data shows that directory read requests (DirReads) are the
most frequently executed NFS operations (43%) while attribute read requests (FetchStatus)
are the most frequently invoked AFS operation (49%). The results also show that NFS data-
moving operations, BlockRead and BlockWrite, account for only 16.9% of all requests.
Similarly, AFS’s data-moving operations, FetchData and StoreData, account for 23.5% of
all AFS requests.

While frequency numbers do not emphasize data-moving operations, the cycle count data
shown in the bottom of Table 1 and Table 2 indicate that data movement places a significant
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burden on the server. An NFS 8,000 byte read requires over 100K cycles and an NFS write
requires almost 200K cycles. AFS incurs more cost for reads and writes: an 8K fetch is
330K cycles and a store is 410K cycles. There are other expensive operations: an NFS direc-
tory read (40 entries) requires 105K cycles, and an NFS remove (8K file) consumes 135K
cycles, while an AFS BulkStatus (30 entries) requires 1,313K cycles.

To estimate the relative importance of various primitive operations in the total workload
applied to a file server, we estimated the total amount of work done per request type by a
server during the execution of each trace. Specifically, multiplying the per operation type
count of occurrences by the measured average per operation type cycle counts, we estimated
the total server workload per operation type. Representing this per operation type total
workload as a percentage of the total over all operation types gives our estimate of the rela-
tive importance of primitive operations.

As shown in the server-attached disk (SAD) columns of Table 3, the data-moving operations
contribute 27% of the total NFS server workload and 59% of the total AFS server workload.
This suggests that the performance gained by directly moving data between client and disk
may be limited by other file server functionality [Drapeau94]. As the next subsection shows,
this observation limits the benefit of NetSCSI for off-loading file manager workload and
motivates the design of a NASD drive interface.

Comparing SAD, NetSCSI, and NASD server performance

Based on the analytic model of server workload in SAD systems, described above, and the
outline of NetSCSI and NASD drives in the last section, we project the total file manager

NFS Operation Description Percent Quantity (x10 6)

AttrRead Get metadata 36.5 11.1

AttrWrite Update metadata 2.7 0.83

BlockRead Fetch data from server 14.0 4.25

BlockWrite Send data to server 2.9 0.88

DirRead
Read directory entries, convert filename to
filehandle, etc.

43.1 13.1

DirReadWrite Creation of files/directories, file renaming, links, etc. 0.7 0.21
DeleteWrite Deletion of files/directories 0.1 0.04

Table 1: Distribution and cycle costs for each type of NFS operation. All measurements were taken on a DEC 3000/400
(133 MHz) NFS Server running an ATOMized Digital Unix 3.2c kernel. The server’s caches were warmed and results
from trials that produced misses in the local cache were discarded.

Size of Operation
Read

(x 103 cycles)

Write

(x 103 cycles)

1 byte 54.6 117.5

1K Bytes 61.1 125.1

2K Bytes 68.2 134.5

4K Bytes 78.0 147.8

8,000 Bytes 100.9 199.3

Operation
# of Cycles

(x 103)

Get Attribute 33

Set Attributes 63

Directory Read (1 entry) 63

Directory Read (40 entries) 105

Directory Lookup 50

Access 37

Remove 135
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workload in distributed file systems using network-attached storage. The results of this pro-
jection are shown in the NetSCSI and NASD columns of Table 3.

In the NetSCSI model, the read/write data path avoids the file server on data transfers. How-
ever, NetSCSI still requires the server to perform processing on every read and write
request, specifically to authorize access and determine the block’s location on disk. We
modeled the manager workload while employing NetSCSI drives by eliminating the data
movement portion of client reads and writes; the work of each write was estimated by the
SAD work done by a zero byte store and the work of each read was estimated by the SAD
work done by a one byte read.

        Cycles according to Size of Operation (thousands)

Operation 0 1 512 1K 2K 4K 8K 16K 32K 64K 1M

StoreData 259 — 291 303 363 371 410 578 750 1,242 16,752

FetchData 179 192 191 204 270 330 439 788 1,544 —

RemoveFile — 331 396 396 410 411 412 414 429 452 1,053

Operation
Cycles

(x 103 cycles)

FetchStatus 128

StoreStatus 189

CreateFile 307

Rename 285

Others 227

BulkStatus Size
Cycles

(x 103 cycles)

1 151

2 154

3 178

10 324

20 578

25 1,313

Table 2: Distribution and cycle costs for each type of AFS operation. Cycle counts were taken on a DEC 3000/500
(150MHz) running an ATOMized AFS version 3.4 server and averaged over 100 trials. The server's caches were
warmed and results from trials that produced misses in the local file system cache were discarded. Number of cycles
for “Others” (which mainly consists of operations for manipulating callbacks, links, access control lists, and
directories) was estimated as the average of the four size-independent operations that were measured individually
(namely, FetchStatus, StoreStatus, CreateFile and Rename). Because the variation induced by different levels of
instrumentation was insignificant compared to the variation between different trials at the same level of
instrumentation, we did not estimate the instrumentation cost.

AFS Operation Description Percent Quantity (x10 3)

FetchStatus Query metadata information on a directory or file (creation
date, last modified time, permissions, etc.)

49.0 45.7

FetchData Send data from the AFS server to the requesting client. 18.3 17.1
BulkStatus Preform a group of FetchStatus operations and package all the

results in a single reply
10.6 9.9

StoreStatus Update metadata information (last modified date, file
permissions, etc.)

7.9 7.4

StoreData Store data sent by a client into a file on the AFS server. 5.3 4.9
CreateFile Create a new file in the AFS server namespace. 2.1 2.0
Rename Move a file from one location in the AFS server namepsace to

another location.
1.9 1.7

RemoveFile Delete a file stored on the AFS server. 1.5 1.4
Others Operations that occurred with a very low frequency (ACL

manipulation, symbolic links, directory creation/deletion, lock
management, volume management, etc.)

3.4 3.2
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For AFS, the file manager in a NetSCSI system executes only about half as many cycles as
in the SAD system. For NFS, the improvement was much smaller because of NFS’s high
frequency of directory and attribute read operations, which are not significantly off-loaded
in a NetSCSI system, and because NFS data transfers, typically 8Kbytes per request, are
smaller than AFS data transfers, which can be as large as 64Kbytes per request.

In our model of a NASD-based distributed file system all read operations, including
attribute and directory reads, are sent directly to the NASD drive by clients. By relying on
clients to find attribute and directory data in the NASD object namespace (by convention or

Table 3: Projected workload of the NFS (top) and AFS (bottom) distributed file manager. This table reports the estimates
of a simple analytic model to compare the relative scalability of file managers in SAD, NetSCSI, and NASD
environments. Because NFS and AFS traces are of different servers and lengths, comparison of the two systems is done
using the “%” of cycles for each operation, not the total number of cycles for each operation.

* “%” in the NetSCSI and NASD columns represent the percentage difference between each particular NetSCSI or
NASD’s operation cycle count and the SAD’s total cycle count.

AFS
Operation

 SAD  NetSCSI  NASD

Cycles

(^109)
%

Cycles

(^109)
%*

Cycles

(^109)
%*

FetchStatus 5.8 21% 5.8 21% 0.0 0%

FetchData 10.0 36% 3.1 11% 0.0 0%

BulkStatus 1.7 6% 1.7 6% 0.0 0%

StoreStatus 1.4 5% 1.4 5% 1.4 5%

StoreData 6.5 23% 1.3 5% 0.9 3%

CreateFile 0.6 2% 0.6 2% 0.6 2%

Rename 0.5 2% 0.5 2% 0.5 2%

RemoveFile 0.6 2% 0.6 2% 0.3 1%

Others 0.7 3% 0.7 3% 0.7 3%

Open 0.0 0% 0.0 0% 3.3 12%

Total 27.8 100% 15.7 56% 7.7 28%

NFS
Operation

SAD NetSCSI NASD

Cycles

(^109)
%

Cycles

(^109)
%*

Cycles

(^109)
%*

Attr Read 370.6 20% 370.6 20% 0.0 0%

Attr Write 52.3 3% 52.3 3% 52.3 3%

Block Read 367.7 20% 231.9 12% 0.0 0%

Block Write 130.5 7% 103.7 6% 56.0 3%

Dir Read Lookup 254.6 14% 254.6 14% 0 0%

Dir Read non lookup 675.4 36% 675.4 36% 0 0%

Dir RW 13.6 0% 13.6 0% 13.6 0%

Delete Write 5.1 0% 5.1 0% 2.4 0%

Open 0.0 0% 0.0 0% 41.1 2%

Total 1,869.8 100% 1,707.2 91% 165.4 9%
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as a result of an open request to the file manager), NASD drives do not distinguish data,
attribute and directory operations. For attribute and directory writes, however, we pessimis-
tically assume that clients must send these requests to their file managers. To estimate the
manager’s pre-authorization and capability setup work, we introduced an open request (syn-
thesized in our traces to occur whenever a file was touched after at least 30 seconds of inac-
tivity) that requires manager work comparable to an attribute write operation. Data write
operations, whose data is sent directly to the NASD drive by clients, and file remove opera-
tions, whose object deallocation work is done by the NASD drive, are also estimated to
require manager work comparable to an attribute write operation. Finally, we assume that
NFS clients in NASD systems replace directory lookup operations with NASD (directory)
object reads and execute the lookup locally.

For AFS, Table 3 shows that NASD systems may reduce file manager workload by a factor
of 2 over NetSCSI systems, or a factor of 4 when compared to SAD systems. For NFS,
where directory and attribute reads dominate manager workload, file managers using NASD
drives may benefit from a factor of 10 decrease in load.

Conclusion and Future Directions

Network-attached storage, enabling direct transfers between client and storage, can substan-
tially increase distributed file system scalability while simultaneously enabling striped stor-
age to satisfy the bursty, high-bandwidth demands of the increasingly high-performance
clients populating local area networks.

In this paper we presented a simple classification of storage architectures for distributed file
systems. This classification contains four models. The traditional, server-attached disk
(SAD) model is our base case. Server-integrated disk systems include the familiar NFS
server products, which are architecturally identical, but with hardware and software
designed specifically for executing file service. We do not emphasize this model because it
binds storage products to a particular choice of distributed file system.

The remaining two storage models exploit network-attached storage. Network SCSI
(NetSCSI) drives are very similar to current SCSI disks in that all file requests go through
the distributed file manager, but the resulting data transfers go directly between client and
the drive. For AFS workloads, this may reduce file manager workload by about 50%. Differ-
ent security models can be provided using NetSCSI depending on the cryptographic support
provided in the drive. Network-attached secure disks (NASD) support storage semantics
between that of block-level protocols like SCSI and distributed file system semantics like
NFS or AFS. The partitioning of file system functionality between NASD drive and file
manager is optimized to reduce file manager load while maintaining system flexibility. To
operate securely in the face of this partition, NASD drives rely on at encryption and key
management support. By off-loading data read and write and attribute and directory read
operations, distributed file system server load may be reduced by a factor of 4 for NFS to 10
for AFS with NASD drives.

Our analysis is focused on describing the distinct methods of organizing storage architecture
and estimating the potential improvement each promises for distributed file systems. With
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the promising results given here, our future directions are clear. We plan to demonstrate that
distributed file systems can be implemented around network-attached storage, preserving
powerful security models, and yielding considerable scalability and client performance
advantages. Along this path, many open questions remain. Our NASD model, in particular,
expects a disk drive to be capable of computation not normally associated with cost-sensi-
tive commodity peripherals. Drive micro-architectures and software structures must be
developed and demonstrated. Server caching in traditional systems is a side-effect of data
store-and-forward through the server. With network-attached storage, we lose this benefit,
and we must evaluate new caching strategies, including distributing the caches among stor-
age or providing separate cache servers. In the NASD models we have presented, we still
assume that clients “open” files by contacting the distributed file system server to set up the
state needed for direct transfers to and from storage and allow the file manager to handle
consistency. A clear improvement, similar to the effect of client caching in AFS, might be
provided by pre-authorization or group-authorization schemes.
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