
STEPS Towards Cache-Resident Transaction Processing

Stavros Harizopoulos

Carnegie Mellon University
stavros@cs.cmu.edu

Anastassia Ailamaki

Carnegie Mellon University
natassa@cs.cmu.edu

Abstract
Online transaction processing (OLTP) is a multi-
billion dollar industry with high-end database
servers employing state-of-the-art processors to
maximize performance. Unfortunately, recent
studies show that CPUs are far from realizing
their maximum intended throughput because of
delays in the processor caches. When running
OLTP, instruction-related delays in the memory
subsystem account for 25 to 40% of the total exe-
cution time. In contrast to data, instruction misses
cannot be overlapped with out-of-order execution,
and instruction caches cannot grow as the slower
access time directly affects the processor speed.
The challenge is to alleviate the instruction-
related delays without increasing the cache size.

We propose Steps, a technique that minimizes
instruction cache misses in OLTP workloads by
multiplexing concurrent transactions and exploit-
ing common code paths. One transaction paves
the cache with instructions, while close followers
enjoy a nearly miss-free execution. Steps yields up
to 96.7% reduction in instruction cache misses for
each additional concurrent transaction, and at the
same time eliminates up to 64% of mispredicted
branches by loading a repeating execution pattern
into the CPU. This paper (a) describes the design
and implementation of Steps, (b) analyzes Steps
using microbenchmarks, and (c) shows Steps per-
formance when running TPC-C on top of the
Shore storage manager.

1 Prologue
In the past decade, research has proposed techniques to
identify and reduce CPU performance bottlenecks in data-
base workloads. As memory access times improve much

slower than processor speed, performance is bound by
instruction and data cache misses that cause expensive
main-memory accesses. Research [AD+99][LB+98][SBG02]
shows that decision-support (DSS) applications are pre-
dominantly delayed by data cache misses, whereas OLTP
is bounded by instruction cache misses. Although several
techniques can reduce data cache misses (larger caches,
out-of-order execution, better data placement), none of
these can effectively address instruction caches.

1.1 Instruction cache behavior in OLTP
To maximize first-level instruction cache (L1-I cache) uti-
lization and minimize stalls, application code should have
few branches (exhibiting high spatial locality), a repeating
pattern when deciding whether to follow a branch (yield-
ing low branch misprediction rate), and most importantly,
the “working set” code footprint should fit in the L1-I
cache. Unfortunately, OLTP workloads exhibit the exact
opposite behavior [KP+98]. A study on Oracle reports a
556KB OLTP code footprint [LB+98]. With modern CPUs
having 16-64KB L1-I cache sizes, OLTP code paths are
too long to achieve cache-residency. Moreover, the impor-
tance of L1-I cache stalls increases with larger L2 caches
(Fig. 1a, stalls shown as non-overlapping components; I-
cache stalls are actually 41% of the total execution time
[KP+98]). As a large L1-I cache may adversely impact the
CPU’s clock frequency, chip designers cannot increase
L1-I sizes despite the growth in secondary caches (Fig.
1b). The increasing gap between cache levels makes L1-I
cache misses the most important CPU stall factor in OLTP.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

0

2

4

6

256KB 512KB 1M B

L2-I M isses
L2-D M isses
L1-I M isses
L1-D M isses
Other stalls
Branch M ispred.
Computation

L2 Cache Size

N
on

-o
ve

rla
pp

ed
 C

P
I

1MB256KB 512KB
10

100

1000

10000

100000

199
4

199
6

199
8

200
0

200
2

200
4

2

Alpha 21264 Power4
Ultra SPARC Itanium2
UltraSPARK IV

 max on-chip
L2/L3 cache

100
KB

1
MB

10
MB

10
KB ‘96 ‘98 ‘00 ‘02 ‘04

Year Introduced

C
ac

he
 s

iz
e

(lo
ga

rit
hm

ic
)

L1-I cache

Figure 1a. TPC-C CPU stall
breakdown on PentiumPro. With
larger L2 cache size L1-I misses
become the dominant stall factor
(3rd box from top). [KP+98]

Figure 1b. A decade-span-
ning trend shows that L1-I
caches do not grow, while
secondary, on-chip caches
become increasingly larger.

1.2 Related research
The full spectrum of approaches to improve instruction
cache performance includes the following three areas:

At the hardware end, chip designers study database work-
load behavior and respond with higher-performance
caches, but they are bound by design restrictions on the
L1-I cache size [HP96]. Hardware enhancements apply to
all workloads, and thus cannot effectively target a specific
weakness of database workloads. At the binary representa-
tion level, compilers optimize DBMS code for a given set
of hardware architectures [RV+97]. This area studies
instruction traces and focuses on increasing the cache hit
rate by reorganizing the binary code [RB+01]. Compilers
still cannot “see” the root of the problem and thus, can par-
tially alleviate L1-I cache misses only for statically trained
workload instances.

A software designer has the best insight as to why the
program incurs cache misses. For example, studying data
cache access patterns and changing the memory page lay-
out proved to be a key factor for reducing data cache
misses [AD+01]. While the payoff in software approaches
may be larger, improving instruction cache behavior for
the entire code (typically millions of lines) is a great chal-
lenge. To our knowledge, this paper is the first to address
instruction cache misses in transaction processing by pro-
posing small changes in the DBMS code.

1.3 Steps to cache-resident code
We propose to exploit the high degree of concurrency that
characterizes transaction processing workloads to maxi-
mize instruction sharing in the cache across different
transactions. Consider, for instance, a hundred concurrent
transactions executing the same high-level operation, e.g.,
record lookup using a B-tree index. Since the code work-
ing set typically overwhelms the L1-I cache and context
switching occurs at random points, each transaction exe-
cution incurs new instruction misses.

To alleviate the problem, we propose a technique
called Synchronized Transactions through Explicit Proces-
sor Scheduling, or Steps. Steps allows only one transaction
to incur the compulsory instruction misses, while the rest
of the transactions can piggyback in order to always find
the instructions they need in the cache. To achieve this,
Steps identifies the points in the code the cache fills up and
performs a quick context-switch so that other transactions
can execute the cache-resident code. We implemented
Steps inside the Shore storage manager [Ca+94]. Figure 2a
shows that, when running a group of transactions perform-
ing an indexed selection on a real machine with 64KB
instruction cache, L1-I cache misses are reduced by 96.7%
for each additional concurrent thread.

A real transactional workload, however, includes dif-
ferent types of transactions and indices, involves mecha-
nisms for logging and deadlock detection, and its
execution is unpredictable due to frequent I/O and lock
requests. Steps is designed to work with any OLTP work-
load; we illustrate our results using the widely accepted
transactional benchmark TPC-C [Gra93]. Figure 2b shows
that Steps running the Payment transaction in a 30-Ware-
house configuration reduces instruction misses by 65%
and mispredicted branches by 48%, while at the same time
produces a 39% speedup on a real machine with 64KB L1-
I cache. Steps incurs a 8% increase in the number of first-
level data cache (L1-D) misses, which does not affect per-
formance because the total number of L1-D cache misses
is low and the penalty is easily hidden by instruction-level
parallelism and out-of-order execution [AD+99].

1.4 Contributions and paper organization
This paper proposes a software technique to minimize
instruction-related stalls for transactional database work-
loads. We demonstrate the validity and usefulness of Steps
using the TPC-C benchmark running on Shore, a proto-
type state-of-the-art storage manager with similar behavior
to commercial database systems [AD+01]. We use both real
hardware (two different processors) and a full-system sim-
ulator. We focus on performance metrics that are not
affected by the specifics of our system, and most impor-
tantly, we report aggregate (full-system) results for the
execution time and cache usage statistics1.

The paper is organized as follows. Section 2 provides
background on processor caches and related work. Section
3 explains the implementation of Steps and demonstrates
the benefits using microbenchmarks. Section 4 graduates
Steps to the real world, removing all assumptions and run-
ning a full-fledged OLTP benchmark (TPC-C). We also
describe how to apply Steps on any DBMS architecture.

Software
Design

Hardware
Design

Compiler
& Binary tools

can pinpoint problem need to be general

1. Full-system evaluation is crucial: results on isolated algo-
rithms rarely reflect equal benefits when run inside a DBMS.

0

2000

4000

6000

8000

1 2 4 8

Shore

Steps

0

20

40

60

80

100

Shore
Steps

L1
-I

ca
ch

e
m

is
se

s

Index selection

Concurrent threads

TPC-C: 30WH, Payment Xaction

Cyc
les

L1
-I M

iss
es

Br. M
isp

red
.

L1
-D

 M
iss

es

Figure 2a. For a group of
threads performing a tuple
retrieval on a similar index,
Steps practically eliminates
additional L1-I misses.

Figure 2b. When 300 users run
the TPC-C Payment transaction
on a dataset of 30 Warehouses,
Steps outperforms Shore on all
of the time-critical events.

N
or

m
al

iz
ed

 p
er

ce
nt

ag
e

2 Background and related work
To bridge the CPU/memory performance gap, today’s pro-
cessors employ a hierarchy of caches that maintain
recently referenced instructions and data close to the pro-
cessor. Figure 3 shows an example of an instruction cache
organization and explains the difference between capacity
and conflict cache misses. Recent processors — e.g.,
IBM’s Power4 — have up to three cache levels. At each
hierarchy level, the corresponding cache trades off lookup
speed for size. For example, level-one (L1) caches at the
highest level are small (e.g., 16KB-64KB), but operate at
processor speed. In contrast, lookup in level-two (L2)
caches typically incurs up to an order of magnitude longer
time because they are several times larger than the L1
caches (e.g., 512K-8MB). L2 lookup, however, is still sev-
eral orders of magnitude faster than memory accesses
(typically 300-400 cycles). Therefore, the effectiveness of
cache hierarchy is extremely important for performance.

In contrast to data cache, instruction cache accesses
are serialized and cannot be overlapped. Instruction cache
misses prevent the flow of instructions through the proces-
sor and directly affect performance. Current trends
towards improving process performance are leading to (i)
increased on-chip L2 cache sizes (Figure 1b), and to (ii)
increased degree of instruction-level parallelism through
increasingly wider superscalar pipelines. In future proces-
sors, the combined effect of these two trends will result in
significantly reduced cache data stalls (because multiple
data cache accesses can be overlapped in parallel) making
instruction cache stalls the key performance bottleneck.

2.1 Database workloads on modern processors
Prior research [MDO94] indicates that adverse memory
access patterns in database workloads result in poor cache
locality and overall performance. Recent studies of OLTP
workloads and DBMS performance on modern processors
[AD+99][KP+98] narrow the primary memory-related bottle-
necks to L1 instruction and L2 data cache misses. More
specifically, Keeton et al measure an instruction-related
stall component of 41% of the total execution time for
Informix running TPC-C on a PentiumPro [KP+98]. When
running transactional (TPC-B and TPC-C) and decision-
support (TPC-H) benchmarks on top of Oracle on Alpha
processors, instruction stalls account for 45% and 30% of
the execution time, respectively [BGB98][SBG02]. A recent
study of DB2 7.2 running TPC-C on Pentium III [SA04]
attributes 22% of the execution time to instruction stalls.

Unfortunately, unlike DSS workloads, transaction
processing involves a large code footprint and exhibits
irregular data access patterns due to the long and complex
code paths of transaction execution. In addition, concur-
rent request reduces the effectiveness of single-query opti-
mizations [JK99]. Finally, OLTP instruction streams have
strong data dependencies that limit instruction-level paral-

lelism opportunity, and irregular program control flow that
undermines built-in pipeline branch prediction mecha-
nisms and increases instruction stall time.

2.2 Techniques to address L1-I cache stalls
In the last decade, research on cache-conscious database
systems has primarily addressed data cache performance
[SKN94][CGM01][GL01][AD+01]. L1-I cache misses, however,
and misses occurring when concurrent threads replace
each other’s working sets [RB+95], have received little
attention by the database community. A recent study
[PM+01][ZR04] proposes increasing the number of tuples
processed by each relational operator, improving instruc-
tion locality when running single-query-at-a-time DSS
workloads. Unfortunately, similar techniques cannot apply
to OLTP workloads because transactions typically do not
form long pipelines of database operators.

Instruction locality can be improved by altering the
binary code layout so that run-time code paths are as con-
flict-free and stored as contiguously as possible [RV+97]
[RB+01]. In the example of Figure 3 one such optimization
would be to place procedure A’s code on address 20, so
that it does not conflict with the for-loop code. Such com-
piler optimizations are based on static profile data col-
lected when executing a certain targeted workload, there-
fore, they may hurt performance when executing other
workloads. Moreover, such techniques cannot satisfy all
conflicting code paths from all different execution threads.

A complementary approach is instruction prefetching
in the hardware [CLM97]. Call graph prefetching [APD03]
collects information about the sequence of database func-
tions calls and prefetches the function most likely to be
called next. The success of such a scheme depends on the
predictability of function call sequences. Unfortunately,
OLTP workloads exhibit highly unpredictable instruction
streams that challenge even the most sophisticated predic-
tion mechanisms (the evaluation of call graph prefetching
is done through relatively simple DSS queries [APD03]).

cache

2-way associative

for loop {
if ? call A
f2
f1

f3 }f4
* * * *
A () { }a1

for loop {

if ? call A

f1

f3

f4 }

R A ML1-I cache

larger

higher associativity
reduces conflict misses

codeaddress

12

14
16

18
20

22
24

size
reduces
capacity
misses

system
bus

Figure 3. Example of a 2-way set associative, 4-set (8 cache
blocks) L1-I cache. Code stored in RAM maps to one set of
cache blocks and is stored to any of the two blocks in that set.
For simplicity we omit L2/L3 caches. In this example, the for-
loop code fits in the cache only if procedure A is never called. In
that case, repeated executions of the code will always hit in the
L1-I cache. Larger code (more than eight blocks) would result in
capacity misses. On the other hand, frequent calls to A would
result to conflict misses because A’s code would replace code
lines f3 and f4 needed in the next iteration.

4 sets

blockf2 * * * *

* * * *
* * * *

* * * *

* * * *

3 Steps: Introducing cache-resident code
All OLTP transactions, regardless of the specific actions
they perform, execute common database mechanisms (i.e.,
index traversing, buffer pool manager, lock manager, log-
ging). In addition, OLTP typically processes hundreds of
requests concurrently (the top performing system in the
TPC-C benchmark suite supports over one million users
and handles hundreds of concurrent client connections
[TPC04]). High-performance disk subsystems and high-
concurrency locking protocols ensure that, at any time,
there are multiple threads in the CPU ready-to-run queue.

We propose to exploit the characteristics of OLTP
code by reusing instructions in the cache across a group of
transactions, effectively turning an arbitrarily large OLTP
code footprint into nearly cache-resident code. We syn-
chronize transaction groups executing common code frag-
ments, improving performance by exploiting the high
degree of OLTP concurrency. The rest of this section
describes the design and implementation of Steps, and
details its behavior using transactional microbenchmarks.

3.1 Basic implementation of Steps
Transactions typically invoke a basic set of operations:
begin, commit, index fetch, scan, update, insert, and
delete. Each of those operations involves several DBMS
functions and can easily overwhelm the L1-I cache of
modern processors. Experimenting with the Shore data-
base storage manager [Ca+94] on a CPU with 64KB L1-I
cache, we find that even repeated execution of a single
operation always incurs additional L1-I misses. Suppose
that N transactions, each being carried out by a thread, per-
form an index fetch (traverse a B-tree, lock a record, and
read it). For now, we assume that transactions execute
uninterrupted (all pages are in main memory and locks are
granted immediately). A DBMS would execute one index
fetch after another, incurring more L1-I cache misses with
each transaction execution. We propose to reuse the
instructions one transaction brings in the cache, thereby
eliminating misses for the remaining N-1 transactions.

As the code path is almost the same for all N transac-
tions (except for minor, key-value processing), Steps fol-
lows the code execution for one transaction and finds the
point at which the L1-I cache starts evicting previously-
fetched instructions. At that point Steps context-switches
the CPU to another thread. Once that thread reaches the
same point in the code as the first, we switch to the next.
The Nth thread switches back to the first one, which fills
the cache with new instructions. Since the last N-1 threads
execute the same instructions as the first, they incur signif-
icantly fewer L1-I misses (conflict misses, since each code
fragment’s footprint is smaller than the L1-I cache).

Figures 4a and 4b illustrate the scenario mentioned
above for two threads. Using Steps, one transaction paves
the L1-I cache, incurring all compulsory misses. A second,

similar transaction follows closely, finding all the instruc-
tions it needs in the cache. Next, we describe (a) how to
minimize the context-switch code size, and, (b) where to
insert the context-switch calls in the DBMS source code.

3.1.1 Fast, efficient context-switching
Switching execution from one thread (or process) to
another involves updating OS and DBMS software struc-
tures, as well as updating CPU registers. Thread switching
is less costly than process switching (depending on the
implementation). Most commercial DBMS involve a
light-weight mechanism to pass on CPU control (Shore
uses user-level threads). Typical context-switching mecha-
nisms, however, occupy a significant portion of the L1-I
cache and take hundreds of processor cycles to run.
Shore’s context-switch, for instance, occupies half of Pen-
tium III’s 16KB L1-I cache.

To minimize the overhead of context-switch we apply
a universal design guideline: make the common case fast.
The common case here is switching between transactions
executing the same operation. Steps executes only the core
context-switch code and updates only CPU state, ignoring
thread-specific software structures such as the ready
queue, until they must be updated. The minimum code
needed to perform a context-switch on a IA-32 architec-
ture — save/restore CPU registers and switch the base and
stack pointers — is 48 bytes (76 in our implementation).
Therefore, it only takes three 32-byte (or two 64-byte)
cache blocks to store the context-switch code. One optimi-
zation that several commercial thread packages (e.g.,
Linux threads) make is to skip updating the floating point
registers until they are actually used. For a subset of the
microbenchmarks we apply a similar optimization using a
flag in the core context-switch code.

3.1.2 Finding context-switching points in Shore
Given a basic set of transactional operations, we find
appropriate places in the code to insert a call to CTX (next)
(the context-switch function), where next is a pointer to
the next thread to run. Steps tests candidate points in the
code by executing the DBMS operations (on simple, syn-
thetic tables) and by inserting CTX (next) calls before or

Figure 4a. As the instruction
cache cannot fit the entire
code, when the CPU
switches (dotted line) to
thread B it will incur the
same number of misses.

Figure 4b. If we “break” the
code into three pieces that fit in
the cache, and switch execution
back and forth between the two
threads, thread B will find all
instructions in the cache.

thread A thread B
0010
110
011
1100
010
1010
111
1101
11
0010
001
101

instruction
cache

capacity
window

0010
110
011
1100
010
1010
111
1101
11
0010
001
101

CPU
thread A thread B

0010
110
011
1100
010
1010
111
1101
11
0010
001
101

0010
110
011
1100
010
1010
111
1101
11
0010
001
101

CPU code
hits in

cache
instruction

context-
switch
points

after major function calls. Using hardware counters (avail-
able on almost all processors [INT04]), we measure the L1-I
cache misses for executing various code fragments. Start-
ing from the beginning of a DBMS operation and gradu-
ally moving towards its end, Steps compares the number of
L1-I misses the execution of a code fragment incurs alone
with the total number of misses when executing the same
fragment twice (using the fast CTX call). A CTX point is
inserted as soon as Steps detects a knee in the curve of the
number of L1-I cache misses. Steps continues this search
until it covers the entire high-level code path of a DBMS
operation, for all operations.

The method of placing CTX calls described above
does not depend on any assumptions about the code
behavior or the cache architecture. Rather, it dynamically
inspects code paths and chooses every code fragment to
reside in the L1-I cache as long as possible across a group
of interested transactions. If a code path is self-conflicting
(given the associativity of the cache), then our method will
place CTX calls around a code fragment that may have a
significantly smaller footprint than the cache size, but will
have fewer conflict misses when repeatedly executed.
Likewise, this method also explicitly includes the context-
switching code itself when deciding switching points.

The rest of this section evaluates Steps using
microbenchmarks, whereas the complete implementation
for OLTP workloads is described in Section 4. In all exper-
iments we refer as “Shore” to the original unmodified sys-
tem and as “Steps” to our system built on top of Shore.

3.2 Steps in practice: microbenchmarks
We conduct experiments on the processors shown in Table
1. Most experiments run on the AthlonXP, which features
a large, 64KB L1-I cache. High-end installations typically
run OLTP workloads on server processors (such as the
ones shown in Figure 1b). In our work, however, we are
primarily interested in the number of L1-cache misses.
From the hardware perspective, this metric depends on the
L1-I cache characteristics: size, associativity, and block
size (and not on clock frequency, or the L2 cache). More-
over, L1-I cache misses are measured accurately using
processor counters, whereas time-related metrics (cycles,
time spent on a miss) can only be estimated and depend on

the entire system configuration. Instruction misses, how-
ever, translate directly to stall time since they cannot be
overlapped with out-of-order execution.

Shore runs under Linux 2.4.20. We use PAPI [MB+99]
and the perfctr library to access the AthlonXP and PIII
counters. The results are based on running index fetch on
various tables consisting of 25 int attributes and 100,000
rows each. The code footprint of index fetch without
searching for the index itself (which is already loaded) is
45KB, as measured by a cache simulator (described in
Section 3.2.4). Repeatedly running index fetch would
incur no additional misses in a 45K fully-associative
cache, but may incur conflict misses in lower-associativity
caches, as explained in Figure 3. We report results aver-
aged over 10 threads, each running index fetch 100 times.

3.2.1 Instruction misses and thread group size
We measure L1-I cache misses for index fetch, for various
thread group sizes. Both Steps and Shore execute the fast
CTX call, but Steps multiplexes thread execution, while
Shore executes the threads serially. We first start with a
cold cache and flush it between successive index fetch
calls, and then repeat the experiment starting with a warm
cache. Figure 5 shows the results on the AthlonXP.

Steps only incurs 33 misses for every additional
thread, with both a cold and a warm cache. Under Shore,
each additional thread adds to the total exactly the same
number of misses: 985 for a cold cache (capacity misses)
and 373 for a warm cache (all conflict misses since the
working set of index fetch is 45KB). The numbers show
that Shore could potentially benefit from immediately
repeating the execution of the same operation across dif-
ferent threads. In practice, this does not happen because:
(a) DBMS threads suspend and resume execution at differ-
ent places of the code (performing different operations),
and, (b) even if somehow two threads did synchronize, the
regular context-switch code would itself conflict with the
DBMS code. If the same thread, however, executes the
same operation immediately, it will enjoy a warm cache.
For the rest of the experiments we always warm up Shore
with the same operation, and use the fast CTX call, there-
fore reporting worst-case lower bounds.

TABLE 1: Processors used in microbenchmarks

CPU Cache characteristics

AMD
AthlonXP

L1 I + D cache size
associativity / block size

64KB + 64KB
2-way / 64 bytes

L2 cache size 256KB

Pentium III
L1 I + D cache size

associativity / block size
16KB + 16KB

4-way / 32 bytes

L2 cache size 256KB

Simulated IA-32
(SIMFLEX)

L1 I + D cache size
associativity

[16, 32, 64KB]
[direct, 2, 4, 8, full]

0

2000

4000

6000

8000

1 2 4 6 8 10

Shore (co ld)
Steps (co ld)
Shore (warm)
Steps (warm)

Figure 5. Proof of concept: Steps reduces significantly instruc-
tion-cache misses as the group of concurrent threads increases,
both with cold and with warm caches.

9850

Concurrent threads

L1
-I

ca
ch

e
m

is
se

s

The following brief analysis derives a formula for the
L1-I cache miss reduction bounds as a function of the
thread group size (for similarly structured operations with
no exceptional events). Suppose executing an operation P
once, with cold cache, yields misses. Executing P, N
times, flushing the cache in-between, yields
misses. A warm cache yields , misses
because of fewer capacity misses. In Steps, all threads
except the first incur misses, where .
For a group size of N, the total number of misses is

. For an already warmed-up cache this
is: . When comparing Steps to
Shore, we express the miss reduction percentage as:

. Therefore, the
bounds for computing the L1-I cache miss reduction are:

For index fetch, we measure , , giving
a range of 82% - 87% of overall reduction in L1-I cache
misses for 10 threads, and 90% - 96% for 100 threads. For
the tuple update code in Shore, the corresponding parame-
ters are: and .

The next microbenchmarks examine how the savings
in L1-I cache misses translate into execution time and how
Steps affects other performance metrics.

3.2.2 Speedup and level-one data cache misses
Keeping the same setup as in 3.2.1 and providing Shore
with a warmed-up cache we measure the execution time in
CPU cycles and the number of level-one data (L1-D)
cache misses on the AthlonXP. Figure 6a shows that Steps
speedup increases with the number of concurrent threads.
We plot both Steps performance with a CTX function that
always updates floating point registers (float on) and with
a function that skips updates. The speedup for 10 threads
is 31% while for a cold cache it is 40.7% (not shown).

While a larger group promotes instruction reuse it
also increases the collective data working set. Each thread
operates on a set of private variables, buffer pool pages,
and metadata which form the thread’s data working set.

Multiplexing thread execution at the granularity Steps
does, results in a larger collective working set which can
overwhelm the L1-D cache (when compared to Shore).
Figure 6b shows that Steps incurs increasingly more L1-D
cache misses as the thread group size increases. For up to
four threads, however, the collective working set has com-
parable performance to single-thread execution.

Fortunately, L1-D cache misses have minimal effect
on execution time (as also seen by the Steps speedup). The
reason is that L1-D cache misses that hit in the L2 cache
(i.e., are serviced within 5-10 cycles) can be easily over-
lapped by out-of-order execution [AD+99]. Moreover, in the
context of Simultaneous Multithreaded Processors (SMT),
it has been shown that for 8 threads executing simulta-
neously an OLTP workload and sharing the CPU caches,
additional L1-D misses can be eliminated [LB+98].

On the other hand, there is no real incentive in
increasing the group size beyond 10-20 threads, as the
upper limit in the reduction of L1-I cache misses is already
90-95%. Figure 7 plots the Steps speedup (both with float
on/off) and the percentage of L1-I cache misses reduction
for 2-80 concurrent threads. The reason that the speedup
deteriorates for groups larger than 10 threads is because of
the AMD’s small, 256KB unified L2 cache. In contrast to
L1-D cache misses, L2-D misses cannot be overlapped by
out-of-order execution. Steps always splits large groups
(discussed in Section 4) to avoid the speedup degradation.

3.2.3 Detailed behavior on two different processors
The next experiment examines a wide range of changes in
hardware behavior between Steps and Shore for index
fetch with 10 threads. We experiment with both the Athlon
XP and the Pentium III, using the same code and a CTX
function that updates all registers (float optimization is
off). The Pentium III features a smaller, 16KB L1-I and
L1-D cache (see also table 1 for processor characteristics).
Since the CTX points in Shore were chosen when running

mP
N mP⋅

N a m⋅ P⋅ 0 a 1≤<

N β m⋅ P⋅ 0 β 1< <

mP N 1–() β mP⋅ ⋅+
a m⋅ P N 1–() β mP⋅ ⋅+

1 #misses after #misses before⁄–() 100%⋅

for cold cache

N 1–()
N

----------------- 1 β–() 100%⋅ ⋅

for warm cache

N 1–
N

------------- 1 β
a
---– 

  100%⋅ ⋅

N: group size
a 0.373= β 0.033=

a 0.35= β 0.044=

0

100

200

300

400

1 2 4 6 8 10

Shore
Steps (float on)

Steps

E
xe

c.
 ti

m
e

(th
ou

sa
nd

s
of

 c
yc

le
s)

Concurrent threads

0

500

1000

1500

2000

1 2 4 6 8 10

Shore

Steps

L1
-D

 m
is

se
s

Concurrent threads
Figure 6a. Execution time (CPU
cycles) for one to ten concurrent
threads. Steps with float on always
updates floating point registers.

Figure 6b. L1-D cache
misses for one to ten con-
current threads.

Figure 7. Lower bounds for speedup using a warm cache for
Shore (bottom graph) and percentage of reduction in L1-I cache
misses (top graph) of Steps over Shore, for 2-80 concurrent
threads. The top line shows the maximum possible reduction.

Concurrent threads

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80

L1-I miss reduction % upper limit
L1-I miss reduction %

M
is

s
re

du
ct

io
n

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60 70 80

Speedup
Speedup (f loat on)

Sp
ee

du
p

on the AthlonXP (64KB L1-I cache), we expect that this
version of Steps on the Pentium III will not be as effective
in reducing L1-I cache misses as on the AthlonXP. The
results are in Figure 8. Our observations for each event
counted, in the order they appear in the graph, follow.

Execution time and L1-I cache misses. Steps is also
effective on the Pentium III despite its small cache, reduc-
ing L1-I cache misses to a third (66% out of a maximum
possible 90% reduction). Moreover, the speedup on the
Pentium is higher than the AthlonXP, mainly because the
absolute number of misses saved is higher (absolute num-
bers for Steps are on top of each bar in Figure 8). The last
bar in Figure 8 shows the reduction in the cycles the pro-
cessor is stalled due to lack of instructions in the cache
(event only available on the Pentium III). The reduction
percentage matches the L1-I cache miss reduction.

Level-one data cache. Steps incurs significantly
more L1-D cache misses on the Pentium’s small L1-D
cache (109% more misses). However, the CPU can cope
well by overlapping misses and perform 24% faster.

Level-two cache. L2 cache performance does not
have an effect on the specific microbenchmark since

almost all data and instructions can be found there. We
report L2 cache performance in the next section, when
running a full OLTP workload.

Instructions and branches retired. As expected,
Steps executes slightly more instructions (1.7%) and
branches (1.3%) due to the extra context-switch code.

Mispredicted branches. Steps reduces mispredicted
branches to almost a third on both CPUs (it eliminates
64% of Shore’s mispredicted branches). This is an impor-
tant result coming from Steps’ ability to provide the CPU
with frequently repeating execution patterns. We verify
this observation via an event available to Pentium III (sec-
ond to last bar in Figure 8), that shows a reduction in the
number of branches missing the Branch Target Buffer
(BTB), a small cache for recently executed branches.

3.2.4 Varying L1-I cache characteristics
The last microbenchmark varies L1-I cache characteristics
using SIMFLEX [HS+04], a Simics-based [MC+02], full-sys-
tem simulation framework developed at the Computer
Architecture Lab of Carnegie Mellon. We use Simics/SIM-
FLEX to emulate a x86 processor (Pentium III) and associ-
ated peripheral devices (using the same setup as in the real
Pentium). Simics boots and runs the exact same binary
code of Linux and the Shore/Steps microbenchmark, as in
the real machines. Using SIMFLEX’s cache component we
modify the L1-I cache characteristics (size, associativity,
block size) and run the 10-thread index fetch benchmark.
The reported L1-I cache misses are exactly the same as in
a real machine with the same cache characteristics. Met-
rics in simulation involving timing are subject to assump-
tions made by programmers and cannot possibly match
real execution times. Figures 9a, 9b, and 9c show the
results for a fixed 64-byte cache block size, varying asso-
ciativity for a 16KB, 32KB, and 64KB L1-I cache.

As expected, increasing the associativity reduces
instruction conflict misses (except for a slight increase for
fully-associative 16KB and 32KB caches, due to the LRU
replacement policy resulting in more capacity misses).

0%

20%

40%

60%

80%

100%

120%
AthlonXP

Pentium III

N
or

m
al

iz
ed

 c
ou

nt
 (S

ho
re

 is
 1

00
%

) 20
39

209%
66

38

close to 0

Figure 8. Relative performance of Steps compared to Shore, for
index fetch with 10 concurrent threads, on both the AthlonXP
and the Pentium III. The two last bars are events exclusively
available on the Pentium.

Cyc
les

L1
-I M

iss
es

L1
-D

 M
iss

es

L2
-I M

iss
es

L2
-D

 M
iss

es

Ins
tru

cti
on

s

Bran
ch

es

Br. M
isp

red
.

Br. M
iss

ed
 BTB

I-s
tal

ls
(cy

cle
s)

38
14

83
30

60
51

22
28

64
9

21
03 11

74
3

59
80

5
16

34

25
97

10

39
60

4

0

2000

4000

6000

8000

10000

Direct 2-way 4-way 8-way Full

Shore-64KB
Steps-64KB
M IN

0

2000

4000

6000

8000

10000

Direct 2-way 4-way 8-way Full

Shore-32KB
Steps-32KB
M IN

0

2000

4000

6000

8000

10000

Direct 2-way 4-way 8-way Full

Shore-16KB
Steps-16KB
M IN Configuration Steps

was trained on

Figure 9a, 9b, 9c. Simulation results for index fetch with 10 threads. We use a L1-I cache with a 64-byte cache block, varying associa-
tivity (direct, 2-, 4-, 8-way, full) and size (16KB, 32KB, 64KB). Steps eliminates all capacity misses and achieves up to 89% overall
reduction (out of 90% max possible) in L1-I misses (max performance is for the 8-way 32KB and 64KB caches).

L1-I cache associativity L1-I cache associativityL1-I cache associativity

N
um

be
r o

f L
1-

I c
ac

he
 m

is
se

s

The conflict miss reduction for Steps is more dramatic in a
small cache (16KB). The reason is that with a 45KB work-
ing set for index fetch even a few CTX calls can eliminate
all capacity misses for the small caches. Since Steps is
trained on a 2-way 64KB cache, smaller caches with the
same associativity incur more conflict misses. As the asso-
ciativity increases those additional L1-I misses disappear.
Despite a fixed training on a large cache, Steps performs
very well across a wide range of cache architectures,
achieving a 89% overall reduction in L1-I misses — out of
90% max possible — for the 8-way 32KB and 64KB
caches. Experiments with different cache block sizes (not
shown here) find that larger blocks further reduce L1-I
misses, in agreement with the results in [RG+98].

4 Applying Steps to OLTP workloads
So far we saw how to efficiently multiplex the execution
of concurrent threads running the same transactional
DBMS operation when (a) those threads run uninter-
rupted, and (b) the DBMS does not schedule any other
threads. This section removes all previous assumptions
and describes how Steps works in full-system operation.
The design goal is to take advantage of the fast CTX calls
and maintain high concurrency for similarly structured
operations in the presence of locking, latching (which pro-
vides exclusive access to DBMS structures), disk I/O,
aborts and roll-backs, and other concurrent system opera-
tions (e.g., deadlock detection, buffer pool page flushing).

The rest of this section describes the full Steps imple-
mentation (Section 4.1), presents the experimentation
setup (4.2) and the TPC-C results (4.3), and briefly dis-
cusses applicability in commercial DBMS (4.4).

4.1 Full Steps implementation
Steps employs a two-level transaction synchronization
mechanism. At the higher level, all transactions about to
perform a single DBMS operation form execution teams.
We call S-threads all threads participating in an execution
team (excluding system-specific threads or processes and
threads which are blocked for any reason). Once all S-
threads belong to a team, the CPU proceeds with the
lower-level transaction synchronization scheme within a
single team, following a similar execution schedule as in
the previous section. Next, we detail synchronization
mechanisms (Section 4.1.1), different code paths (Section
4.1.2), and threads leaving their teams (Section 4.1.3).
Section 4.1.4 summarizes the changes to Shore code.

4.1.1 Forming and scheduling execution teams
To facilitate a flexible assignment of threads to execution
teams and construct an efficient CPU schedule during the
per-team synchronization phase, each DBMS operation is
associated with a double-linked list (Figure 10). S-threads
are part of such a list (depending on which operation they

are currently executing), while all other threads have the
prev and next pointers set to zero. The list for each exe-
cution team guides the CPU scheduling decisions. At each
CTX point the CPU simply switches to the next thread in
the list. S-threads may leave a team (disconnect) for sev-
eral reasons. Transactions give up (yield) the CPU when
they (a) block trying to acquire an exclusive lock (or
access an exclusive resource), or on an I/O request, and,
(b) when they voluntarily yield control as part of the code
logic. We call stray the threads that leave a team.

The code responsible for team formation is a thin
wrapper that runs every time a transaction finishes a single
DBMS operation (“Steps wrapper” in Figure 10). It dis-
connects the S-thread from the current list (if not stray)
and connects it to the next list, according to the transaction
code logic. If a list reaches the maximum number of
threads allowed for a team (a user-defined variable), then
the transaction will join a new team after the current team
finishes execution. Before choosing the next team to run,
all stray threads are given a chance to join their respective
teams (next DBMS operation on their associated transac-
tion’s code logic). Finally, the Steps wrapper updates inter-
nal statistics, checks with the system scheduler if other
tasks need to run, and picks the next team to run2.

Within each execution team Steps works in a “best-
effort” mode. Every time a transaction (or any thread)
encounters a CTX point in the code, it first checks if it is
an S-thread and then passes the CPU to the next thread in
the list. All S-threads in the list eventually complete the
current DBMS operation, executing in a round-robin fash-

2. Different per-team scheduling policies may apply at this point.
In our experiments, picking the next operation that the last
member of a list (or the last stray thread) is interested, worked
well in practice since the system scheduler makes sure that
every thread makes progress.

NULL

NULLDBMS
operation X

DBMS
operation Y

DBMS
operation Z

Steps wrapper
Steps wrapper

stray thread

stray thread

to Op X to Op W

Steps wrapper

: any of begin, index fetch, insert, delete, update, scan, commitDBMS
operation

: Xaction thread : pointer

Figure 10. Additions to the DBMS code: Threads are associated
with list nodes and form per-operation lists, during the Steps
setup code at the end of each DBMS operation.

S-thread
(executes CTX calls)

execution team
for Op X

ion, the same way as in Section 3. This approach does not
explicitly provide any guarantees that all threads will
remain synchronized for the duration of the DBMS opera-
tion. It provides, however, a very fast context-switching
mechanism during full-system operation (the same list-
based mechanism was used in all microbenchmarks). If all
threads execute the same code path without blocking, then
Steps will achieve the same L1-I cache miss reduction as
in the previous section. Significantly different code paths
across transactions executing the same operation or excep-
tional events that cause threads to become stray may lead
to reduced benefits in the L1-I cache performance. Fortu-
nately, we can reduce the effect of different code paths
(Section 4.1.2) and exceptional events (4.1.3).

4.1.2 Maximizing code overlap across transactions
If an S-thread follows a significantly different code path
than other threads in its team (e.g., traverse a B-tree with
fewer levels), the assumed synchronization breaks down.
That thread will keep evicting useful instructions with
code that no one else needs. If a thread, however, exits the
current operation prematurely (e.g., a key was not found),
the only effect will be a reduced team size, since the thread
will wait to join another team. To minimize the effect of
different code paths we follow the next two guidelines:

1. Have a separate list for each operation that manipu-
lates a different index (i.e., index fetch (table1), index fetch
(table2), and so on).

2. If the workload does not yield high concurrency for
similarly structured operations, we consider defining finer-
grain operations. For example, instead of an insert opera-
tion, we can maintain a different list for creating a record
and a different one for updating an index.

Table 2 shows all transactional operations along with
their degree of cross-transaction overlapped code. Begin,
commit, scan, and update are independent of the database
structure and use a single list each. Index fetch code fol-
lows different branches depending on the B-tree depth,
therefore a separate list per index maximizes code overlap.
Lastly, insert and delete code paths may differ across
transactions even for same indices, therefore it may be
necessary to define finer-grain operations. While experi-

menting with TPC-C we find that following only the first
guideline (declaring lists per index) is sufficient. Small
variations in the code path are unavoidable (e.g., utilizing
a different attribute set or manipulating different strings)
but the main function calls to the DBMS engine are gener-
ally the same across different transactions. For workloads
with an excessive number of indices, we can use statistics
collected by Steps on the average execution team size per
index, and consolidate teams from different indices. This
way Steps trades code overlap for an increased team size.

4.1.3 Dealing with stray transactions
S-threads turn into stray when they block or voluntarily
yield the CPU. In preemptive thread packages the CPU
scheduler may also preempt a thread after its time quan-
tum has elapsed. The latter is a rare event for Steps since it
performs switches at orders of magnitude faster times than
the quantum length. In our implementation on Shore we
modify the thread package and intercept the entrance of
block and yield to perform the following actions:

1. Disconnect the S-thread from the current list.
2. Turn the thread into stray, by setting pointers prev and
next to zero. Stray threads bypass subsequent CTX
calls and fall under the authority of the regular sched-
uler. They remain stray until they join the next list.

3. Update all thread package structures that were not
updated during the fast CTX calls. In Shore these are
the current running thread, and the ready queue status.

4. Pass a hint to the regular scheduler that the next thread
to run should be the next in the current list (unless a sys-
tem or a higher priority thread needs to run first).

5. Give up the CPU using regular context-switching.

Except for I/O requests and non-granted locks, trans-
actions may go astray because of mutually exclusive code
paths. Frequently, a database programmer protects
accesses or modifications to a shared data structure by
using a mutex (or a latch). If an S-thread calls CTX while
still holding the mutex, all other threads in the same team
will go astray as they will not be able to access the pro-
tected data. If the current operation’s remaining code (after
the mutex release) can still be shared, it may be preferable
to skip the badly placed CTX call. This way Steps only
suffers momentarily the extra misses associated with exe-
cuting a small, self-evicting piece of code.

Erasing CTX calls is not a good idea since the specific
CTX call may also be accessed from different code paths
(for example, through other operations) which do not nec-
essarily go through acquiring a mutex. Steps associates
with every thread a counter that increases every time the
thread acquires a mutex and decreases when releasing it.
Each CTX call tests if the counter is non-zero in which
case it lets the current thread continue running without
giving up the CPU. In Shore, there were only two places in
the code that the counter would be non-zero.

TABLE 2: Operation classification for overlapped code

DBMS
operation

cross-transaction code overlap

always same tables same tables
+ split Op

begin / commit

fetch

insert

delete

update

scan

4.1.4 Summary of changes to the DBMS code
The list of additions and modifications to the Shore code
base is the following. We added the wrapper code to syn-
chronize threads between calls to DBMS operations (Steps
wrapper, 150 lines of C++), the code to perform fast con-
text-switching (20 lines of inline assembly), and we also
added global variables for the list pointers representing
each DBMS operation. We modified the thread package
code to update the list nodes properly and thread status
whenever blocking, yielding, or changing thread priorities
(added/changed 140 lines of code). Finally, we inserted
calls to our custom CTX function into the source code (as
those were found during the microbenchmarking phase).
Next, we describe the experimentation testbed.

4.2 Experimentation setup
We experiment with the TPC-C benchmark which models
a wholesale parts supplier operating out of a number of
warehouses and their associated sales districts [TPC04]. It
involves a mix of five different types of transactions. The
two most frequently executed transactions (88% of the
time) are the New Order and the Payment transactions.
TPC-C transactions operate on nine tables and they are all
based on the DBMS operations listed in Table 2.

The TPC-C toolkit for Shore is written at CMU. Table
3 shows the basic configuration characteristics of our sys-
tem. To ensure high concurrency and reduce the I/O bot-
tleneck in our two-disk system we cache the database in
the buffer pool and allow transactions to commit without
waiting for the log to be flushed on disk (the log is flushed
asynchronously). A reduced buffer pool size would cause
I/O contention allowing only very few threads to be runna-
ble at any time. High-end installations can hide the I/O
latency by parallelizing requests on multiple disks. To
mimic a high-end system’s CPU utilization, we set user
thinking time to zero and keep the standard TPC-C scaling
factor (10 users per Warehouse), essentially having as
many concurrent threads as the number of users. We found
that, when comparing Steps with Shore running New
Order, Steps was more efficient in inserting multiple sub-
sequent records on behalf of a transaction (because of a
slot allocation mechanism that was avoiding overheads
when inserts were spread across many transactions). We
modified slightly New Order by removing one insert from
inside a for-loop (but kept the remaining inserts).

For all experiments we warm up the buffer pool and
measure CPU events in full-system operation, including
background I/O processes that are not optimized using
Steps. Measurement periods range from 10sec - 1min
depending on the time needed to complete a pre-specified
number of transactions. All reported numbers are consis-
tent across different runs, since the aggregation period is
large in terms of CPU time. Our primary metric is the
number of L1-I cache misses as it is not affected by the
AthlonXP’s small L2 cache (when compared to server pro-
cessors shown in Figure 1b).

Steps setup: We keep the same CTX calls used in the
microbenchmarks but without using floating point optimi-
zations, and without re-training Steps on TPC-C indexes or
tables. Furthermore, we refrain from using Steps on the
TPC-C application code. Our goal is to show that Steps is
workload-independent and report lower bounds for perfor-
mance metrics by not using optimized CTX calls. We
assign a separate thread list to each index fetch, insert, and
delete operating on different tables while keeping one list
for each of the rest operations. Restricting execution team
sizes has no effect since in our configuration the number
of runnable threads is low. For larger setups, Steps can be
configured to restrict team sizes, essentially creating mul-
tiple independent teams per DBMS operation.

4.3 TPC-C results
Initially we run all TPC-C transaction types by themselves
varying the database size (and number of users). Figure 10
shows the relative performance of Steps over Shore when
running the Payment transaction with standard TPC-C
scaling for 10, 20, and 30 warehouses. The measured
events are: execution time in CPU cycles, cache misses for
both L1 and L2 caches, the number of instructions exe-
cuted, and the number of mispredicted branches. Results
for other transaction types were similar. Steps outperforms
Shore, achieving a 60-65% reduction in L1-I cache misses,
a 41-45% reduction in mispredicted branches, and a 16-
39% speedup (with no floating point optimizations). The
benefits increase as the database size (and number of

TABLE 3: System configuration

CPU AthlonXP, 2GB RAM, Linux 2.4.20

Storage one 120GB main disk, one 30GB log disk

Buffer pool size Up to 2GB

Page size 8192 Bytes

Shore locking hierarchy Record, page, table, entire database

Shore locking protocol Two phase locking

Figure 10. Transaction mix includes only the Payment transac-
tion, for 10-30 Warehouses (100-300 threads).

0%

20%

40%

60%

80%

100%

120% 10 20 30

Cyc
les

L1
-I M

iss
es

L1
-D

 M
iss

es

L2
-I M

iss
es

L2
-D

 M
iss

es

Ins
tru

cti
on

s

Br. M
isp

red
.

Number of Warehouses

N
or

m
al

iz
ed

 c
ou

nt
 (S

ho
re

 is
 1

00
%

)

users) scale up. The increase in L1-D cache misses is mar-
ginal. Steps speedup is also fueled by fewer L2-I and L2-D
misses as the database size increases. Steps makes better
utilization of AMD’s small L2 cache as fewer L1-I cache
misses also translate into more usable space in L2 for data.

Table 4 shows for each configuration (10, 20, and 30
warehouses running Payment) how many threads on aver-
age enter an execution team for a DBMS operation and
exit without being strays, along with how many threads
are ready to run at any time and the average team size. The
single capital letters in every operation correspond to the
TPC-C tables/indices used (Customer, District, Ware-
house, and History). Steps is able to group on average half
of the available threads. Most of the operations yield a low
rate for producing strays, except for index fetch on District
and Warehouse. In small TPC-C configurations, exclusive
locks on those tables restrict concurrency.

Next, we run the standard TPC-C mix, excluding the
non-interactive Delivery transaction (TPC-C specifies up
to 80sec queueing delay before executing Delivery). Fig-
ure 11 shows that the four-transaction mix follows the gen-
eral behavior of the Payment mix, with the reduction in
instruction cache misses (both L1 and L2) being slightly
worse. Statistics for the team sizes reveal that this configu-
ration forces a smaller average team size due to the
increased number of unique operations. For the 10-ware-
house configuration, there are 14 ready threads, and on
average, 4.3 threads exit from a list without being stray.
Still, this means a theoretical bound of a 77% reduction in
L1-I cache misses, and Steps achieves a 56% reduction
while handling a full TPC-C workload and without being
optimized for it specifically. Results for different mixes of
TPC-C transactions were similar.

4.4 Applicability
Steps has the following two attractive features that sim-
plify integration in a commercial DBMS: (a) its applica-
tion is incremental as it can target specific operations and
co-exist with other workloads, (e.g., DSS, which can sim-
ply bypass CTX calls), and (b) the required code modifica-
tions are restricted to a very specific small subset of the

code, the thread package. Most commercial thread pack-
ages implement preemptive threads. As a result, DBMS
code is thread safe, meaning that programmers develop
DBMS code anticipating random context-switches that
can occur at any time. This is also true for DBMS using
processes instead of threads (such as Oracle on Linux).
Thread safe code ensures that any placement of CTX calls
throughout the code will not break any assumptions.

To apply Steps to any thread-based DBMS the pro-
gramming team needs to augment the thread package to
support fast context-switching. Process-based systems
may require changes to a larger subset of the underlying
OS code. In general, a Steps CTX call should bypass the
OS scheduler and update only the absolute minimum state
needed by a different thread/process for code execution
that does not give up CPU control. Whenever a thread
gives up CPU control through a mechanism different than
fast CTX, all state needed before invoking a regular con-
text-switch should be updated accordingly. The next phase
is to add the Steps wrapper in each major DBMS opera-
tion. This thin wrapper provides the high-level, per-opera-
tion transaction synchronization used in Steps.

The final phase is to place CTX calls in the code
depending on the underlying cache architecture. Readily
available binary tools can automate CTX call placement
(using either trace-based cache simulation or CPU hard-
ware counters). For example, valgrind/cachegrind
is a cache profiling tool which can be used to track all
instruction cache misses during the execution of a sample
operation. It can be easily configured to output the code
lines where CTX calls should be placed using a simple
cache simulator. Next, a binary modification tool [SE94]
can be used to insert the CTX calls to the DBMS binary,
while a race-detection binary tool [SB+97] can be used to
pinpoint badly placed CTX calls which may cause races or
force S-threads to go astray. Moreover, a compiler can
“color” the L1-I cache blocks containing the CTX code to
make them permanently reside in the cache, thereby
reducing conflict misses. The only workload-specific tun-
ing required is the creation of per-index execution teams,
which can be done once the database schema is known.

TABLE 4: Team sizes per DBMS operation in Payment

Warehouses 10 20 30

Operation (table) in out in out in out

index fetch (C) 8.6 8.6 16 16 25.2 24.7

index fetch (D) 8.9 1.7 16.2 2.6 31.7 5.3

index fetch (W) 8.9 0.5 16.6 1 30 1.9

scan (C) 9.4 8.2 16 14.3 26.2 23.7

insert (H) 7.9 7.8 14.9 14.6 24 23.2

update (C, D, W) 7.5 7.2 14 12.3 21.6 19

average team size 8.6 6.9 15.9 12.3 26.4 20.4

of ready threads 15 28 48.4

0%

20%

40%

60%

80%

100%

120% 10 20

Cyc
les

L1
-I M

iss
es

L1
-D

 M
iss

es

L2
-I M

iss
es

L2
-D

 M
iss

es

Ins
tru

cti
on

s

Br. M
isp

red
.

Number of Warehouses

N
or

m
al

iz
ed

 c
ou

nt
 (S

ho
re

 is
 1

00
%

)

Figure 11. Transaction mix includes all transactions except the
non-interactive Delivery transaction, for 10-20 Warehouses.

Epilogue
This paper demonstrates that the key to optimal perfor-
mance for OLTP workloads on modern processors is
within the DBMS design. Computer architects have
already pushed next-generation processor designs to the
market and are now working on proactive memory sys-
tems to eliminate data cache misses. Instruction cache
stalls are a major barrier towards bringing OLTP perfor-
mance on par with scientific and engineering workload
performance. Software vendors have the best insight of
how and where to affect software behavior. Steps, our pro-
posed technique, is orthogonal to compiler techniques and
its benefits are always additional to any binary-optimized
configuration. In this paper we show that Steps minimizes
both capacity and conflict instruction cache misses of
OLTP with arbitrary long code paths, without increasing
the size or the associativity of the instruction cache.

Acknowledgements
We thank Babak Falsafi, James Hamilton, Bruce Lindsay,
Ken Ross, Michael Stonebraker, and the reviewers for
their comments. We also thank Nikos Hardavellas and
Tom Wenisch for SIMFLEX, and Mengzhi Wang for the
Shore TPC-C toolkit. This work is supported in part by an
IBM faculty partnership award and by NSF grants CCR-
0113660, IIS-0133686, and CCR-0205544.

References
[AD+01] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
“Weaving Relations for Cache Performance.” In Proc. VLDB, 2001.

[AD+99] A. Ailamaki, D. J. DeWitt, at al. “DBMSs on a modern
processor: Where does time go?” In Proc. VLDB, 1999.

[APD03] M. Annavaram, J. M. Patel, and E. S. Davidson. “Call
graph prefetching for database applications.” In ACM Transactions
on Computer Systems, 21(4):412-444, November 2003.

[BGB98] L. A. Barroso, K. Gharachorloo, and E. Bugnion. “Mem-
ory System Characterization of Commercial Workloads.” In Proc.
ISCA, 1998.

[Ca+94] M. Carey et al. “Shoring Up Persistent Applications.” In
Proc. SIGMOD, 1994.

[CLM97] I-C. Chen, C-C. Lee, and T. Mudge. “Instruction prefetch-
ing using branch predition information.” In Proc. International Con-
ference on Computer Design 1997.

[CGM01] S. Chen, P. B. Gibbons, and T. C. Mowry. “Improving
Index Performance through Prefetching.” In Proc. SIGMOD, 2001.

[GL01] G. Graefe and P. Larson. “B-Tree Indexes and CPU Caches.”
In Proc. ICDE, 2001.

[Gra93] J. Gray. “The benchmark handbook for transaction process-
ing systems.” 2nd ed., Morgan-Kaufmann, 1993.

[HP96] J. L. Hennessy and D. A. Patterson. “Computer Architecture:
A Quantitative Approach.” 2nd ed, Morgan-Kaufmann, 1996.

[HS+04] N. Hardavellas, S. Somogyi, et al. “SIMFLEX: a Fast, Accu-
rate, Flexible Full-System Simulation Framework for Performance
Evaluation of Server Architecture.” SIGMETRICS Performance
Evaluation Review, Vol. 31, No. 4, pp. 31-35, April 2004.

[JK99] J. Jayasimha and A. Kumar. “Thread-based Cache Analysis
of a Modified TPC-C Workload.” In 2nd CAECW Workshop, 1999.

[INT04] Intel Corporation. “IA-32 Intel® Architecture Software
Developer's Manual, Volume 3: System Programming Guide.”
(Order Number 253668).

[KP+98] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael, and
W. E. Baker. “Performance Characterization of a Quad Pentium Pro
SMP Using OLTP Workloads.” In Proc. ISCA-25, 1998.

[LB+98] J. Lo, L. A. Barroso, S. Eggers, et al. “An Analysis of Data-
base Workload Performance on Simultaneous Multithreaded Proces-
sors.” In Proc. ISCA-25, 1998.

[MC+02] P. S. Magnusson, et al. “Simics: A Full System Simulation
Platform.” In IEEE Computer, 35(2):50–58, February 2002.

[MDO94] A. M. G. Maynard, C. M. Donelly, and B. R. Olszewski.
“Contrasting Characteristics and Cache Performance of Technical
and Multi-user Commercial Workloads.” In Proc. ASPLOS-6, 1994.

[MB+99] P. J. Mucci, S. Browne, et al. “PAPI: A Portable Interface
to Hardware Performance Counters.” In Proc. Dept. of Defense
HPCMP Users Group Conference, Monterey, CA, June 7-10, 1999.

[PM+01] S. Padmanabhan, T. Malkemus, R. Agarwal, A. Jhingran.
“Block Oriented Processing of Relational Database Operations in
Modern Computer Architectures.” In Proc. ICDE, 2001.

[RB+01] A. Ramirez, L. A. Barroso, et al. “Code Layout Optimiza-
tions for Transaction Processing Workloads.” In ISCA-28, 2001.

[RG+98] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A.
Barroso. “Performance of database workloads on shared-memory
systems with out-of-order processors.” In Proc. ASPLOS, 1998.

[RV+97] T. Romer, G. Voelker, et al. “Instrumentation and Optimiza-
tion of Win32/Intel Executables Using Etch.” In Proc. Usenix NT
Workshop, 1997.

[RB+95] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. “The Impact of Architectural Trends on Operating System
Performance.” In Proc. SOSP-15, pp.285-298, 1995.

[SB+97] S. Savage, M. Burrows, et al. “Eraser: A Dynamic Data
Race Detector for Multithreaded Programs.” In ACM TOCS, vol. 15,
no. 4, pp. 391-411, November 1997.

[SA04] M. Shao and A. Ailamaki. “DBmbench: Fast and Accurate
Database Workload Representation on Modern Microarchitecture.”
In submission. Available as Technical Report CMU-CS-03-161.

[SKN94] A. Shatdal, C. Kant, and J. Naughton. “Cache Conscious
Algorithms for Relational Query Processing.” In Proc. VLDB, 1994.

[SE94] A. Srivastava and A. Eustace. “ATOM: A system for build-
ing customized program analysis tools.” In Proc. SIGPLAN, 1994.

[SBG02] R. Stets, L. A. Barroso, and K. Gharachorloo. “Detailed
Comparison of Two Transaction Processing Workloads,” In Proc.
5th CAECW Workshop, 2002.

[TPC04] Transaction Processing Performance Council. http://
www.tpc.org
[ZR04] J. Zhou and K. A. Ross. “Buffering Database Operations for
Enhanced Instruction Cache Performance.” In SIGMOD, 2004.

