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Abstract Technology enhancements and the growing breadth of application workflows running on high-performance

computing (HPC) platforms drive the development of new data services that provide high performance on these new

platforms, provide capable and productive interfaces and abstractions for a variety of applications, and are readily adapted

when new technologies are deployed. The Mochi framework enables composition of specialized distributed data services

from a collection of connectable modules and subservices. Rather than forcing all applications to use a one-size-fits-all data

staging and I/O software configuration, Mochi allows each application to use a data service specialized to its needs and access

patterns. This paper introduces the Mochi framework and methodology. The Mochi core components and microservices

are described. Examples of the application of the Mochi methodology to the development of four specialized services are

detailed. Finally, a performance evaluation of a Mochi core component, a Mochi microservice, and a composed service

providing an object model is performed. The paper concludes by positioning Mochi relative to related work in the HPC

space and indicating directions for future work.
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1 Introduction

The technologies for storing and transmitting data

are in a period of rapid technological change. Non-

volatile storage technologies such as 3D NAND [1] pro-

vide new levels of performance for persistent sto-

rage, while emerging memory technologies such as 3D

XPoint [2] blur the lines between memory and storage.

The performance, cost, and durability of these tech-

nologies motivate the development of complex, mixed

deployments to obtain the highest value. At the

same time, networking technologies are also improv-

ing rapidly. The availability of high-radix routers has

fostered the adoption of very low-diameter network

architectures such as Dragonfly [3], Slim Fly [4], and

Megafly [5] (a.k.a. Dragonfly+ [6]). Coupled with ad-
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vanced remote direct memory access (RDMA) capabil-

ities, single-microsecond access times to remote data

are feasible at the hardware level. Because of the

performance sensitivity of high-performance comput-

ing (HPC) applications, HPC facilities are often early

adopters of these cutting-edge technologies.

The application mix at HPC facilities and the as-

sociated data needs are undergoing change as well.

Data-intensive applications have begun to consume a

significant fraction of compute cycles. These applica-

tions exhibit very different patterns of data use from

the checkpoint/restart behavior common with compu-

tational science simulations. Specifically, the applica-

tions rely more heavily on read access throughout the

course of workflow execution, and they access and gene-

rate data more irregularly than their bulk-synchronous

counterparts do.

Additionally, the types of data these workflows ope-

rate on differ significantly from the structured multidi-

mensional data common in simulations: raw data from

sensors and collections of text or other unstructured

data are often common components. Machine learn-

ing and artificial intelligence algorithms are increasingly

a component of scientific workflows as well. For ex-

ample, researchers have employed the Cori system 1○

at the National Energy Research Scientific Comput-

ing (NERSC) Center 2○ for training models to identify

new massive supersymmetric (“RPV-Susy”) particles

in Large Hadron Collider experiments 3○. As with data-

intensive applications, these workloads exhibit irregu-

lar accesses, a greater prominence of read accesses, and

nontraditional types of data.

Further complicating the situation is that many

modern workflows are in fact a mix of these different

types of activities. For example, recent work investi-

gating optical films for photovoltaic applications em-

ployed HPC resources for a multiphase workflow [7].

The first phase of the workflow extracted candidate

materials from the academic literature by using nat-

ural language processing. In the second phase, many

small jobs filtered materials to remove inappropriate

(e.g., poisonous) materials. The third phase relied on

traditional quantum chemistry simulation, resulting in

a set of materials for experimental analysis. Each phase

of the workflow has its own unique data needs.

I/O Service Specialization: A Requirement of

Technology and Application Diversity. The combina-

tion of rapid technological advancement and adoption

along with an influx of new applications calls for the

development of an ecosystem of new data services that

both make efficient use of these technologies and pro-

vide high-performance implementations of the capabili-

ties needed by applications. No single-service model

(e.g., key-value (KV) store, document store, file sys-

tem) is understood to meet this wide variety of needs.

A report from NERSC [8] states the following:

“Ensuring that users, applications, and workflows

will be ready for this transition will require immediate

investment in testbeds that incorporate both new non-

volatile storage technologies and advanced object sto-

rage software systems that effectively use them. These

testbeds will also provide a foundation on which a new

class of data management tools can be built ....”

However, the question of how to enable the required

ecosystem of such data services remains open. Without

significant code reuse, the cost of each implementation

is too high for an ecosystem to develop; and without

significant componentization, no single implementation

is likely to be readily ported from one platform to an-

other.

Composition Model for Providing Specialized I/O

Software with Mochi. Mochi directly addresses the

challenges of specialization, rapid development, and

ease of porting through a composition model. The

Mochi framework provides a methodology and tools

for communication, data storage, concurrency mana-

gement, and group membership for rapidly developing

distributed data services. Mochi components provide

remotely accessible building blocks such as blob and KV

stores that have been optimized for modern hardware.

Together, these tools enable teams to quickly build new

services catering to the needs of specific applications, to

extract high performance from specific platforms, and

to move to new platforms as they are brought online.

In doing so, Mochi is enabling an ecosystem of services

to develop and mature, supporting the breadth of HPC

users on a wide variety of underlying technologies.

Contributions. This paper makes the following con-

tributions: 1) presents the Mochi components and

methodology for building services; 2) describes a new

service composed from Mochi components; 3) evalu-

ates a set of Mochi components and services on modern

hardware.

1○http://www.nersc.gov/users/computational-systems/cori/, Nov. 2019.
2○https://www.nersc.gov, Nov. 2019.
3○http://home.cern/topics/large-hadron-collider, Nov. 2019.
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2 Mochi

In this section we describe the components of the

Mochi framework, the methodology we apply for ap-

proaching the development of new services, and some of

the flexibility in Mochi related to instantiating services.

Table 1 lists many of the available Mochi components.

At a high level, Mochi components can be separated

into three groups: core components that provide ba-

sic functionality for developing services, microservices

that provide a specific building block functionality, and

composed services that are built from the core, Mochi

microservices, and other libraries.

2.1 Mochi Core

At the core of the Mochi framework are three li-

braries that provide the tools for communicating be-

tween participants in distributed services: Mercury,

Margo, and Thallium. Each of these provides diffe-

rent levels of functionality, and typically one of these

is selected when developing a particular component.

A fourth core component, Scalable Service Groups

(SSG), provides a concept of a group of providers

and aids in tracking membership. ABT-IO provides

hooks to POSIX I/O capabilities. Lastly, Argobots [9]

(developed outside the Mochi team) provides user-level

thread capabilities that facilitate concurrency mana-

gement.

Mercury. Mercury is a library implementing remote

procedure calls (RPCs) [10]. Mercury supports the exe-

cution of remote procedures in a variety of scenarios,

including over high-performance network fabrics using

the libfabric 4○ interface (e.g., OmniPath, InfiniBand),

and abstracts the typically used notions of client and

server with origin and target semantics, thereby mak-

ing it particularly appropriate for use in a multiservice

environment. Mercury can additionally take advantage

of shared memory for execution of RPCs in the con-

text of other processes on the same node, and facilities

are included for transparently “self-executing” proce-

dures when the target is the same process. Mixes of

local and remote execution are supported, freeing the

user of Mercury from having to differentiate between

communication on- and off-node.

Table 1. Source Lines of Code (SLOC) for Significant Pieces of the Mochi Framework

Component Client Provider Core Wrappers

Core ABT-IO 784

Argobots 16 545

Mercury 29 117

Margo 3 894 842 (py-margo)

Thallium 4 342

SSG 4 414 131 (py-ssg)

Microservices Bake 1 355 1 800 637 (py-bake)

POESIE 343 689

REMI 904 499

SDSKV 1538 3 550 259 (py-sdskv)

Composed Services DeltaFS 10 673 18 318

FlameStore 893 1 590

HEPnOS 2 929 433

HXHIM 7851 6 259

Mobject 1 563 5 278

Note: Implemented microservices and composed services demonstrate the small amount of code necessary to provide new capabilities
within the framework.

As opposed to more standard RPC frameworks,

Mercury also provides facilities to support handling of

large RPC arguments (i.e., bulk data). Where possible

and when natively supported by the underlying network

fabric, Mercury will take advantage of RDMA and al-

low for data transfers to be executed from the origin’s

buffer to the target’s memory without any additional

copy (zero-copy transfers are also realized when using

shared memory). Since memory patterns may vary be-

tween origin and target, Mercury also allows for scatter-

gather types of transfers to be realized through RDMA,

thereby reducing the number of required operations for

4○https://ofiwg.github.io/libfabric/, Nov. 2019.
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higher-level components. In addition to the target di-

rectly moving data via RDMA, origin remote mem-

ory descriptors can be passed on to and used by other

providers in order to avoid unnecessary data transfers.

This facility is leveraged in Mobject (described in Sec-

tion 4).

We also note that Mercury itself does not use

any threads (although libfabric internal providers may

sometimes use threads to drive progress) so that higher-

level components can use the threading model that is

most appropriate for their use.

Margo is a C library that takes advantage of the

Argobots user-level threading package to simplify the

development of RPC-based services. It provides three

key extensions to the Mercury RPC model. The first

is a set of Argobots-aware wrappers for communica-

tion functions. These wrappers translate Mercury’s

event-driven asynchronous communication model into

a more intuitive sequential user-level thread commu-

nication model. User-level threads that invoke these

wrappers are suspended and resumed as communica-

tion operations are issued and completed. The sec-

ond extension is an abstraction of the communication

progress loop. This abstraction consolidates best prac-

tices for polling and communication event management

into a single user-level thread that can be multiplexed

on the calling process or executed on a dedicated core.

Margo also provides a mechanism to spawn new user-

level threads to execute handler functions for each RPC

request. These threads can be redirected to different

cores depending on the provider configuration to sand-

box service resources. Alternatively, one can indepen-

dently provision multiple providers that reside on the

same daemon process.

Margo’s abstraction of the communication progress

loop also enables it to employ multiple polling strategies

without modifying the service built atop it. The default

polling strategy will use operating system mechanisms

to idle gracefully until communication events occur that

require processing: a strategy that conserves host CPU

resources at the expense of latency. It can also option-

ally operate in a polling mode that continuously polls

the underlying transport for activity: a strategy that

consumes additional host CPU resources to improve la-

tency. This flexibility allows Margo to be adapted to en-

vironments that prioritize resource conservation (such

as colocated service deployment) or environments that

prioritize performance (when dedicated service nodes

are available).

Thallium. Thallium provides a C++14 library

wrapping Margo that allows development of RPC-

based services using all the power of modern C++.

Thallium wraps all Margo, Mercury, and Argobots

concepts into C++ classes with automated memory

management (reference counting and cleanup) and re-

places Mercury’s macro-based serialization mechanism

with a template-based mechanism (in a way similar

to Boost’s serialization library). Thallium also uses

modern C++’s variadic templates to turn RPCs into

callable objects that can be invoked with any kind of

arguments (provided they can be serialized with the

above serialization mechanism).

Scalable Service Groups. Scalable service groups

provide tools for building, describing, and managing

groups of providers in Mochi. The current SSG im-

plementation leverages the SWIM [11] weakly consistent

group membership protocol to detect failures and evict

noncommunicating members of the group.

ABT-IO. ABT-IO provides a link between the ubiq-

uitous POSIX file interface and the Mochi framework

by allowing blocking file operations to be managed by

an Argobots execution stream so that file I/O can pro-

ceed concurrent with other Mochi operations. Note

that there is no corresponding core component for ac-

cessing nonvolatile memory. The persistent memory

development kit (PMDK) [12] is positioned to solve this

challenge, so we build on this library directly, as in the

case of Bake (Subsection 2.2). Support for specific data

models within the Mochi framework is implemented as

microservices, rather than as part of core. This re-

flects an understanding that not all services will use

the same data models, and so developers can incor-

porate only the specific microservices desired for their

service. As the number and variety of supported data

models grows, this design decision will become more im-

portant. Also related to data-specific service tasks, the

REMI microservice (Subsection 2.2) is meant to assist

in data migration both horizontally and vertically.

2.2 Mochi Microservices

The Mochi framework includes a set microservices

built by using the core Mochi libraries that provide ca-

pabilities typical of distributed, data-related services.

Microservices consist of client and server (or provider)

libraries. The client library provides a set of functions

that utilize RPC to perform work on providers.

Bake. Bake [13] began as a way to remotely store

and retrieve named blobs of data using the PMDK ob-

ject API with the goal of efficient storage to nonvolatile
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memory backends. Since then, however, it has grown

into a more general microservice for storing blobs on

nonvolatile memory or file-based storage backends. We

examine Bake performance in Subsection 5.2.

SDSKV. SDSKV is a recognition of the importance

of KV stores in modern data management. SDSKV en-

ables RPC-based access to multiple KV backends, in-

cluding LevelDB [14], Berkeley DB [15], and in-memory

databases. SDSKV is typically helpful for metadata

management.

REMI. REMI (Resource Migration Interface) is a

Mochi microservice designed to assist in shifting data

between providers. Built using Thallium, REMI works

in terms of filesets. A fileset is a group of files to be

migrated from one provider to another. Given a file-

set, REMI will use Mercury communication to recreate

the files in the fileset on the target provider. This pro-

vides a basic capability for data management useful for

constructing adaptive or hierarchical data services.

Poesie. Poesie provides the ability to embed lan-

guage interpreters (e.g., Lua, Python) in Mochi ser-

vices. Poesie clients can send code to Poesie providers

for remote execution on their behalf, providing a flexible

method of extending an RPC-based service. Currently

we are evaluating Poesie as a method for enabling rapid

reconfiguration of Mochi composed services.

2.3 Methodology

When developing new services using Mochi compo-

nents, we have found the following methodology to be

helpful in guiding design. This methodology is detailed

in [16]; we summarize it here.

User Requirements. The first step is to gather re-

quirements for users of the service, including the data

model to be exposed, expected access patterns, and

guarantees that the service should meet (e.g., atom-

icity, consistency). The data model is the data repre-

sentation that the client application works with, such

as NumPy arrays [17] for a machine learning application

or multidimensional data for scientific simulations. Ide-

ally our new service will work directly in terms of this

data model. An important aspect of the data model is

also the namespace, that is, the manner in which data

elements are referred to and the collection of them navi-

gated. Access pattern information identifies what types

of accessor functions should be supported, as well as

hinting at how data might be organized internally. For

example, in a write-heavy workload, a log structured [18]

organization of the data might be desirable. Guaran-

tees made by the service further constrain the design

space of the service. For example, a write-once guar-

antee can simplify many aspects of service implemen-

tation, whereas strict ordering of updates implies more

attention being placed on how to effectively store and

reconstruct the order of events.

Service Requirements. Once the user requirements

have been identified, they must be translated into ser-

vice requirements that describe how data will be man-

aged by the service. These include how data and meta-

data will be organized and how clients will interface

with the service. In terms of data organization, impor-

tant considerations include what data should be dis-

tributed, whether data “objects” should be sharded

(i.e., split across multiple providers), and whether data

should be replicated, either for performance or for fault

tolerance reasons. Similar decisions must be made for

metadata, which is often treated separately from data

in our model. An important aspect of metadata ser-

vice requirements relates to understanding the names-

pace and how users will identify relevant data by us-

ing properties of metadata. Furthermore, an interface

must be defined. Typically this begins with choosing

a language in which the interface will be written: this

is usually selected to minimize the inconvenience of ac-

cess on the application side. Following this selection, a

set of procedures are defined that provide the required

functionality.

Implementation with Mochi Components. With re-

quirements gathered and a protocol defined, a set of

building blocks can be selected to provide the major-

ity of functionalty, with gaps being filled with new

components as needed. Mercury, Margo, or Thallium

is selected to provide communication capabilities, and

SSG may be employed to ease referencing of individ-

ual providers and implement provider fault detection.

Other components, such as Bake and SDSKV, are typ-

ically employed to manage metadata and data. These

components are composed by breaking down client pro-

cedures into constituent calls to component interfaces.

When necessary, additional control components can be

implemented to orchestrate more complex sequences of

operations (e.g., the Mobject Sequencer (Section 4)).

2.4 Instantiating Mochi Services

By relying on the same underlying RPC mechanism,

Mochi components can freely communicate between one

another when on the same node or on different nodes in

a system. Implementations of microservices on Margo

can share the same underlying runtime, thereby execut-
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ing within a single process. Further, microservice in-

stances can be shared between composed services (e.g.,

a Bake instance managing node-local nonvolatile sto-

rage for more than one composed service). While we use

the terms “client” and “provider” when discussing how

microservice code is architected, in practice providers

can act as clients and thus freely communicate with

other providers. All together this flexibility means that

a wide variety of client and provider placement options

are available without changes to Mochi services. This

includes scenarios with node local services and disaggre-

gated ones with services on separate, network-attached

resources.

3 Productively Composing Services

Mochi contributes to the rapid and productive

development of specialized services in three ways. First,

by supporting a variety of programming languages (i.e.,

C, C++, and Python), developers are able to work in

their most familiar languages and with familiar sup-

porting libraries. Second, the combination of capa-

bilities provided by Mochi enables a wide variety of

different classes of services to be developed and with

a modest number of new lines of source code. Third,

the Mochi design naturally separates some aspects of

performance tuning from the implementation, allow-

ing performance tuning to be approached without code

modification and facilitating performance portability of

services. This last point will be demonstrated in Sec-

tion 5.

At the time of writing, 10 services have been deve-

loped using Mochi software components, four outside

this team. In this section, we briefly describe the ones

that we have been involved with. These services are

described in greater detail in prior publications, and

in particular the descriptions of FlameStore, HEPnOS,

and ParSlice have appeared previously [16]. This mate-

rial is included here to provide a more complete pic-

ture of how the Mochi methodology is applied. Each

of these services provides a distinct interface for clients

and leverages Mochi components in a distinct manner,

speaking to the ability to develop specialized compo-

nents in Mochi, and was developed in a mix of C and

C++. Each has been implemented with a relatively

small codebase (see Table 1) by virtue of leveraging the

other components of the Mochi framework.

3.1 FlameStore

FlameStore 5○ is a transient storage service tai-

lored to deep learning workflows. It was developed

to meet the needs of the CANDLE cancer research

project 6○. These workflows train thousands of deep

neural networks in parallel to build predictive models

of drug response that can be used to optimize preclin-

ical drug screening and drive precision-medicine-based

treatments for cancer patients. Following discussions

with users, FlameStore required only a few weeks of

development to reach a first working version.

User Requirements. Since CANDLE work-

flows train deep neural networks using the Keras

framework 7○ in Python, FlameStore needs to present a

Python interface capable of storing Keras models (the

workflow’s data model). More generally, this can be

achieved by enabling storing NumPy arrays along with

JSON metadata.

The workflow’s access pattern consists of writing po-

tentially large NumPy arrays. Overall, users expect

such models to range from a few hundreds megabytes

to a few gigabytes. These arrays are written once and

never modified.

Users requested that FlameStore provide a flat

namespace, that is, a simple mapping from a unique

model name to a stored model. Trained models need to

also be associated with a score indicating how well they

perform on testing datasets. FlameStore needs to store

such a score along with other user-provided metadata

(including the hyperparameters used for training the

model) that can be used for querying particular mod-

els. Users may also want to send Python code to nodes

storing a model in order to perform local computation

(e.g., evaluating some properties of the stored models

in order to make decisions).

FlameStore needs to be a single-user service run-

ning for the duration of the workflow that accesses it.

It needs to act like a semantic-aware distributed cache

built on federated storage space (RAM, NVRAM, or

disks) provided by compute nodes. It is backed up by

a traditional parallel file system for persistence across

multiple workflow executions.

Service Requirements. Based on the user require-

ments, we expect FlameStore to store few (on the order

of a thousand) large objects that need to be written

atomically, read atomically, and accessed locally in a

5○https://xgitlab.cels.anl.gov/sds/flame-store, Nov. 2019.
6○http://candle.cels.anl.gov, Nov. 2019.
7○https://keras.io, Nov. 2019.
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consistent manner. Hence we expect large data trans-

fers to be the critical aspect of the service to optimize.

We will need the storage space for these objects to be

distributed. Because we need to be able to execute

code within the data service to do some processing on

single models, we need each model to be stored on a sin-

gle node. This also aligns with the fact that workflow

workers do no collectively work on the same model.

We do not expect metadata to be a bottleneck, and

we can therefore use a single node to manage it. How-

ever, SDSKV is not sufficient to handle the type of

queries expected from the workflow: FlameStore needs

not only to store the metadata but also to make deci-

sions on where to store each model, based on colocality

with the node that generates it, on available space in

each storage node, and on the content (semantics) of

the data.

Implementation with Mochi Components. Fig.1(a)

shows the organization of components used in Flame-

Store. Its implementation primarily relies on Bake for

storage management. It uses PyMargo to implement

a custom Python-based provider for semantic-aware

metadata management and another custom provider

for the management of storage nodes. PyBake is used

to interface with Bake using Python. This Python in-

terface also enables RDMA transfers of NumPy arrays

to Bake providers. FlameStore’s composition code is

entirely written in Python. Fig.2(a) provides the num-

ber of lines of code used by FlameStore’s components

as well as the percentage this code represents: 86% of

the code consists of reusable components, the remain-

ing 14% comprising the client-side interface (6%) and

the composition code and custom providers (8%). Note

that this figure does not include the lines of code of

Argobots (15 193) and Mercury (27 959) since these li-

braries existed before the Mochi project and could be

replaced with alternatives in the implementation of our

methodology. According to our git history, only 15 days

were needed to finish a first version that users could

start working with.

FlameStore enables users to plug in a controller

module, written in Python, that implements smart data

management policies. This controller makes decisions

including persisting good models in HDF5 files, dis-

(b)(a)

RDMA RDMA RDMA
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LevelDB

SDSKV

LevelDB
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Python
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C++
API C API
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User-Defined
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Fig.1. Architecture of our three data services [16]. The Margo runtime and some components such as MDCS and SSG have been
omitted for simplicity. (a) FlameStore. (b) HEPnOS. (c) SDSDKV.
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Fig.2. Single lines of code (SLOC) of the three example services, broken down into common components and custom code [16]. (a)
FlameStore. (b) HEPnOS. (c) SDSDKV.
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carding models that have been outperformed by other

models, migrating models to improve load balancing or

data locality, or compressing models that are unlikely

to be reused but still need to stay in cache.

FlameStore ensures that models are written only

once and atomically. It does not allow updates and

partial writes. It does not replicate data by default

but enables the controller to duplicate models across

multiple storage locations if they need to be reused by

multiple workflow workers.

Metadata in FlameStore consist of 1) a model’s

name, 2) a JSON-formatted model architecture, 3) the

location of weight matrices (i.e., network address of

the storage node and indexing information), and 4)

additional user-provided metadata (e.g., the hyperpa-

rameters used for training, the accuracy of the model,

and the network address of the client that is writing

it). User-provided metadata are used to drive the con-

troller’s decisions.

Clients write in FlameStore by first contacting the

metadata provider with the model’s metadata. The

metadata provider responds with the identity of a Bake

provider in which to write the model. At this point

the metadata provider marks the model as “pending”.

It is not yet visible to other clients. The client con-

tacts the selected Bake provider, which issues RDMA

pull operations to transfer the NumPy arrays from the

client’s memory. Upon completion, the client contacts

the metadata provider again to complete the model’s

metadata with the location of the stored NumPy ar-

rays.

Clients read models by contacting the metadata

provider with the model’s name. The metadata

provider returns the model’s metadata, which include

the information on how to retrieve NumPy arrays from

Bake providers. The metadata is sometimes the only

information clients need, since it encapsulates the entire

model’s architecture as well as user-provided metadata.

If needed, the client can request the NumPy arrays from

the corresponding Bake providers, which will transfer

them using RDMA push operations.

3.2 HEPnOS

HEPnOS 8○ is a storage service targeting high en-

ergy physics experiments and simulations at Fermilab,

and developed in the context of the SciDAC-4 “HEP

on HPC” project 9○.

User Requirements. Scientists at Fermilab currently

use ROOT [19] files to store the massive amount of

events produced by their high energy physics experi-

ments, and also by simulations and data-processing

codes. Aiming to replace ROOT to achieve better per-

formance, better use of new technologies, and more

development simplicity, we started to develop HEPnOS

to specifically address their needs.

HEPnOS needs to organize data objects in a hier-

archy of datasets, runs, subruns, and events. These

containers act in a way similar to directories but map

better to the way high-energy physics experiments or-

ganize their data. Datasets are identified by a name

and can contain runs as well as other datasets. Runs,

subruns, and events are identified by an integer. Runs

contain subruns; subruns contain events. The notions

of “relative path” and “absolute path” make it possible

to address a container relative to another or relative to

the root of the storage system, respectively.

Events data consist of serialized C++ data objects.

Hence, HEPnOS needs to present a C++ interface that

resembles that of the C++ standard library’s std::map

class, allowing to navigate items within containers using

iterators. The expected access pattern is, as in Flame-

Store, write-once-read-many, with only atomic accesses

to single objects. However, users expect a much larger

number of objects (several millions). These objects, af-

ter serialization, typically range in size from a few bytes

to a few kilobytes.

Service Requirements. Based on the user require-

ments, we defined the following service requirements.

HEPnOS will need to distribute both the data and the

metadata, given the large number of objects that it

will store. Objects will not be sharded, but contrary

to FlameStore the reason is their small size rather than

that they need to be accessed locally.

Ultimately, Fermilab envisions running HEPnOS in

production in a multiuser setting. In order to deal with

fault-tolerance in this context, HEPnOS needs to enable

both data and metadata replication. This also enables

potentially better read performance.

Data and metadata will be queried based on the full

path of the object; hence no particular indexing method

is required.

Optimizations should also be implemented to enable

bulk-loading and bulk-storing objects, in order to avoid

the cumulated latency of many RPC round trips when

storing or loading objects one at a time.

8○https://xgitlab.cels.anl.gov/sds/HEPnOS, Nov. 2019.
9○http://computing.fnal.gov/hep-on-hpc/, Nov. 2019.
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Implementation with Mochi Components. Fig.1(b)

shows the organization of components used in HEP-

nOS. HEPnOS uses Bake to store objects and SDSKV

to store metadata. Typically, each service node hosts

one Bake provider and one SDSKV provider, although

we have not yet evaluated whether this setting is the

best-performing one.

The SDSKV providers storing the information on

a particular container (dataset, run, subrun, event) are

selected based on the hash of the container’s parent full

path. Hence all the items within a given container are

managed by the same set of nodes. Metadata related

to serialized C++ objects, however, are managed by

nodes chosen by hashing the full name of the object.

This matches the expected sequential access to direc-

tory entries, versus parallel accesses to data objects.

HEPnOS also optimizes data accesses by storing

small objects within their metadata, in a way similar to

file systems storing data in their inodes when the data

are small enough. Benchmarks should be executed on

a given platform to establish the threshold below which

embedding data inside metadata is advantageous.

HEPnOS bypasses Mercury’s serialization mecha-

nism and relies on Boost.Serialization instead, in order

to enable serializing C++ objects with minimal changes

to the user code.

Contrary to FlameStore, clients write in HEP-

nOS by first storing their object’s data into multiple

Bake providers in parallel. They then contact SD-

SKV providers (also selected by hashing the object’s

path) to store the corresponding metadata. Symmetri-

cally, reading is done by contacting a relevant SDSKV

provider, and then a relevant Bake provider.

In terms of development effort, Fig.2(b) shows that

reusable components make up 63% of HEPnOS’ code.

The larger portion of HEPnOS’s custom code is its

client-side interface, which provides extensive function-

alities to navigate the data store using C++ iterator

patterns. The code that actually calls the Mochi com-

ponents fits in a 276-line file. Our git repositories in-

dicate that less than two months were needed between

the creation of the project and the release of a first ver-

sion that Fermilab could start using. While the server-

side composition was ready within two weeks, most the

remaining time was spent iterating on new client-side

functionalities.

3.3 ParSplice

The Parallel Trajectory Splicing (ParSplice) [20] ap-

plication uses a novel time-parallelization strategy for

accelerated molecular dynamics. The ParSplice tech-

nique (and associated application) enables long-time

scale molecular dynamics (MD) simulations of complex

molecular systems by employing a Markovian chain-

ing approach allowing many independent MD simu-

lations to run concurrently to identify short trajecto-

ries called “segments” that are then spliced together

to create a trajectory that spans long time scales. A

master/worker approach is used to generate segments

starting from a set of initial coordinates stored in a KV

database. From these initial coordinates the workers

use traditional MD simulation to generate a new seg-

ment and upon completion stores the final coordinate

of the segment in a distributed KV database.

During the course of a ParSplice simulation, the

KV database continues to grow to include all the

states necessary for workers to generate new trajecto-

ries from a prior state. Since workers are distributed

across many individual compute nodes and are state-

less, the KV store must provide scalable concurrent

access (read/insert). Exascale simulations using Par-

Splice could span tens of thousands of compute nodes

with thousands of database clients accessing the KV

store concurrently. To support this level of concurrency,

and to minimize the memory footprint required on any

one worker node, we have developed a distributed KV

service, SDSDKV, built on Mochi microservices, as de-

scribed in Section 2.

User Requirements. The introduction of the SDS-

DKV service is motivated principally by the potential

reduction of code complexity in ParSplice via compo-

nentization. Moreover, this organizational strategy al-

lows for easier runtime customization of KV service

behavior (e.g., selecting an appropriate communica-

tion protocol, database back-end, or key distribution

methodology [21]), thereby improving program perfor-

mance portability.

The SDSDKV service needs to store values of a few

thousand bytes that represent the MD state including

positions, velocities, charges, and other particle charac-

teristics. The number of KV pairs ranges from tens of

thousands at current scales to several millions expected

at exascale. These KV pairs are written once and never

overwritten, and are accessed atomically (i.e., no par-

tial access to a value is required). The current KV store

does not erase entries, but future expansion of the ser-

vice may need to remove keys.

Service Requirements. The service requirements are

driven by large runs that will need to distribute the

KV store across multiple nodes to balance out memory
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use, access latency and bandwidth, and keep the fan-

out size from a master worker within a scalable size.

The objects will be distributed by their hash keys, ob-

viating the need for metadata. Replication is an op-

tion for improving response times. This service can be

asynchronous without any guarantees of determinism

or handling of race conditions. The service interface

needs to be implemented in C with a simple API of

create/destroy for service control and put/get/delete

for data handling.

Implementation with Mochi Components. Fig.1(c)

shows the organization of components used in SDS-

DKV. SDSDKV (∼1 000 SLOC) is based on the SD-

SKV and SSG components and on ch-placement 10○ for

consistent hashing. It exposes a small, straightforward

C interface providing runtime service configurability

through user-supplied input parameters. SDSDKV’s

use centers on opaque context handles that encapsu-

late service-maintained state. With this design, multi-

ple, independent SDSDKV instances may exist within

a single application, each with potentially different

configurations such as membership makeup, database

backend type, and communication protocol used. At

sdsdkv open(), all members of the initializing commu-

nicator (supplied during sdsdkv create()) collectively

participate in service startup, initializing the individual

components composing SDSDKV. From this point un-

til context destruction sdsdkv put()and sdsdkv get()

operations may be performed. Destinations are deter-

mined using ch-placement and serviced by the appro-

priate SDSKV provider.

Fig.2(c) shows the fraction of code that is reused

and the fraction that is custom. Custom code in-

cludes the composition code (7%) and the client inter-

face (4%). The client interface provides a simple, min-

imalistic put/get interface dispatching the operations

to particular SDSKV providers based on a hash of the

keys. The composition code is written in C++ and

spins up multiple SDSKV providers, grouped by using

SSG and distributed based on the node placement of

server processes.

3.4 Other Services

DeltaFS. It is a distributed file system that runs in

user space as a customizable service. Resources ded-

icated to DeltaFS can be customized by application

workflows to provide sufficient metadata performance

and in situ data indexing. The effectiveness of DeltaFS

has been demonstrated across more than 130 000 CPU

cores on Los Alamos National Laboratory’s Trinity

supercomputer, using a vector–particle-in-cell code to

perform a 2-trillion particle simulation [22]. The fine-

grained progress engine provided by the Mercury RPC

service is critical to implementing the software-defined

overlay network within DeltaFS. This overlay network

is a key component of an efficient indexing pipeline that

makes extremely frugal use of memory. DeltaFS also

incorporates a variant of the SSG core service to track

membership across ranks.

Hexadimensional Hashing Indexing Middleware

(HXHIM). HXHIM provides a record-oriented I/O in-

terface to parallel applications enabling the storage and

querying of billions or trillions of small records. Build-

ing on many of the scalable approaches to metadata

pioneered by DeltaFS, HXHIM provides an interface

supporting the resource description framework to en-

able diverse workloads, including the fine-grained an-

notation of scientific data and scalable storage for dis-

tributed learning models. A successor to MDHIM,

the multidimensional hashing indexing middleware [23],

HXHIM uses the core Mochi service Thallium for RPC

handling on high-speed networks, simplifying the mid-

dleware networking protocol and improving the perfor-

mance and scalability of the distributed service.

Additional examples of services developed with

Mochi are described in Subsection 6.1.

4 Mobject Object Storage Service

Object stores are a common alternative to cluster

file systems in many environments, providing a simpler

abstraction on which to layer more complex software.

A number of object storage abstractions are employed

at large scale today, the most popular one arguably be-

ing the S3 model 11○. For HPC, the S3 model is very

restrictive: it forces writing of objects from single writ-

ing processes, and it does not allow incremental writing

or overwrites, among other constraints. These restric-

tions limit the utility of the S3 style of object storage

as a tool for managing hot data in HPC platforms. One

alternative model is the RADOS [24] model, used in the

Ceph [25] file system. RADOS allows for random inter-

spersed read and write of objects, thus enabling col-

laborative writing of objects from multiple processes, a

natural behavior in HPC applications. While the RA-

10○https://xgitlab.cels.anl.gov/codes/ch-placement, Nov. 2019.
11○http://aws.amazon.com/s3, Nov. 2019.
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DOS model is a good fit, however, RADOS itself is

not: instantiating a new instance can be difficult and

time consuming, and RADOS does not make best use

of HPC networks.

As a tool for exploring object storage use in HPC

platforms, we have developed Mobject, a Mochi-based

implementation of a distributed object storage service

that implements a subset of the RADOS object abstrac-

tion and interface. We followed the Mochi methodology

in development of the Mobject service as described be-

low.

User Requirements. In this case, the data model

to be exposed is the RADOS model, with an expecta-

tion that a variety of access patterns would be observed

(e.g., as in [26]). In particular, due to the nature of HPC

application access patterns, we expect to see concurrent

noncontiguous writes as an important and challenging

workload to be supported by the service.

Service Requirements. Due to the variety of possi-

ble deployment scales, we determined that it was nece-

ssary to allow for “scale out” by instantiating many

providers. We determined that metadata would be

managed within a set of KV stores and chunks of data

as blobs. This includes both the namespace and meta-

data describing objects and their layout. To enforce

RADOS access semantics a separate provider would be

needed to orchestrate access, and in anticipation of non-

contiguous accesses, a log-structured approach was cho-

sen. The procedures to be implemented fall naturally

out of the RADOS API.

Implementation with Mochi Components. With

these decisions made, implementation could begin.

Mobject (Fig.3) is implemented by using Margo, with

service providers organized into a logical unit with SSG.

Mobject providers consist of a new provider type, a Se-

quencer, that supports the RADOS operations, coupled

with a Bake instance and SDSKV instance that are typ-

ically colocated on the same node and running in the

context of the same process (Fig.3). The Sequencer

accepts RADOS operations and maps them into corre-

sponding Bake and SDSKV operations. The Mobject

service can be scaled horizontally by instantiating any

number of Mobject providers on nodes in the system.

Hashing provides distribution of objects across these

nodes, with all data and metadata for any given object

remaining the responsibility of a single Sequencer and

associated microservices.

Bake is used to store object data. Chunks of ob-

jects are stored in Bake through RDMA between Bake

and client memory, and the region identifiers are re-

turned to and tracked by the Sequencer for later refe-

rence. This approach effectively separates the control

and data paths in Mobject.

SDSKV is used for three distinct tasks in Mobject.

Mobject API
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Mobject Provider Node
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Fig.3. Mobject is a Mochi composed service providing a RADOS-like object model. The Sequencer provider accepts object operations
and orchestrates their execution on the corresponding Bake and SDSKV microservices, which accept extent and key-value operations,
respectively. All three services are constructed using Mochi core components: a high-level decomposition of the SDSKV provider is
provided as an example.
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First, SDSKV is used to track the namespace and as-

sociated object IDs, allowing the use of RADOS string

object names, managing internal object IDs, and allow-

ing bidirectional translation between these two. Sec-

ond, a KV store (the segment DB) is used to track a

log of changes made to objects. In this case the as-

sociated value is either the data itself (in the case of

small changes) or a reference to a Bake region (for larger

changes). The design is inspired by the Warp transac-

tional file system [27]. Third, SDSKV also manages KV

pairs representing metadata associated with objects.

Sequencer providers receive RPCs related to a spe-

cific subset of RADOS objects. For reads, the Se-

quencer is responsible for referencing the segment

database and determining the necessary Bake ope-

rations to reconstruct the requested region, before ask-

ing Bake to transfer data into client memory. For

writes, the Sequencer is responsible for selecting a

timestamp for the updates, forwarding write operations

to Bake to move data, and storing new records (poten-

tially including object data) in the segment database.

5 Evaluation

In this section we evaluate a set of Mochi com-

ponents and services chosen to demonstrate that the

Mochi methodology and tools not only allow for rapid

development but also provide opportunities for high

performance to be achieved. In Subsection 5.1 we exam-

ine point-to-point latency and bandwidth in the Mochi

model to demonstrate our communication capabilities.

In Subsection 5.2 we consider the performance of the

Bake microservice, demonstrating how Bake enables

rapid storage and retrieval of blob data. In Subsec-

tion 5.3 we show how a Mochi composed service per-

forms for a standard HPC I/O benchmark, IOR 12○.

Three platforms are used in this evaluation.

Cooley 13○ is a 126-node Cray CS300 compute system

at the Argonne Leadership Computing Facility 14○. Each

node has 2 Intel Haswell E5-2620v3 processors with 6

cores each and 384 Gbytes of RAM. FDR InfiniBand is

used as the network interconnect. The Cooley system is

also attached to a number of Kove XPD external mem-

ory devices. The Kove devices provide pools of persis-

tent memory that are connected directly to the Infini-

Band fabric, offering a high-performance I/O path to

applications and data services running on Cooley com-

pute nodes. In our tests, these were configured to have

an XFS file system on the device. The performance of

these devices in an HPC context is explored in [28].

Bebop 15○ is a 1 024-node compute system at

the Argonne Laboratory Computing Resource Center

(LCRC) 16○. Bebop includes a mix of node technologies:

in these tests nodes have 2 Intel Broadwell E5-2695v4

processors with 18 cores each and 128 Gbytes of RAM.

Intel OmniPath is used as the network interconnect.

Cori is a mixed-architecture Cray XC40 system at

NERSC. Cori includes 2 388 Intel Haswell E5-2698v3

nodes and 9 688 Intel Xeon Phi 7250 nodes. This

evaluation was performed by using the Haswell nodes,

each of which has 2 processors with 16 cores each and

128 Gbytes of RAM. Cray Aries is the network inter-

connect employed on this system.

5.1 Communication with Margo

Our first experiments demonstrate the achievable

communication performance using Mochi core compo-

nents across a variety of platforms, showcasing Mochi’s

ability to facilitate performance-portable service imple-

mentations. While MPI is not considered the best

choice for service development [29], in the context of

HPC systems the vendor MPI implementation can be

considered as the gold standard for communication per-

formance. For this reason we compare directly against

MPI in these experiments.

The two microbenchmarks used for this study 17○ are

part of the Margo regression suite. All Margo mi-

crobenchmark results are contrasted with a baseline of

MPI point-to-point latency and bandwidth as measured

with the OSU microbenchmarks 18○ version 5.6.1. MPI

is typically the most highly optimized communication

method on these platforms. Note that the OSU point-

to-point bandwidth benchmark uses asynchronous MPI

routines with a window size of 64 messages by default

to achieve 64-way communication concurrency in the

12○https://github.com/hpc/ior, Nov. 2019.
13○https://www.alcf.anl.gov/user-guides/cooley, Nov. 2019.
14○https://www.alcf.anl.gov/, Nov. 2019.
15○https://www.lcrc.anl.gov/systems/resources/bebop. Nov. 2019.
16○https://www.lcrc.anl.gov/, Nov. 2019.
17○https://xgitlab.cels.anl.gov/sds/sds-tests/tree/master/perf-regression, Nov. 2019.
18○http://mvapich.cse.ohio-state.edu/benchmarks, Nov. 2019.



Robert B. Ross et al.: Mochi: Composing Data Services for HPC Environments 133

bandwidth tests. It uses two-sided operations, in con-

trast with the Margo benchmark that uses one-sided

RDMA operations. Also note that the OSU latency

benchmark reports one-way latency; we double this

number as an estimate of round-trip latency for head-

to-head comparison with the Margo benchmarks.

All benchmarks (both Margo andMPI) are executed

by using a single UNIX process per node. The numactl

utility is used to pin each process to the socket with

the best network card (NIC) connectivity on each plat-

form. The Margo benchmarks are executed with two

polling modes, as described in Subsection 2.1: the de-

fault mode, which idles/sleeps when no network activity

is available, and a busy-poll mode, which continuously

polls the network transport. The MPI benchmarks use

the MPI implementation’s default busy-polling strategy

in all cases.

Latency. For latency experiments, we use a mi-

crobenchmark written by using Margo that measures

round-trip RPC time from the client’s perspective, in-

cluding encoding, checksumming, and decoding of each

request and response. The provider invokes an RPC

handler for each RPC. Latency statistics are reported

from 100 000 sequential RPCs.

Figs.4(a)–4(c) show Margo’s round-trip latency for

the three platforms Cooley, Bebop, and Cori, respec-

tively. The box-and-whisker plots show minimum,

maximum, median, and first and third quartiles out

of 100 000 RPCs. MPI round-trip time is plotted as

a horizontal bar on these graphs using the single ave-

rage latency value reported by the OSU latency bench-

mark. All three platforms achieve a median latency

of less than 10 microseconds for Margo RPCs in busy-

poll mode, despite invoking an RPC handler and per-

forming additional encoding and checksum steps in the

execution path. The median latency increases when

not busy-polling, significantly so on Cori. The high in-

creased latency on Cori is a known issue that requires

additional optimization within the libfabric library. It

is typical for libfabric providers to negotiate parameters

such as network addressing during the first RPC, so for

these tests we allow for 100 round-trip transfers before

beginning to record results.

Bandwidth. For bandwidth experiments, we use a

microbenchmark written by using Margo that measures

sustained point-to-point throughput for RDMA pay-

load transfers. The benchmark allocates a single large

memory buffer on both the server and the client. The

client then sends a single RPC instructing the server to

either “pull” data from the client buffer to the server

buffer or “push” data from the server buffer to the client

buffer. Data is transferred by using a specified access

size until a fixed amount of time has passed, and a band-

width is calculated. We present results for a 10-second

period.

The bandwidth microbenchmark also allows the

caller to specify the desired level of transfer concur-

rency. The benchmark server spawns a corresponding

number of user-level threads to issue bulk transfer ope-

rations. These user-level threads are multiplexed on a

single POSIX thread. We present results for two sce-

narios: sequential transfers (a single user-level thread

sequentially issues and completes all RDMA transfers)

and 64-way concurrent transfers (64 user-level threads

cooperate to issue and complete RDMA transfers).

The MPI bandwidth from the OSU benchmark is

presented for comparison. The MPI bandwidth is ex-

pected to show near-theoretical peak performance be-

cause the OSU benchmark reuses a single “hot” mem-

ory buffer for all communication on both the send-
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Fig.4. Margo point-to-point round-trip latency on (a) Cooley, (b) Bebop, and (c) Cori. Each system employs a different networking
technology: Cooley uses FDR InfiniBand, Bebop uses OmniPath, and Cori uses Cray Aries.
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Fig.5. Margo point-to-point bandwidth in idealized and more realistic scenarios respectively on (a) (d) Cooley, (b) (e) Bebop, and
(c) (f) Cori. In the idealized scenario the network is warmed up, buffers are reused, checksumming is disabled, and pages are aligned.
In the realistic scenario, no warm-up iterations are performed, memory buffer reuse is minimized, checksumming enabled on control
messages, and pages are not purposefully aligned. Sequential transfer speed is also shown on (d) (e) (f) using dashed lines in addition
to 64-way concurrent transfer speed.
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ing and receiving side. Figs.5(a)–5(c) show the Margo

bandwidth with the provider pulling data on Cooley,

Bebop, and Cori, respectively. In these figures we at-

tempt to replicate the “ideal” scenario that the OSU

benchmark creates by reusing a single memory buffer

and allowing transfer to occur for one second before

recording results to allow communication rates to sta-

bilize.

In Figs.5(d)–5(f), the Margo benchmark deliber-

ately iterates over “cold” memory with each transfer,

to reflect a more likely data storage service workload.

One-sided cold memory transfers are known to be a

particular challenge on OmniPath/PSM2 (i.e., Bebop)

because of its reliance on on-demand paging in the com-

munication path. Despite these workload discrepan-

cies, the Margo bandwidth approaches the peak MPI

bandwidth on Cooley and attains at least 80% of peak

performance on Bebop and Cori. While data for 64

concurrent streams is depicted for consistency with the

OSU benchmark, we found that performance with only

8 concurrent streams is nearly identical. Overall these

results indicate that Mochi is able to effectively exploit

the high performance networks on the tested platforms,

which represent three modern network technologies.

5.2 Storing Blobs with Bake

In these experiments we examine performance for

the Bake microservice, focusing on the Cooley and Be-

bop platforms. Our goal with these experiments is to

demonstrate that Mochi is able to quickly store and re-

trieve blobs of data on multiple platforms and backing

stores.

Our test microbenchmark creates a blob on a sin-

gle Bake provider and then transmits and persists data

into the blob from one Bake client process, similar to

the “pull” communication bandwidth results presented

previously. To demonstrate both backends of Bake, we

employ the PMDK backend when writing to tmpfs, and

we use the POSIX backend when writing to the Kove

volume on Cooley. We execute our tests over a range

of client access sizes, performing 1 000 iterations of the

benchmark at each access size to assist in calculating

an average bandwidth value. As in the communication

experiments, each benchmark is executed on a single

process per node, and the numactl utility is used to

pin each process to the optimal socket for utilizing the

network card (NIC) on each platform. Busy-polling was

disabled in each of these experiments.

The Bake bandwidth microbenchmark also provides

configurable parameters to help achieve optimal per-

formance on different platforms or backends. In ad-

dition to options for controlling transfer concurrency

and whether busy-polling is used, these benchmarks

allow the user to specify the number of underlying

POSIX threads to use for handling RPCs on the Bake

provider and whether or not pipelining should be ena-

bled for data transfers. Setting the number of threads

to use for RPC handlers directly controls the computa-

tional resources available to the Bake provider for han-

dling incoming client requests. When pipelining is ena-

bled, transfers are broken down into smaller chunks and

copied into preallocated buffers, with separate ULTs

being spawned to drive the transfer of each chunk. In

these tests, we use the default chunk size for pipelining,

which is 4 MByte chunks. Note that as of this writing,

pipelining is required for Bake’s POSIX backend.

Figs.6(a)–6(c) present the results of these experi-

ments. Concurrent data streams are necessary to hit

peak performance, which matches with the findings

from Subsection 5.1. In the best configurations, a

write rate of 3 430 MiB/s is achieved on Cooley for

tmpfs (59% of network peak from Margo testing), and

9 311 MiB/s is achieved on Bebop (84% of network peak

from Margo testing). In the case of the tmpfs results

for Cooley and Bebop, performance is additionally de-

pendent on the number of POSIX threads allocated for

handling RPCs on the Bake provider: having additional

threads contributes to a 2x performance improvement

on Cooley and 4x performance improvement on Bebop.

These results are in contrast with the previously pre-

sented Margo communication results, which all utilized

a single handler thread. Depending on the underlying

storage system hardware and software, it may be in-

creasingly important to have a number of OS threads

driving progress on multiple operations in parallel in

order to most effectively overlap I/O accesses and com-

munication.

Pipelining. These results also indicate the impact

Bake’s pipelining mechanism has on observed I/O per-

formance when using the PMDK backend to tmpfs.

The pipelining implementation provides performance

benefits in this case for two reasons. First, it further

increases the concurrency of the workload by dividing it

into smaller chunks that can be operated on in parallel.

Second, the pipelining code path reuses intermediate

data transfer buffers, avoiding potentially costly mem-

ory registrations on all client accesses, as discussed in

Subsection 5.1. The Bebop results in Fig.6(c) are par-

ticularly interesting in that the best-performing config-

uration appears to benefit greatly from a combination
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Fig.6. Bake write bandwidth on Cooley, backing to (a) RAM-
backed tmpfs and (b) Kove-backed XFS volume, and (c) Bebop
backing to RAM backed tmpfs. Note that scales vary on the
y-axis for different platforms.

of using pipelining and additional RPC threads—

enabling pipelining or using additional RPC threads

has little impact on performance when done in isola-

tion. Of special note is that the best configuration

demonstrates large performance gains starting at an ac-

cess size of 512 KiB, well below the pipelining unit size

of 4 MiB. This further suggests that costly memory

registrations are a key contributing factor to observed

performance on the Omnipath/PSM2 interconnect and

highlights the importance of being able to reuse preal-

located buffers in the Bake microservice.

5.3 Storing Objects with Mobject

In our final experiments we examine the perfor-

mance of the Mobject composed microservice on the

Cooley and Cori platforms, comparing it to tradi-

tional file-based storage systems available to users on

these platforms, including GPFS, Lustre, and Cray’s

DataWarp burst buffer system. A more complete ana-

lysis of Mobject for scientific application workloads is

beyond the scope of this work and is forthcoming; the

goal of these tests is to demonstrate the potential of

the Mochi approach for providing high-performance ser-

vices at a modest development cost. For these experi-

ments we employ the IOR benchmark, for which we

have developed a RADOS I/O backend that allows us

to easily target our Mobject deployments.

We deploy Mobject over a total of 12 server nodes

on Cooley and 10 server nodes on Cori in these experi-

ments, using a single Mobject server provider per-node

in each case. Bake, SDSKV, and Sequencer providers

are created within the Mobject server process, with

these providers sharing an RPC handler thread pool.

Based on our observations in Subsection 5.2, we config-

ured each server to use enough OS threads to efficiently

overlap client communication and I/O, using 6 RPC

handler threads on Cooley and 16 RPC handler threads

on Cori. Pipelining was enabled in Bake in experi-

ments where Mobject was deployed over tmpfs storage

(i.e., using the PMDK-based Bake backend) and dis-

abled in experiments where Mobject was deployed over

Kove volumes (i.e., using the file-based Bake backend).

The SDSKV provider was configured to use its Lev-

elDB backend, with each KV instance stored on the

same device Bake uses for storing blobs (tmpfs or a

Kove volume). Busy-polling is again disabled in Margo

for these experiments.

We configured IOR to use an uncoordinated work-

load where each process writes/reads their own unique
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object (or file in the case of experiments targeting file-

based storage systems). Per-process objects were sized

at 1 GiB and were written in 16 MiB increments. In

each experiment, we scale the number of client nodes

from a single node up to the number of nodes used

in our Mobject server deployment (12 nodes on Coo-

ley, 10 nodes on Cori), with multiple clients running on

each node (12 clients per-node on Cooley, 32 clients per-

node on Cori). Cooley results show average, minimum,

and maximum bandwidth results over 5 iterations of

each test, though Cori results only show the bandwidth

achieved for one iteration.

The results of these experiments are presented in

Fig.7. On Cooley, the average bandwidth to tmpfs is

37 300 MiB/s for writes and 34 600 MiB/s for reads

at the largest client scale, whereas the average band-

width to the Kove volumes is 21 500 MiB/s for writes

and 21 700 MiB/s for reads. This performance discrep-

ancy between Mobject configurations is expected, as

the configuration that backs to tmpfs is storing data

directly in the server’s RAM rather than storing in

network-attached storage devices like the Kove vol-

umes. Still, each Mobject configuration is able to eas-

ily beat the performance offered by Cooley’s GPFS sto-

rage system, which caps out at an average bandwidth of

16 800 MiB/s for writes and 21 400 MiB/s for reads, and

which displays an extremely high degree of performance

variability relative to the Mobject results. On Cori,

the average bandwidth to tmpfs is 16 600 MiB/s for

writes and 38000 MiB/s for reads at the largest client

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

 12  24  48  72  96  120  144

R
e
a
d
 B

a
n
d
w

id
th

 (
M

iB
/
s)

Client Count

Mobject-Kove
Mobject-tmpfs
GPFS

Mobject-Kove
Mobject-tmpfs
GPFS

 12  24  48  72  96  120  144

W
ri
te

 B
a
n
d
w

id
th

 (
M

iB
/
s)

Client Count

 32  64  128  192  256  320

R
e
a
d
 B

a
n
d
w

id
th

 (
M

iB
/
s)

Client Count

Mobject-tmpfs
DataWarp
Lustre

Mobject-tmpfs
DataWarp
Lustre

 32  64  128  192  256  320

W
ri
te

 B
a
n
d
w

id
th

 (
M

iB
/
s)

Client Count

(b)(a)

(c) (d)

Τ103

 0

 5

 10

 15

 20

 25

 30

 35

 40
Τ103

Τ103
Τ103

Fig.7. Mobject (a) read and (b) write bandwidth on Cooley and Mobject (c) read and (d) write bandwidth on Cori, as measured
with IOR. On Cooley, results are provided for backing to both RAM-backed tmpfs and Kove-backed XFS volumes, with 12 Mobject
providers used in all tests. On Cori, results are shown only for backing to RAM-backed tmpfs, with 10 providers used in all tests. Each
client writes 1 GiB of data into a single object (or file). For context, GPFS file-per-process performance is shown on Cooley, while
DataWarp and Lustre file-per-process performance is shown on Cori.



138 J. Comput. Sci. & Technol., Jan. 2020, Vol.35, No.1

scale. It is not immediately clear why writes perform

poorly relative to read performance, but DataWarp re-

sults exhibit the same behavior in all cases. Regardless,

Mobject demonstrates a higher read performance and

comparable write performance as compared with the

DataWarp burst buffer storage system. Mobject results

easily beat Lustre parallel file system results, much like

what was observed for Cooley’s GPFS results.

It is additionally clear that Mobject can offer per-

formance comparable to the Bake results presented

previously, with this performance scaling reasonably

with the number of client nodes. These results further

demonstrate the efficacy of the Mochi model for com-

posing HPC data services, leveraging existing Mochi

core components and microservices to compose a high-

performance object storage system suitable for HPC

application workloads, all with minimal development

overhead.

6 Related Work

Much of the recent work most closely related to our

work has been performed by teams who have adopted

Mochi components. We discuss this work before touch-

ing on other related projects and technologies.

6.1 Mochi Services from the Community

Mochi components have been adopted by a num-

ber of external teams developing distributed services.

These services are outlined in this section.

GekkoFS [30] implements a temporary and highly

scalable file system providing relaxed POSIX seman-

tics tailored to the majority of HPC applications. This

type of specialization allows applications using the ex-

isting POSIX interface (under specific constraints) to

see dramatic performance improvements as compared

with file systems supporting the complete specification.

The GekkoFS team has demonstrated millions of meta-

data operations per second, allowing it to serve appli-

cations with access patterns that were historically poor

matches for file systems, and the team has shown rapid

service instantiation times allowing new GekkoFS vol-

umes to be started on a per-job basis. GekkoFS lever-

ages Mercury and Margo in its implementation, as well

as using RocksDB 19○ for local KV storage.

The Unify project, the successor to BurstFS [31],

similarly implements a temporary high-performance file

system using local resources on nodes in the HPC sys-

tem. In Unify, data are explicitly staged between the

temporary Unify file system and the “permanent” para-

llel file system. The Unify team is exploring special-

ization in the form of multiple flavors of file systems,

such as UnifyCR 20○ for checkpoint/restart workloads

and a separate specialized version for machine learning

workloads. This backend specialization allows Unify to

optimize for different use cases without sacrificing the

portability and common toolset advantages of a POSIX

interface. UnifyCR, for example, uses user-space I/O

interception, scalable metadata indexing, and colocated

I/O delegation to optimize bursty checkpoint workloads

while still presenting a traditional file system view of

the data. Unify leverages Mercury and Margo in its

implementation.

Proactive Data Containers (PDC) [32] provides a

data model in which a container holds a collection of

objects that may reside at different levels of a poten-

tially complex storage hierarchy and migrate between

them. A PDC volume is instantiated for an application

workflow and sized to meet workflow requirements for

data storage and I/O. Objects can hold both streams

of bytes and KV pairs, and additional metadata can

be associated with objects as well. Unlike GekkoFS

and UnifyCR, PDC does not present a conventional file

system interface. PDC leverages Mercury for commu-

nication.

Distributed Application Object Storage (DAOS) [33]

provides a transactional and multidimensional object

store for use in large-scale HPC environments with em-

bedded storage directly attached to the compute fabric.

DAOS is a vendor-backed push to provide an alterna-

tive to the traditional parallel file system and has the

potential to extract higher performance out of emerging

low-latency storage technology. DAOS is envisioned as

a multiuser and persistent volume available to all ap-

plications. It therefore encompasses a variety of system

management capabilities, including distributed authen-

tication and device provisioning. DAOS leverages Mer-

cury in its implementation.

6.2 Other Specialized Services

HPC literature is rife with user-level service imple-

mentations. We highlight some important representa-

tives in this subsection and note their significance.

FusionFS [34] presents a file system abstraction and

19○https://rocksdb.org, Nov. 2019.
20○https://github.com/LLNL/UnifyCR, Nov. 2019.
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was developed to serve metadata- and write-heavy

data-intensive workloads. It runs in user space and

leverages a distributed hash table to hold metadata,

while data are held on local storage as the data are

being modified. A custom communication library is

employed building on UDP. By scaling metadata ope-

rations and holding data in the system, the authors

showed significant performance improvements over tra-

ditional shared parallel file systems.

DataSpaces [35] presents a virtual shared data re-

gion meant for sharing of data between applications

within a workflow. A tuple model is used, and flexi-

ble key definition allows for a variety of data models

to be represented. DART [36], an abstraction layer for

RDMA transfers, is used for communication. Other ser-

vices providing KV data models include Hercules [37],

which brings memcached [38] into the HPC arena, and

PayprusKV [39], which is focused on nonvolatile mem-

ory backing stores.

Spindle [40] provides an example of a specialized ser-

vice related to operations. Spindle implements an over-

lay network used to manage parallel loading of shared

libraries, removing the burden of massive bursts of read

traffic from the shared file system. By implement-

ing dynamic loader callbacks, Spindle transparently in-

tegrates into applications; and because of the nature

of the data it manages, many simplifying assumptions

may be made that allow for aggressive caching and data

reuse.

LABIOS [41] aims to provide a single I/O service

that performs well for both data-intensive and HPC

applications. Building on a label model, LABIOS em-

phasizes support for heterogeneous resources and mal-

leability. In the label data model, operations are trans-

formed into tuples that represent the operation and

a reference to the data. These are queued and pro-

cessed by LABIOS workers independently. This model

of transformation into a general “language” for I/O re-

quests is unique and provides a method of serving diffe-

rent specialized frontends.

6.3 Composing Services

Three recent researches are most closely related to

the concept of service composition presented here. The

first, BESPOKV [42], provides a framework for defin-

ing specialized distributed KV stores. Building on a

provided single-node KV store (a datalet), BESPOKV

provides capabilities for sharding, replication, multiple

consistency models, and fault tolerance. BESPOKV is

evaluated by using a variety of workloads that demon-

strate the value of different back end KV stores and

the flexibility of BESPOKV. BESPOKV highlights the

value of componentization and of providing group mem-

bership and management functionality as part of a ser-

vice development framework, but it is limited to the

KV data model.

The second, Faodel [43], provides a set of services

for data management and exchange in HPC workflows.

Three major components of Faodel are Kelpie, Opbox,

and Lunasa. Kelpie provides a key-blob abstraction,

essentially a KV abstraction where the service is un-

aware of the contents or semantics of the value. Keys

can be selected by users of the service for implicit data

sharing or can be shared explicitly. Opbox implements

communication by representing protocols as state ma-

chines, aiming to support more complex communication

patterns than simple pairwise communication. A name

service implementation is included as part of Opbox.

Lunasa is a memory management service to aid in using

RDMA transfers. Similar to BESPOKV, Faodel focuses

on a KV abstraction for data; but distinct from BE-

SPOKV, it does not emphasize having multiple back-

ends catering to different use cases. The Opbox com-

ponent distinguishes Faodel and provides an ability to

construct services such as monitoring systems that have

fan-in patterns of communication.

Malacology [44] examines composition by decompos-

ing an existing service, Ceph, to make it programmable.

The authors recognized the inherent value of produc-

tion quality software and seek to leverage this in new

contexts by implementing public interfaces to what

originally were internal interfaces. They discussed chal-

lenges related to this approach and demonstrated how

components from Ceph can be used to build alterna-

tive services. The underlying subsystems they identify

and make available (object access, cluster monitoring,

and metadata management and balancing) have some

analogies in Mochi, but in particular the metadata ser-

vice maps more directly to file-oriented services.

7 Conclusions and Future Work

Rapid technological developments coupled with the

diversification of workflows on HPC systems man-

date the development of new, specialized data ser-

vices that make the most effective use of new systems

and are highly productive for users. In this paper

we have described the Mochi framework, components,

and methodology for developing distributed services
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and demonstrated their use on modern HPC platforms.

Mochi directly addresses the challenges of specializa-

tion, rapid development, and ease of porting through a

composition model, providing a methodology and tools

for communication, managing concurrency, and group

membership for rapidly developing distributed services

with a relatively small amount of new code. The Mochi

framework is open source, actively being developed and

extended, and available online 21○.

We anticipate the need for rapid online adaptation

of distributed services in response to application needs

and environmental change. With this in mind, we are

investigating what building blocks would be most effec-

tive for implementing distributed control for services

built in the Mochi framework.
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