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Abstract

Freeblock scheduling is a new approach to utilizing
more of a disk's potential media bandwidth. By
�lling rotational latency periods with useful media
transfers, 20{50% of a never-idle disk's bandwidth
can often be provided to background applications
with no e�ect on foreground response times. This
paper describes freeblock scheduling and demon-
strates its value with simulation studies of two con-
crete applications: segment cleaning and data min-
ing. Free segment cleaning often allows an LFS �le
system to maintain its ideal write performance when
cleaning overheads would otherwise reduce perfor-
mance by up to a factor of three. Free data mining
can achieve over 47 full disk scans per day on an
active transaction processing system, with no e�ect
on its disk performance.

1 Introduction

Disk drives increasingly limit performance in many
computer systems, creating complexity and restrict-
ing functionality. However, in recent years, the
rate of improvement in media bandwidth (40+% per
year) has stayed close to that of computer system at-
tributes that are driven by Moore's Law. It is only
the mechanical positioning aspects (i.e., seek times
and rotation speeds) that fail to keep pace. If 100%
utilization of the potential media bandwidth could
be realized, disk performance would scale roughly
in proportion to the rest of the system over time.
Unfortunately, utilizations of 2{15% are more com-
monly observed in practice.

This paper describes and analyzes a new approach,
called freeblock scheduling, to increasing media band-
width utilization. By interleaving low priority disk
activity with the normal workload (here referred to
as background and foreground, respectively), one
can replace many foreground rotational latency de-

lays with useful background media transfers. With
appropriate freeblock scheduling, background tasks
can receive 20{50% of a disk's potential media band-
width without any increase in foreground request
service times. Thus, this background disk activity is
completed for free during the mechanical positioning
for foreground requests.

There are many disk-intensive background tasks
that are designed to occur during otherwise idle
time. Examples include disk reorganization, �le sys-
tem cleaning, backup, prefetching, write-back, in-
tegrity checking, RAID scrubbing, virus detection,
tamper detection, report generation, and index re-
organization. When idle time does not present itself,
these tasks either compete with foreground tasks or
are simply not completed. Further, when they do
compete with other tasks, these background tasks do
not take full advantage of their relatively loose time
constraints and paucity of sequencing requirements.
As a result, these \idle time" tasks often cause per-
formance or functionality problems in busy systems.
With freeblock scheduling, background tasks can op-
erate continuously and eÆciently, even when they do
not have the system to themselves.

This paper quanti�es the e�ects of disk, workload,
and disk scheduling algorithms on potential free
bandwidth. Algorithms are developed for increas-
ing the available free bandwidth and for eÆcient
freeblock scheduling. For example, with less than
a 6% increase in average foreground access time,
a Shortest-Positioning-Time-First scheduling algo-
rithm that favors reduction of seek time over reduc-
tion of rotational latency can provide an additional
66% of free bandwidth. Experiments also show
that freeblock scheduling decisions can be made ef-
�ciently enough to be e�ective in highly loaded sys-
tems.

This paper uses simulation to explore freeblock
scheduling, demonstrating its value with concrete
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examples of its use for storage system management
and disk-intensive applications. The �rst example
shows that cleaning in a log-structured �le system
can be done for free even when there is no truly idle
time, resulting in up to a 300% speedup. The second
example explores the use of free bandwidth for data
mining on an active on-line transaction processing
(OLTP) system, showing that over 47 full scans per
day of a 9GB disk can be made with no impact on
OLTP performance.

In a recent paper [45], we proposed a scheme for
performing data mining \for free" on a busy OLTP
system. The scheme combines Active Disks [46] with
use of idle time and aggressive interleaving of data
mining requests with OLTP requests. This paper
generalizes and extends the latter, developing an un-
derstanding of free bandwidth availability and ex-
ploring its use.

The remainder of this paper is organized as follows.
Section 2 describes free bandwidth and discusses its
use in systems. Section 3 quanti�es the availabil-
ity of potential free bandwidth and how it varies
with disk characteristics, foreground workloads, and
foreground disk scheduling algorithms. Section 4 de-
scribes our freeblock scheduling algorithm. Section 5
evaluates the use of free bandwidth for cleaning of
LFS log segments. Section 6 evaluates the use of
free bandwidth for data mining of active OLTP sys-
tems. Section 7 discusses related work. Section 8
summarizes the paper's contributions.

2 Free Bandwidth

At a high-level, the time required for a disk media
access, Taccess , can be computed as

Taccess = Tseek + Trotate + Ttransfer

Of Taccess , only the Ttransfer component repre-
sents useful utilization of the disk head. Unfortu-
nately, the other two components generally domi-
nate. Many data placement and scheduling algo-
rithms have been devised to increase disk head uti-
lization by increasing transfer sizes and reducing po-
sitioning overheads. Freeblock scheduling comple-
ments these techniques by transferring additional
data during the Trotate component of Taccess .

Fundamentally, the only time the disk head can-
not be transferring data sectors to or from the me-
dia is during a seek. In fact, in most modern disk
drives, the �rmware will transfer a large request's
data to or from the media \out of order" to mini-
mize wasted time; this feature is sometimes referred
to as zero-latency or immediate access. While seeks

are unavoidable costs associated with accessing de-
sired data locations, rotational latency is an artifact
of not doing something more useful with the disk
head. Since disk platters rotate constantly, a given
sector will rotate past the disk head at a given time,
independent of what the disk head is doing up until
that time. So, there is an opportunity to do some-
thing more useful than just waiting for desired sec-
tors to arrive at the disk head.

Freeblock scheduling consists of predicting how
much rotational latency will occur before the next
foreground media transfer, squeezing some addi-
tional media transfers into that time, and still get-
ting to the destination track in time for the fore-
ground transfer. The additional media transfers may
be on the current or destination tracks, on another
track near the two, or anywhere between them, as
illustrated in Figure 1. In the two latter cases, ad-
ditional seek overheads are incurred, reducing the
actual time available for the additional media trans-
fers, but not completely eliminating it.

Accurately predicting future rotational latencies re-
quires detailed knowledge of many disk performance
attributes, including layout algorithms and time-
dependent mechanical positioning overheads. These
predictions can utilize the same basic algorithms and
information that most modern disks employ for their
internal scheduling decisions, which are based on
overall positioning overheads (seek time plus rota-
tional latency) [51, 30]. However, this may require
that freeblock scheduling decisions be made by disk
�rmware. Fortunately, the increasing processing ca-
pabilities of disk drives [1, 22, 32, 46] make advanced
on-drive storage management feasible [22, 57].

2.1 Using Free Bandwidth

Potential free bandwidth exists in the time gaps that
would otherwise be rotational latency delays for fore-
ground requests. Therefore, freeblock scheduling
must opportunistically match these potential free
bandwidth sources to real bandwidth needs that can
be met within the given time gaps. The tasks that
will utilize the largest fraction of potential free band-
width are those that provide the freeblock scheduler
with the most exibility. Tasks that best �t the free-
block scheduling model have low priority, large sets
of desired blocks, no particular order of access, and
small working memory footprints.

Low priority. Free bandwidth is inherently in the
background, and freeblock requests will only be ser-
viced when opportunities arise. Therefore, response
times may be extremely long for such requests, mak-



After read of A

(c) Another freeblock scheduling alternative.

(b) One freeblock scheduling alternative.

(a) Original sequence of foreground requests.
Seek to B's track Rotational latency After read of B

After freeblock read Seek to B's track

After freeblock readSeek to another track Seek to B's track

Disk Rotation

Figure 1: Illustration of two freeblock scheduling possibilities. Three sequences of steps are shown, each starting
after completing the foreground request to block A and �nishing after completing the foreground request to block B. Each step
shows the position of the disk platter, the read/write head (shown by the pointer), and the two foreground requests (in black)
after a partial rotation. The top row, labelled (a), shows the default sequence of disk head actions for servicing request B,
which includes 4 sectors worth of potential free bandwidth (a.k.a. rotational latency). The second row, labelled (b), shows free
reading of 4 blocks on A's track using 100% of the potential free bandwidth. The third row, labelled (c), shows free reading of
3 blocks on another track, yielding 75% of the potential free bandwidth.

ing them most appropriate for background activities.

Further, freeblock scheduling is not appropriate for a

set of equally important requests; splitting such a set

between a foreground queue and a freeblock queue

reduces the options of both schedulers. All such re-

quests should be considered by a single scheduler.

Large sets of desired blocks. Since freeblock

schedulers work with restricted free bandwidth op-

portunities, their e�ectiveness tends to increase

when they have more options. That is, the larger the

set of disk locations that are desired, the higher the

probability that a free bandwidth opportunity can

be matched to a need. Therefore, tasks that involve

larger fractions of the disk's capacity generally uti-

lize larger fractions of the potential free bandwidth.

No particular order of access. Ordering require-

ments restrict the set of requests that can be con-

sidered by the scheduler at any point in time. Since

the e�ectiveness of freeblock scheduling is directly

related to the number of outstanding requests, work-

loads with little or no ordering requirements tend to

utilize more of the potential free bandwidth.

Small working memory footprints. Signi�-

cant need to bu�er multiple blocks before process-

ing them creates arti�cial ordering requirements due

to memory limitations. Workloads that can im-

mediately process and discard data from freeblock

requests tend to be able to request more of their

needed data at once.

To clarify the types of tasks that �t the freeblock

scheduling model, Table 1 presents a sample inter-

face for a freeblock scheduling subsystem, ignoring

component and protection boundary issues. This in-

terface is meant to be illustrative only; a comprehen-

sive API would need to address memory allocation,

protection, and other issues.

This sample freeblock API has four important char-

acteristics. First, no call into the freeblock schedul-

ing subsystem waits for a disk access. Instead, calls

to register requests return immediately, and subse-

quent callbacks report request completions. This al-

lows applications to register large sets of freeblock



Function Name Arguments Description

freeblock readblocks diskaddrs, blksize, callback Register freeblock read request(s)
freeblock writeblocks diskaddrs, blksize, bu�ers, callback Register freeblock write request(s)
freeblock abort diskaddrs, blksize Abort registered freeblock request(s)
freeblock promote diskaddrs, blksize Promote registered freeblock request(s)
*(callback) diskaddr, blksize, bu�er Call back to task with desired block

Table 1: A simple interface to a freeblock subsystem. freeblock readblocks and freeblock writeblocks register one or
more single-block freeblock requests, with an application-de�ned block size. freeblock abort and freeblock promote are applied
to previously registered requests, to either cancel pending freeblock requests or convert them to foreground requests. When
promoted, multiple contiguous freeblock requests can be merged into a single foreground request. *(callback) is called by the
freeblock subsystem to report availability (or write completion) of a single previously-requested block. When the request was
a read, bu�er points to a bu�er containing the desired data. The freeblock subsystem reclaims this bu�er when *(callback)
returns, meaning that the callee must either process the data immediately or copy it to another location before returning
control.

requests. Second, block sizes are provided with each
freeblock request, allowing applications to ensure
that useful units are provided to them. Third, free-
block read requests do not specify memory locations
for read data. Completion callbacks provide pointers
to bu�ers owned by the freeblock scheduling subsys-
tem and indicate which requested data blocks are
in them. This allows tasks to register many more
freeblock reads than their memory resources would
otherwise allow, giving greater exibility to the free-
block scheduling subsystem. For example, the data
mining example in Section 6 starts by registering
freeblock reads for all blocks on the disk. Fourth,
freeblock requests can be aborted or promoted to
foreground requests at any time. The former al-
lows tasks to register for more data than are ab-
solutely required (e.g., a search that only needs one
match). The latter allows tasks to increase the prior-
ity of freeblock requests that may soon impact fore-
ground task performance (e.g., a space compression
task that has not made suÆcient progress).

2.2 Applications

Freeblock scheduling is a new tool, and we expect
that system designers will �nd many unanticipated
uses for it. This section describes some of the appli-
cations we see for its use.

Scanning applications. In many systems, there
are a variety of support tasks that scan large por-
tions of disk contents. Such activities are of direct
bene�t to users, although they may not be the high-
est priority of the system. Examples of such tasks
include report generation, RAID scrubbing, virus
detection, tamper detection [33], and backup. Sec-
tion 6 explores data mining of an active transaction
processing system as a concrete example of such use
of free bandwidth.

These disk-scanning application tasks are ideal can-
didates for free bandwidth utilization. Appropri-
ately structured, they can exhibit all four of the de-
sirable characteristics discussed above. For example,
report generation tasks (and data mining in general)
often consist of collecting statistics about large sets
of small, independent records. These tasks may be of
lower priority than foreground transactions, access a
large set of blocks, involve no ordering requirements,
and process records immediately. Similarly, virus de-
tectors examine large sets of �les for known patterns.
The �les can be examined in any order, though in-
ternal statistics for partially-checked �les may have
signi�cant memory requirements when pieces of �les
are read in no particular order. Backup applica-
tions can be based on physical format, allowing ex-
ible block ordering with appropriate indices, though
single-�le restoration is often less eÆcient [28, 14].
Least exible of these examples would be tamper
detection that compares current versions of data to
\safe" versions. While the comparisons can be per-
formed in any order, both versions of a particular
datum must be available in memory to complete a
comparison. Memory limitations are unlikely to al-
low arbitrary exibility in this case.

Internal storage optimization. Another promis-
ing use for free bandwidth is internal storage sys-
tem optimization. Many techniques have been de-
veloped for reorganizing stored data to improve per-
formance of future accesses. Examples include plac-
ing related data contiguously for sequential disk ac-
cess [37, 57], placing hot data near the center of
the disk [56, 48, 3], and replicating data on disk
to provide quicker-to-access options for subsequent
reads [42, 61]. Other examples include index reorga-
nization [29, 23] and compression of cold data [11].
Section 5 explores segment cleaning in log-structured
�le systems as a concrete example of such use of free



bandwidth.

Although internal storage optimization activities ex-
hibit the �rst two qualities listed in Section 2.1, they
can impose some ordering and memory restrictions
on media accesses. For example, reorganization gen-
erally requires clearing (i.e., reading or moving) des-
tination regions before di�erent data can be written.
Also, after opportunistically reading data for reorga-
nization, the task must write this data to their new
locations. Eventually, progress will be limited by the
rate at which these writes can be completed, since
available memory resources for bu�ering such data
are �nite.

Prefetching and Prewriting. Another use of free
bandwidth is for anticipatory disk activities such
as prefetching and prewriting. Prefetching is well-
understood to o�er signi�cant performance enhance-
ments [44, 9, 25, 36, 54]. Free bandwidth prefetch-
ing should increase performance further by avoiding
interference with foreground requests and by min-
imizing the opportunity cost of aggressive predic-
tions. As one example, the sequence shown in Fig-
ure 1(b) shows one way that the prefetching com-
mon in disk �rmware could be extended with free
bandwidth. Still, the amount of prefetched data is
necessarily limited by the amount of memory avail-
able for caching, restricting the number of freeblock
requests that can be issued.

Prewriting is the same concept in reverse. That is,
prewriting is early writing out of dirty blocks un-
der the assumption that they will not be overwrit-
ten or deleted before write-back is actually neces-
sary. As with prefetching, the value of prewriting
and its relationship with non-volatile memory are
well-known [4, 10, 6, 23]. Free bandwidth prewrit-
ing has the same basic bene�ts and limitations as
free prefetching.

3 Availability of Free Bandwidth

This section quanti�es the availability of potential
free bandwidth, which is equal to a disk's total po-
tential bandwidth multiplied by the fraction of time
it spends on rotational latency delays. The amount
of rotational latency depends on a number of disk,
workload, and scheduling algorithm characteristics.

The experimental data in this section was gener-
ated with the DiskSim simulator [21], which has
been shown to accurately model several modern disk
drives [17], including those explored here. By de-
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Figure 2: Disk head usage for several modern disks.

The cross-hatch portion, representing rotational latency, in-

dicates the percentage of total disk bandwidth available as

potential free bandwidth.

fault, the experiments use a Quantum Atlas 10K
disk drive and a synthetic workload referred to as
random. This random workload consists of 10,000
foreground requests issued one at a time with no idle
time between requests (closed system arrival model
with no think time). Other default parameters for
the random workload are request size of 4KB, uni-
form distribution of starting locations across the disk
capacity, and 2:1 ratio of reads to writes.

Most of the bar graphs presented in this section have
a common structure. Each bar breaks down disk
head usage into several regions that add up to 100%,
with each region representing the percentage of the
total attributed to the corresponding activity. All
such bars include regions for foreground seek times,
rotational latencies, and media transfers. The ro-
tational latency region represents the potential free
bandwidth (as a percentage of the disk's total band-
width) available for the disk-workload combination.

3.1 Impact of disk characteristics

Figure 2 shows breakdowns of disk head usage for
�ve modern disk drives whose basic characteristics
are given in Table 2. Overall, for the random work-
load, about one third (27{36%) of each disk's head
usage can be attributed to rotational latency. Thus,
about one third of the media bandwidth is avail-
able for freeblock scheduling, even with no inter-



Quantum Seagate Seagate Seagate IBM
Atlas 10K Cheetah 4LP Cheetah 9LP Cheetah 18LP Ultrastar 9ES

Year 1999 1996 1997 1998 1998
Capacity 9 GB 4.5 GB 9 GB 9 GB 9 GB
Cylinders 10042 6581 6962 9772 11474
Tracks per cylinder 6 8 12 6 5
Sectors per track 229{334 131{195 167{254 252{360 247{390
Spindle speed (RPM) 10025 10033 10025 10025 7200
Average seek 5.0 ms 7.7 ms 5.4 ms 5.2 ms 7.0 ms
Min-Max seeks 1.2{10.8 ms 0.6{16.1 ms 0.8{10.6 ms 0.7{10.8 ms 1.1{12.7 ms

Table 2: Basic characteristics of several modern disk drives.
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Figure 3: Disk head usage as a function of request

size.

request locality. At a more detailed level, the e�ect
of key disk characteristics can be seen in the break-
downs. For example, the faster seeks of the Cheetah
9LP, relative to the Cheetah 4LP, can be seen in the
smaller seek component.

3.2 Impact of workload characteristics

Figure 3 shows how the breakdown of disk head us-
age changes as the request size of the random work-
load increases. As expected, larger request sizes
yield larger media transfer components, reducing the
seek and latency components by amortizing larger
transfers over each positioning step. Still, even for
large random requests (e.g., 256KB), disk head uti-
lization is less than 55% and potential free band-
width is 15%.
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Figure 4: Disk head usage as a function of access

locality. The default workload was modi�ed such that
a percentage of request starting locations are \local" (taken
from a normal distribution centered on the last requested lo-
cation, with a standard deviation of 4MB). The remaining
requests are uniformly distributed across the disk's capacity.
This locality model crudely approximates the e�ect of \cylin-
der group" layouts [38] on �le system workloads.

Figure 4 shows how the breakdown of disk head
usage changes as the degree of access locality in-
creases. Because access locality tends to reduce seek
distances without directly a�ecting the other compo-
nents, this graph shows that both the transfer and
latency components increase. For example, when
70% of the requests are within the same \cylinder
group" [38] as the last request, almost 60% of the
disk head's time is spent in rotational latency and
is thus available as free bandwidth. Since disk ac-
cess locality is a common attribute of many environ-
ments, one can generally expect more potential free
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Figure 5: Disk head usage for several foreground

scheduling algorithms. The default workload was mod-

i�ed to always have 20 requests outstanding. Lowering the

number of outstanding requests reduces the di�erences be-

tween the scheduling algorithms, as they all converge on

FCFS.

bandwidth than the 33% predicted for the random

workload.

Figure 4 does not show the downside (for freeblock
scheduling) of high degrees of locality | starvation
of distant freeblock requests. That is, if foreground
requests keep the disk head in one part of the disk, it
becomes diÆcult for a freeblock scheduler to success-
fully make progress on freeblock requests in distant
parts of the disk. This e�ect is taken into account
in the experiments of Sections 5 and 6.

3.3 Impact of scheduling algorithm

Figure 5 shows how the breakdown of disk head
usage changes for di�erent scheduling algorithms
applied to foreground requests. Speci�cally, four
scheduling algorithms are shown: First-Come-
First-Served (FCFS), Circular-LOOK (C-LOOK),
Shortest-Seek-Time-First (SSTF), and Shortest-
Positioning-Time-First (SPTF). FCFS serves re-
quests in arrival order. C-LOOK [49] selects the
next request in ascending starting address order; if
none exists, it selects the request with the lowest
starting address. SSTF [16] selects the request that
will incur the shortest seek. SPTF [30, 51, 60] se-
lects the request that will incur the smallest overall
positioning delay (seek time plus rotational latency).

On average, C-LOOK and SSTF reduce seek times
without a�ecting transfer times and rotational la-
tencies. Therefore, we expect (and observe) the seek
component to decrease and the other two to increase.
In fact, for this workload, the rotational latency
component increases to 50% of the disk head usage.
On the other hand, SPTF tends to decrease both
overhead components, and Figure 5 shows that the
rotational latency component decreases signi�cantly
(to 22%) relative to the other scheduling algorithms.

SPTF requires the same basic time predictions as
freeblock scheduling. Therefore, its superior perfor-
mance will make it a common foreground schedul-
ing algorithm in systems that can support freeblock
scheduling, making its e�ect on potential free band-
width a concern. To counter this e�ect, we propose a
modi�ed SPTF algorithm that is weighted to select
requests with both small total positioning delays and
large rotational latency components. The algorithm,
here referred to as SPTF-SWn%, selects the request
with the smallest seek time component among the
pending requests whose positioning times are within
n% of the shortest positioning time. So, logically,
this algorithm �rst uses the standard SPTF algo-
rithm to identify the next most eÆcient request, de-
noted A, to be scheduled. Then, it makes a second
pass to �nd the pending request, denoted B, that
has the smallest seek time while still having a to-
tal positioning time within n% of A's. Request B is
then selected and scheduled. The actual implemen-
tation makes a single pass, and its measured compu-
tational overhead is only 2{5% higher than that of
SPTF. This algorithm creates a continuum between
SPTF (when n = 0) and SSTF (when n =1), and
we expect the disk head usage breakdown to reect
this.

Figure 6 shows the breakdown of disk head usage
and the average foreground request access time when
SPTF-SWn% is used for foreground request schedul-
ing. As expected, di�erent values of n result in a
range of options between SPTF and SSTF. As n in-
creases, seek reduction becomes a priority, and the
rotational latency component of disk head usage in-
creases. At the same time, average access times in-
crease as total positioning time plays a less domi-
nant role in the decision process. Fortunately, the
bene�ts increase rapidly before experiencing dimin-
ishing returns, and the penalties increase slowly be-
fore ramping up. So, using SPTF-SW40% as an ex-
ample, we see that a 6% increase in average access
time can provide 66% more potential free bandwidth
(i.e., 36% rotational latency for SPTF-SW40% com-
pared to SPTF's 22%). This represents half of the
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(b) Average access time

Figure 6: Disk head usage and average access time with SPTF-SWn% for foreground scheduling. The default
workload was modi�ed to always have 20 requests outstanding.

free bandwidth di�erence between SPTF and SSTF
at much less than the 25% foreground access time
di�erence.

4 Freeblock Scheduling Decisions

Freeblock scheduling is the process of identifying
free bandwidth opportunities and matching them to
pending freeblock requests. This section describes
and evaluates the computational overhead of the
freeblock scheduling algorithm used in our experi-
ments.

Our freeblock scheduler works independently of the
foreground scheduler and maintains separate data
structures. After the foreground scheduler chooses
the next request, B, the freeblock scheduler is in-
voked. It begins by computing the rotational la-
tency that would be incurred in servicing B; this is
the free bandwidth opportunity. This computation
requires accurate estimates of disk geometry, current
head position, seek times, and rotation speed. The
freeblock scheduler then searches its list of pending
freeblock requests for the most complete use of this
opportunity; that is, our freeblock scheduler greedily
schedules freeblock requests within free bandwidth
opportunities based on the number of blocks that
can be accessed.

Our current freeblock scheduler assumes that the

most complete use of a free bandwidth opportunity
is the maximal answer to the question, \for each
track on the disk, how many desired blocks could
be accessed in this opportunity?". For each track,
t, answering this question requires computing the
extra seek time involved with seeking to t and then
seeking to B's track, as compared to seeking directly
to B's track. Answering this question also requires
determining which disk blocks will pass under the
head during the remaining rotational latency time
and counting how many of them correspond to pend-
ing freeblock requests. Note that no extra seek is
required for the source track or for B's track.

Obviously, such an exhaustive search can be ex-
tremely time consuming. We prune the search space
in several ways. First, the freeblock scheduler skips
all tracks for which the number of desired blocks is
less than the best value found so far. Second, the
freeblock scheduler only considers tracks for which
the remaining free bandwidth (after extra seek over-
heads) is greater than the best value found so far.
Third, the freeblock scheduler starts by searching
the source and destination cylinders (from the pre-
vious and current foreground requests), which yield
the best choices whenever they are fully populated,
and then searching in ascending order of extra seek
time. Combined with the �rst two pruning steps,
this ordered search frequently terminates quickly.



The algorithm described above performs well when
there is a large number of pending freeblock re-
quests. For example, when 20{100% of the disk is
desired, freeblock scheduling decisions are made in
0-2.5ms on a 550MHz Intel Pentium III, which is
much less than average disk access times. For such
cases, it should be possible to schedule the next free-
block request in real-time before the current fore-
ground request completes, even with a less-powerful
CPU. With greater fragmentation of freeblock re-
quests, the time required for the freeblock scheduler
to make a decision rises signi�cantly. The worst-
case computation time of this algorithm occurs when
there are large numbers of small requests evenly dis-
tributed across all cylinders. In this case, the al-
gorithm searches a large percentage of the available
disk space in the hopes of �nding a larger section of
blocks than it has already found. To address this
problem, one can simply halt searches after some
amount of time (e.g., the time available before the
previous foreground request completes). In most
cases, this has a negligible e�ect on the achieved
free bandwidth. For all experiments in this paper,
the freeblock scheduling algorithm was only allowed
to search for the next freeblock request in the time
that the current foreground request was being ser-
viced.

The base algorithm described here enables signi�-
cant use of free bandwidth, as shown in subsequent
sections. Nonetheless, development of more eÆcient
and more e�ective freeblock scheduling algorithms
is an important area for further work. This will in-
clude using both free bandwidth and idle time for
background tasks; the algorithm above and all ex-
periments in this paper use only free bandwidth.

5 Free cleaning of LFS segments

The log-structured �le system [47] (LFS) was de-
signed to reduce the cost of disk writes. Towards
this end, it remaps all new versions of data into large,
contiguous regions called segments. Each segment is
written to disk with a single I/O operation, amortiz-
ing the cost of a single seek and rotational delay over
a write of a large number of blocks. A signi�cant
challenge for LFS is ensuring that empty segments
are always available for new data. LFS answers this
challenge with an internal defragmentation opera-
tion called cleaning. Ideally, all necessary cleaning
would be completed during idle time, but this is not
always possible in a busy system. The potential and
actual penalties associated with cleaning have been
the subject of heated debate [50] and several research

e�orts [52, 37, 7, 39, 59]. With freeblock scheduling,
the cost of segment cleaning can be close to zero for
many workloads.

5.1 Design

Cleaning of a previously written segment involves
identifying the subset of live blocks, reading them
into memory, and writing them into the next seg-
ment. Live blocks are those that have not been over-
written or deleted by later operations; they can be
identi�ed by examining the on-disk segment sum-
mary structure to determine the original identity of
each block (e.g., block 4 of �le 3) and then examining
the auxiliary structure for the block's original owner
(e.g., �le 3's i-node). Segment summaries, auxiliary
structures, and live blocks can be read via freeblock
requests. There are ordering requirements among
these, but live blocks can be read in any order and
moved into their new locations immediately.

Like other background LFS cleaners, our freeblock
segment cleaner is invoked when the number of
empty segments drops below a certain threshold.
When invoked, the freeblock cleaner selects several
non-empty segments and uses freeblock requests to
clean them in parallel with other foreground re-
quests. Cleaning several segments in parallel pro-
vides more requests and greater exibility to the
freeblock scheduler. If the freeblock cleaner is not
e�ective enough, the foreground cleaner will be acti-
vated when the minimum threshold of free segments
is reached.

As live blocks in targeted segments are fetched, they
are copied into the in-memory segment that is cur-
rently being constructed by LFS writes. Because the
live blocks are written into the same segment as data
of foreground LFS requests, this method of cleaning
is not entirely for free. The auxiliary data structure
(e.g., i-node) that marks the location of the block
is updated to point to the block's new location in
the new segment. When all live blocks are cleaned
from a segment on the disk, that segment becomes
available for subsequent use.

5.2 Experimental Setup

To experiment with freeblock cleaning, we have
modi�ed a log-structured logical disk, called
LLD [15]. LLD uses segments consisting of 128
4KB blocks, of which 127 blocks are used for data
and one block is used for segment summary. The
default implementation of LLD invokes its cleaner
only when the number of free segments drops be-
low a threshold (set to two segments). It does not



implement background cleaning. Thus, all segment
cleaning activity interferes with the foreground disk
I/O.We replaced LLD's default segment selection al-
gorithm for cleaning with Sprite LFS's cost-bene�t
algorithm[47], yielding better performance for all of
the cleaners.

Our experiments were run under Linux 2.2.14 with
a combination of real processing times and simu-
lated I/O times provided by DiskSim. To accom-
plish this, we merged LLD with DiskSim. Com-
putation times between disk I/Os are measured
with gettimeofday, which uses the Pentium cycle
counter. These computation times are used to ad-
vance simulation time in DiskSim. DiskSim call-
backs report request completions, which are for-
warded into the LLD code as interrupts. The con-
tents of the simulated disk are stored in a regular �le,
and the time required to access this �le is excluded
from the reported results.

All experiments were run on a 550 MHz Intel Pen-
tium III machine with 256MB of memory. DiskSim
was con�gured to model a modi�ed Quantum Atlas
10K disk. Speci�cally, since the maximal size of an
LLD disk is 400MB, we modi�ed the Atlas 10K spec-
i�cations to have only one data surface, resulting in
a capacity of 1.5GB. Thus, the LLD \partition" oc-
cupies about 1/4 of the disk.

To assess the e�ectiveness of the freeblock cleaner,
we used the Postmark v. 1.11 benchmark, which sim-
ulates the small-�le activity predominant on busy
Internet servers [31]. Postmark initially creates a
pool of �les, then performs a series of transactions,
and �nally deletes all �les created during the bench-
mark run. A single transaction is one access to an
existing �le (i.e., read or append) and one �le manip-
ulation (i.e., �le creation or deletion). We used the
following parameter values: 5{10KB �le size (default
Postmark value), 25000 transactions, and 100 subdi-
rectories. The ratios of read-to-write and create-to-
delete were kept at their default values of 1:1. The
number of �les in the initial pool was varied to pro-
vide a range of �le system capacity utilizations.

To age the �le system, we run the transaction phase
twice and report measurements for only the second
iteration. The rationale for running the set of trans-
actions the �rst time is to spread the blocks of the �le
system among the segments in order to more closely
resemble steady-state operation. Recall that Post-
mark �rst creates all �les before doing transactions
which results in all segments being either completely
full or completely empty | a situation very unlikely
in normal operation.
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Figure 7: LLD performance for three cleaning strate-

gies. Even with a heavy foreground workload (Postmark),
segment cleaning can be completed with just freeblock re-
quests until the �le system is 93% full.

5.3 Results

Figure 7 shows Postmark's performance for three
di�erent cleaner con�gurations: ORIGINAL is the
default LLD cleaner with the Sprite LFS segment
selection algorithm. FREEBLOCK is the freeblock
cleaner, in which cleaning reads are freeblock re-
quests and cleaning writes are foreground requests.
IDEAL subtracts all cleaning costs from ORIGI-
NAL and computes the corresponding throughput,
which is unrealistic because in�nitely fast foreground
cleaning is not possible.

Figure 7 shows the transactions per second for dif-
ferent �le system space utilizations, corresponding
to di�erent numbers of �les initially created by Post-
mark. The high throughput for low utilizations (less
than 8% of capacity) is due to the LLD bu�er cache,
which absorbs all of the disk activity. IDEAL's per-
formance decreases as capacity utilization increases,
because the larger set of �les results in fewer cache
hits for Postmark's random �le accesses. As disk
utilization increases, ORIGINAL's throughput de-
creases consistently due to cleaning overheads, halv-
ing performance at 60% capacity and quartering it
at 85%. FREEBLOCK maintains performance close
to IDEAL (up to 93% utilization). After 93%, there
is insuÆcient time for freeblock cleaning to keep
up with the heavy foreground workload, and the
performance of FREEBLOCK degrades as the fore-
ground cleaner increasingly dominates performance.



FREEBLOCK's slow divergence from IDEAL be-
tween 40% and 93% occurs because FREEBLOCK is
being charged for the write cost of cleaned segments
while IDEAL is not.

6 Free data mining on OLTP systems

The use of data mining to identify patterns in large
databases is becoming increasingly popular over a
wide range of application domains and datasets
[19, 12, 58]. One of the major obstacles to start-
ing a data mining project within an organization
is the high initial cost of purchasing the necessary
hardware. Speci�cally, the most common strategy
for data mining on a set of transaction data is to
purchase a second database system, copy the trans-
action records from the OLTP system to the sec-
ond system each evening, and perform mining tasks
only on the second system. This strategy can dou-
ble capital and operating expenses. It also requires
that a company gamble a sizable up-front invest-
ment to test suspicions that there may be interesting
\nuggets" to be mined from their OLTP databases.
With freeblock scheduling, signi�cant mining band-
width can be extracted from the original system
without a�ecting the original transaction processing
activity [45].

6.1 Design

Data mining involves examining large sets of records
for statistical features and correlations. Many
data mining operations, including nearest neighbor
search, association rules [2], ratio and singular value
decomposition [34], and clustering [62, 26], eventu-
ally translate into a few scans of the entire dataset.
Further, individual records can be processed imme-
diately and in any order, matching three of the cri-
teria of appropriate free bandwidth uses.

Our freeblock mining example issues a single free-
block read request for each scan. This freeblock re-
quest asks for the entire contents of the database in
page-sized chunks. The freeblock scheduler ensures
that only blocks of the speci�ed size are provided
and that all the blocks requested are read exactly
once. However, the order in which the blocks are
read will be an artifact of the pattern of foreground
OLTP requests.

Interestingly, this same design is appropriate for
some other storage activities. For example, RAID
scrubbing consists of verifying that each disk sec-
tor can be read successfully (i.e., that no sector has
fallen victim to media corruption). Also, a phys-

ical backup consists of reading all disk sectors so
that they can be written to another device. The
free bandwidth achieved for such scanning activities
would match that shown for freeblock data mining
in this section.

6.2 Experimental Setup

The experiments in Section 6.3 were conducted
using the DiskSim simulator con�gured to model
the Quantum Atlas 10K and a synthetic fore-
ground workload based on approximations of ob-
served OLTP workload characteristics. The syn-
thetic workload models a closed system with per-
task disk requests separated by think times of 30
milliseconds. We vary the multiprogramming level
(MPL), or number of tasks, of the OLTP workload
to create increasing foreground load on the system.
For example, a multiprogramming level of ten means
that there are ten requests active in the system at
any given point, either queued at the disk or waiting
in think time. The OLTP requests are uniformly-
distributed across the disk's capacity with a read to
write ratio of 2:1 and a request size that is a multiple
of 4 kilobytes chosen from an exponential distribu-
tion with a mean of 8 kilobytes. Validation experi-
ments (in [45]) show that this workload is suÆciently
similar to disk traces of Microsoft's SQL server run-
ning TPC-C for the overall freeblock-related insights
to apply to more realistic OLTP environments. The
background data mining workload uses free band-
width to make full scans of the disk's contents in
4 KB blocks, completing one scan before starting
the next. All simulations run for the time required
for the background data mining workload to com-
plete ten full disk scans, and the results presented
are averages across these ten scans. The experiments
ignore bus bandwidth and record processing over-
heads, assuming that media scan times dominate;
this assumption might be appropriate if the mining
data is delivered over distinct buses to dedicated pro-
cessors either on a small mining system or in Active
Disks.

6.3 Results

Figure 8 shows the disk head usage for the fore-
ground OLTP workload at a range of MPLs and the
free bandwidth achieved by the data mining task.
Low OLTP loads result in low data mining through-
put, because little potential free bandwidth exists
when there are few foreground requests. Instead,
there is a signi�cant amount of idle disk head time
that could be used for freeblock requests, albeit not
without some e�ect on foreground response times.
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(b) Free mining bandwidth
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(c) Combined head usage

Figure 8: Average freeblock-based data mining performance. (a) shows the disk head usage breakdown for the
foreground OLTP workload at various MPLs. (b) shows the overall free bandwidth delivered to the data mining application
for the same points. (c) shows the disk head usage breakdown with both the foreground OLTP workload and the background
data mining application.

Our study here focuses strictly on use of free band-
width. As the foreground load increases, opportu-
nities to service freeblock requests are more plenti-
ful, increasing data mining throughput to about 4.9
MB/s (21% of the Atlas 10K's 23MB/s full potential
bandwidth). This represents a 7� increase in useful
disk head utilization, from 3% to 24%, and it allows
the data mining application to complete over 47 full
\scans per day" [24] of this 9GB disk with no e�ect
on foreground OLTP performance.

However, as shown in Figure 8b, freeblock scheduling
realizes only half of the potential free bandwidth for
this environment. As shown in Figure 8c, 18% of the
remaining potential is lost to extra seek time, which
occurs when pending freeblock requests only exist on
a third track (other than the previous and current
foreground request). The remaining 28% continues
to be rotational latency, either as part of freeblock
requests or because no freeblock request could be
serviced within the available slot.

Figure 9 helps to explain why only half of the po-
tential free bandwidth is realized for data mining.
Speci�cally, it shows data mining progress and per-
OLTP-request breakdown as functions of the time
spent on a given disk scan. The main insight here
is that the eÆciency of freeblock scheduling (i.e.,
achieved free bandwidth divided by potential free
bandwidth) drops steadily as the set of still-desired
background blocks shrinks. As the freeblock sched-
uler has more diÆculty �nding conveniently-located
freeblock requests, it must look further and further
from the previous and current foreground requests.

As shown in Figure 9c, this causes extra seek times
to increase. Unused rotational latency also increases
as freeblock requests begin to incur some latency and
as increasing numbers of foreground rotational laten-
cies are found to be too small to allow any pending
freeblock request to be serviced. As a result, ser-
vicing the last few freeblock requests of a full scan
takes a long time; for example, the last 5% of the
freeblock requests take 30% of the total time for a
scan.

One solution to this problem would be to increase
the priority of the last few freeblock requests, with a
corresponding impact on foreground requests. The
challenge would be to �nd an appropriate trade-
o� between impact on the foreground and improved
background performance.

An alternate solution would be to take advan-
tage of the statistical nature of many data min-
ing queries. Statistical sampling has been shown
to provide accurate results for many queries
and internal database operations after accessing
only a (randomly-selected) subset of the total
dataset [43, 13]. Figure 10 shows the impact of such
statistical data mining as a function of the percent-
age of the dataset needed; that is, the freeblock re-
quest is aborted when enough of the dataset has
been mined. Assuming that freeblock scheduling
within the foreground OLTP workload results in suf-
�ciently random data selection or that the sampling
algorithm is adaptive to sampling biases [13], sam-
pling can signi�cantly increase freeblock scheduler
eÆciency. When any 95% of the dataset is suÆcient,
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Figure 9: Freeblock-based data mining progress for MPL 7. (a) shows the potential and achieved scan progress. (b)
shows the corresponding instantaneous free bandwidth. (c) shows the usage of potential free bandwidth (i.e., original OLTP
rotational latency), partitioning it into free transfer time, extra seek time, and unused latency. As expected, the shape of the
Free Transfer line in (c) matches that of the achieved instantaneous mining bandwidth in (b). Both exceed the potential free
bandwidth early in the scan because many foreground OLTP transfers can also be used by the freeblock scheduler for mining
requests when most blocks are still needed.

eÆciency is 40% higher than for full disk scans. For
80% of the dataset, eÆciency is at 90% and data
mining queries can complete over 90 samples of the
dataset per day.

7 Related Work

System designers have long struggled with disk per-
formance, developing many approaches to reduce
mechanical positioning overheads and to amortize
these overheads over large media transfers. When
e�ective, all of these approaches increase disk head
utilization for foreground workloads and thereby re-
duce the need for and bene�ts of freeblock schedul-
ing; none have yet eliminated disk performance as
a problem. The remainder of this section discusses
work speci�cally related to extraction and use of free
bandwidth.

The characteristics of background workloads that
can most easily utilize free bandwidth are much like
those that can be expressed well with dynamic set
[55] and disk-directed I/O [35] interfaces. Specif-
ically, these interfaces were devised to allow ap-
plication writers to expose order-independent ac-
cess patterns to storage systems. Application-hinted
prefetching interfaces [9, 44] share some of these
same qualities. Such interfaces may also be appro-
priate for specifying background activities to free-
block schedulers.

Use of idle time to handle background activities is a
long-standing practice in computer systems. A sub-
set of the many examples, together with a taxon-
omy of idle time detection algorithms, can be found
in [23]. Freeblock scheduling complements exploita-
tion of idle time. It also enjoys two superior qual-
ities: (1) ability to make forward progress during
busy periods and (2) ability to make progress with
no impact on foreground disk access times. Start-
ing a disk request during idle time can increase the
response time of subsequent foreground requests, by
making them wait or by moving the disk head.

In their exploration of write caching policies, Biswas,
et al., evaluate a free prewriting mechanism called
piggybacking [6]. Although piggybacking only con-
siders blocks on the destination track or cylinder,
they found that most write-backs could be com-
pleted for free across a range of workloads and cache
sizes. Relative to their work, our work generalizes
both the freeblock scheduling algorithm and the uses
for free bandwidth.

Freeblock scheduling relies heavily on the ability
to accurately predict mechanical positioning delays
(both seek times and rotational latencies). The
�rmware of most high-end disk drives now supports
Shortest-Positioning-Time-First (SPTF) scheduling
algorithms, which require similar predictions. Based
on this fact, we are con�dent that freeblock schedul-
ing is feasible. However, it remains to be seen
whether freeblock scheduling can be e�ective outside
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Figure 10: Freeblock-based data mining performance for statistical queries. Here, it is assumed that any X% of
the disk's data satisfy the needs of a query scan. Below 60%, achieved free bandwidth exceeds potential free bandwidth because
of the ability to satisfy freeblock requests from foreground transfers

of disk drive �rmware, where complete knowledge of
current state and internal algorithms is available.

Freeblock scheduling resembles advanced disk sched-
ulers for environments with a mixed workload of
real-time and non-real-time activities. While early
real-time disk schedulers gave strict priority to real-
time requests, more recent schedulers try to use
slack in deadlines to service non-real-time requests
without causing the deadlines to be missed [53, 41,
5, 8]. Freeblock scheduling relates to conventional
priority-based disk scheduling (e.g., [10, 20]) roughly
as modern real-time schedulers relate to their prede-
cessors. However, since non-real-time requests have
no notion of deadline slack, freeblock scheduling
must be able to service background requests with-
out extending the access latencies of foreground re-
quests at all. Previous disk scheduler architectures
would not do this well for non-periodic foreground
workloads, such as those explored in this paper.

While freeblock scheduling can provide free media
bandwidth, use of such bandwidth also requires some
CPU, memory, and bus resources. One approach
to addressing these needs is to augment disk drives
with extra resources and extend disk �rmware with
application-speci�c functionality [1, 32, 46]. Poten-
tially, such resources could turn free bandwidth into
free functionality; Riedel, et al., [45] argue exactly
this case for the data mining example of Section 6.

Another interesting use of accurate access time pre-
dictions and layout information is eager writing, or
remapping new versions of disk blocks to free loca-
tions very near the disk head [27, 18, 40, 57]. We

believe that eager writing and freeblock scheduling
are strongly complementary concepts. Although ea-
ger writing decreases available free bandwidth dur-
ing writes by eliminating many seek and rotational
delays, it does not do so for reads. Further, eager
writing could be combined with freeblock scheduling
when using a write-back cache. Finally, as with the
LFS cleaning example in Section 5, free bandwidth
represents an excellent resource for cleaning and re-
organization enhancements to the base eager writing
approach [57].

8 Conclusions

This paper describes freeblock scheduling, quanti�es
its potential under various conditions, and demon-
strates its value for two speci�c application environ-
ments. By servicing background requests in the con-
text of mechanical positioning for normal foreground
requests, 20{50% of a disk's potential media band-
width can be obtained with no impact on the orig-
inal requests. Using simulation, this paper shows
that this free bandwidth can be used to clean LFS
segments on busy �le servers and to mine data on
active transaction processing systems.

These results indicate signi�cant promise, but ad-
ditional experience is needed to re�ne and realize
freeblock scheduling in practice. For example, it re-
mains to be seen whether freeblock scheduling can
be implemented outside of modern disk drives, given
their high-level interfaces and complex �rmware al-
gorithms. Even inside disk �rmware, freeblock
scheduling will need to conservatively deal with seek



and settle time variability, which may reduce its ef-
fectiveness. More advanced freeblock scheduling al-
gorithms will also be needed to deal with request
fragmentation, starvation, and priority mixes.
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