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1 eScience is Data Intensive 
Modern science has available to it, and is more productively 
pursued with, massive amounts of data, typically either 
gathered from sensors or output from some simulation or 
processing. The table below shows a sampling of data sets 
that a few scientists at Carnegie Mellon University have 
available to them or intend to construct soon. Data Intensive 
Scalable Computing (DISC) couples computational re-
sources with the data storage and access capabilities to 
handle massive data science quickly and efficiently. Our 
topic in this extended abstract is the effectiveness of the data 
intensive file systems embedded in a DISC system.  We are 
interested in understanding the differences between data 
intensive file system implementations and high performance 
computing (HPC) parallel file system implementations. 
Both are used at comparable scale and speed. Beyond fea-
ture inclusions, which we expect to evolve as data intensive 
file systems see wider use, we find that performance does 
not need to be vastly different.  A big source of difference is 
seen in their approaches to data failure tolerance: replication 
in DISC file systems versus RAID in HPC parallel file sys-
tems. We address the inclusion of RAID in a DISC file 
system to dramatically increase the effective capacity avail-
able to users. 
This work is part of a larger effort to mature and optimize 
DISC infrastructure services. 

2 Parallel versus Data Intensive File Systems 
Most DISC applications are characterized by parallel proc-
essing of massive datasets stored in the underlying shared 
storage system. Such distributed programming abstractions 
are provided by purpose-built frameworks like MapReduce 
[1], Hadoop [2] and Dryad [3]. These frameworks divide a 
large computation into many tasks that are assigned to run 
on nodes that store the desired input data, and avoiding a 
potential bottleneck resulting from shipping around tera-
bytes of input data. Hadoop, and its data intensive file 
system HDFS [4], are open-source implementations of Goo-
gle’s MapReduce and GoogleFS [5]. In this work we focus 
on  Hadoop’s use of the HDFS data intensive file system. 

At a high level HDFS’s architecture resembles an HPC par-
allel file system. HDFS stores file data and metadata on two 
different types of servers. All files are divided into chunks 
that are stored on different data servers. The file system 
metadata, including the per-file chunk layout, is stored on 
the metadata server(s). For single writer workloads, HDFS 
differs from HPC parallel file systems primarily in its layout 
and fault tolerance schemes. 
HDFS assigns chunks to compute nodes at random, while 
HPC file systems use a round robin layout over dedicated 
storage servers, and HDFS exposes a file’s layout informa-
tion to Hadoop. This exposed layout allows the Hadoop’s 
job scheduler to allocate tasks to nodes in a manner that (1) 
co-locates compute with data where possible, and (2) load 



 

 

balances the work of accessing and processing data across 
all the nodes. Thus, the scheduler can mask sub-optimal file 
layout resulting from HDFS’s random chunk placement 
policy with lots of work at each node [6]. The second big 
difference between HDFS and HPC file systems is its fault 
tolerance scheme: it uses triplication instead of RAID. We 
address this difference in the next section. 
Given the growing importance of the Hadoop MapReduce 
compute model, we ask “Could we use a mature HPC paral-
lel file system in-place of a custom-built DISC file system 
like HDFS?” While most HPC file systems use separate 
compute and storage systems for flexibility and manageabil-
ity, most HPC parallel file systems can also be run with data 
servers on each compute node.  
We built a non-intrusive shim layer to plug a real-world 
parallel file system (the Parallel Virtual File System, PVFS 
[7]), into the Hadoop framework storing data on compute 
nodes [6]. This shim layer queries file layout information 
from the underlying parallel file system and exposes it to the 
Hadoop layer. The shim also emulates HDFS-style triplica-
tion by writing, on behalf of the client, to three data servers 
with every application write.  
Figure 1 shows that for a typical Hadoop application (grep 
running on 32 nodes), the performance of shim-enabled 
Hadoop-on-PVFS is comparable to that of Hadoop-on-
HDFS. By simply exposing a file’s layout information, 
PVFS enables the Hadoop application to run twice as fast as 
it would without exposing the file’s layout. 
Most parallel large-scale file systems, like PVFS, already 
expose the file layout information to client modules but do 
not make it available to client applications. For example, the 
new version 4.1 of NFS (pNFS) delegates file layout to cli-
ent modules to allow the client OS to make direct access to 
striped files [8]. If these layout delegations were exposed to 
client applications to use in work scheduling decisions, as 
done in Hadoop or MapReduce, HPC and pNFS file systems 
could be significantly more effective in DISC system usage. 
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Figure 2: Codewords protecting against double node failure 

3 Replication versus RAID 
To tolerate frequent failures, each data block in a data inten-
sive file system is typically triplicated and therefore capable 
of recovering from two simultaneous node failures. Though 
simple, a triplication policy comes with a high overhead 
cost in terms of disk space: 200%. Traditional RAID sys-
tems typically exhibit capacity overheads between 10% and 
25% -- about 10 times smaller! We are designing and build-
ing DiskReduce, an application of RAID in HDFS to save 
storage capacity.  
In HDFS, files are divided into blocks, typically 64 MB, 
each stored on a data node. Each data node manages all file 
data stored on its persistent storage. It handles read and 
write requests from clients and performs “make replica” 
requests from the metadata node. There is a background 
process in HDFS that periodically checks a missing blocks 
and, if found, assigns a data node to replicate the block hav-
ing too few copies. 
DiskReduce exploits HDFS’s background re-replication to 
replace copies with lower overhead RAID encoding. In a 
manner reminiscent of early compressing file systems [9], 
all blocks are initially triplicated; that is, uncompressed. 
Where the background process looks for insufficient number 
of copies in HDFS, DiskReduce instead looks for blocks not 
encoded, and replaces copies with encodings. Because it is 
inherently asynchronous, DiskReduce can further delay en-
coding when space allows, to allow accesses temporally 
local to the creation of the data choice among multiple cop-
ies for readback. 
We have prototyped DiskReduce as a modification to 
Hadoop Distributed File System (HDFS) version 0.20.0. 
Currently, the DiskReduce prototype supports only two en-
coding schemes [10]: “RAID 6” and “RAID 5 and Mirror”, 
in which a RAID5 encoding is augmented with a second 
complete copy of the data. 
 
 

 
Figure 1: By exposing the file layout mapping through a non-
intrusive shim layer, a production parallel file system (PVFS) 
can match the performance of HDFS on a widely used Hadoop-
style workload. 



 

 

 
Figure 3: Storage capacity utilized and rate capacity is 
recovered by Disk Reduce background encoding. 

Our prototype runs in a cluster of 63 nodes, each containing 
two quad-core 2.83GHz Xeon processor, 16 GB of memory, 
and four 7200 rpm SATA 1 TB Seagate Barracuda ES.2 
disks with 32MB buffer. Nodes are interconnected by 10 
Gigabit Ethernet. All nodes run the Linux 2.6.28.10 kernel 
and use the ext3 file system for storing HDFS blocks. 
While our prototype is not complete (online reconstruction 
by a client is still a work-in-progress), it functions enough 
for a preliminary test. To get a feel for its basic encoding 
function, we set up a 32 nodes partition and had each node 
write a 16 GB file into a DiskReduce-modified HDFS 
spread over the same 32 nodes using RAID groups of eight 
data blocks each.  
Figure 3 shows the storage usage and encoding bandwidth 
consumed for the encoding of this 512GB of data. While 
this experiment is simple, it shows the encoding process 
removing 400GB and 900GB for the RAID 5 and mirror 
and RAID 6 schemes, respectively, bringing overhead down 
from 200% to 113% and 25%, respectively. 

4 Future Work 
Based on a talk about our previous DiskReduce work, a 
userspace RAID 5 and mirror encoding scheme has been 
implemented on top of HDFS by HDFS developers [11]. 
We are working closely with Hadoop and HDFS developers 
to further explore RAID 6 encodings, delaying of encoding 
to enable reading soon after write the full benefit of multiple 
copies, and to quantify this benefit, and delaying of deletion 
to trade capacity against the encoding cleanup of a partial 
RAID set delete. Similarly HPC parallel file systems have 
begun to implement RAID over nodes, instead of just RAID 
in hardware, led by a spin off of our prior work in scalable 
file systems [12]. In our long-term vision for data intensive 
storage systems we see a convergence of the semantic 
power of HPC parallel file systems with the high degrees of 
node failure tolerance in data intensive file systems. 
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