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Abstract
This paper describes and evaluates two algorithms for
performing on-line failure recovery (data reconstruction)
in redundant disk arrays. It presents an implementation of
disk-oriented reconstruction, a data recovery algorithm
that allows the reconstruction process to absorb essen-
tially all the disk bandwidth not consumed by the user pro-
cesses, and then compares this algorithm to a previous-
proposedparallel stripe-oriented approach. The disk-ori-
ented approach yields better overall failure-recovery per-
formance.

The paper evaluates performance via detailed simulation
on two different disk array architectures: theRAID level 5
organization, and thedeclustered parity organization. The
benefits of the disk-oriented algorithm can be achieved
using controller or host buffer memory no larger than the
size of three disk tracks per disk in the array. This paper
also investigates the tradeoffs involved in selecting the size
of the disk accesses used by the failure recovery process.

1. Introduction

Fast, on-line recovery from disk failures is crucial to
applications such as on-line transaction processing that
require both high performance and high data availability
from their storage subsystems. Such systems demand not
only the ability to recover from a disk failure without los-
ing data, but also that the recovery process (1) operate
without taking the system off-line, (2) rapidly restore the
system to the fault-free state, and (3) have minimal impact
on system performance as observed by users. A good
example is an airline reservation system, where inadequate
recovery from a disk crash can cause an interruption in the
availability of booking information and thus lead to flight
delays and/or revenue loss. With this in mind, the twin
goals of the techniques proposed in this paper are to mini-
mize the time taken to recover from a disk failure, i.e.

restore the system to the fault-free state, and to simulta-
neously minimize the impact of the failure recovery pro-
cess on the performance of the array.

Fault-tolerance in a data storage subsystem is gener-
ally achieved either bydisk mirroring [Bitton88, Cope-
land89], or parity encoding [Gibson93, Kim86,
Patterson88]. In the former, one or more duplicate copies
of all data are stored on separate disks. In the latter, popu-
larized as Redundant Arrays of Inexpensive Disks (RAID)
[Patterson88, Gibson92], a portion of the data blocks in
the array is used to store an error-correcting code com-
puted over the remaining blocks. Mirroring can potentially
deliver higher performance than parity-encoding
[Chen90a, Gray90], but it is expensive in that it incurs a
capacity overhead of at least 100%. Furthermore, recent
work on overcoming the bottlenecks in parity-encoded
arrays [Stodolsky93, Menon92, Rosenblum91] has dem-
onstrated techniques that allow the performance of these
arrays to approach that of mirroring. This paper focuses on
parity-encoded arrays.

Section 2 of this paper provides background material
about disk arrays, and describes the failure-recovery prob-
lem. It presents the RAID level 5 and declustered-parity
architectures and describes some previous approaches to
on-line failure recovery. Section 3 develops the disk-ori-
ented reconstruction algorithm and Section 4 evaluates it
using a disk-accurate event-driven simulator. Section 5
provides a summary and some conclusions.

2. Background

This section presents a brief overview of the redun-
dant disk array systems considered in this paper.

2.1. Disk arrays

Patterson et. al. [Patterson88] present a number of
possible redundant disk array architectures, which they
call RAID levels 1 through 5. Some of these are intended
to provide large amounts of data to a single process at high
speeds, while others are intended to provide highly con-
current access to shared files. The latter organizations are
preferable for OLTP-class applications, since such appli-
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cations are characterized by a large number of independent
processes concurrently requesting access to relatively
small units of data [TPCA89]. For this reason, this paper
focuses on architectures derived from the RAID level 5
organization. Figure 1a illustrates a storage subsystem
employing this organization. The array controller is
responsible for all system-related activity: communicating
with the host, controlling the individual disks, maintaining
redundant information, recovering from failures, etc. The
controller is often duplicated so that it does not represent a
single point of failure. The functionality of the controller
is sometimes implemented in host software rather than as
dedicated hardware. The algorithms and analyses pre-
sented in this paper apply equally well to either implemen-
tation.

Figure 1b shows the arrangement of data on the disks
comprising the array, using the “left-symmetric” variant of
the RAID level 5 architecture [Chen90b, Lee91]. Logi-
cally contiguous user data is broken down into blocks and
striped across the disks to allow for concurrent access by
independent processes. The shaded blocks, labelled Pi,
store the parity (cumulative exclusive-or) computed over
the corresponding data blocks, labelledDi.0 throughDi.3.
An individual block is called adata unit if it contains user
data, aparity unit if it contains parity, and simply aunit
when the data/parity distinction is not pertinent. A set of
data units and their corresponding parity unit is referred to
as aparity stripe. The assignment of parity blocks to disks
rotates across the array in order to avoid hot-spot conten-
tion; every update to a data unit implies that a parity unit
must also be updated, so if the distribution of parity across
disks is not balanced, the disks with more parity will see
more work.

Because disk failures are detectable [Patterson88,
Gibson93], arrays of disks constitute an erasure channel
[Peterson72], and so a parity code can correct any single
disk failure. To see this, assume that disk number two has
failed and simply note that

An array can be restored to the fault-free state by
successively reconstructing each block of the failed disk
and storing it on a replacement drive. This process is
termed reconstruction, and is generally performed by a
background process created in either the host or the array
controller. Note that the array need not be taken off-line to
implement reconstruction, since reconstruction accesses
can be interleaved with user accesses, and since user
accesses to failed data can be serviced via on-the-fly
reconstruction. Once reconstruction is complete, the array
can again tolerate the loss of any single disk, and so it can

Pi Di.0 Di.1 Di.2 Di.3⊕ ⊕ ⊕=( ) ⇒

Di.2 Di.0 Di.1 Pi Di.2⊕ ⊕ ⊕=( ) .

be considered to be fault-free, albeit with a diminished
number of on-line spare disks until the faulty drives can be
physically replaced. Gibson [Gibson93] shows that a small
number of spare disks suffices to provide a high degree of
protection against data loss in relatively large arrays (>70
disks). Although the above organization can be easily
extended to tolerate multiple disk failures, this paper
focuses on single-failure toleration.

2.2. The reconstruction problem

After a disk failure (1) a RAID level 5 array is vul-
nerable to data loss due to a second failure, and (2) the
load on each surviving disk increases by 100% servicing
user-invoked on-the-fly reconstruction, and then still more
during reconstruction on to a replacement. The load
increase arises because every user access to a unit on the
failed disk causes one request to be sent to each of the sur-
viving disks, and so in the presence of failure each surviv-
ing disk must service its own request stream, an equivalent
stream generated by requests to the failed disk, and the
requests generated by the background reconstruction pro-
cess.

It is now possible to state the problem this paper
addresses: the goals of designing disk arrays for on-line
reconstruction are to minimize the time taken to recon-
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struct the entire contents of a failed disk and store it on a
spare disk, and to incur the minimum possible user perfor-
mance degradation while accomplishing this. The figures
of merit this paper uses are therefore (1) reconstruction
time, which is the time from invocation of reconstruction
to its completion, and (2)average user response time dur-
ing reconstruction, which is the average latency experi-
enced by a user’s request to read or write a block of data
while reconstruction is ongoing.

A reconstruction algorithm is a strategy used by a
background reconstruction process to regenerate data resi-
dent on the failed disk and store in on a replacement. The
most straightforward approach, which we term thestripe-
oriented algorithm, is as follows:

for each unit on the failed disk

1. Identify the parity stripe to which the
unit belongs.

2. Issue low-priority r ead r equests for all
other units in the stripe, including the
parity unit.

3. W ait until all r eads have completed.
4. Compute the XOR over all units r ead.
5. Issue a low-priority write r equest to the

replacement disk.
6. W ait for the write to complete.

end

This stripe-oriented algorithm uses low-priority
requests in order to minimize the impact of reconstruction
on user response time, since commodity disk drives do not
generally support any form of preemptive access. A low-
priority request is used even for the write to the replace-
ment disk, since this disk services writes in the user
request stream as well as reconstruction writes [Hol-
land92]. Section 3 demonstrates that this simple algorithm
has a number of drawbacks, and describes an algorithm to
address them.

2.3. The declustered parity organization

The RAID level 5 architecture described above,
while viable for applications that can tolerate data unavail-
ability during recovery, presents a problem for continuous-
operation systems like OLTP: the greater than 100% per-
disk load increase experienced during reconstruction
necessitates that each disk be loaded at less than 50% of its
capacity in the fault-free state so that the surviving disks
will not saturate when a failure occurs. Disk saturation is
unacceptable for OLTP applications because they mandate
a minimum acceptable level of responsiveness; the TPC-A
benchmark [TPCA89], for example, requires that 90% of
all transactions complete in under two seconds. The long
queueing delays caused by saturation can violate these

requirements.

The declustered parity disk array organization
[Muntz90, Holland92, Merchant92] addresses this prob-
lem. This scheme reduces the per-disk load increase
caused by a failure from over 100% to an arbitrarily small
percentage by increasing the amount of error correcting
information that is stored in the array. Declustered parity
can be thought of as trading some of the array’s data
capacity for improved performance in the presence of disk
failure. This translates into an improvement in fault-free
performance by allowing the disks to be driven at greater
than 50% utilization without risking unacceptable user
response time after a failure occurs.

To understand parity declustering, begin with
Figure 1b, and note that each parity unit protectsC-1 data
units, whereC is the number of disks in the array. If
instead the array were organized such that each parity unit
protected some smaller number of data units, sayG-1, then
more of the array’s capacity would be consumed by parity,
but the reconstruction of a single data unit would require
that the reconstruction process read onlyG-1 units instead
of C-1. This would mean that not every surviving disk
would be involved in the reconstruction of every data unit;
C-G disks would be left free to do other work. Thus each
surviving disk would see a user-invoked on-the-fly recon-
struction load increase of(G-1)/(C-1) instead of(C-1)/(C-
1) = 100%. The fraction(G-1)/(C-1), which is referred to
as thedeclustering ratio and denoted byα, can be made
arbitrarily small either by increasingC for a fixedG, or by
decreasingG for a fixedC.

For G=2 the declustered parity scheme is similar to
mirroring, except that the parity, which duplicates the data,
is distributed over all disks in the array. At the other
extreme, whenG=C (α = 1.0) parity declustering is equiv-
alent to RAID level 5. The performance plots in subse-
quent sections are presented withα on the x-axis, sinceα
has direct impact on the recovery-mode performance and
its associated cost.

Figure 2 shows a portion1 of a parity-declustered
data layout whereG, the number of units in a parity stripe,
is four, butC, the number of disks in the array, is five,
resulting inα = 0.75. The figure illustrates that each sur-
viving disk absorbs only 75% of the failure-induced load.
If, for example, disk 0 fails and the data unit markedD0.0
is reconstructed, disk 4 is not involved at all.The technique
by which data and parity units are assigned to disks for
generalC and G is beyond the scope of the discussion

1. Parity is not balanced in this diagram because it shows only a
portion of the data layout. A complete figure would show that the
layout does actually assign an equal number of parity units to
each disk.
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(refer to [Holland92] or [Merchant92]).

We use a parity-declustered architecture for compar-
ing reconstruction algorithms in Section 4, and employ the
data layout described in Holland and Gibson [Holland92].
To evaluate each algorithm for RAID level 5 arrays, con-
sider only the points whereα = 1.0.

3. The reconstruction algorithm

This section identifies the problems with the simple
algorithm presented in Section 2.2, and develops the disk-
oriented approach. The main idea behind this technique
has been suggested in previous studies [Merchant92,
Hou93], but personal communications with disk array
manufacturers indicate that both algorithms are currently
used in disk array products. This paper provides a detailed
analysis of the trade-offs between these algorithms.

3.1. The reconstruction algorithm

The problem with the stripe-oriented reconstruction
algorithm is that it is unable to consistently utilize all the
disk bandwidth that is not absorbed by users. This inability
stems from three sources. First, it does not overlap reads
of the surviving disks with writes to the replacement, so
the surviving disks are idle with respect to reconstruction
during the write to the replacement, and vice versa. Sec-
ond, the algorithm simultaneously issues all the recon-
struction reads associated with a particular parity stripe,
and then waits for all to complete. Some of these read
requests will take longer to complete than others, since the
depth of the disk queues will not be identical for all disks
and since the disk heads will be in essentially random
positions with respect to each other. Therefore, during the
read phase of the reconstruction loop, each involved disk
may be idle from the time that it completes its own recon-
struction read until the time that the slowest read com-
pletes. Third, in the declustered parity architecture, not
every disk is involved in the reconstruction of every parity
stripe, and so uninvolved disks remain idle with respect to
reconstruction since the reconstruction algorithm works on
only one parity stripe at a time.

One way to address these problems is to reconstruct
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Figure 2: Example data layout in the declustered parity
organization.

multiple parity stripes in parallel [Holland92]. In this
approach, the host or array controller creates a set ofN
identical, independent reconstruction processes instead of
just one. Each process executes the single stripe-oriented
algorithm of Section 2.2, except that the next parity stripe
to reconstruct is selected by accessing a shared list of as-
yet unreconstructed parity stripes, so as to avoid duplica-
tion. Since different parity stripes use different sets of
disks, the reconstruction process is able to absorb more of
the array’s unused bandwidth than in the single-process
case, because it allows for concurrent accesses on more
thanG-1 disks.

Although this approach yields substantial improve-
ment in reconstruction time, it does so in a haphazard fash-
ion. Disks may still idle with respect to reconstruction
because the set of data and parity units that comprise a
group ofN parity stripes is in no way guaranteed to use all
the disks in the array evenly. Furthermore, the number of
outstanding disk requests each independent reconstruction
process maintains varies as accesses are issued and com-
plete, and so the number of such processes must be large if
the array is to be consistently utilized.

The deficiencies of both single-stripe and parallel-
stripe reconstruction can be addressed by restructuring the
reconstruction algorithm so that it isdisk-oriented instead
of stripe-oriented. Instead of creating a set of reconstruc-
tion processes associated with stripes, the host or array
controller createsC processes, each associated with one
disk. Each of theC-1 processes associated with a surviv-
ing disk execute the following loop:

repeat

1. Find the lowest-number ed unit on this
disk that is needed for r econstruction.

2. Issue a low-priority r equest to r ead the
indicated unit into a buf fer.

3. W ait for the r ead to complete.
4. Submit the unit’s data to a centralized

buffer manager for subsequent XOR.
until (all necessary units have been r ead)

The process associated with the replacement disk exe-
cutes:

repeat

1. Request a full buf fer fr om the buf fer
manager, blocking if none ar e available.

2. Issue a low-priority write of the buf fer to
the r eplacement disk.

3. W ait for the write to complete.
until (the failed disk has been r econstructed)

In this way the buffer manager provides a central
repository for data from parity stripes that are currently
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“under reconstruction.” When a new buffer arrives from a
surviving-disk process, the buffer manager XORs the data
into an accumulating “sum” for that parity stripe, and
notes the arrival of a unit for the indicated parity stripe
from the indicated disk. When it receives a request from
the replacement-disk process it searches its data structures
for a parity stripe for which all units have arrived, deletes
the corresponding buffer from the active list, and returns it
to the replacement-disk process.

The advantage of this approach is that it is able to
maintain one low-priority request in the queue for each
disk at all times, which means that it will absorb all of the
array’s bandwidth that is not absorbed by users. Section 4
demonstrates that disk-oriented reconstruction does sub-
stantially reduce reconstruction time when compared to
the stripe-oriented approach, while penalizing average
response time by only a small factor.

3.2. Implementation issues

There are two implementation issues that need to be
addressed in order for the above algorithm to perform as
expected. The first relates to the amount of memory
needed to implement the algorithm, and the second to the
interaction of reconstruction with updates in the normal
workload. This section briefly outlines our approach to
each.

3.2.1. Memory requirements

In the stripe-oriented algorithm, the host or array
controller never needs to buffer more than one complete
parity stripe per reconstruction process. In the disk-ori-
ented algorithm, however, transient fluctuations in the
arrival rate of user requests at various disks can cause
some reconstruction processes to read data more rapidly
than others. This data must be buffered until the corre-
sponding data arrives from slower reconstruction pro-
cesses. It’s possible to construct pathological conditions in
which a substantial fraction of the data space of the array
needs to be buffered in memory.

The amount of memory needed for disk-oriented
reconstruction can be bounded by enforcing a limit on the
number of buffers employed. If no buffers are available, a
requesting process blocks until a buffer is freed by some
other process.

In our implementation, this buffer pool is broken into
two parts: each surviving-disk reconstruction process has
one buffer assigned for its exclusive use, and all remaining
buffers are assigned to a “free buffer pool.” A surviving-
disk process always reads units into its exclusive buffer,
but then upon submission to the buffer manager, the data is
transferred to a free buffer. Only the first process submit-

ting data for a particular parity stripe must acquire a free
buffer, because subsequent submissions for that parity
stripe can be XORed into this buffer.

Forcing reconstruction processes to stall when there
are no available free buffers causes the corresponding
disks to idle with respect to reconstruction. In practice we
find that a small number of free buffers suffices to achieve
good performance. There should be at least as many free
buffers as there are surviving disks, so that in the worst
case each reconstruction process can have one access in
progress and one buffer submitted to the buffer manager.
Section 4 demonstrates that using this minimum number
of buffers is in general adequate to achieve most of the
benefits of the disk-oriented algorithm, and using about
twice as many free buffers as disks reduces the buffer stall
penalty to nearly its minimum. This requires about two
megabytes of memory for a moderately-sized array (21
320MB disks), which can be used for other purposes (such
as caching or logging) when the array is fault-free.

3.2.2. Writes in the normal workload

The reconstruction accesses for a particular parity
stripe must be interlocked with user writes to that parity
stripe, since a user write can potentially invalidate data
that has been previously read by a reconstruction process.
This problem applies only to user writes to parity stripes
for which some (but not all) data units have already been
fetched; if the parity stripe is not currently “under recon-
struction,” then the user write can proceed independently.

There are a number of approaches to this interlocking
problem. The buffered partially-reconstructed units could
be flushed when a conflicting user write is detected. Alter-
natively, buffered units could be treated as a cache, and
user writes could update any previously-read information
before a replacement-disk write is issued. A third
approach would be to delay the initiation of a conflicting
user write until the desired stripe’s reconstruction is com-
plete.

We rejected the first option as wasteful of disk band-
width. We rejected the second because it requires that the
host or array controller buffer each individual data and
parity unit until all have arrived for one parity stripe,
rather than just buffering the accumulating XOR for each
parity stripe. This would have multiplied the memory
requirements in the host or controller by a factor of at least
G-1. The third option is memory-efficient and does not
waste disk bandwidth, but if it is implemented as stated, a
user write may experience a very long latency when it is
forced to wait for a number of low-priority accesses to
complete. This drawback can be overcome if it is possible
to expedite the reconstruction of a parity stripe containing
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the data unit that is being written by the user, which is
what we implemented. When a user write is detected to a
data unit in a parity stripe that is currently under recon-
struction, all pending accesses for that reconstruction are
elevated to the priority of user accesses. If there are any
reconstruction accesses for the indicated parity stripe that
have not yet been issued, they are issued immediately at
user-access priority. The user write triggering the re-prior-
itization stalls until the expedited reconstruction is com-
plete, and is then allowed to proceed normally.

Note that a user write to a lost and unreconstructed
data unit implies an on-the-fly reconstruction, because all
written data must be incorporated into the parity, and there
is no way to do this without the previous value of the
affected disk unit. Thus, our approach to interlocking
reconstruction with user writes does not incur any avoid-
able disk accesses. Also, in practice, forcing the user write
to wait for an expedited reconstruction does not signifi-
cantly elevate average user response time, because the
number of parity stripes that are under reconstruction at
any given moment (typically less than 50) is small with
respect to the total number of parity stripes in the array
(many thousand).

4. Performance evaluation

This section presents the results of detailed simula-
tion evaluating the above algorithms. It analyzes recon-
struction performance, memory requirements, and the
reconstruction unit size.

4.1. Comparing reconstruction algorithms

This section presents the results of a simulation study
comparing the two reconstruction algorithms: parallel
stripe-oriented and disk-oriented. This and all subsequent
performance analyses in this paper were performed using
an event-driven disk array simulator calledraidSim
[Lee91, Chen90b, Holland92]. RaidSim contains a realis-
tic disk model, which was calibrated to an IBM Model
0661 (Lightning) drive [IBM0661]. The simulated array
consists of 21 spin-synchronized disks, using data units
that are one track (24KB) in size [Chen90b]. Our syntheti-
cally-generated workload was derived from access statis-
tics taken from a trace of an airline-reservation OLTP
system [Ramakrishnan92], and consisted of 80% 4KB
reads, 16% 4KB writes, 2% 24KB reads, and 2% 24KB
writes. Accesses were randomly distributed in the data
space of the array, and the access rate was regulated to
present 294 user accesses per second to the array. This rate
was selected because it causes the fault-free array to be
loaded at slightly less than 50% utilization, and hence is
the maximum that a RAID level 5 organization can sup-
port in the presence of a disk failure. All reported results

are averages over five independently-seeded simulation
runs. Our simulations assume that the disks do not support
zero-latency reads, since commodity disks rarely do.
Given that disk units are track-sized, this feature would
substantially benefit the reconstruction process.

Figure 3a shows the resultant reconstruction time for
parallel stripe-oriented reconstruction (1, 8, and 16 way
parallel) and for disk-oriented reconstruction. On the x-
axis is the declustering ratio, which is varied from 0.15
(G=4) to 1.0 (recall thatα = 1.0 is equivalent to RAID
level 5)2. On the y-axis is the total time taken to recon-
struct a failed disk while the array is supporting the user
workload of 294 user accesses per second. Figure 3b
shows the average response time for a user access while
reconstruction is ongoing, for the same configurations and
ranges on α. Reconstruction accesses were one track in
size, and fifty free reconstruction buffers were used for the
disk-oriented runs, for reasons explained below.

Independent of the reconstruction algorithm,
Figure 3 shows the efficacy of parity declustering in
improving the array’s performance under failure. Both
reconstruction time and average user response time during
recovery steadily improve as the declustering ratio is
decreased. The flattening out of the reconstruction time
curve at low declustering ratios is caused by saturation on
the replacement disk; the simulations show nearly 100%
disk utilization at these points. Note, however, that this
saturation does not cause excessive user response time
(recall from Section 2.2 that the replacement disk services
user writes as well as reconstruction writes), because user
accesses are strictly prioritized with respect to reconstruc-
tion accesses, and the user workload does not by itself sat-
urate the replacement disk. Refer to Holland and Gibson
[Holland92] or Merchant and Yu [Merchant92] for more
details on the advantages of parity declustering.

More to the point, Figure 3 shows that the disk-ori-
ented algorithm makes much more efficient use of the
available disk bandwidth than the stripe-oriented algo-
rithm; reconstruction time is reduced by 30-40% over the
16-way parallel stripe-oriented algorithm, with essentially
the same average user response time. The average user
response time is slightly worse for the disk-oriented algo-
rithm than for the 1- and 8-way parallel stripe-oriented
approaches, because under disk-oriented reconstruction,
disks are so well-utilized that a user request almost never
experiences zero queueing time.

For completeness, Figure 4 shows the coefficient of

2. We did not simulate the mirroring case (α = 0.05) because our
simulator does not implement mirroring-specific optimizations
such as reading the copy that requires the shortest seek. We chose
not to make such an unfair comparison.
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variation (the standard deviation divided by the mean,
denoted “COV”) for the user response time in the simula-
tions of Figure 3. At high values ofα, the surviving disks
see a heavy workload, and so the response time shows a
large variance. The disk-oriented algorithm yields a
slightly smaller variance in user response time because of
its more balanced disk utilization.

4.2. Memory requirements analysis

As stated in Section 3.2.1,C-1 free reconstruction
buffers are sufficient to obtain most of the benefit of the

(b) Average user response time during recovery

(a) Reconstruction time

Figure 3: Comparing reconstruction algorithms
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disk-oriented reconstruction algorithm. Figure 5 demon-
strates this by showing the reconstruction time and aver-
age user response time during reconstruction for a varying
number of free reconstruction buffers. Figure 5a shows
that the reconstruction time can be slightly improved by
using 50 rather than 20 free buffers for a 21-disk array, but
further increases do not yield any significant benefit.
Figure 5b shows that the number of reconstruction buffers
has virtually no effect on user response time.

This effect is explained by noting that at declustering
ratios close to 1.0, the reconstruction rate is limited by the
rate at which data can be read from the surviving disks,
while at low values ofα, the replacement disk is the bot-
tleneck. When the surviving disks are the bottleneck,
buffer stall time is expected to be small because data can-
not be read from the surviving disks as fast as it can be
written to the replacement. The simulations bear this out,
showing that whenα is close to 1.0, each surviving-disk
process spends only a few seconds (out of 300-1000) wait-
ing for reconstruction buffers. Thus, little benefit is
expected by increasing the number of buffers. At low val-
ues forα, data can be read from the surviving disks much
faster than it can be written to the replacement, and so all
free reconstruction buffers fill up very early in the recon-
struction run, no matter how many of them there are. In
this case, the rate at which buffers are freed is throttled by
the rate at which full buffers can be written to the replace-
ment disk. Since the total number of free buffers has no
effect on this rate, there is little benefit in increasing the
total number of these buffers.

 From this we conclude that using slightly more than
twice as many free reconstruction buffers as there are
disks is in general sufficient to achieve the full benefits of

Figure 4: COV of average user response time
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a disk-oriented reconstruction algorithm. For an array of
21 disks using 24 kilobyte data units and 50 reconstruction
buffers, the total buffer requirements in the host or control-
ler is 20 exclusive buffers + 50 free buffers = 70 buffers or
1.7 megabytes. Figure 5 shows that this number can be
reduced further with relatively small decreases in recon-
struction performance.

4.3. Reconstruction unit size

The algorithms presented thus far access disks one
unit at a time. Since the rate at which a disk drive is able to

(b) Average user response time during recovery

(a) Reconstruction time

Figure 5: The effects of increasing the number of
reconstruction buffers
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deliver data increases with the size of an access, it is
worthwhile to investigate the benefits of using larger
reconstruction accesses. Using larger units gives rise to an
inefficiency in the declustered layout because not all the
data on each disk is necessary for the reconstruction of a
particular disk. Unnecessary data is interleaved with nec-
essary data on the surviving disks, so reading large
sequential blocks accesses some unnecessary data, wast-
ing disk bandwidth and buffer space. This is not a problem
in the RAID level 5 architecture, since all surviving units
are necessary no matter which disk fails.

This inefficiency can be avoided by modifying
slightly the data layout policy in the declustered parity
organization. The modified layout replaces the data and
parity units in Figure 2 by larger (e.g. track-sized) “recon-
struction units”, and then stripes the actual data units
across these units, as illustrated in Figure 6.

Figure 7a shows the reconstruction time for various
sizes of thereconstruction unit, which is defined as the
size of the accesses that reconstruction processes issue. It
shows that except at low values ofα, cylinder-sized recon-
struction units provide the shortest reconstruction time;
about twice as fast as reconstruction using track-sized
units. The curves join at lowα due to saturation on the
replacement disk.

However, this benefit does not come without a cost.
Reconstruction accesses take a long time to complete
when reconstruction units are large. This causes user
accesses to block in the disk queues, increasing the
observed user response time. Figure 7b shows that recon-
struction using cylinder-sized units more than triples the
observed user response time over track-sized reconstruc-
tion units. At high declustering ratios (α > 0.65), recon-
struction using full-cylinder accesses consumes so much
of the array’s bandwidth that it is unable to maintain the
user workload of 294 accesses per second, as indicated by
the missing data points in the figure.

Figure 7 indicates that for the workload we employ,
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Figure 6: Doubling the size of the reconstruction unit.
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the most appropriate reconstruction unit size is a single or
a few tracks. At high declustering ratios, the benefit of
larger reconstruction units is outweighed by the increase in
response time, and at low declustering ratios, there is no
benefit due to saturation of the replacement disk. If, how-
ever, the disks supported preemption and subsequent
resumption of low-priority accesses by higher priority
accesses, then much of the benefit of using the larger
reconstruction units might be obtained without large
response time penalties. We leave this issue for future
work.

(b) Average user response time

(a) Reconstruction time

Figure 7: The effects of varying reconstruction unit size
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5. Conclusions

This paper demonstrates and evaluates an implemen-
tation of a fast on-line reconstruction algorithm for redun-
dant disk arrays. The analysis shows that a disk-oriented
algorithm results in a 400-800% improvement in failure
recovery time when compared to a naive algorithm, with
only a small (15%) degradation in user response time dur-
ing failure recovery. The improvement comes from a
much more efficient utilization of the array’s excess disk
bandwidth.

For our example 21-disk array, the algorithm can be
implemented using a moderate amount of memory (1-2
MB), and track-sized reconstruction accesses represent a
good trade-off between reconstruction time and user
response time.
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