A Computational Database System for Generating Unstructured
Hexahedral Meshes with Billions of Elemerits

Tiankai Tuf David R. O’Hallaront

Abstract

For a large class of physical simulations with relatively simple geometriestructured octree-based hexa-
hedral meshes provide a good compromise between adaptivity anticityngiowever, generating unstructured
hexahedral meshes with over 1 billion elements remains a challenging Yeskpropose a database approach
to solve this problem. Instead of merely storing generated meshes intertmmal databases, we have devel-
oped a new kind of software system call@dmputational Database Syst€@DS) to generate meshes directly
on databases. Our basic idea is to extend existing database techniquganiaeoand index mesh data, and use
database-aware algorithms to manipulate database structures arat@yemeshes. This paper presents the design,
implementation, and evaluation of a prototype CDS nalivedvey which has been used successfully by the CMU
Quake project to generate queryable high-resolution finite elementesiéshearthquake simulations with up to
1.22B elements and 1.37B nodes.

1 Introduction

Dramatic increases in computing power and storage capzeity allowed scientists to build simulations that model
nature in more details than ever. However, massive conipagabften require massive input and output datasets,
and in our experience, the size of these datasets is rapitiyacing scientists’ ability to manipulate and use them.

For example, for the past 10 years, the Carnegie Mellon Qgatep has been building computer models that
predict the motion of the ground during strong earthquakdbe Los Angeles Basin (LAB) [4, 5, 14, 3]. In 1993,
the largest LAB simulation code required an input unstriedifinite element mesh with only 50K nodes (1.5 MB)
and produced a relatively small 500 MB output dataset. By32€te largest LAB simulation required a mesh with
1.37B nodes (45 GB) and generated an output dataset thatveaeree TB [3].

With such massive datasets involved, previously routin&ities, such as generating unstructured meshes, defin-
ing earthquake source models, and partitioning meshesdai@llpl computing, become challenging tasks. This
is because unstructured datasets require complex pdiased structures to represent, thus require massive main
memory. As a result, these activities can no longer be cdeduay scientists on their desktop computers or lab
machines with limited main memory.

*This work is sponsored in part by the National Science Fotiodainder Grant CMS-9980063, in part by a subcontract framati$ern
California Earthquake Center as part of NSF ITR EAR-01-2R4@d in part by a grant from the Intel Corporation.

fComputer Science Department, Carnegie Mellon Universitisiiirgh, Pennsylvania, 15213, USA

fComputer Science Department and Department of Electrical aathpGter Engineering, Carnegie Mellon University, Pitts-
burgh,Pennsylvania, 15213, USA

Permission to make digital or hard copies of all or part of thiskifor personal or classroom use is granted without feeigealthat copies
are not made or distributed for profit or commercial advantagktlaat copies bear this notice and the full citation on the fiegge. To copy
otherwise, to republish, to post on servers or to redisteilboi lists, requires prior specific permission and/or a fee.

SC2004, November 6-12, 2004, Pittsburgh, PA USA

0-7695-2153-3/04 $20.00(c)2004 IEEE

We propose a database approach to solve this problem. Howestead of merely storing unstructured datasets into
conventional databases, we propose to recast the complgeal simulation process, including mesh generation,
solving, and analysis, to compute directly on databases.

At the first glance, this approach appears to yield a readytisat take an existing relational database management
system (RDBMS), embed SQL commands in simulation codes s run the codes on the database. Unfortu-
nately, conventional databases are designed and optirfozdulisiness applications, rather than physical simula-
tions. In typical database applications such as onlines&retion processing (TPC-C) and decision support systems
(TPC-H), data is relatively stable. Deletions are fairlcammon. Typical insertions and updates involve only a
small portion of the database, though queries may examige lalumes of data and have a high degree of com-
plexity. In contrast, data in physical simulations is muobrendynamic, being produced, updated and removed on
the fly at a high rate, while the data access patterns (qyeniesusually fairly simple and straightforward. If we
would implement every data access operation with a star8@tdcommandsgelect, insert, update or del¢tehe
overhead, such as selecting an execution plan, updatiigegend logging, would be too large for such programs
to be practically useful. In other words, we would have tal¢raff the performance (data access speed) for new
functionality (query capability) if we would use an exigjidatabase system directly.

How can we have both performance and functionality? Our isiéadevelop a new kind of software systems that
will (1) incorporate computational data access patternghgkical simulations into the design of the underlying
database structures, and (2) export a specialized sethilytigopupled and highly-optimized functions to interact
with the databases. To differentiate such systems fromeardional RDBMSs, we refer to them @&omputational
Database Systenf€DSs).

This strategy is appealing in several dimensions. Firstabge every step of the simulation process will work by
operating on databases, the sizes of the models will njturallimited by the amount of available disk space,
rather than the amount of available memory. Therefore, ctatipnal database systems will increase the number
of applications that scientists can run on their desktoppgdsars and lab machines, thus deferring the point at which
they have to use supercomputing centers.

Second, by integrating physical simulation with databgstesns, we will be able to build on decades of previous
database research, borrowing beautiful ideas such aseBRttece indexing [6, 9, 13], linear quadtrees [11, 1],
space-filling curves [10], cache-aware data layout [2] amdem Since these results are being applied to a new
application domain (physical simulations), we will neecit@ment them with new algorithms and techniques.

Third, by managing data on behalf of simulation codes, wéhaile the opportunity to organize the data in such a
way that best exploits locality. At runtime, such localipndbe carried up through the memory hierarchy, improving
performance at different levels. In addition, by underdiag how simulation codes are going to access the data,
we will be able to implement effective data prefetching teghes [20, 7] in the runtime system, without asking
application programmers to modify their codes.

This paper makes a case for computational database systetims ¢ontext of mesh generation. We present our
recent work on a prototype CDS naméiavetthat is capable of generating massive queryable unstedttatree-
based hexahedral meshes on desktop systems. Since ouneushfs been to study the spatial database structures
for representing unstructured hexahedral meshes andgcinon mesh generation algorithms, we have only im-
plemented the prototype system sequentially.

The Weaver system is a major extension and improvement avgrrevious work on a database-oriented method for
generating large octree meshes [25]. By then (2002), we ardyeable to generate meshes with sizes on the order of
tens of millions of elements. Driven by the CMU Quake projeagenerate higher resolution unstructured meshes,
we re-evaluated our techniques and recognizedlhigatharacteristics of the underlying database structsgiesuld

be tightly coupled into the design of the high-level aldoris This principle was adopted in the development of
the Weaver system. In 2003, we were able to generate ungtedchexahedral meshes with billions of elements
using the Weaver system. For generating and simulatinhazake ground motion in the the Los Angeles Basin
using these meshes on terascale computers at PittsburgincSopputing Center, and for work on inversion, the

authors, along with our colleagues of the CMU Quake teangived the 2003 Gordon Bell Award for Special
Achievement [3].

It should be noted that although motivated by large-scalthg@aake simulations, the Weaver system can be used
to generate unstructured hexahedral meshes for othercapptis. The strength of the Weaver system is that it
can generate arbitrarily large hexahedral meshes on angutemas long as there is enough disk space to hold the
meshes. Machines with more memory will run faster. Machimi¢is less memory will run slower, but they will run
nonetheless. In addition, the Weaver system produces mesttee form of queryable spatial databases. Users can
easily and efficiently extract parts of the mesh structubesdrious purposes. The limitation of the Weaver system
is that it is not an on-line solution-adaptive mesh genertitat can dynamically adjust a mesh structure while a
solver is working on the mesh.

In the broad context of high-performance computing, oweaesh of the Weaver system is complementary to parallel
mesh generation techniques [21, 8, 15]. In general, botlhoappes study how to exploit spatial and temporal
locality to improve the performance of mesh generation. drtipular, the research of parallel mesh generation
focuses more on load balancing, inter-processor commiimncdatency-hiding and so forth, while our research
focuses more on queryable representations of unstructuesties and physical layouts of mesh data throughout
the memory hierarchy. If we employ a CDS approach in conjanclvith parallel mesh generation, we will be
enable each processor to handle a larger (sub) problemhaadricrease the overall size of the problems that can
be meshed on parallel computers.

Section 2 provides an overview of octree-based unstruttuggahedral mesh generation and how to use the Weaver
system to implement the process. Section 3 describes thialspetabase structures used by the Weaver system to
represent meshes and how to manipulate such structurdmrsgexplains the Weaver mesh generation algorithms,
which exploit the characteristics of the underlying spat&abase structures and provide better performance. Sec-
tion 5 presents a preliminary evaluation of the Weaver systection 6 summarizes our work.

2 Hexahedral Mesh Generation and the Weaver System

Among many different types of meshes, octree-based hexalhmdshes lie in between the extremes of arbitrarily
unstructured meshes and regularly structured meshes T2®8)y provide a compromise between modeling power
and simplicity. On the one hand, they are able to subdivideaant to resolve local heterogeneity and provide
multi-scale resolution as do other unstructured meshesh®nother hand, they produce only one primitive shape
for all elements. The recursive process of subdivisionddada relatively structured placement of mesh nodes,
similar to many regularly structured meshes.

m3 m4
m
m1 m2
i3 | 4
) K 2 T | X
’ Zlg h a4 | ab ;g h
i al i
b| c a2 |a3| b | c
(a) An unbalanced octree domain decomposition. (b) A baldctree domain decomposition.

Figure 1:Balance refinement of an octree. ~ We have represented octrees in the form of domain decompositions
to clarify the concepts. The existence of a tiny octant f triggers a ripple effect that causes a remote octant m to
subdivide.

Because the quality of a mesh depends on whether there ekists changes in size between spatially adjacent
elements, it igequiredthat a domain-decomposition octree should not contain patialy adjacent octants that
differ more than 2-fold in their sizes. Equivalently, thigams that two neighboring octants sharing an edge or a
face should be at most twice as large or small. Such a reqgeireisoften referred to as tf2eto-1 constraintIt can

be enforced either on the fly when an octree is being constiuot by a separate step after an octree is constructed.
Either way, a balanced octree is produced, as shown in Fidure

—__
Material Flat mesh
model topology files

Mesh Database

H H
1 1
1 1
| Unbalanced alance !
1 5 1
i |linear octree linear octree EIement Node H
! etree etree !
1 1
1 1
1 1
1 1
1 |

Spatial Database (Etree Library)

..

Figure 2:Structure and Workflow of the Weaver system.

A balanced octree is yet not a mesh. It only provides a temptagenerate mesh elements, nodes, and topology.
Elements correspond 1-to-1 to (leaf) octants, and nodegsmond 1-to-1 to vertices of the (leaf) octants. It is
a common practice to assign a unique id (from a consecutiegén sequence) to each element and create a list
of element records. And similarly, a list of node records.e Harticular ordering of sequence numbers (ids) is
immaterial since they serve the sole purpose of uniqueiitnst(or primary key in database term). Mesh topology
is encoded using the element ids and node ids as a colledt®any tuples (1 element id + 8 node ids).

The core idea of the Weaver system is to store and index #grtjenerated) hexahedral meshes using spatial
database structures, and implement the mesh generatioasgrby querying and manipulating the database. The
structure of the Weaver system is shown in Figure 2.

Conceptually, the Weaver system consists of two pasitial databasend mesh generation logicThe spatial
database manages the unstructured mesh data such as slantenodes on disk and in memory. A set of primitive
API is exported by the spatial database layer and is useddom#ish generation logic to manipulate the data. The
mesh generation logic implements different mesh generatieps by exploiting the characteristics of the database
structure in order to reduce disk /0O and improve the runtiimg (time-complexity). The following two sections
explain the spatial database and mesh generation logidai,despectively.

3 Queryable Mesh Database Structure and the EtreeLibrary

The primitive data objects to be manipulated in hexahedesmgeneration are octants, which are associated with
an octree. An octree can be viewed in two equivalent waysddimeain representatioand thetree representation

A domainis a Cartesian coordinate space that consists of a unifoldno§2™ x 2™ indivisible pixels Theroot
octantthat spans the entire domain is said to be at level 0. Eacti obthnt is one level lower that its parent (with

a larger level value).

Figure 3(a) shows the domain representation of an octrgeré&B(b) shows an equivalent tree representation of the

1We draw 2D quadtrees to illustrate concepts but use the tetraes and octants regardless of dimensionality.

15
14
. k [
12 m
1 F
10 e i J
9
8 Ag h
7
6
5
: b g
2
1
0
X O : Interior octant O : Leaf octant
01234586 7 8 9101112131415
(a) Domain representation (b) Tree representation

Figure 3:Different representations of an octree.

same octree. Each tree edge in Figure 3(b) is labeled withayniirectional codethat distinguishes the children
of each parent octant.

Linear Octree. To represent an octant, we use kinear octreetechnique [11, 1]. The basic idea of the linear octree
is to encode each octant with a scalar key callédcational codethat uniquely identifies the octant. Figure 4(a)
shows how to compute a locational code. First, interleagebtts of the three coordinates of the octant’s lower left
pixel to produce its Morton code [19]. Then append the o&tdetel to arrive at the locational code. We refer to
the lower left pixel of an octant as the octardischor For example, the shaded pixel in Figure 3(a) is the anchor
for octantg.

B-tree. Given a unigue locational code for each octant, we use tiiekwewn B-tree [6, 9, 12] to index and store
the octants. As a result, octant records are laid out on @iskee pages) in locational code order (hence the term
linear octree). Itis not difficult to verify that the ordegiimposed by the locational codes correspondspearder
traversalof the tree representation. There are two interesting ptiegerelated to the preorder traversal property:
(1) It clusters spatially nearby octants on B-tree pagesénldcality-preserving Z-order [10]; (2) It supports an
important querying feature callemgregate hit426]. The idea of an aggregate hit is that we can find an octant
by specifying the locational code of any arbitrary pointx@d) contained in that octant. For example, Figure 4(b)
shows the idea of traversing to reach octamthile searching for a pixgl, 9) that is contained ig. To implement
aggregate hits, we can modify the B-tree search algoritiightd} to return the key (of an octant) whose value is
the maximum among all the keys that are less than or equalaaralskey (of a pixel).

g’s left lower corner pixel(4, 8) S Level 0

binary form (0100, 1000)

******** Level 2
interleave the bits to
obtain Morton code

0100 1000 Level 3

) Branches that do not
append g'S IeVeI Cl/ / really exists
10010000 < 011 Query pixel (5,9)
(a) Computing the locational code for (b) Aggregate hit of a pixel in an octant.

Figure 4:Operations on octrees.

We have developed a C library callettee[26] to manipulate queryable octrees on disk. Besides tieatioctree
and the (modified) B-tree described above, the etree lilrasythe following runtime components:

Buffer manager. The buffer manager performs extensive data caching toceedisk 1/0 [12] and implements a
LRU policy to evict pages when there is a capacity conflict.

Schema manager. The schema manager allows an application program (for pbearma mesh generator) to register

a schema describing individual fields for the payload of theheoctant. Once a schema is registered, the schema
manager is responsible for extracting data from the paydsatiguarantees that platform-specific data alignment
requirements and byte-ordering convention (little-endig. big-endian) are observed.

Metadata manager. The metadata manager keeps track of a linear octree'sttaliinformation and records
application-specific metadata.

The etree library operates in a 3D domain consistezfbk 23! x 23! pixels. The 31-bit etree address space appears
to provide sufficient spatial resolution for any applicasonve can imagine. For example, if we were to embed a

continent-sized volume of 5,000 kilometers on a side in todtree address space, then each pixel would have an
edge size on the order of 2 millimeters.

Application programs interacts with the etree library tigh a small API, which is comprised of two types of
functions: stateless and stateful. Stateless functiangelao state in the runtime system once they terminates. A
stateless function call is independent of any other steddlanction callsinsert delete update searchand various
helper functions are stateless. Stateful functions, orother hand, set or change the state of the etree runtime
system. Appendand cursor functions are stateful. Stateful functions can be viewedhasbuilding blocks of
transactions. A state is kept until a transaction compldéesing the lifetime of a transaction, no other transacion
can be started and no stateless functions can be called.

Element etree. Using the etree library, we can conveniently represent adeii hexahedral mesh elements, which
correspond to the octants of a balanced linear octree wittesapplication-specific information recorded in the
payload of each octant. For simplicity, we refer to such albiase as thelement etreeas shown in Figure 2.

Node etree. Representing mesh nodes is a little more subtle becausentiléest representable data object in the
etree address space is a pixel, which is a tiny octant withesgpace volume, while a mesh node is a geometric
entity that does not have a volume. However, noticing thaidens always located at the lower-left corner of some
pixel, we may represent each node as the pixel whose loiterdmer has the coordinate of the mesh node. For
example, in Figure 3(a), the node at the intersection ofrista g, ande is represented as the grayed pixel. The
beauty of this approach is that the set of nodes can be repeethe identical way that the elements are represented.
Each pixel has a locational code. So the set of nodes can alsied in locational-code order and indexed with a
B-tree, like any other linear octree. The resultimagle etreean be viewed as a very sparse instance of the complete
octree, consisting of a tiny subset of the level-31 leafmista

In summary, the etree library provides the capability tcecedfitly query and manipulate (partially generated) hexa-
hedral mesh structures.

4 Database-Aware Mesh Generation Algorithms

This section provides a high-level description of datakmsare mesh generation algorithms. Our purpose is not to
illustrate the gory details of these algorithms, but to hgjft the design principle of exploiting the characteadsti
of the underlying database structure.

The Weaver mesh generation logic consists of the followilngedy related steps, as shown in Figure 2. The
constructstep builds an indexed linear octree on disk. The sizes af¢tants are determined by an application, for
example, by the density of the material they enclose.Bdiancestep recursively subdivides octants as hecessary to
enforce the 2-to-1 constraint. Tlegtractstep uses the balanced linear octree as a template to genaraéryable

mesh databasthat consists of an element etree and a node etreetraingformstep queries the data in the mesh
database and generatfta mesh topology filthat establishes the element-node connectivity relatipng his kind
of files are needed by existing mesh partitioning tools [1&] solver packages [17].

4.1 Construct: Using Auto-Navigation to Build Linear Octrees

Although linear octrees nicely solve the problem of how tdrads individual octants, it does not tell us how to
build a linear octree efficiently. Although it is possibledonstruct an octree by repeatedly inserting and deleting
octants from an etree, we would have to keep records of whitdnts have been subdivided and which have not.
Worse, many insertions are in fact unnecessary because tlotsnts are later subdivided and removed from the
database. To solve this problem, We have developed a tagho#dledauto-navigatiorf25]. The basic idea of auto-
navigation is simple. Since the ordering of expanding areeatnder construction is independent of the correctness
of the result, the octree-traversing logic can be decoupted the application and incorporated into the Weaver
mesh generation logic.

The main data structure used to implement auto-navigatica memory-resident pointer-based octree called a
navigation octregshown in Figure 5(a)) that is dynamically grown and prunediépth-first order (same as the
preorder traversal). Whether a leaf octant needs to be sdbdivs determined by an application via a call-back
function. With the depth-first expansion and pruning, wegaarantee that the memory requirement of a navigation
octree of depth d is bounded by &Jj, in contrast to O%?) for a complete octree being constructed in the main
memory.

Because the preorder traversal ordering of an octree isathe as the order imposed by the locational codes of the
(leaf) octants (see Section 3), a new leaf octant being proffehe navigation octree must have a larger locational
code value than other octants already in the database (wieddegn pruned off earlier). Thus, instead of calling a
standard insertion operation that cost$od@(V), we invoke arappend transactioto append octants that are pruned
off a navigation octree to the etree database. Since appeEdtmns keep a state in the runtime system, the etree
library knows where to store the new octant and thus can fthistoperation in constant time Q(

Thus, by interacting with the underlying database strgctarough a navigation octree, we have been able to
simplify the programming effort of building a massive linegtree and minimize the overall cost to), where
N is the number octants being generated.

O : octants not yet
processed (in memory)

O : non-leaf octants being E
decomposed (in memory) Level table

octants that can be @ : leaf octants (flushed to
flushed to the database database)
(a) A snapshot of aavigation octree (b) Structure of a@ache octree

Figure 5:Internal data structures used by the construct and balance steps, respectively

4.2 Balance: Bulk-loading Octantsto Balance by Parts

The linear octrees produced by the auto-navigation praamessot necessarily balanced. The process of transform-
ing an unbalanced octree into a balanced one is knowraksice refinementConceptually, balance refinement
consists of two main operations: (figighbor finding: Finding the neighbors of an octant to check whether the
2-to-1 constraint is violated. (Zubdivision: Deleting a “too-large” octant from the database and insgriis
eight children. The deletion is necessary because therlowgee datasets being balanced should contain only leaf
octants.

One method for implementing neighbor finding is to manipitae locational code of an octant to generate the keys
for its neighbors and search an etree directly. The aveedge (orst-case) cost for a search operation(is@N),
where N is the number of octants indexed. As a result, thé ¢ott of neighbor findings for all the octants in the
dataset is QV log N). The advantage of this method is that there is no excessiugreenent on the size of main
memory, as long as there is enough space to cache a few Bages.p

A second method is to map the linear octree to a memory-nesptenter-based octree, and then use conventional
pointer-based algorithms to find neighbors [22]. The adgatis that the average cost of neighbor finding is
reduced to OK), with a total cost of only ©N) to conductall neighbor findings. The main disadvantage is the main
memory must be large enough to hold a pointer-based imadedtttire linear octree. Thus, the first problem is
how to take advantage of both methods. In particdlary do we find neighbors efficiently (in Q¢ime) without
having to map an entire linear octree in memory?

Another performance problem is more subtle and is relatédei@o-calledipple effect That is, a tiny octant may
propagate its impact out in the form of a “ripple” that triggsubdivisions of octants not immediately adjacent to it.
See Figure 1 for an example. If we were to couple neighboifgdith tree traversal, we would have to traverse
the tree multiple times to assimilate the ripple effect. ldwar, multiple iterations of neighbor findings (and thus
tree traversals) increase the total running time by a cahfdator. So a second problem we try to resolviedsy to
avoid multiple iterations of neighbor findings

Our solution is based on the observation that although balaefinement may cause ripple effect, the impact
diminishes quickly due to the 2-to-1 edge size ratio. In fioldj most impact caused by a tiny octant is localized in
a small region. For example, octanin Figure 1 causes the subdivisions of octarand its children. But both are
spatially adjacent t6. In other words, the impact of a tiny octant is absorbed mgdstloctants surrounding it in

a small neighborhood. The strong locality of reference sstgthat we may map a small region to a pointer-based
(sub)octree in memory and resolve the 2-to-1 constraintiaadpple effect without worrying about octants outside
of the region. This is the type of solution that fits the pagaubf divide-and-conquer.

Our main new algorithm is calldshlance by part$BBP) [24], which works as follows. First the domain repnese

by a linear octree is partitioned (divided) into equal-di&D volumes calledrolume parts whose alignments
correspond to non-leaf nodes (of a conceptual pointereébastee) at a certain level. To determine the size of the
volumes, we assume conservatively that each 3D volumestsrafionly the smallest octants of the domain. Next,
each 3D volume is cached in memory and balanced. After aBEheolumes are processed, octants on the volume
face boundaries, calledce boundary partsare balanced, followed by the balance of octants on thenwelline
boundariesline boundary partsand point boundarieg6int boundary parts Each part, regardless of its type, is
cached in a temporary pointer-based octree callesiche octre@s shown in Figure 5(b). While balancing a cache
octree in memory, we update the etree database to recordhbie/sions of leaf octants.

Because each 3D volume maps to some sub-octree root whdsectaats are clustered sequentially on B-tree
pages (see Section 2), we can invoke the etree cursor apeséti load all octants belonging to a 3D volume into
memory. In particular, we first initialize a cursor in theestrto identify the position of thérst octant of a 3D
volume, which is defined as the octant that occurs first in thender traversal of the subtree represented by the 3D
volume. Since the first octant is always anchored at thddefer corner of a 3D volume, we can easily derive its
locational code and thus initialize a cursor. We then rezzfatretrieve and advance the cursor to sequentially scan
all the needed octants until we encounter an octant thattssdmithe scope of the 3D volume of interest. From the

database perspective, this is a bulk loading operationavithst of O() for each octant retrieved.

To retrieve octants for parts of other types, we implememgeaqueries on etrees. For example, face boundary parts
are fetched by searching for octants tangentially intéisgparticular rectangles (shared by 3D volumes) in space.
Since the cost of retrieving a boundary octant by searchingteee is Opg N), whereN is the total number of
octants, the total cost of retrieving all the boundary otébelonging to those parts other than 3D volumes) is thus
O(blog N), whereb is the number of boundary octants. On averags,at least 1 order of magnitude smaller than
N (2D vs. 3D). In practice, only abo@t% of a linear octree needs to be fetched by range queries.

When we cache in a part, regardless of its type, we map it tolzecactree, a special type of pointer-based octree
whose leaf nodes at the same tree level are linked togetleisatcessible from an array callevel table(see
Figure 5(b)). The cost of building a cache octree is lineath® number of leaf nodes. We apply another new
algorithm calledPrioritized Ripple Propagatiof{PRP) to balance cache octrees. The PRP algorithm makes use
of the pointer structure of a cache octree to conduct neigfibding in constant time on average (solution to the
first problem). Besides, the PRP algorithm avoid multipedtions of neighbor-findings (solution to the second
problem) by accessing leaf octants directly from the leableé and subdividing octants on the fly when neighbor-
findings are being performed.

In summary, the structural design of the balance algorithessilts in an I/O optimal case where most data is
efficiently retrieved by bulk loading (Qf cost per octant) and the remainder is retrieved by starsfatil database
range queries (Qfg NN) cost per octant). Moreover, we can avoid the costly opanatof finding neighbors from
the etree database and apply a fast incore algorithm to@nfbe 2-to-1 constraint. The overall cost BBP/PRP is
O(N + blog N), whereN is the total number of octants in the linear octree aigithe number of octants in the
parts other than 3D volumes, that is, octants on the facedavies, line boundaries and corner boundaries.

4.3 Extract: Producing Mesh Nodes by Two-L evel Bucket Sort

A balanced linear octree is used as a template to extract #sh structure (elements and nodes). Because mesh
elements correspond 1-to-1 to the octants, we can use a ajrs@tor to iterate each octant in the balanced linear
octree to extract the elements. The cost i&VQ(

The difficulty lies in the extraction of mesh nodes. Two intpot issues must be considered. First, we must get rid
of duplicate nodes. This is because each mesh node is sharedltiple elements. We should ignore duplicates
and record each node (with unique coordinate) only onceor#kave need to distinguish two different types of
nodes in the meshdanglingandanchored A mesh node is defined as dangling if it is located on the eddeeo
face of some octant. Otherwise, it is anchored. As per digfinia dangling node is dependent on either 2 anchored
nodes if it is on an edge, or 4 anchored nodes if it is on a fade dependence of dangling nodes on anchored
nodes must be identified explicitly.

An obvious way to implement node extraction is to make usé@eiiode etree database, where partially generated
nodes are stored and indexed. On encountering a “new” nadepiated as a vertex of a newly visited octant),
we search the node etree to decide whether it is a duplicat®tor Hence, the cost of creating a new node is
O(log M), whereM is the number of mesh nodes. Note that we cannot simply appeshek to an etree because the
order we encounter new nodes ae the same as the Z-order of the nodes. Therefore, the totbtestracting
mesh nodes and eliminating duplicates is\Dlpg M). To identify dangling nodes, we let each node record carry
extra information of how many elements are sharing it anddbational codes of those elements, and then apply a
post-processing procedure to analyze the geometric pogifieach node within the mesh and determine whether
it is dangling or anchored, and if dangling, whom it depends Onfortunately, the running time and disk space
requirement of this algorithm are both excessively large.

To overcome the obstacles, we re-define the problem fronfexelift angle: instead of treating node extraction as a
dynamic process that gradually discovers new mesh nodesamthink of all mesh nodes as statically distributed
in the domain already. Figure 6(a) shows the mesh nodelititsh resulted from a balanced octree. Recall that we

use the tiniest octants in the etree address space, i.ds,gixeepresent mesh nodes. Since our goal is to produce a
node etree that is properly indexed, the problem of extrgatiesh nodes is equivalent to the problem of sorting all
mesh nodes in the domain according to their locational cédiesder) and load (append) them to the node etree.

Order of processing high-level buckets

Mesh node (pixel)
o] Y |
H PN
High-level
buckets bucket bucket| [bucket| |bucket
(on disk) M1 2 3 4
1 2
L 2 Low-level A
buckets NN

(in memory)

(a) Mesh node distribution in a balanced octree(b) A mesh node falls in either a lower-level bucket or
domain. some other high-level bucket.

Figure 6:Treat mesh nodes as pixels and use two-level bucket sort to produ ce mesh nodes.

We have developed an algorithm caltee-level bucket sotb implement this idea. The algorithm works as follows.
First, we partition the domain into equal-sized 3D voluntest imap to sub-octree roots (same as the 3D volume
concept used in the balance step). But we now refer to theseoRInes as théigh-level bucketso emphasize
the fact that each volume will accommodate mesh nodes tadtlly enclosed in it. For example, the domain of
Figure 6 (a) consists of 4 high-level buckets correspontiirie four quadrants of the domain. Since the high-level
buckets constitute a partition of the domain, every mester{ptkel) must belong to some high-level bucket. (For
simplicity, ignore those mesh nodes on the far-side boynafathe domain.)

We then process the high-level buckets one by one in Z-orBer. each high-level bucket, we build an incore
(sub) octree to represents its octants (mesh elementsghvidgicomes the so-calléow-level bucketsas shown

in Figure 6(b). On encountering each octant, we derive thational codes for its eight nodes (corners). Due to
the aggregate hit property explained in Section 2, eaclvettrnesh node (pixel) will be enclosed either by some
low-level bucket or by some other high-level bucket. Eitivay, a derived mesh node is assigned to a proper bucket.

After all mesh nodes induced by octants in the current higfellbucket are accounted for, we sort the mesh nodes
assigned to the low-level buckets. The interesting asgabissorting algorithm is that we only need to sort mesh
nodes assigned to each individual low-level bucket, resmdg. Any low-level bucket contains 7 mesh nodes at
maximum, though most of the low-level buckets may only contanode (its own lower-left corner node). So any
simple sorting algorithm can be applied. We then traversértbore (sub) octree in preorder, appending the sorted
mesh nodes of each low-level bucket to the node etree. Medbsrassigned to other high-level buckets will be
sorted and appended to the node etree when those high-ieladte are later processed.

It can be shown that the order we visit the (high-level and-level) buckets guarantees that the nodes are always
produced in their locational codes order (Z-order) and @asdiely appended to a node etree. In addition, it can be
shown that dangling node identifications can be efficientipedded in the two-level bucket sort algorithm.

4.4 Transform: Deriving Flat Mesh Topology through Spatial Join

Given an element etree and a node etree, the transform stepagies flatopology fileto represent the element-node
connectivity relationship. In such a topology file, elenseate identified by unique ids drawn from a consecutive
integer sequence starting from 0, and so are the nodes (fiother independent integer sequence). Therefore two
tasks need to be accomplished: (1) id assignments, andrf2)ate element ids to node ids.

10

A simple way to associate ids with the elements is to travilreeelement etree in the ascending locational code
order and assign an element the sequence number in whicheeergsr it. Similarly, we can assign ids to the
nodes in the same way. The cost of id assignments is thiis ©(V), whereN is the number of elements add

is the number of nodes. As mentioned early, the nice propéittye locational code ordering is that it corresponds
exactly to the Z-ordering, thus the id assignment has thegrty that spatially close elements are clustered together
in the 1D id space. So are the case with the mesh nodes.

The second task is much more challenging. Correlating aieide to node ids represents a special type of spatial-
join problem. A naive way of implementing such join operatis to visit the element one by one. Use the element
locational code to derive the locational codes for its emgdes. Then use the node locational codes to search the
node etree to find out the node ids for each of the node. Theotasich an algorithm is Q{ log M). Noticing
that N andM are approximately the same and are usually very large (framdieds of millions to several billions),
such a cost is very expensive.

We have been working on an improved spatial-join algorithith an average cost of ®{+ M). The key insight is
that each element is only correlated to eight nodes, whielelase-by in space. Given the clustering property of the
locational codes, we only need to cache in memory those tish lements and nodes that are indeed correlated.
While iterating elements one by one in Z-order (using theeetirsor operator), we prefetch related mesh nodes
into memory (also using the cursor operator) and build a betslk to keep track of the cached nodes so that we can
access mesh nodes in constant time on average.

5 Evaluation

In this section, we present the performance evaluation@fteaver system for generating massive unstructured
hexahedral meshes. We have conducted experiments to at@vetlowing two questions: (1) How effective is
the Weaver system? and (2) Where does the time go while gamgeaatesh?

The meshes we generated are used for earthquake groundhreiotiolations. The purpose of such simulations is
not to predicwhenan earthquake would occur, but rather what would hapitat earthquake would occur. In het-
erogeneous geological structures such as sedimentanshasere material properties vary significantly throughout
the domain, multi-resolution unstructured hexahedralhassllow a tremendous reduction (approx. three orders
of magnitude) in the number of mesh nodes (compared to umifoeshes), because element sizes can adapt locally
to the high-variable wavelength of propagating seismicesav

100% -

80% -

Frequency 0.5Hz 1Hz 2Hz .
Num of elements | 9.92M | 111M | 1.22B 60% 1
Num of nodes 11.3M 134M 1.37B 40% -

Mesh database 340MB | 4.00GB| 45.6 GB .
Flat topology files| 655 MB | 7.59 GB | 80.5 GB 20% T
Mesh gen. time 00:05:58 | 01:22:06| 15:13:08 0%

Mesh

0.5Hz 1Hz 2Hz
\ O Construct O Balance W Extract @ Transform \

(a) Summary for LAB meshes. (b) Execution time breakdowrdftierent steps.

Figure 7:LAB meshes generated by the Weaver system on a Linux desktop ma chine and the running times.
The 2 Hz mesh was used for terascale earthquake simulations on the TCS system (Lemieux) at PSC [3].

Our target region is the Los Angeles Basin (LAB), which coisgs a 3D volume of 100 km x 100 km x 37.5 km.

11

The material model we used to drive the mesh generation gsasethe Southern California Earthquake Center
(SCEC) 3D velocity model [18] (Version 3, 2002). We genemiféerent meshes to satisfy different simulation
frequency requirements. Roughly speaking, the higherrdwuency, the finer (larger) the mesh.

All our experiments were conducted on a desktop machineaviRhil 1GHz processor running Linux 2.4.17. The
memory subsystem consisted of 3GB physical memory and 1GP space.

Figure 7(a) summarizes the characteristics of three largehes we generated. The columns correspond to the
meshes that are capable of resolving 0.5 Hz, 1 Hz and 2 Hz mevgave, respectively. The last row records the
running times of the Weaver system in hh:mm:ss format. Tdtietshows that the Weaver system is capable of
generating extremely large meshes on a desktop system &sarr&ble amount of time. For example, the 2 Hz
mesh, with 1.37B nodes, involves creating a mesh databasizeoi5GB and flat topology files of size 80.5GB. If
we had built all mesh data structures in main memory, we wbale used more than 300 GB memory (on an Alpha
system with 8-byte pointers). Given that the machine we bssdonly 3GB memory, generating such a massive
and complicated mesh in about 15 hours (overnight) appdae sm effective solution.

Figure 7(b) shows the execution time breakdown for genegatie three large meshes, respectively. Each bar
represents the contribution of the four steps (constradarite, extract, and transform) as a percentage of the total
mesh generation execution time. Since the mesh databa@eviBXand the flat topology files (655 MB) for the
0.5 Hz mesh fit completely in the main memory of the experinsgstem (3 GB), the 0.5Hz mesh must have been
generated completely from memory. Meanwhile, the 1Hz anzliPldshes must have been generated by interacting
with the disk subsystem. The fact that all three cases havitasitime breakdown patterns, as shown in Figure 7(b),
suggests that the running time of each step is mostly datedry the problem size instead of database related disk
I/Os. This implies that the Weaver system is exploiting litg&fficiently and is processing data mostly from within
memory. Otherwise, we would have seen large fluctuationsaldisk I/O as the problem size increases. Also from
Figure 7, we can see that although we have divided the mesraem logic of the Weaver system into four steps,
their complexities are quite different from each othergiag from the simple bulk-loading operation (the construct
step) to the convoluted spatial-join operation (the tramsfstep). In fact, prior to the transform step, the balance
and extract steps have been the performance bottlenecic wh have resolved with the new algorithms and data
structures explained in Section 4.

6 Summary

Despite the increase in computing power and storage cgpscigntists have not been able to take the full advantage
of the technology trend to generate and manipulate masasteuctured simulation datasets on their desktops. We
propose computational database systems (CDSs) to sodvertiillem. Developing CDSs requires research that lies
at the intersection of database systems, computer systeisceentific computing.

This paper has presented the design, implementation atubtea of the Weaver prototype CDS. Although still
being developed, the Weaver system has already shown sorite af¢he idea of CDSs. First of all, the Weaver
system has enabled us to generate massive unstructurdtedexbmeshes on desktop machines with limited mem-
ory. Second, the meshes generated are stored in spatibhdatathat can be efficiently queried. Third, the design
framework of the Weaver system allows us to approach mesarggon problems from a database perspective,
resulting in new algorithms such as auto-navigation, addy parts, and two-level bucket sort.

Acknowledgements

We gratefully acknowledge Jacobo Bielak, Omar Ghattas and@&ng Kim for developing the octree-based finite
element method and for using our massive hexahedral mestesloos Angeles Basin in terascale ground motion
simulations at Pittsburgh Supercomputing Center. We dlaok Steve Day, Tom Jordan, Karl Kesselman, Phil

12

Maechlin, Harold Magistrale, Kim Olsen, and our colleagoeshe Southern California Earthquake Center (SCEC)
Community Modeling Environment Project, for their suppand encouragement. Finally, thanks to Anastassia
Ailamaki and Christos Faloutsos for helping us understgadial databases.

References

[1] D. Abel and J.L.Smith. A data structure and algorithmdzhen a linear key for a rectangle retrieval problem.
Computer Vision,Graphics,and Image Processigy1-13, 1983.

[2] A. Ailamaki, D. DeWitt, M. Hill, and M. Skounakis. Weavinrelations for cache performance.Rroceedings
of the 27th International Conference on Very Large Data Bg5&.DB Rome, Italy, Sep 2001.

[3] V. Akcelik, J. Bielak, G. Biros, I. Ipanomeritakis, A. Feandez, O. Ghattas, E. Kim, J. Lopez, D. O’Hallaron,
T. Tu, and J. Urbanic. High resolution forward and inversehepiake modeling on terasacale computers. In
SC2003Phoenix, AZ, Nov. 2003. Gordon Bell Award for Special Acleenent.

[4] H. Bao, J. Bielak, O. Ghattas, L. Kallivokas, D. O’Haltar, J. Shewchuk, and J. Xu. Earthquake ground
motion modeling on parallel computers. Pnoc. Supercomputing '9@ittsburgh, PA, Nov. 1996.

[5] H. Bao, J. Bielak, O. Ghattas, L. Kallivokas, D. O’Halter, J. Shewchuk, and J. Xu. Large-scale simulation
of elastic wave propagation in heterogeneous media onlplcalmputers. Computer Methods in Applied
Mechanics and Engineerind52:85-102, Jan. 1998.

[6] R. Bayer and E. M. McCreight. Organization and maintaeaaf large ordered indicesActa Informatica
1:173-189, 1972.

[7] S.Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Impireg hash join performance through prefetching.
In Proceedings of ICDE2004.

[8] N. Chrisochoides and D. Nave. Parallel delaunay meskmggion kernelint. J. Num. Methods in Engineering
58(2):161-176, 2003.

[9] D. Comer. The ubiquitous B-TredCM Computing Survey41(2):121-137, Jun 1979.

[10] C. Faloutsos and S. Roseman. Fractals for secondamgkaégval. InProceedings of the Eighth ACM SIGACT-
SIGMID-SIGART Symposium on Principles of Database Sy{le@BS) 1989.

[11] I. Gargantini. An effecive way to represent quadtre€ammunicatoins of the ACN25(12):905-910, Dec
1982.

[12] J. Gray and A. Reuteflransaction Processing: Concepts and Techniqiwsrgan Kaufmann Publishers, Sep
1992,

[13] A. Guttman. R-trees: A dynamic index structure for sglatearching. IfProceedings of SIGMODACM, Jun
1984,

[14] Y. Hisada, H. Bao, J. Bielak, O. Ghattas, and D. O’HalfarSimulations of long-period ground motions during
the 1995 Hyogoken-Nanbu (Kobe) earthquake using 3D findmeht method. In K. Irikura, H. Kawase, and
T. lwata, editors,2nd International Symposium on Effect of Surface Geologgeismic Motion, Special
Volume on Simultaneous Simulation for Kppages 59-66, Yokohama, Japan, Dec. 1998.

[15] C. Kadow and N. J. Walkington. Adaptive dynamic projectbased partitioning for parallel delaunay mesh
generation and refinement. 81AM Conference on Parallel Processing for Scientific Cotingu San Fran-
cisco, CA, Feb 2004.

13

[16] G. Karypis and V. Kumar. A course-grain parallel formtibn of multi-level k-way graph partitioning algo-
rithm. In 8th Siam Conference on Parallel Processing for Scientifim@ating 1997.

[17] E. Kim, J. Bielak, and O. Ghattas. Large-scale nortgmigarthquake simluation using octree-based mul-
tiresolution mesh method. IRroceedings of the 16th ASCE Engineering Mechanics Cander&eattle,
Washington, July 2003.

[18] H. Magistrale, S. Day, R. Clayton, and R. Graves. The SGButhern California reference three-dimensional
seismic velocity model version Bulletin of the Seismological Soceity of AmeriBeac. 2000.

[19] G. M. Morton. A computer oriented geodetic data base améw technique in file sequencing. Technical
report, IBM, Ottawa, Canada, 1966.

[20] T. C. Mowry, A. K. Demke, and O. Krieger. Automatic coretinserted 1/0 prefetching for out-of-core
applications. InProceedings of the Second Symposium on Operating Systesigned Implementation
(OSDI '96), oct 1996.

[21] D. Nave, N. Chrisochoides, and P. Chew. Guaranteetitgquzarallel delaunay refinement for restricted
polyhedral domains. liProceedings of 8th ACM Symposium on Computational Geoneges 135-144,
Barcelona, Spain, June 2002.

[22] H. SametApplications of Spatial Data Structures: Computer Graghimage Processing and GI&ddison-
Wesley Publishing Company, 1990.

[23] J. F. Thompson, B. K. Soni, and N. P. Weatherill, editdbtandbook of Grid Generation<CRC Press, 1999.

[24] T. Tu and D. O’Hallaron. Balance refinement of massinedir octrees. Technical Report CMU-CS-04-129,
Carnegie Mellon School of Computer Science, April 2004.

[25] T. Tu, D. O’Hallaron, and J. Lopez. Etree — a databasented method for generating large octree meshes. In
Proceedings of the Eleventh International Meshing Rounidigpages 127— 138, Ithaca, NY, Sept. 2002. Also
to appear in Journal of Engineering with Computers.

[26] T. Tu, D. O’Hallaron, and J. Lopez. The Etree library: ysgem for manipulating large octrees on disk.
Technical Report CMU-CS-03-174, Carnegie Mellon Schodomputer Science, July 2003.

14

