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Abstract

For a large class of physical simulations with relatively simple geometries, unstructured octree-based hexa-
hedral meshes provide a good compromise between adaptivity and simplicity. However, generating unstructured
hexahedral meshes with over 1 billion elements remains a challenging task.We propose a database approach
to solve this problem. Instead of merely storing generated meshes into conventional databases, we have devel-
oped a new kind of software system calledComputational Database System(CDS) to generate meshes directly
on databases. Our basic idea is to extend existing database techniques to organize and index mesh data, and use
database-aware algorithms to manipulate database structures and generate meshes. This paper presents the design,
implementation, and evaluation of a prototype CDS namedWeaver, which has been used successfully by the CMU
Quake project to generate queryable high-resolution finite element meshes for earthquake simulations with up to
1.22B elements and 1.37B nodes.

1 Introduction

Dramatic increases in computing power and storage capacityhave allowed scientists to build simulations that model
nature in more details than ever. However, massive computations often require massive input and output datasets,
and in our experience, the size of these datasets is rapidly outpacing scientists’ ability to manipulate and use them.

For example, for the past 10 years, the Carnegie Mellon Quakegroup has been building computer models that
predict the motion of the ground during strong earthquakes in the Los Angeles Basin (LAB) [4, 5, 14, 3]. In 1993,
the largest LAB simulation code required an input unstructured finite element mesh with only 50K nodes (1.5 MB)
and produced a relatively small 500 MB output dataset. By 2003, the largest LAB simulation required a mesh with
1.37B nodes (45 GB) and generated an output dataset that was over one TB [3].

With such massive datasets involved, previously routine activities, such as generating unstructured meshes, defin-
ing earthquake source models, and partitioning meshes for parallel computing, become challenging tasks. This
is because unstructured datasets require complex pointer-based structures to represent, thus require massive main
memory. As a result, these activities can no longer be conducted by scientists on their desktop computers or lab
machines with limited main memory.
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We propose a database approach to solve this problem. However, instead of merely storing unstructured datasets into
conventional databases, we propose to recast the complete physical simulation process, including mesh generation,
solving, and analysis, to compute directly on databases.

At the first glance, this approach appears to yield a ready solution: take an existing relational database management
system (RDBMS), embed SQL commands in simulation codes and then run the codes on the database. Unfortu-
nately, conventional databases are designed and optimizedfor business applications, rather than physical simula-
tions. In typical database applications such as online transaction processing (TPC-C) and decision support systems
(TPC-H), data is relatively stable. Deletions are fairly uncommon. Typical insertions and updates involve only a
small portion of the database, though queries may examine large volumes of data and have a high degree of com-
plexity. In contrast, data in physical simulations is much more dynamic, being produced, updated and removed on
the fly at a high rate, while the data access patterns (queries) are usually fairly simple and straightforward. If we
would implement every data access operation with a standardSQL command (select, insert, update or delete), the
overhead, such as selecting an execution plan, updating indices and logging, would be too large for such programs
to be practically useful. In other words, we would have to trade off the performance (data access speed) for new
functionality (query capability) if we would use an existing database system directly.

How can we have both performance and functionality? Our ideais to develop a new kind of software systems that
will (1) incorporate computational data access patterns ofphysical simulations into the design of the underlying
database structures, and (2) export a specialized set of tightly-coupled and highly-optimized functions to interact
with the databases. To differentiate such systems from conventional RDBMSs, we refer to them asComputational
Database Systems(CDSs).

This strategy is appealing in several dimensions. First, because every step of the simulation process will work by
operating on databases, the sizes of the models will naturally be limited by the amount of available disk space,
rather than the amount of available memory. Therefore, computational database systems will increase the number
of applications that scientists can run on their desktop computers and lab machines, thus deferring the point at which
they have to use supercomputing centers.

Second, by integrating physical simulation with database systems, we will be able to build on decades of previous
database research, borrowing beautiful ideas such as B-tree/R-tree indexing [6, 9, 13], linear quadtrees [11, 1],
space-filling curves [10], cache-aware data layout [2] and more. Since these results are being applied to a new
application domain (physical simulations), we will need toaugment them with new algorithms and techniques.

Third, by managing data on behalf of simulation codes, we will have the opportunity to organize the data in such a
way that best exploits locality. At runtime, such locality can be carried up through the memory hierarchy, improving
performance at different levels. In addition, by understanding how simulation codes are going to access the data,
we will be able to implement effective data prefetching techniques [20, 7] in the runtime system, without asking
application programmers to modify their codes.

This paper makes a case for computational database systems in the context of mesh generation. We present our
recent work on a prototype CDS namedWeaverthat is capable of generating massive queryable unstructured octree-
based hexahedral meshes on desktop systems. Since our main focus has been to study the spatial database structures
for representing unstructured hexahedral meshes and its impact on mesh generation algorithms, we have only im-
plemented the prototype system sequentially.

The Weaver system is a major extension and improvement over our previous work on a database-oriented method for
generating large octree meshes [25]. By then (2002), we wereonly able to generate meshes with sizes on the order of
tens of millions of elements. Driven by the CMU Quake projectto generate higher resolution unstructured meshes,
we re-evaluated our techniques and recognized thatthe characteristics of the underlying database structuresshould
be tightly coupled into the design of the high-level algorithms. This principle was adopted in the development of
the Weaver system. In 2003, we were able to generate unstructured hexahedral meshes with billions of elements
using the Weaver system. For generating and simulating earthquake ground motion in the the Los Angeles Basin
using these meshes on terascale computers at Pittsburgh Supercomputing Center, and for work on inversion, the
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authors, along with our colleagues of the CMU Quake team, received the 2003 Gordon Bell Award for Special
Achievement [3].

It should be noted that although motivated by large-scale earthquake simulations, the Weaver system can be used
to generate unstructured hexahedral meshes for other applications. The strength of the Weaver system is that it
can generate arbitrarily large hexahedral meshes on any computer as long as there is enough disk space to hold the
meshes. Machines with more memory will run faster. Machineswith less memory will run slower, but they will run
nonetheless. In addition, the Weaver system produces meshes in the form of queryable spatial databases. Users can
easily and efficiently extract parts of the mesh structures for various purposes. The limitation of the Weaver system
is that it is not an on-line solution-adaptive mesh generator that can dynamically adjust a mesh structure while a
solver is working on the mesh.

In the broad context of high-performance computing, our research of the Weaver system is complementary to parallel
mesh generation techniques [21, 8, 15]. In general, both approaches study how to exploit spatial and temporal
locality to improve the performance of mesh generation. In particular, the research of parallel mesh generation
focuses more on load balancing, inter-processor communication, latency-hiding and so forth, while our research
focuses more on queryable representations of unstructuredmeshes and physical layouts of mesh data throughout
the memory hierarchy. If we employ a CDS approach in conjunction with parallel mesh generation, we will be
enable each processor to handle a larger (sub) problem, and thus increase the overall size of the problems that can
be meshed on parallel computers.

Section 2 provides an overview of octree-based unstructured hexahedral mesh generation and how to use the Weaver
system to implement the process. Section 3 describes the spatial database structures used by the Weaver system to
represent meshes and how to manipulate such structures. Section 4 explains the Weaver mesh generation algorithms,
which exploit the characteristics of the underlying spatial database structures and provide better performance. Sec-
tion 5 presents a preliminary evaluation of the Weaver system. Section 6 summarizes our work.

2 Hexahedral Mesh Generation and the Weaver System

Among many different types of meshes, octree-based hexahedral meshes lie in between the extremes of arbitrarily
unstructured meshes and regularly structured meshes [23].They provide a compromise between modeling power
and simplicity. On the one hand, they are able to subdivide anoctant to resolve local heterogeneity and provide
multi-scale resolution as do other unstructured meshes. Onthe other hand, they produce only one primitive shape
for all elements. The recursive process of subdivision leads to a relatively structured placement of mesh nodes,
similar to many regularly structured meshes.
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(a) An unbalanced octree domain decomposition. (b) A balanced octree domain decomposition.

Figure 1:Balance refinement of an octree. We have represented octrees in the form of domain decompositions
to clarify the concepts. The existence of a tiny octant f triggers a ripple effect that causes a remote octant m to
subdivide.
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Because the quality of a mesh depends on whether there existssharp changes in size between spatially adjacent
elements, it isrequiredthat a domain-decomposition octree should not contain any spatially adjacent octants that
differ more than 2-fold in their sizes. Equivalently, this means that two neighboring octants sharing an edge or a
face should be at most twice as large or small. Such a requirement is often referred to as the2-to-1 constraint. It can
be enforced either on the fly when an octree is being constructed, or by a separate step after an octree is constructed.
Either way, a balanced octree is produced, as shown in Figure11.
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Figure 2:Structure and Workflow of the Weaver system.

A balanced octree is yet not a mesh. It only provides a template to generate mesh elements, nodes, and topology.
Elements correspond 1-to-1 to (leaf) octants, and nodes correspond 1-to-1 to vertices of the (leaf) octants. It is
a common practice to assign a unique id (from a consecutive integer sequence) to each element and create a list
of element records. And similarly, a list of node records. The particular ordering of sequence numbers (ids) is
immaterial since they serve the sole purpose of unique identifiers (or primary key in database term). Mesh topology
is encoded using the element ids and node ids as a collection of 9-ary tuples (1 element id + 8 node ids).

The core idea of the Weaver system is to store and index (partially generated) hexahedral meshes using spatial
database structures, and implement the mesh generation process by querying and manipulating the database. The
structure of the Weaver system is shown in Figure 2.

Conceptually, the Weaver system consists of two parts:spatial databaseandmesh generation logic. The spatial
database manages the unstructured mesh data such as elements and nodes on disk and in memory. A set of primitive
API is exported by the spatial database layer and is used by the mesh generation logic to manipulate the data. The
mesh generation logic implements different mesh generation steps by exploiting the characteristics of the database
structure in order to reduce disk I/O and improve the runningtime (time-complexity). The following two sections
explain the spatial database and mesh generation logic in detail, respectively.

3 Queryable Mesh Database Structure and the Etree Library

The primitive data objects to be manipulated in hexahedral mesh generation are octants, which are associated with
an octree. An octree can be viewed in two equivalent ways: thedomain representationand thetree representation.
A domainis a Cartesian coordinate space that consists of a uniform grid of 2n

× 2n indivisible pixels. The root
octantthat spans the entire domain is said to be at level 0. Each child octant is one level lower that its parent (with
a larger level value).

Figure 3(a) shows the domain representation of an octree. Figure 3(b) shows an equivalent tree representation of the
1We draw 2D quadtrees to illustrate concepts but use the term octrees and octants regardless of dimensionality.
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Figure 3:Different representations of an octree.

same octree. Each tree edge in Figure 3(b) is labeled with a binarydirectional codethat distinguishes the children
of each parent octant.

Linear Octree. To represent an octant, we use thelinear octreetechnique [11, 1]. The basic idea of the linear octree
is to encode each octant with a scalar key called alocational codethat uniquely identifies the octant. Figure 4(a)
shows how to compute a locational code. First, interleave the bits of the three coordinates of the octant’s lower left
pixel to produce its Morton code [19]. Then append the octant’s level to arrive at the locational code. We refer to
the lower left pixel of an octant as the octant’sanchor. For example, the shaded pixel in Figure 3(a) is the anchor
for octantg.

B-tree. Given a unique locational code for each octant, we use the well-known B-tree [6, 9, 12] to index and store
the octants. As a result, octant records are laid out on disk (B-tree pages) in locational code order (hence the term
linear octree). It is not difficult to verify that the ordering imposed by the locational codes corresponds to apreorder
traversalof the tree representation. There are two interesting properties related to the preorder traversal property:
(1) It clusters spatially nearby octants on B-tree pages in the locality-preserving Z-order [10]; (2) It supports an
important querying feature calledaggregate hits[26]. The idea of an aggregate hit is that we can find an octant
by specifying the locational code of any arbitrary point (pixel) contained in that octant. For example, Figure 4(b)
shows the idea of traversing to reach octantg while searching for a pixel(5, 9) that is contained ing. To implement
aggregate hits, we can modify the B-tree search algorithm slightly to return the key (of an octant) whose value is
the maximum among all the keys that are less than or equal to a search key (of a pixel).
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Figure 4:Operations on octrees.
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We have developed a C library calledetree[26] to manipulate queryable octrees on disk. Besides the linear octree
and the (modified) B-tree described above, the etree libraryhas the following runtime components:

Buffer manager. The buffer manager performs extensive data caching to reduce disk I/O [12] and implements a
LRU policy to evict pages when there is a capacity conflict.

Schema manager. The schema manager allows an application program (for example, a mesh generator) to register
a schema describing individual fields for the payload of the each octant. Once a schema is registered, the schema
manager is responsible for extracting data from the payloadand guarantees that platform-specific data alignment
requirements and byte-ordering convention (little-endian vs. big-endian) are observed.

Metadata manager. The metadata manager keeps track of a linear octree’s structural information and records
application-specific metadata.

The etree library operates in a 3D domain consisted of231
×231

×231 pixels. The 31-bit etree address space appears
to provide sufficient spatial resolution for any applications we can imagine. For example, if we were to embed a
continent-sized volume of 5,000 kilometers on a side in to the etree address space, then each pixel would have an
edge size on the order of 2 millimeters.

Application programs interacts with the etree library through a small API, which is comprised of two types of
functions: stateless and stateful. Stateless functions leave no state in the runtime system once they terminates. A
stateless function call is independent of any other stateless function calls.Insert, delete, update, searchand various
helper functions are stateless. Stateful functions, on theother hand, set or change the state of the etree runtime
system. Appendand cursor functions are stateful. Stateful functions can be viewed asthe building blocks of
transactions. A state is kept until a transaction completes. During the lifetime of a transaction, no other transactions
can be started and no stateless functions can be called.

Element etree. Using the etree library, we can conveniently represent and index hexahedral mesh elements, which
correspond to the octants of a balanced linear octree with some application-specific information recorded in the
payload of each octant. For simplicity, we refer to such a database as theelement etree, as shown in Figure 2.

Node etree. Representing mesh nodes is a little more subtle because the smallest representable data object in the
etree address space is a pixel, which is a tiny octant with some space volume, while a mesh node is a geometric
entity that does not have a volume. However, noticing that a node is always located at the lower-left corner of some
pixel, we may represent each node as the pixel whose lower-left corner has the coordinate of the mesh node. For
example, in Figure 3(a), the node at the intersection of octants b, g, ande is represented as the grayed pixel. The
beauty of this approach is that the set of nodes can be represented the identical way that the elements are represented.
Each pixel has a locational code. So the set of nodes can also be stored in locational-code order and indexed with a
B-tree, like any other linear octree. The resultingnode etreecan be viewed as a very sparse instance of the complete
octree, consisting of a tiny subset of the level-31 leaf octants.

In summary, the etree library provides the capability to efficiently query and manipulate (partially generated) hexa-
hedral mesh structures.

4 Database-Aware Mesh Generation Algorithms

This section provides a high-level description of database-aware mesh generation algorithms. Our purpose is not to
illustrate the gory details of these algorithms, but to highlight the design principle of exploiting the characteristics
of the underlying database structure.

The Weaver mesh generation logic consists of the following closely related steps, as shown in Figure 2. The
constructstep builds an indexed linear octree on disk. The sizes of theoctants are determined by an application, for
example, by the density of the material they enclose. Thebalancestep recursively subdivides octants as necessary to
enforce the 2-to-1 constraint. Theextractstep uses the balanced linear octree as a template to generate a queryable
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mesh databasethat consists of an element etree and a node etree. Thetransformstep queries the data in the mesh
database and generate aflat mesh topology filethat establishes the element-node connectivity relationship. This kind
of files are needed by existing mesh partitioning tools [16] and solver packages [17].

4.1 Construct: Using Auto-Navigation to Build Linear Octrees

Although linear octrees nicely solve the problem of how to address individual octants, it does not tell us how to
build a linear octree efficiently. Although it is possible toconstruct an octree by repeatedly inserting and deleting
octants from an etree, we would have to keep records of which octants have been subdivided and which have not.
Worse, many insertions are in fact unnecessary because those octants are later subdivided and removed from the
database. To solve this problem, We have developed a technique calledauto-navigation[25]. The basic idea of auto-
navigation is simple. Since the ordering of expanding an octree under construction is independent of the correctness
of the result, the octree-traversing logic can be decoupledfrom the application and incorporated into the Weaver
mesh generation logic.

The main data structure used to implement auto-navigation is a memory-resident pointer-based octree called a
navigation octree(shown in Figure 5(a)) that is dynamically grown and pruned in depth-first order (same as the
preorder traversal). Whether a leaf octant needs to be subdivided is determined by an application via a call-back
function. With the depth-first expansion and pruning, we canguarantee that the memory requirement of a navigation
octree of depth d is bounded by O(8d), in contrast to O(8d) for a complete octree being constructed in the main
memory.

Because the preorder traversal ordering of an octree is the same as the order imposed by the locational codes of the
(leaf) octants (see Section 3), a new leaf octant being pruned off the navigation octree must have a larger locational
code value than other octants already in the database (who have been pruned off earlier). Thus, instead of calling a
standard insertion operation that costs O(log N ), we invoke anappend transactionto append octants that are pruned
off a navigation octree to the etree database. Since append operations keep a state in the runtime system, the etree
library knows where to store the new octant and thus can finishthe operation in constant time O(1).

Thus, by interacting with the underlying database structure through a navigation octree, we have been able to
simplify the programming effort of building a massive linear octree and minimize the overall cost to O(N ), where
N is the number octants being generated.

octants that can be 

flushed to the database

: octants not yet 

processed (in memory)

: non-leaf octants being 

decomposed (in memory)

: leaf octants (flushed to 
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(a) A snapshot of anavigation octree. (b) Structure of acache octree.

Figure 5:Internal data structures used by the construct and balance steps, respectively
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4.2 Balance: Bulk-loading Octants to Balance by Parts

The linear octrees produced by the auto-navigation processare not necessarily balanced. The process of transform-
ing an unbalanced octree into a balanced one is known asbalance refinement. Conceptually, balance refinement
consists of two main operations: (1)neighbor finding:Finding the neighbors of an octant to check whether the
2-to-1 constraint is violated. (2)subdivision: Deleting a “too-large” octant from the database and inserting its
eight children. The deletion is necessary because the linear octree datasets being balanced should contain only leaf
octants.

One method for implementing neighbor finding is to manipulate the locational code of an octant to generate the keys
for its neighbors and search an etree directly. The average (also worst-case) cost for a search operation is O(log N),
where N is the number of octants indexed. As a result, the total cost of neighbor findings for all the octants in the
dataset is O(N log N). The advantage of this method is that there is no excessive requirement on the size of main
memory, as long as there is enough space to cache a few B-tree pages.

A second method is to map the linear octree to a memory-resident pointer-based octree, and then use conventional
pointer-based algorithms to find neighbors [22]. The advantage is that the average cost of neighbor finding is
reduced to O(1), with a total cost of only O(N) to conductall neighbor findings. The main disadvantage is the main
memory must be large enough to hold a pointer-based image of the entire linear octree. Thus, the first problem is
how to take advantage of both methods. In particular,how do we find neighbors efficiently (in O(1) time) without
having to map an entire linear octree in memory?

Another performance problem is more subtle and is related tothe so-calledripple effect. That is, a tiny octant may
propagate its impact out in the form of a “ripple” that triggers subdivisions of octants not immediately adjacent to it.
See Figure 1 for an example. If we were to couple neighbor-finding with tree traversal, we would have to traverse
the tree multiple times to assimilate the ripple effect. However, multiple iterations of neighbor findings (and thus
tree traversals) increase the total running time by a constant factor. So a second problem we try to resolve ishow to
avoid multiple iterations of neighbor findings?

Our solution is based on the observation that although balance refinement may cause ripple effect, the impact
diminishes quickly due to the 2-to-1 edge size ratio. In addition, most impact caused by a tiny octant is localized in
a small region. For example, octantf in Figure 1 causes the subdivisions of octanta and its children. But both are
spatially adjacent tof. In other words, the impact of a tiny octant is absorbed mostly by octants surrounding it in
a small neighborhood. The strong locality of reference suggests that we may map a small region to a pointer-based
(sub)octree in memory and resolve the 2-to-1 constraint andthe ripple effect without worrying about octants outside
of the region. This is the type of solution that fits the paradigm of divide-and-conquer.

Our main new algorithm is calledbalance by parts(BBP) [24], which works as follows. First the domain represented
by a linear octree is partitioned (divided) into equal-sized 3D volumes calledvolume parts, whose alignments
correspond to non-leaf nodes (of a conceptual pointer-based octree) at a certain level. To determine the size of the
volumes, we assume conservatively that each 3D volume consists of only the smallest octants of the domain. Next,
each 3D volume is cached in memory and balanced. After all the3D volumes are processed, octants on the volume
face boundaries, calledface boundary parts, are balanced, followed by the balance of octants on the volume line
boundaries (line boundary parts) and point boundaries (point boundary parts). Each part, regardless of its type, is
cached in a temporary pointer-based octree called acache octreeas shown in Figure 5(b). While balancing a cache
octree in memory, we update the etree database to record the subdivisions of leaf octants.

Because each 3D volume maps to some sub-octree root whose leaf octants are clustered sequentially on B-tree
pages (see Section 2), we can invoke the etree cursor operations to load all octants belonging to a 3D volume into
memory. In particular, we first initialize a cursor in the etree to identify the position of thefirst octant of a 3D
volume, which is defined as the octant that occurs first in the preorder traversal of the subtree represented by the 3D
volume. Since the first octant is always anchored at the left-lower corner of a 3D volume, we can easily derive its
locational code and thus initialize a cursor. We then repeatedly retrieve and advance the cursor to sequentially scan
all the needed octants until we encounter an octant that is outside the scope of the 3D volume of interest. From the
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database perspective, this is a bulk loading operation witha cost of O(1) for each octant retrieved.

To retrieve octants for parts of other types, we implement range queries on etrees. For example, face boundary parts
are fetched by searching for octants tangentially intersecting particular rectangles (shared by 3D volumes) in space.
Since the cost of retrieving a boundary octant by searching an etree is O(log N ), whereN is the total number of
octants, the total cost of retrieving all the boundary octants (belonging to those parts other than 3D volumes) is thus
O(b log N ), whereb is the number of boundary octants. On average,b is at least 1 order of magnitude smaller than
N (2D vs. 3D). In practice, only about2% of a linear octree needs to be fetched by range queries.

When we cache in a part, regardless of its type, we map it to a cache octree, a special type of pointer-based octree
whose leaf nodes at the same tree level are linked together and is accessible from an array calledlevel table(see
Figure 5(b)). The cost of building a cache octree is linear tothe number of leaf nodes. We apply another new
algorithm calledPrioritized Ripple Propagation(PRP) to balance cache octrees. The PRP algorithm makes use
of the pointer structure of a cache octree to conduct neighbor-finding in constant time on average (solution to the
first problem). Besides, the PRP algorithm avoid multiple iterations of neighbor-findings (solution to the second
problem) by accessing leaf octants directly from the level table and subdividing octants on the fly when neighbor-
findings are being performed.

In summary, the structural design of the balance algorithmsresults in an I/O optimal case where most data is
efficiently retrieved by bulk loading (O(1) cost per octant) and the remainder is retrieved by standardspatial database
range queries (O(log N ) cost per octant). Moreover, we can avoid the costly operations of finding neighbors from
the etree database and apply a fast incore algorithm to enforce the 2-to-1 constraint. The overall cost BBP/PRP is
O(N + b log N ), whereN is the total number of octants in the linear octree andb is the number of octants in the
parts other than 3D volumes, that is, octants on the face boundaries, line boundaries and corner boundaries.

4.3 Extract: Producing Mesh Nodes by Two-Level Bucket Sort

A balanced linear octree is used as a template to extract the mesh structure (elements and nodes). Because mesh
elements correspond 1-to-1 to the octants, we can use a cursor operator to iterate each octant in the balanced linear
octree to extract the elements. The cost is O(N ).

The difficulty lies in the extraction of mesh nodes. Two important issues must be considered. First, we must get rid
of duplicate nodes. This is because each mesh node is shared by multiple elements. We should ignore duplicates
and record each node (with unique coordinate) only once. Second, we need to distinguish two different types of
nodes in the mesh:danglingandanchored. A mesh node is defined as dangling if it is located on the edge or the
face of some octant. Otherwise, it is anchored. As per definition, a dangling node is dependent on either 2 anchored
nodes if it is on an edge, or 4 anchored nodes if it is on a face. The dependence of dangling nodes on anchored
nodes must be identified explicitly.

An obvious way to implement node extraction is to make use of the node etree database, where partially generated
nodes are stored and indexed. On encountering a “new” node (computed as a vertex of a newly visited octant),
we search the node etree to decide whether it is a duplicate ornot. Hence, the cost of creating a new node is
O(log M ), whereM is the number of mesh nodes. Note that we cannot simply appendnodes to an etree because the
order we encounter new nodes arenot the same as the Z-order of the nodes. Therefore, the total cost of extracting
mesh nodes and eliminating duplicates is O(M log M ). To identify dangling nodes, we let each node record carry
extra information of how many elements are sharing it and thelocational codes of those elements, and then apply a
post-processing procedure to analyze the geometric position of each node within the mesh and determine whether
it is dangling or anchored, and if dangling, whom it depends on. Unfortunately, the running time and disk space
requirement of this algorithm are both excessively large.

To overcome the obstacles, we re-define the problem from a different angle: instead of treating node extraction as a
dynamic process that gradually discovers new mesh nodes, wecan think of all mesh nodes as statically distributed
in the domain already. Figure 6(a) shows the mesh node distribution resulted from a balanced octree. Recall that we
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use the tiniest octants in the etree address space, i.e. pixels, to represent mesh nodes. Since our goal is to produce a
node etree that is properly indexed, the problem of extracting mesh nodes is equivalent to the problem of sorting all
mesh nodes in the domain according to their locational codes(Z-order) and load (append) them to the node etree.

1 2

3 4

bucket
1

bucket
2

bucket
3

bucket
4

Order of processing high-level buckets

High-level 
buckets 
(on disk)

Low-level 
buckets     

(in memory)

Mesh node (pixel)

?

(a) Mesh node distribution in a balanced octree
domain.

(b) A mesh node falls in either a lower-level bucket or
some other high-level bucket.

Figure 6:Treat mesh nodes as pixels and use two-level bucket sort to produ ce mesh nodes.

We have developed an algorithm calledtwo-level bucket sortto implement this idea. The algorithm works as follows.
First, we partition the domain into equal-sized 3D volumes that map to sub-octree roots (same as the 3D volume
concept used in the balance step). But we now refer to these 3Dvolumes as thehigh-level bucketsto emphasize
the fact that each volume will accommodate mesh nodes that are fully enclosed in it. For example, the domain of
Figure 6 (a) consists of 4 high-level buckets correspondingto the four quadrants of the domain. Since the high-level
buckets constitute a partition of the domain, every mesh node (pixel) must belong to some high-level bucket. (For
simplicity, ignore those mesh nodes on the far-side boundary of the domain.)

We then process the high-level buckets one by one in Z-order.For each high-level bucket, we build an incore
(sub) octree to represents its octants (mesh elements), which becomes the so-calledlow-level buckets, as shown
in Figure 6(b). On encountering each octant, we derive the locational codes for its eight nodes (corners). Due to
the aggregate hit property explained in Section 2, each derived mesh node (pixel) will be enclosed either by some
low-level bucket or by some other high-level bucket. Eitherway, a derived mesh node is assigned to a proper bucket.

After all mesh nodes induced by octants in the current high-level bucket are accounted for, we sort the mesh nodes
assigned to the low-level buckets. The interesting aspect of this sorting algorithm is that we only need to sort mesh
nodes assigned to each individual low-level bucket, respectively. Any low-level bucket contains 7 mesh nodes at
maximum, though most of the low-level buckets may only contain 1 node (its own lower-left corner node). So any
simple sorting algorithm can be applied. We then traverse the incore (sub) octree in preorder, appending the sorted
mesh nodes of each low-level bucket to the node etree. Mesh nodes assigned to other high-level buckets will be
sorted and appended to the node etree when those high-level buckets are later processed.

It can be shown that the order we visit the (high-level and low-level) buckets guarantees that the nodes are always
produced in their locational codes order (Z-order) and can be safely appended to a node etree. In addition, it can be
shown that dangling node identifications can be efficiently embedded in the two-level bucket sort algorithm.

4.4 Transform: Deriving Flat Mesh Topology through Spatial Join

Given an element etree and a node etree, the transform step generates flattopology fileto represent the element-node
connectivity relationship. In such a topology file, elements are identified by unique ids drawn from a consecutive
integer sequence starting from 0, and so are the nodes (from another independent integer sequence). Therefore two
tasks need to be accomplished: (1) id assignments, and (2) correlate element ids to node ids.
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A simple way to associate ids with the elements is to traversethe element etree in the ascending locational code
order and assign an element the sequence number in which we encounter it. Similarly, we can assign ids to the
nodes in the same way. The cost of id assignments is thus O(M + N ), whereN is the number of elements andM
is the number of nodes. As mentioned early, the nice propertyof the locational code ordering is that it corresponds
exactly to the Z-ordering, thus the id assignment has the property that spatially close elements are clustered together
in the 1D id space. So are the case with the mesh nodes.

The second task is much more challenging. Correlating element ids to node ids represents a special type of spatial-
join problem. A naive way of implementing such join operation is to visit the element one by one. Use the element
locational code to derive the locational codes for its eightnodes. Then use the node locational codes to search the
node etree to find out the node ids for each of the node. The costof such an algorithm is O(N log M ). Noticing
thatN andM are approximately the same and are usually very large (from hundreds of millions to several billions),
such a cost is very expensive.

We have been working on an improved spatial-join algorithm with an average cost of O(N +M ). The key insight is
that each element is only correlated to eight nodes, which are close-by in space. Given the clustering property of the
locational codes, we only need to cache in memory those the mesh elements and nodes that are indeed correlated.
While iterating elements one by one in Z-order (using the etree cursor operator), we prefetch related mesh nodes
into memory (also using the cursor operator) and build a hashtable to keep track of the cached nodes so that we can
access mesh nodes in constant time on average.

5 Evaluation

In this section, we present the performance evaluation of the Weaver system for generating massive unstructured
hexahedral meshes. We have conducted experiments to answerthe following two questions: (1) How effective is
the Weaver system? and (2) Where does the time go while generating a mesh?

The meshes we generated are used for earthquake ground motion simulations. The purpose of such simulations is
not to predictwhenan earthquake would occur, but rather what would happenif that earthquake would occur. In het-
erogeneous geological structures such as sedimentary basins where material properties vary significantly throughout
the domain, multi-resolution unstructured hexahedral meshes allow a tremendous reduction (approx. three orders
of magnitude) in the number of mesh nodes (compared to uniform meshes), because element sizes can adapt locally
to the high-variable wavelength of propagating seismic waves.

Frequency 0.5 Hz 1Hz 2Hz
Num of elements 9.92M 111M 1.22B
Num of nodes 11.3M 134M 1.37B
Mesh database 340 MB 4.00 GB 45.6 GB
Flat topology files 655 MB 7.59 GB 80.5 GB
Mesh gen. time 00:05:58 01:22:06 15:13:08 0%

20%

40%

60%

80%

100%

0.5Hz 1Hz 2Hz
Mesh

Construct Balance Extract Transform

(a) Summary for LAB meshes. (b) Execution time breakdown fordifferent steps.

Figure 7:LAB meshes generated by the Weaver system on a Linux desktop ma chine and the running times.
The 2 Hz mesh was used for terascale earthquake simulations on the TCS system (Lemieux) at PSC [3].

Our target region is the Los Angeles Basin (LAB), which comprises a 3D volume of 100 km x 100 km x 37.5 km.
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The material model we used to drive the mesh generation process is the Southern California Earthquake Center
(SCEC) 3D velocity model [18] (Version 3, 2002). We generatedifferent meshes to satisfy different simulation
frequency requirements. Roughly speaking, the higher the frequency, the finer (larger) the mesh.

All our experiments were conducted on a desktop machine witha PIII 1GHz processor running Linux 2.4.17. The
memory subsystem consisted of 3GB physical memory and 1GB swap space.

Figure 7(a) summarizes the characteristics of three large meshes we generated. The columns correspond to the
meshes that are capable of resolving 0.5 Hz, 1 Hz and 2 Hz seismic wave, respectively. The last row records the
running times of the Weaver system in hh:mm:ss format. This table shows that the Weaver system is capable of
generating extremely large meshes on a desktop system in a reasonable amount of time. For example, the 2 Hz
mesh, with 1.37B nodes, involves creating a mesh database ofsize 45GB and flat topology files of size 80.5GB. If
we had built all mesh data structures in main memory, we wouldhave used more than 300 GB memory (on an Alpha
system with 8-byte pointers). Given that the machine we usedhas only 3GB memory, generating such a massive
and complicated mesh in about 15 hours (overnight) appear tobe an effective solution.

Figure 7(b) shows the execution time breakdown for generating the three large meshes, respectively. Each bar
represents the contribution of the four steps (construct, balance, extract, and transform) as a percentage of the total
mesh generation execution time. Since the mesh database (340 MB) and the flat topology files (655 MB) for the
0.5 Hz mesh fit completely in the main memory of the experimentsystem (3 GB), the 0.5Hz mesh must have been
generated completely from memory. Meanwhile, the 1Hz and 2Hz meshes must have been generated by interacting
with the disk subsystem. The fact that all three cases have similar time breakdown patterns, as shown in Figure 7(b),
suggests that the running time of each step is mostly determined by the problem size instead of database related disk
I/Os. This implies that the Weaver system is exploiting locality efficiently and is processing data mostly from within
memory. Otherwise, we would have seen large fluctuations dueto disk I/O as the problem size increases. Also from
Figure 7, we can see that although we have divided the mesh generation logic of the Weaver system into four steps,
their complexities are quite different from each other, ranging from the simple bulk-loading operation (the construct
step) to the convoluted spatial-join operation (the transform step). In fact, prior to the transform step, the balance
and extract steps have been the performance bottlenecks, which we have resolved with the new algorithms and data
structures explained in Section 4.

6 Summary

Despite the increase in computing power and storage capacity, scientists have not been able to take the full advantage
of the technology trend to generate and manipulate massive unstructured simulation datasets on their desktops. We
propose computational database systems (CDSs) to solve this problem. Developing CDSs requires research that lies
at the intersection of database systems, computer systems and scientific computing.

This paper has presented the design, implementation and evaluation of the Weaver prototype CDS. Although still
being developed, the Weaver system has already shown some merits of the idea of CDSs. First of all, the Weaver
system has enabled us to generate massive unstructured hexahedral meshes on desktop machines with limited mem-
ory. Second, the meshes generated are stored in spatial databases that can be efficiently queried. Third, the design
framework of the Weaver system allows us to approach mesh generation problems from a database perspective,
resulting in new algorithms such as auto-navigation, balance by parts, and two-level bucket sort.
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