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ABSTRACT

Load balancing requests across a cluster of back-end servers is
critical for avoiding performance bottlenecks and meeting service-
level objectives (SLOs) in large-scale cloud computing services.
This paper shows how a small, fast popularity-based front-end cache
can ensure load balancing for an important class of such services;
furthermore, we prove an O(n log n) lower-bound on the necessary
cache size and show that this size depends only on the total number
of back-end nodes n, not the number of items stored in the system.
We validate our analysis through simulation and empirical results
running a key-value storage system on an 85-node cluster.
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1. INTRODUCTION

As data intensive computing grows in both popularity and in
scale [15, 14, 11], load balancing—across thousands of nodes and
beyond—grows simultaneously more important and more challeng-
ing. Today, numerous companies operate storage and processing
clusters at this scale, with familiar examples including Google’s
BigTable and GFS cells (1000 to 7000 nodes in one cluster [17]),
Facebook’s photo storage (20 petabytes of data [8]), Microsoft’s
data mining cluster (1800 nodes [21]), and Yahoo’s Hammer clus-
ter (3800 nodes [27]). As a result, system designers must be ever
more careful that as the clusters grow, their performance does not
become bottlenecked due to unevenly partitioned load among cluster
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Figure 1: Small, fast cache at the front-end load balancer.

nodes. Many of these services must further cope with potentially
unpredictable shifts in the query workload (i.e., “flash crowds” [7])
or adversarial access patterns, either accidentally or as a denial-of-
service attack.

This paper shows that system designers can ensure load balancing
for an important class of services using a popularity-based small
front-end cache, which directly serves a very small number of popu-
lar items in front of primary servers (“back-end nodes”) in cluster
architectures such as that shown in Figure 1. This cache1 is small
enough to fit in the L3 cache of a fast CPU, enabling an efficient,
high-speed implementation compatible with front-end load balancers
and packet processors. Our work exploits the opposition between
caching and load balancing: A skew in popularity harms load bal-
ance but simultaneously increases the effectiveness of caching. The
cache therefore serves the most popular items without querying the
back-end nodes, ensuring that the load across the back-end nodes is
more uniform.

We begin by proving that the cache need only store O(n log n)
entries to provide good load balance, where n is the total number
of back-end nodes. As a concrete example, a key-value storage
system with 100 nodes using 1 KiB entries can be serviced using
4 megabytes of fast CPU cache memory, regardless of the query
distribution that it must handle. This result enables constructing
clusters that use large numbers of slower, but more energy- and
cost-efficient nodes to provide massive storage and high overall
throughput, coupled with a small number of fast machines operating
in their ideal performance range: serving a high query rate with all
of their code and data in the CPU cache.

1Unless mentioned specifically, we use the term “cache” to refer to an application-
level cache, not a CPU cache.



Our result applies to a class of services that are popular building
blocks for several distributed systems. We target services with three
properties:

1. Randomized partitioning. The service is partitioned across
cluster nodes and the way the service is partitioned is opaque to
clients. (e.g., a key is hashed to select the back-end that serves
it.)

2. Cheap to cache results. The cache can easily store the result
of a query or request and serve future requests without costly
recomputation or retrieval.

3. Costly to shift service. Moving service from one back-end
node to another is expensive in network bandwidth, I/O, and/or
consistency and indexing updates. In other words, the parti-
tioning cannot be efficiently changed on the timescale of a few
requests.

Systems fitting this category include:

• Distributed file systems such as the Google File Sys-
tem (GFS) [18] and the Hadoop Distributed File System
(HDFS) [1], where each data block is located and served at one
or multiple semi-random servers;

• Distributed object caches such as memcached [25];
• Distributed key-value storage systems such as Dynamo [15],

Haystack [8], and FAWN-KV [6].

Services we do not consider are those in which:

• Queries can be handled by any node, such as a web server farm
with a large set of identical nodes, each of which is capable of
handling any request. These services do not require caching
for effective load-balancing.

• Partitioning is predictable or correlated: For example, column
stores such as BigTable [11] and HBase [2] store lexicograph-
ically close keys on the same server. Our results apply only
when keys are partitioned independently—in other words, for
systems where a client cannot easily find a large set of keys
that would all be sent to the same back-end node.

Our overall goal is to allow cloud service providers to meet
service-level objectives (SLOs) for handling a particular rate of
queries regardless of the query distribution, without the need for
drastic over-provisioning. Our analytical results in Section 4 show
that a small front-end cache can do exactly this. Furthermore, we
provide guidance for provisioning such a cache by showing tight
analytical bounds on the necessary cache size. Importantly, we find
that the cache size depends only on the total number of back-end
storage nodes, not the number of items stored in the system.

Finally, we validate these results empirically using an 85-node
testbed cluster using the FAWN-KV key-value storage system [6],
presented in Section 5. Because of the tight bounds on the cache size,
we are able to implement a front-end cache that fits in the 2×12MB
of L3 cache available on two contemporary server CPUs. We show
that even a simple userland implementation of the front-end cache
can handle more than 800,000 queries per second running on two
low-power 2.27GHz Xeon processors.

2. BACKGROUND & CONTEXT

Cluster systems scale using a combination of partitioning (spreading
data or responsibility across a larger number of nodes, where each

node handles a different subset of the requirements) and replication.
For some services, such as partitioned search, the response time
of the cluster is equal to the response time of the slowest node to
respond to a query. For others, such as partitioned key-value stores,
uneven load degrades service for the fraction of the data handled by
the overloaded nodes. In both cases, good load balance is necessary
to ensure that the cluster can meet its throughput and latency goals.

Systems must balance both the static component of load—the
constant storage or memory capacity required on individual nodes,
which we typically refer to as the amount of data they handle—and
the dynamic load of handling queries as they arrive. Data should
be spread uniformly among nodes, and no node should handle too
many more queries than another node (proportional to its relative
ability/capacity).

Capacity is typically load-balanced by striping deterministically
(e.g., RAID [29]) with carefully chosen boundaries for stripes, or
by using a hashing-based approach. Consistent hashing schemes
(e.g., that used in Chord [23, 32]) are popular due to their simplicity
and ability to support incremental growth. Many systems that use
consistent hashing use “virtual nodes” to improve the quality of
their static load balance, where each physical server acts as several
different nodes in the consistent hashing ring [12].

Although these schemes help balance the static space utilization,
they do not balance the dynamic load: hotspots can still occur when
some items are queried for more than others. Unfortunately, many
real-world workloads have non-uniform query distributions.

Systems typically balance dynamic load in one of two ways. First,
some dynamically move data from busy nodes to less busy nodes
to help even the query load [31]. Others, such as Mitzenmacher’s
well-known “power of two choices” load balancing, rely upon repli-
cation to be able to direct queries to the least-loaded of two or more
replicas, substantially improving load balance in the process [26].
Unfortunately, both such schemes are limited to handling relatively
small load imbalance (where no object is too hot to be served by one
or a small, constant number of servers), and both introduce either
consistency and migration challenges or high space overhead for full
replication. This is not to say that these techniques are unnecessary—
we discuss further in Section 6 how two-choices load balancing
might be used synergistically with small-fast-cache load balancing.

Some large scale systems have applied combinations of these
techniques, e.g., Amazon’s Dynamo [15] uses consistent hashing,
virtual nodes, and replication. However, its authors report that 10%
of nodes have at least 15% higher load than the average load almost
all the time (and provide less detail about load spikes or adversarial
workloads). Load imbalance remains an important challenge for
partitioned services [13].

3. SYSTEM MODEL

Before presenting our analytical results (Section 4), we first intro-
duce our system model through an example—the FAWN-KV [6]
key-value storage system—which we use for our experimental re-
sults in Section 5. FAWN-KV is a distributed high-performance
key-value storage system. Like other key-value hash tables such as
Dynamo [15], memcached [25], Citrusleaf, and cluster distributed
hash tables [19], FAWN-KV provides a simple hashtable-like inter-
face for key-value operations:

• PUT(k,v) maps the key k to the value v; and
• v=GET(k) retrieves the value v associated with key k.



Like the diagram in Figure 1, a FAWN-KV cluster has one front-
end node that directs queries from client applications to the appro-
priate back-end storage node by hashing the key being queried for.
All keys are stored on the back-end nodes.

Clients for key-value storage services such as FAWN-KV are
typically other applications running in the datacenter. These clients
often generate a large number of key-value lookups to perform a
single user-facing operation such as displaying a web page: for ex-
ample, Facebook is thought to issue on average 130 internal queries
to compose a single page, and Amazon between 100 and 200 [28].
Many of these requests are dependent upon earlier queries, making
latency and strict adherence to service-level agreements critical for
the performance of the overall enterprise [15].

A Resource-Constrained Testbed The FAWN-KV system was
originally designed for “FAWN” clusters, or “Fast Arrays of Wimpy
Nodes,” which are particularly susceptible to load imbalance, even at
small sizes, because the back-end nodes are comparatively resource-
constrained. They have slower CPUs, less memory, and use a single
solid state drive for storage. This architecture is energy and cost-
efficient [6], but has less headroom for handling query bursts or popu-
larity shifts [22]. The lower capacity of the back-ends also allows us
to experiment with load balancing strategies using a userland-based
cache implementation instead of, e.g., the hardware or specialized
network processor implementations used for high-speed commercial
load balancers.

Consistent Hashing: Key Ranges to Nodes FAWN-KV orga-
nizes the back-end nodes into a storage ring-structure using consis-
tent hashing in a 160-bit ring space (the hashing scheme used in
Chord [32]). This consistent hashing is used to partition the key
space among different nodes while smoothly handling node arrivals
and departures. FAWN-KV does not use Chord’s multi-hop routing;
instead, the front-end node maintains the entire node membership
list and forwards the queries directly to the back-end node containing
a particular data item.

Small-Fast-Cache Design & Implementation As we show below,
ensuring load balancing requires a relatively small cache; to achieve
high throughput, however, the font-end cache must be fast enough
to keep the cluster of nodes behind it busy. A contemporary server
CPU with several MBs of system (L3) cache can satisfy these two
requirements to act as a front-end for a cluster of Atom-based FAWN
nodes with SSDs. Our software-based front-end cache uses a widely
available hash table implementation [3] that supports concurrent
access from multiple threads. The system uses Thrift [4] for mar-
shaling, unmarshaling, and sending RPCs between the front-end and
back-ends.

4. ANALYSIS

This section presents analytical results showing that a small front-
end cache can provide load balancing for n back-end nodes in our
target class of systems by caching only O(n log n) entries, even
under worst-case request patterns. The key intuition behind our
results is that the cache must merely be large enough to ensure that
uncached queries will be spread evenly over the back-end nodes. The
surprising effectiveness of a small cache is due to the fact the worst
case for load balance—a highly imbalanced query workload—is
simultaneously the best case for caching, and vice-versa.

Symbol Meaning

n # of back-end nodes
m # of (key,value) items stored in the system
c # of (key,value) items cached
R sustainable query rate
Li query rate going to node i
ri max query rate supported by node i
pi fraction of queries for the ith (key, value)

Table 1: Notation used for the analysis.

4.1 Model and Assumptions

Table 1 summarizes the notation used in the analysis.

Model Consider a system such as that shown in Figure 1 that serves
a total of m distinct items partitioned across n back-end nodes
1, 2, · · · , n where node i can handle at most ri queries per second.
The system caches the c most popular items (c ≤ m) at a front-end.
On a cache hit, the front-end can serve the client request without
querying the corresponding back-end server.

Assumptions This analysis makes four assumptions about the sys-
tem. As the real systems may not necessarily obey these assumptions,
we examine the effect of the factors that may affect load balancing
in Section 5 and extend the discussion in Section 6.

1. Randomized key mapping to nodes: each of m keys is as-
signed to one of the n storage nodes, and this mapping is
unknown to clients.

2. Cache is fast enough: the front-end is fast enough to han-
dle queries and never becomes the bottleneck of the system
throughput.

3. Perfect Caching: queries for the c most popular items always
hit the cache, while other items always miss the cache.

4. Uniform Cost: the cost to process a query at a back-end node
is the same, regardless of the queried key or the back-end node
processing the query.

Promised Throughput Our goal is to evaluate the throughput R
the system can sustain regardless of the query distribution. Load
balancing is critical to sustainable throughput, because once any
node i becomes saturated (i.e., serving at its full speed ri), the system
cannot guarantee more throughput to clients, even though other
nodes still have spare capacity. In other words, we are interested in
the system throughput even with adversarial query patterns.

Adversary For clarity of the presentation, we assume the cluster
is serving an adversarial workload, whose goal is to maximize the
chance of saturating one node. The adversarial workload generator
knows:

• which m keys are stored on the system;
• the number of back-end servers n; and
• the cache size c.

However, the adversary can not easily target one specific node
as the hotspot, because it does not know which keys are assigned
to which nodes.2 In order to generate a skewed workload on the

2We note that we are not considering an intelligent, malicious adversary, who might
resort to adaptive attacks to guess where keys sit. We use the blind adversarial model
only to generate a worst-case workload to lower-bound the cache size, not to make
strong claims about the system’s security.



back-end, the adversarial strategy is to query for x different keys
according to some distribution. This workload may cover all m keys,
or a specific subset of all keys; it may also request different keys
at different probabilities. Formally, an adversarial strategy can be
described as a distribution S

S = (p1, p2, · · · , pm), (1)

where pi denotes the fraction of queries for the ith key. p1 + p2 + · · ·+

pm = 1. Without loss of generality, we list the keys in monotonically
decreasing order of popularity, i.e.,

p1 ≥ p2 ≥ · · · ≥ pm.

4.2 Adversarial Access Pattern

We first examine the best strategy the adversary could adopt when
the back-end servers have homogeneous capacity: r1 = · · · = rn = r .
We extend this result to heterogeneous nodes in Section 4.4.

First, when the system has no front-end cache (c = 0), the best
adversarial strategy is trivial: always query one arbitrary key, e.g.,
the first key, to saturate the corresponding storage node:

S = (1, 0, · · · , 0). (2)

Under this workload, only one node is saturated and the others are
completely idle; in other words, the system can satisfy only r queries
per second even though its aggregate capacity is n · r.

This trivial case demonstrates that without front-end caching the
throughput of the system does not scale under an adversarial access
pattern.

When the system has a cache of size c > 0, the c most frequently
requested keys will all hit the front-end cache:

S : p1 ≥ p2 ≥ · · · ≥ pc︸                  ︷︷                  ︸
cached keys

≥ pc+1 ≥ · · · ≥ pm︸             ︷︷             ︸
uncached keys

. (3)

To create back-end hotspots, the adversary must therefore query
more than c keys in order to bypass the cache and hit the back-ends.
In these c cached keys, the adversary does not benefit from querying
one key (e.g., key i) at a higher rate than any other cached key; the
adversary will benefit from making fewer queries for key i and more
for some uncached key(s). Therefore, the adversary should always
query the first c keys (which will be cached) at the same probability
(i.e. p1 = p2 = · · · = pc):

S : p1 = p2 = · · · = pc︸                  ︷︷                  ︸
cached keys

= h ≥ pc+1 ≥ · · · ≥ pm︸             ︷︷             ︸
uncached keys

≥ 0. (4)

The following theorem states the best strategy for the adversary
in terms of the uncached keys (see Figure 2):

Theorem 1 If any distribution S has two uncached keys i and j
such that h > pi ≥ p j > 0, the adversary can always construct a new
distribution S ′ based on S to increase the expectation of Lmax. This
new distribution S ′ is the same as S except p′i = pi + δ, p′j = p j − δ
where δ = min{h − pi, p j}.

The proof of this theorem is in Appendix A. Intuitively, the theo-
rem suggests that the adversary should always shift some load from
key j to a more queried key i until this key gets the same fraction
as the cached keys. If the adversary applies this process repeatedly,
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Figure 2: The construction of the best strategy for the adver-
sary. The adversary can increase the expectation of the maxi-
mum load by moving query rate δ from a uncached key j to a
more popular uncached key i (Theorem 1).
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Figure 3: The constructed best strategy for the adversary to
maximize load imbalance. The adversary queries x keys, where
the rate for x − 1 is the same.

it ends up with a distribution with an equal probability for the first
x − 1 keys (where x is the number of keys it queries for), or

S : p1 = · · · = pc︸          ︷︷          ︸
cached keys

= h = pc+1 = · · · = px−1 ≥ px︸                       ︷︷                       ︸
uncached keys

> 0

px+1 = · · · = pm = 0 (5)

In other words, the best strategy for the adversary is to query
the first x − 1 keys at probability h and the last one at probability
1 − (x − 1)h (

∑
pi = 1), as illustrated in Figure 3.

Note that Eq. (5) does not state the value of x or h. Intuitively, the
adversary has two concerns when choosing x. First, since a fraction
c/x of the total load will be served by the cache, x should be large
enough to ensure enough load bypasses the cache. Second, x cannot
be too large otherwise the query load covers a large number of keys
uniformly—the best case the system can expect. In Appendix B, we
derive an estimate of x∗, the optimal value of x, keeping in mind
that the adversarially “optimal” number of keys to query against is
the number that maximizes the load on one back-end node. We use
this estimate in the next section to provide a lower bound on the
throughput of a system with an appropriately-sized cache.

4.3 Throughput Bound

Since each key is assigned to one of the n nodes randomly, the load
on each of the nodes can be bounded by the well-known Balls-in-
Bins model [30, 26]. Imagine we are throwing M identical balls into
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N bins and each bin is picked randomly. When M � N log N, the
number of balls in any bin is bounded by

M
N

+ α

√
2 ·

M
N
· log N, (6)

with high probability (i.e., 1 − O
(

1
N

)
). α > 1 is a constant factor

affecting the confidence.
In our model, there are (x − c) uncached keys that can be consid-

ered as the balls and n servers as the bins. Setting N = n, M = x−c in
Eq (6), the number of different keys served by any server is bounded
by

x − c
n

+ α

√
2(x − c)

n
log n. (7)

Based on Eq. (7), we can derive the bound for the load imposed on
a back-end server. If the adversary is sending queries at rate R, for
each key the query rate is at most R/(x − 1). Given the maximum
number of keys served by any node (Eq. (7)), an upper bound of the
expected load on each node is

E[Lmax] ≤

 x − c
n

+ α

√
2(x − c)

n
log n

 · R
x − 1

=

 x − c
x − 1

+ α

√
2(x − c)
(x − 1)2 n log n

 R
n

(8)

To examine the accuracy and the tightness of this bound, we
simulate a system with 100 nodes and a cache of size 1000. For
each run of the simulation, x (x > 1000) different keys are queried
at the same rate, and the load of the most loaded back-end node is
recorded. We repeat this simulation for 1000 runs, and show the
average, max and min of the maximum load in Figure 4. Each bar
in the figure represents the maximum load obtained from 1000 runs
with average, max, and min. The curve is calculated from Eq. (8)
with α = 2. The figure shows the bound has a small gap from the
numerical results when α = 2. Figure 4 also shows that there is a
global maximum point achieved by some value x. This maximum
point is the best any adversary can achieve given the cache size c
and number of nodes n.
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Based on Eq. (8), we can bound (see the derivation in the ap-
pendix) the worst case (the maximum point in Figure 4) for any x
by

E[Lmax] ≤
1 +

√
1 + 2α2 n log n

c−1

2
·

R
n
, (9)

which leads to the normalized throughput for the most loaded node
being bounded by

E[Lmax]
R/n

≤
1 +

√
1 + 2α2 n log n

c−1

2
. (10)

Figure 5 illustrates the relationship between the max load (normal-
ized) calculated in Eq. (10) and the cache size c. Note that increasing
the cache size beyond a certain point provides diminishing returns,
which suggests how to set the cache size in order to bound the
maximum normalized load seen by any one back-end.

Cache of Size O(n log n) If we choose a cache size of c = k ·
n log n + 1 where k is a constant factor, the load bound shown in
Eq. (10) becomes constant in the system size:

1
2

1 +

√
1 +

2α2

k

 (11)

Figure 6 shows the normalized load (Eq. (11) as a decreasing
function of the constant factor k for cache size. Note that the normal-
ized load is highly sensitive to k when k is small. When k = 8, its
value is about 1.2 which means the most loaded node gets at most
20% more work to do than the average amount of work. When k
further increases, the decrease of the load is diminishing.

Because Eq. (11) is independent of n, a system designer can
choose a value for k that bounds the load (amount of over-
provisioning required) at the back-ends. This normalized load/over-
provisioning will be the same for any n, provided the front-end cache
is scaled appropriately (to the value of c given above).

Promised Throughput Bound If the capacity r of each node is
larger than the upper bound of E[Lmax] given in Eq. (9), then with
high probability, the adversary can never saturate any node. The
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system can therefore guarantee that its throughput will always be
equal or better than R queries per second.

R ≥
2

1 +

√
1 + 2α2 n log n

c−1

· n · r, (12)

no matter what distribution of key queries the adversary uses.

4.4 Heterogeneous Nodes

So far we have assumed homogeneous nodes in the cluster so that
each back-end can serve requests at the same maximum rate. In
practice, however, nodes in the cluster tend to be heterogeneous. For
example, nodes could belong to different generations and the latest
nodes usually perform better than the older nodes.

A common way to address heterogeneity is to partition the service
among nodes according to their capacity [32, 23, 12]. Each physical
node hosts multiple virtual nodes, and each virtual node acts as an
independent node in the cluster. By assigning more virtual nodes to
the servers of higher capacity, the system can balance the capacity
and the workload among heterogeneous nodes.

To measure the load for heterogeneous nodes, we normalize the
load for each node by its capacity, where the lowest-capacity nodes
have only one virtual node. Assume there are still n physical nodes
as before and each hosts v virtual nodes on average. Therefore, there
are n′ = vn virtual nodes in total. As we show in Appendix C, we can
modify the preceding analysis to determine the highest load among
all virtual nodes (instead of physical nodes), and then determine the
load of a physical node based upon its virtual node count.

The end result is that the front-end cache can provide effective
load balance for a cluster of heterogeneous capacity if we increase
its size by a factor of (v + v logn v). Intuitively, this means that the
increase in the cache size is proportional to the disparity between the
average node capacity and that of the weakest nodes in the system.

Summary

• The worst case for the system (the best case for the adversary)
is to send queries for x∗ different items at an equal rate. x∗ is a
function of cache size c and cluster size n, but independent of
the number of items stored in the cluster (see Appendix B).

Front-end node Back-end node
CPU: 2× Intel Xeon L5640 Intel Atom D510

Clock: 2.27 GHz 1.66 GHz
# cores: 2×6 2

CPU cache: 2×12 MiB (L3) 512 KiB (L2)
DRAM: 2×24 GiB 1 GiB

Table 2: Specifications of front- and back-end nodes

• To achieve reasonably good load balance and avoid hotspots,
the system needs a small, fast cache at the front-end of size
c = k · n log n + 1 = O(n log n).

• k has a diminishing return with respect to improving load bal-
ancing. With heterogeneous nodes, k can be scaled approxi-
mately by the difference in capacity between the average and
slowest nodes, and the analysis holds.

5. EVALUATION

We perform experiments on our FAWN-KV cluster to evaluate the
effectiveness of load balancing with a front-end cache. Our goals
are, first, to validate that load balancing in the real system matches
the theory; second, to validate that the performance of the system
improves in tandem with the improvement in load balance; and third,
to validate that this caching design can operate at high speed.

5.1 Experiment Overview

This section describes the cluster hardware and common experimen-
tal parameters.

Experimental Testbed Our FAWN-KV cluster consists of one high-
performance front-end node and 85 low-power back-end nodes. The
front- and back-end node’s specifications are shown in Table 2. All
nodes are connected to a switch; the front-end node uses a 10 GbE
link, while back-end nodes use 1 GbE links. The network is never
the bottleneck in our experiments.

Workload Generation Our experiments use synthetic key-value
pair operations. In all experiments, a client first generates and
puts m = 8.5 million key-value pairs into the cluster; thus, on
average, each of the n = 85 back-end nodes is responsible for serving
approximately 100, 000 unique key-value pairs. The mapping of a
given key-value pair to a back-end is done by hashing the key.

For query generation, the client selects x different keys (x ≤ m)
from all generated keys with a certain access pattern and popularity
distribution as we describe for each experiment. The client pipelines
queries to hide network latency, but to keep latency within a reason-
able value, limits the maximum number outstanding queries to 1000
keys per back-end.3 The client resides on the same physical machine
as the front-end node. The key size is 20 bytes, and the value size is
128 bytes.

Unless otherwise specified, the following experiments use all 85
back-end nodes. Because not every back-end node is equipped with
an SSD, we first measured the throughput of a single node serving
queries from its SSD, which it can do at approximately 10, 000
queries/second. We then emulate the SSD I/O behavior by having
the back-ends serve data from a rate-limited memory-based disk that

3The nodes serve roughly 10,000 queries/second, so a queue of 1,000 queries adds
at most 100ms of latency.
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Figure 7: System throughput scalability as the number of back-end nodes increases from 10 to 85, under different access patterns
including uniform, Zipf, and an adversarial workload.

serves 10,000 requests/second, to be able to scale our experiments
to more nodes than we have SSDs for.

5.2 Caching Effect: Cluster Scaling Under Different
Workloads

Figure 7 shows the scalability of the cluster throughput without
and with caching as the number of back-end nodes in the cluster
increases. We explore three different access patterns:

• a uniform distribution across all m = 8.5 million keys, which
is expected to be a good case of load balancing, serving as a
baseline;

• a Zipf distribution with parameter 1.01, which has a bias to-
wards a few keys but also has a heavy tail4; and

• an adversarial access pattern, which is obtained by varying the
number of selected keys (x) to find the worst-performing value
of x, and querying at random for only those keys.

Figure 7a shows the case when no cache is used at the front-
end. The throughput of the uniform workload scales linearly as
the number of nodes grows, with each back-end node serving 10 K
queries/second. The throughput of the Zipf workload, however,
grows slowly and has diminishing returns with each additional node.
With Zipf, the workload is biased to a small set of keys, and the
nodes serving these keys become a bottleneck, limiting the overall
throughput of the cluster. The adversarial access pattern achieves
the worst throughput. In the no caching case, this pattern queries
only one key regardless of the size of the cluster, and thus always
has a total throughput of 10 K queries/second.

Figure 7b shows the throughput when using a small front-end
cache of size c = 8 · n log n + 1, where n is the number of back-end
nodes. The throughput for the random workload remains almost the
same as before because the cache is relatively small compared to
the working set size; the cache absorbs a small number of requests,
but most of the queries are distributed evenly across the back-end
nodes. Zipf’s bias towards a small number of keys benefits most

4Zipf and other heavy tail distributions often better characterize real-world work-
loads.
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Figure 8: Throughput of each back-end node for different val-
ues of x when c = 0. Node IDs (x-axis) are sorted according to
their throughput.

from having a font-end cache—even a very small one—the system
performance even exceeds the aggregate raw throughput that the
back-end nodes can provide. Finally, the system performance for
the adversarial access pattern matches the theoretical results: an
appropriately-sized front-end cache (based on the number of nodes
in the given trial) produces the same performance as did the uniform
distribution. With the front-end cache, all workloads achieve at least
the linear scaling of the purely uniform workload.

5.3 Load (Im)balance Across Back-End Nodes Without
Cache

To further understand the interaction between load balancing and
system throughput, Figure 8 shows a snapshot of the individual node
performance with front-end caching disabled under the uniform
random workload. We show performance when querying for four
different set sizes (values of x).
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Figure 9: Throughput that the adversary can obtain by query-
ing for different numbers of keys when the cluster has 85 back-
end nodes and no cache is used.

• When x = 10, the number of active keys is smaller than the
cluster size, and thus only 10 back-end nodes serve queries.
The aggregate performance is therefore quite poor. The nodes
operate at the same rate as each serves only one key.

• When x = 100, 28 of the 85 nodes remain idle: with the random
key-to-node assignment, some nodes handle four or more keys
while others handle zero. The overall load balancing—and
performance—is still poor.

• When x = 10000, the working set is much larger than the clus-
ter size, and all back-ends are used; however, the load distribu-
tion remains skewed, which reduces the overall throughput.

• When x = 100000, the load is distributed almost perfectly.

In summary, we see empirically that, without a cache, load bal-
ancing is very susceptible to the working set size x, and there are
three operating regions for x. If x is smaller than the number of
back-ends, not all of the back-ends are used, and the performance
suffers. But, even if x is larger than the number of back-ends, the
load distribution can be uneven (due to the balls-in-bins game), and
the performance is sub-optimal. Only when the number of unique
objects queried is sufficiently greater than the number of back-ends
does the system achieve good load balance across all of the nodes.

5.4 Adversarial Throughput Under Different Query
Patterns

Figure 9 shows the overall system throughput without a front-end
cache. On the x-axis, we vary the number of unique keys that the
client requests, x, from 1 to 1 million. Without caching, x = 1 (i.e.,
always querying one key) gives the worst system throughput since
all queries go to a single back-end node. The system throughput
increases with x as the query load is distributed more evenly across
the back-ends, and this performance gain with larger x diminishes
as the back-end nodes operate at nearly full capacity.

In contrast, Figure 10 shows the breakdown of the throughput
with a front-end cache. The cache is sized based upon our theoretical
results (8 · n log n + 1). The bottom curve shows the queries/second
served exclusively by the back-end nodes—the trend is similar to
that in the no-caching case. The top curve shows the total throughput
being served by the cache plus the back-end nodes. The contribution
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Figure 10: Throughput that the adversary can obtain by query-
ing for different numbers of keys when the cluster has 85 back-
end nodes and c = 3000. Results for x < 3000 are omitted
because all queries would be served by the front-end cache.
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Figure 11: Adversarial throughput as the cache size increases.
The “worst case” line shows the worst throughput achieved
when testing ten different sizes of adversarial request sets.

of the front-end cache diminishes as x grows, with the aggregate
throughput converging eventually to the back-end capacity.

In summary, the back-end throughput alone is low when x is small,
as the load is not perfectly balanced as shown in Figure 9. In this
region, however, a small cache is very efficient to prevent hotspots
and ensure enough good performance. When x is larger, the caching
effect shrinks, but the back-end throughput grows rapidly. These
two effects combine to guarantee high performance regardless of the
number of keys queried for.

Cache Size vs. Worst Case Performance Figure 11 shows the
relationship between cache size and worst-case system performance
(the best the adversary can do). For each cache size on the x-axis,
we test ten different values of x (number of unique keys requested)
to find that which produces the worst throughput. The total number
of back-ends is fixed at 85 nodes. The figure shows the experimental
results and the theoretical lower bound. As expected, the measured
throughput is higher than the prediction, except for the smallest



cache size (in which case the balls-in-bins approximation we made
in our analysis no longer holds).

6. DISCUSSION

Real-world clusters have additional functional requirements (e.g.,
negative caching) or behave in ways that violate some of the simpli-
fying assumptions we made for our analysis (e.g., imperfect caching
or handling queries with non-uniform processing costs). This section
discusses how several of these complicating factors interact with
small-fast-cache load balancing and how the caching may need to
be adjusted to compensate, if possible. We conclude by discussing
several opportunities for future enhancements to our work.

Multiple Front-End Caches Although a front-end cache can op-
erate at a very high rate due to its small size, to scale, clusters will
eventually require multiple front-end load balancers and caches to
provide sufficient bandwidth and reliability. Our scalability results
apply whether or not the system has multiple front-ends, but an
interesting future question is whether such a system can use smaller
individual caches on the front-end nodes because they handle less of
the total load. The more challenging aspect of multiple front-ends,
however, is cache consistency.

We believe that our solution is sufficient for weakly consistent
services such as Dynamo, requiring only the addition of an efficient,
asynchronous invalidation protocol between the caches. Strongly
consistent services have two options: cache coherency or cache
partitioning. The latter option doubles the amount of traffic that
each front-end must handle by routing all queries for a particular key
through its cache. This approach subtly weakens the load balance
that can be provided by the cluster: in theory, if all requests arrived
for only a single key, the cluster would be limited to the performance
of a single front-end. However, provided that a front-end was, e.g.,
100x faster than an individual back-end node, we suspect that this
would not be too much of a problem in common practice. Never-
theless, it does not satisfy our desire to have the cluster provide
provably high throughput guarantees.

The second approach of adding coherent caching introduces com-
plexity, but is effective for read-mostly workloads. We must, how-
ever, defer to others solving the (perhaps impossible) general prob-
lem of supporting an intensive read-write mix to a single key at
higher rate than can be handled by a single fast node.

Network Scaling We have assumed throughout this paper that the
network itself has sufficient capacity to handle any traffic given to
it. Emerging datacenter network designs such as fat-tree topologies
may be able to make this assumption practical [5]. Absent them,
particularly in the case of multiple front-end nodes, exploring the
interaction of load balancing and network topological constraints
seems a challenging problem for future work.

Imperfect Caching Policies Real-world caching policies are imper-
fect, particularly under an adversarial model. Fortunately, our results
still apply even if the cache can be gamed, by using a slightly larger
cache. For example, when the cache uses the least recently used
(LRU) eviction policy, cycling c + 1 distinct keys will make every
request miss the cache. However, much like our existing analysis,
such behavior forces the adversary to spread its queries over c + 1
different keys. The difference from our analysis is that the previous
adversarial strategy picked x∗ keys to query, but incurred no benefit
from the first c of these. With a predictable LRU cache, the first

c also add load to the back-end nodes. Slightly increasing the k
factor of the cache (e.g., by 1) can account for the practical extra
load imbalance from these keys; the theoretical bound from Eq. (11)
remains unchanged (it is already slightly pessimistic).

The fact that an adversarial workload that can completely bypass
the cache is still handled helps illustrate why a small fast cache is
effective in providing load balance: it arises not because the cache
is fast, but because it forces the workload to be sufficiently uniform
that it can be handled by the back-end nodes.

Gaming the Partitioning Scheme If the mapping of keys to back-
end nodes is revealed to the adversary, a true adversary could launch
an attack that requests the keys which are stored in the same node to
overload the node. If such an attack is actually a concern, e.g., for
the operator of a shared cloud storage infrastructure, naive attacks
against the consistent hashing mapping can be defeated by using a
keyed hash. Even then, however, the mapping could be probed using
timing analysis by requesting a pair of uncached keys simultaneously
and correlating their response latencies. The adversary may discover
what key pairs are likely to be stored in the same node because
queries for the keys in the same node will be likely to have similar
response times within a short time frame. This scheme, however,
may require a large number of trials to obtain a suitable level of
confidence because external factors, such as network delay and front-
end load balancer delay, will greatly increase the variance in the
query latency measurement. We assume that the system operator
can detect and block such attempts.

Non-Uniform Processing Costs The cost of serving each query
may differ as the system may support many different types of oper-
ations (e.g., read, write, delete, and so on). A simple way to apply
our analysis is to provide one properly-sized cache for each type of
operation so that each can meet its SLA, but a more sophisticated
analysis may be able to help tighten the bound on the size actually
required.

Integration with Other Load Balancing Techniques We believe
that small-fast-cache load balancing is compatible with several popu-
lar load balancing techniques. By combining caching with the other
load balancing techniques, we may be able to achieve even more
effective load balancing. In particular, as we mentioned in Section 2,
we hope to explore integrating our work with “power-of-two-choices”
load balancing.

During the evaluation of our system, we observed frequent in-
stances in which individual back-ends took longer to complete work
than others. In the cases we debugged, these problems arose pri-
marily due to non-deterministic thread scheduling or hardware dif-
ferences. A few were due to Ethernet auto-negotiation errors and
interrupt handling in the front-end, and others arose because our
testbed uses a heterogeneous mix of SSD drives. Had we used spin-
ning disk drives, the variance would undoubtedly have been even
higher. Anecdotal evidence from Google suggests that such perfor-
mance variation is the norm, not an outlier [13]. Load balancing
strategies that can cope with unpredictable back-end performance
variation seem, therefore, mandatory.

As we noted earlier, two-choices load balancing cannot handle
the adversarial workloads we consider, but neither does our caching
cope with unpredictable back-end performance variation. We be-
lieve that combining the two could further reduce the size of the
front-end cache, but have not yet proved it: informally, two-choices
load balancing reduces the maximum load imbalance on a bin in



the balls-in-bins model from log n
log log n to log log n

log d ; we suspect, therefore,
that combining the two would allow the front-end cache to oper-
ate using only O(N log log N)—or even O(N)—cache slots instead
of O(N log N). Given that log log N is less than or equal to 5 for
any currently feasible cluster size, this would confer a substantial
advantage for the system designer.

Small Fast Caches Instead of Additional Replication Systems
such as GFS are reported to replicate popular data items more than
is necessary for fault-tolerance, in order to improve scalability and
avoid hotspots [18]. With the help of this small load balancing
cache, data replication might be returned to its role of serving only
for failure recovery, permitting a reduction in the amount of storage.
Clearly, a cache for a hard-drive based workload such as GFS will
not fit in L3 cache, but it may fit well in a fast solid-state drive.
The three order-of-magnitude access speed difference between a fast
SSD and a hard drive seek is similar to the gap between L3 and
DRAM or SSDs, and we believe our design principles would apply
equally well to this larger scenario.

Future Work: a High-Speed Implementation Path We believe
that a path exists to implement extremely high-speed front-end
caches using the emerging crop of many-core CPUs. Processors
using a Tilera-like architecture (64 cores with a total of 5.6MB of
L2 cache) can today perform moderately complex functions such
as deep packet inspection on 15 gigabits/second of network traffic.
Our results suggest that their available memory is sufficient to create
an extremely fast, efficient cache for a fast cluster. We believe that
similar results could be achievable by building upon recent success
in building many-core key-value store on Tilera [9] and fast software
routers by carefully optimizing the CPU processing path [16], using
GPUs to scale network routing [20].

7. RELATED WORK

In addition to the related work discussed in the previous sections,
substantial prior work has examined the use of caching to im-
prove throughput and latency in distributed systems. For example,
Markatos examined the relationship between cache size and perfor-
mance gain when caching search engine results [24]. This work,
and much that is similar to it, focuses on improving performance
by reducing redundant work. In contrast, our work improves per-
formance by preventing load imbalance from allowing individual
cluster nodes to become under-utilized while others are straining. As
a consequence, our work is able to demonstrate a large performance
boost using a small cache. In contrast, systems such as Facebook
are thought to cache over 90% of their data [28] in massive farms of
memcached [25] servers, and Google maintains its entire index in
tens to hundreds of terabytes of DRAM [13].

Server-based caching [10] achieves better load balancing by repli-
cating a small amount of data from highly loaded servers to proxies
that are close to data requesters. It shares the same framework
as our caching in that it uses a “front end” cache which serves
requests for popular items without contacting cluster nodes. Server-
based caching assumes an exponential popularity model for analysis,
whereas our work uses adversarial access patterns that incur a worst-
case load distribution, which is important for defining and meeting
service level agreements.

8. CONCLUSION

Load balancing is an important problem in many large-scale dis-
tributed systems, both to achieve high performance and to meet
service-level objectives for throughput and latency. Through anal-
ysis, simulation, and experiments on an 85-node cluster, we have
demonstrated that a small, fast front-end cache can ensure effective
load-balancing, regardless of the query distribution. We have proved
a lower bound on the cache size that depends only on the number of
back-end nodes in the system, not the number of items stored.
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APPENDIX A. PROOF OF THEOREM 1

Proof Assume the adversary is sending R queries per second. The only
difference between strategies S and S ′ is that S ′ increases the query rate for
key i by ∆ = δ · R and decreases the query rate for key j by ∆.

If key i and j are mapped to the same storage node, it is trivial that S and
S ′ generate the same load at the node.

If key i is served by node u and key j by node v, there are four cases:
• case 1: node u has the highest load, node v has less. Because node

u is the most loaded node under S , shifting ∆ load from node v to node
u keeps node u the most loaded—and increases its load by ∆. The
highest load under S ′, denoted by L′max, is

L′max = Lu + ∆ = Lmax + ∆.

• case 2: node v has the highest load, node u has less. By shifting ∆
load from node v to node u, the max load under S ′ will be decreased.
However, the decrease of L′max is no more than ∆ because the load of
node v by S ′ is at least Lmax − ∆.

L′max ≥ L′v = Lv − ∆ = Lmax − ∆

• case 3: neither node u nor v has the highest load. In this case,
reducing the load of node v does not decrease the load of the original
most loaded node. Increasing the load of node u by ∆ may, however,
make node u the most loaded. As a result, in this case, S ′ is at least as
good as S for the adversary:

L′max = max{Lu + ∆, Lmax} ≥ Lmax

• case 4: both u and v have the same max load. The max load by S ′
will increase by ∆ because

L′max = Lu + ∆ = Lmax + ∆.

In case 1 and case 4, L′max is increased by ∆; while in case 2, it is decreased
by at most ∆. Note that node u and v are both randomly chosen by the hashing
from the pool of n nodes. Therefore, node u, serving key i with a higher
query rate (i.e., pi > p j), has a better chance to become the most loaded node
than node v serving key j. In other words,

P{case1} ≥ P{case2}. (13)

In terms of expectation, the max load L′max is then increased by S ′ because

E[L′max] − E[Lmax] = E[L′max − Lmax]
≥ ∆ · (P{case1} − P{case2} + P{case4}) ≥ 0

APPENDIX B. DERIVATION OF EQ. (8)

Eq. (8) is the maximum possible (at high probability) load the adversary can
impose on any back-end nodes. Based on c and n, the adversary can set x to
a proper value—a value not so large as to make the query load too even, and
not so small as to hit cache too often—to maximize this possible load. By
optimizing Eq. (8), we have the maximizer of Eq. (8) to be

x∗ = 1 + 2(c − 1)

1 +
1√

1 +
2α2n log n

c−1 − 1

 . (14)

APPENDIX C. ANALYSIS OF HETEROGENEOUS
NODE CAPACITIES

Assume there are still n physical nodes as before and each hosts v virtual
nodes on average. Therefore, there are in total n′ = vn virtual nodes.

Applying Eq. (9), the highest load among all virtual nodes is bounded by:

1 +

√
1 + 2α2 n′ log n′

c−1

2
·

R
n′
, (15)

Assume the most loaded physical node hosts z virtual nodes; its normalized
load is bounded by: 1+

√
1+2α2 n′ log n′

c−1
2 · R

n′

 z

z
n′ R

=
1 +

√
1 + 2α2 n′ log n′

c−1

2
, (16)

which is just the maximum normalized load for the virtual nodes.
As a result, as long as we scale the factor k by a factor (v + v logn v), or :

c = (v + v logn v)k · n log n + 1, (17)

the maximum load of any physical node is still bounded by

1
2

1 +

√
1 +

2α2

k

 . (18)
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