

Understanding and Maturing
the Data-Intensive Scalable Computing Storage Substrate

Garth Gibson, Bin Fan, Swapnil Patil, Milo Polte, Wittawat Tantisiriroj, Lin Xiao
Carnegie Mellon University

1 eScience is Data Intensive
Modern science has available to it, and is more productively
pursued with, massive amounts of data, typically either
gathered from sensors or output from some simulation or
processing. The table below shows a sampling of data sets
that a few scientists at Carnegie Mellon University have
available to them or intend to construct soon. Data Intensive
Scalable Computing (DISC) couples computational re-
sources with the data storage and access capabilities to
handle massive data science quickly and efficiently. Our
topic in this extended abstract is the effectiveness of the data
intensive file systems embedded in a DISC system. We are
interested in understanding the differences between data
intensive file system implementations and high performance
computing (HPC) parallel file system implementations.
Both are used at comparable scale and speed. Beyond fea-
ture inclusions, which we expect to evolve as data intensive
file systems see wider use, we find that performance does
not need to be vastly different. A big source of difference is
seen in their approaches to data failure tolerance: replication
in DISC file systems versus RAID in HPC parallel file sys-
tems. We address the inclusion of RAID in a DISC file
system to dramatically increase the effective capacity avail-
able to users.
This work is part of a larger effort to mature and optimize
DISC infrastructure services.

2 Parallel versus Data Intensive File Systems
Most DISC applications are characterized by parallel proc-
essing of massive datasets stored in the underlying shared
storage system. Such distributed programming abstractions
are provided by purpose-built frameworks like MapReduce
[1], Hadoop [2] and Dryad [3]. These frameworks divide a
large computation into many tasks that are assigned to run
on nodes that store the desired input data, and avoiding a
potential bottleneck resulting from shipping around tera-
bytes of input data. Hadoop, and its data intensive file
system HDFS [4], are open-source implementations of Goo-
gle’s MapReduce and GoogleFS [5]. In this work we focus
on Hadoop’s use of the HDFS data intensive file system.

At a high level HDFS’s architecture resembles an HPC par-
allel file system. HDFS stores file data and metadata on two
different types of servers. All files are divided into chunks
that are stored on different data servers. The file system
metadata, including the per-file chunk layout, is stored on
the metadata server(s). For single writer workloads, HDFS
differs from HPC parallel file systems primarily in its layout
and fault tolerance schemes.
HDFS assigns chunks to compute nodes at random, while
HPC file systems use a round robin layout over dedicated
storage servers, and HDFS exposes a file’s layout informa-
tion to Hadoop. This exposed layout allows the Hadoop’s
job scheduler to allocate tasks to nodes in a manner that (1)
co-locates compute with data where possible, and (2) load

balances the work of accessing and processing data across
all the nodes. Thus, the scheduler can mask sub-optimal file
layout resulting from HDFS’s random chunk placement
policy with lots of work at each node [6]. The second big
difference between HDFS and HPC file systems is its fault
tolerance scheme: it uses triplication instead of RAID. We
address this difference in the next section.
Given the growing importance of the Hadoop MapReduce
compute model, we ask “Could we use a mature HPC paral-
lel file system in-place of a custom-built DISC file system
like HDFS?” While most HPC file systems use separate
compute and storage systems for flexibility and manageabil-
ity, most HPC parallel file systems can also be run with data
servers on each compute node.
We built a non-intrusive shim layer to plug a real-world
parallel file system (the Parallel Virtual File System, PVFS
[7]), into the Hadoop framework storing data on compute
nodes [6]. This shim layer queries file layout information
from the underlying parallel file system and exposes it to the
Hadoop layer. The shim also emulates HDFS-style triplica-
tion by writing, on behalf of the client, to three data servers
with every application write.
Figure 1 shows that for a typical Hadoop application (grep
running on 32 nodes), the performance of shim-enabled
Hadoop-on-PVFS is comparable to that of Hadoop-on-
HDFS. By simply exposing a file’s layout information,
PVFS enables the Hadoop application to run twice as fast as
it would without exposing the file’s layout.
Most parallel large-scale file systems, like PVFS, already
expose the file layout information to client modules but do
not make it available to client applications. For example, the
new version 4.1 of NFS (pNFS) delegates file layout to cli-
ent modules to allow the client OS to make direct access to
striped files [8]. If these layout delegations were exposed to
client applications to use in work scheduling decisions, as
done in Hadoop or MapReduce, HPC and pNFS file systems
could be significantly more effective in DISC system usage.

 (a) Triplication (b) RAID 5 and Mirror

(c) RAID 6

Figure 2: Codewords protecting against double node failure

3 Replication versus RAID
To tolerate frequent failures, each data block in a data inten-
sive file system is typically triplicated and therefore capable
of recovering from two simultaneous node failures. Though
simple, a triplication policy comes with a high overhead
cost in terms of disk space: 200%. Traditional RAID sys-
tems typically exhibit capacity overheads between 10% and
25% -- about 10 times smaller! We are designing and build-
ing DiskReduce, an application of RAID in HDFS to save
storage capacity.
In HDFS, files are divided into blocks, typically 64 MB,
each stored on a data node. Each data node manages all file
data stored on its persistent storage. It handles read and
write requests from clients and performs “make replica”
requests from the metadata node. There is a background
process in HDFS that periodically checks a missing blocks
and, if found, assigns a data node to replicate the block hav-
ing too few copies.
DiskReduce exploits HDFS’s background re-replication to
replace copies with lower overhead RAID encoding. In a
manner reminiscent of early compressing file systems [9],
all blocks are initially triplicated; that is, uncompressed.
Where the background process looks for insufficient number
of copies in HDFS, DiskReduce instead looks for blocks not
encoded, and replaces copies with encodings. Because it is
inherently asynchronous, DiskReduce can further delay en-
coding when space allows, to allow accesses temporally
local to the creation of the data choice among multiple cop-
ies for readback.
We have prototyped DiskReduce as a modification to
Hadoop Distributed File System (HDFS) version 0.20.0.
Currently, the DiskReduce prototype supports only two en-
coding schemes [10]: “RAID 6” and “RAID 5 and Mirror”,
in which a RAID5 encoding is augmented with a second
complete copy of the data.

Figure 1: By exposing the file layout mapping through a non-
intrusive shim layer, a production parallel file system (PVFS)
can match the performance of HDFS on a widely used Hadoop-
style workload.

Figure 3: Storage capacity utilized and rate capacity is
recovered by Disk Reduce background encoding.

Our prototype runs in a cluster of 63 nodes, each containing
two quad-core 2.83GHz Xeon processor, 16 GB of memory,
and four 7200 rpm SATA 1 TB Seagate Barracuda ES.2
disks with 32MB buffer. Nodes are interconnected by 10
Gigabit Ethernet. All nodes run the Linux 2.6.28.10 kernel
and use the ext3 file system for storing HDFS blocks.
While our prototype is not complete (online reconstruction
by a client is still a work-in-progress), it functions enough
for a preliminary test. To get a feel for its basic encoding
function, we set up a 32 nodes partition and had each node
write a 16 GB file into a DiskReduce-modified HDFS
spread over the same 32 nodes using RAID groups of eight
data blocks each.
Figure 3 shows the storage usage and encoding bandwidth
consumed for the encoding of this 512GB of data. While
this experiment is simple, it shows the encoding process
removing 400GB and 900GB for the RAID 5 and mirror
and RAID 6 schemes, respectively, bringing overhead down
from 200% to 113% and 25%, respectively.

4 Future Work
Based on a talk about our previous DiskReduce work, a
userspace RAID 5 and mirror encoding scheme has been
implemented on top of HDFS by HDFS developers [11].
We are working closely with Hadoop and HDFS developers
to further explore RAID 6 encodings, delaying of encoding
to enable reading soon after write the full benefit of multiple
copies, and to quantify this benefit, and delaying of deletion
to trade capacity against the encoding cleanup of a partial
RAID set delete. Similarly HPC parallel file systems have
begun to implement RAID over nodes, instead of just RAID
in hardware, led by a spin off of our prior work in scalable
file systems [12]. In our long-term vision for data intensive
storage systems we see a convergence of the semantic
power of HPC parallel file systems with the high degrees of
node failure tolerance in data intensive file systems.

Acknowledgements:
The work in this paper is based on research supported in
part by the Department of Energy, under award number DE-
FC02-06ER25767, by the Los Alamos National Laboratory,
under contract number 54515-001-07, by the National Sci-
ence Foundation under awards OCI-0852543, CNS-
0546551 and SCI-0430781, and by a Google research
award. We also thank the member companies of the PDL
Consortium (including APC, DataDomain, EMC, Facebook,
Google, Hewlett-Packard, Hitachi, IBM, Intel, LSI, Micro-
soft, NEC, NetApp, Oracle, Seagate, Sun, Symantec, and
VMware) for their interest, insights, feedback, and support.

References
[1] Dean, J., S. Ghemawat, “Simplified Data Processing on Large

Clusters.” In 6th Symposium on Operating Systems Design and
Implementation (OSDI’04).

[2] Hadoop. Apache Hadoop Project. HTTP://HADOOP.APACHE.ORG/

[3] Isard, M., M. Budiu, Y. Yu, A. Birrell, D. Fetterly. “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks.” In 2007 Eurosys Conference.

[4] Borthakur, D., “The hadoop distributed file system: Architec-
ture and design, 2009.”
HTTP://HADOOP.APACHE.ORG/COMMON/DOCS/CURRENT/HDFS_DESIGN.
HTML

[5] Ghemawat, S., H. Gobioff, S.-T. Lueng, “Google File System.”
In 19th ACM Symposium on Operating Systems Principles
(SOSP’03).

[6] Tantisiriroj, W., S. V. Patil, G. Gibson. “Data intensive file
systems for internet services: A rose by any other name…”
Tech. Report CMU-PDL-08-114, Carnegie Mellon University,
Oct. 2008.

[7] PVFS2. Parallel Virtual File System, Version 2.
HTTP://WWW.PVFS2.ORG/

[8] IETF. NFS v4.1 specifications. HTTP://TOOLS.IETF.ORG/WG/NFSV4/

[9] Cate, V., T. Gross. “Combining the concepts of compression
and caching for a two-level file system.” In ASPLOS-IV, April
1991.

[10] Plank, J.S., J. Luo, C.D. Schuman, L. Xu, Z. Wilcox-O’Hearn.
“A performance evaluation and examination of open-source
erasure coding libraries for storage.” In USENIX Conference
on File and Storage Technologies (FAST’09), 2009.

[11] Borthakur, D. “HDFS and erasure codes.” Aug 2009,
HTTP://HADOOPBLOG.BLOGSPOT.COM/2009/08/HDFS-AND-ERASURE-
CODES-HDFS-RAID.HTML

[12] Welch, B., M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J.
Small, J. Zelenka, B. Zhou. “Scalable Performance of the
Panasas Parallel File System. In USENIX Conference on File
and Storage Technologies (FAST’08), 2008.

