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Abstract

This paper explores the concept of early discard for in-
teractive search of unindexed data. Processing data in-
side storage devices using downloaded searchlet code
enables Diamond to perform efficient, application-
specific filtering of large data collections. Early dis-
card helps users who are looking for “needles in a
haystack” by eliminating the bulk of the irrelevant items
as early as possible. A searchlet consists of a set of
application-generated filters that Diamond uses to deter-
mine whether an object may be of interest to the user.
The system optimizes the evaluation order of the filters
based on run-time measurements of each filter’s selec-
tivity and computational cost. Diamond can also dy-
namically partition computation between the storage de-
vices and the host computer to adjust for changes in
hardware and network conditions. Performance num-
bers show that Diamond dynamically adapts to a query
and to run-time system state. An informal user study
of an image retrieval application supports our belief that
early discard significantly improves the quality of inter-
active searches.

1 Introduction

How does one find a few desired items in many terabytes
or petabytes of complex and loosely-structured data such
as digital photographs, video streams, CAT scans, archi-
tectural drawings, or USGS maps? If the data has al-
ready been indexed for the query being posed, the prob-
lem is easy. Unfortunately, a suitable index is often not
available and a user has no choice but to perform an ex-
haustive search over the entire volume of data. Although
attributes such as the author, date, or other context of
data items can restrict the search space, the user is still
left with an enormous number of items to examine. To-
day, scanning such a large volume of data is so slow that
it is only performed in the context of well-planned data
mining. This is typically a batch job that runs overnight
and is only rarely attempted interactively [15].

Our goal is to enable interactive search of non-
indexed data, where the user wishes to retrieve a small
set of important items buried in a large collection. For
instance, consider a surveillance scenario where an an-
alyst is monitoring satellite imagery for interesting ac-
tivity around oil tankers. Current image processing al-

gorithms may be able to automatically discard images
that do not contain oil tankers, but they cannot detect
“interesting activity”. Filtering the data allows the an-
alyst to focus attention on the promising candidates by
significantly reducing the number of irrelevant items. To
make such systems practical, new techniques for scan-
ning large volumes of data are needed. We believe that
the solution lies in early discard, the ability to discard
irrelevant data items as quickly and efficiently as pos-
sible (e.g., at the storage device rather than close to the
user). We have developed a storage architecture and pro-
gramming model called Diamond that embodies early
discard. Diamond has been designed to run on an ac-
tive disk [1, 20, 25] platform, but does not depend on
the availability of active storage devices. It can be real-
ized using diverse storage back ends ranging from emu-
lated active disks on a general-purpose cluster to storage
nodes on a wide-area network.

This paper focuses on pure brute-force interactive
search (i.e,, where all of the data is processed for each
query). Studying this extreme case enables us to deter-
mine the feasibility of early discard in a worst-case set-
ting. Future Diamond implementations could incorpo-
rate performance optimizations such as caching results
from previous queries and exploiting indices to reduce
the search time.

This paper is organized as follows. Section 2 intro-
duces early discard. Section 3 presents the Diamond ar-
chitecture. Section 4 describes a proof-of-concept appli-
cation and an informal user study. Section 5 discusses
implementation details. Section 6 presents experimen-
tal results. Section 7 summarizes related work. Finally,
Section 8 concludes the paper.

2 Background and Motivation

2.1 Limitationsof Indexing

The standard approach to efficient interactive search is
to create an offline index of the data. Indexing assumes
that the mapping between the user’s query and the rel-
evant data can be pre-computed, enabling the system to
efficiently organize data so that only a small fraction is
accessed during a particular search. Unfortunately, in-
dexing complex data remains a challenging problem for
several reasons. First, manual indexing is often infeasi-
ble for large datasets and automated methods for extract-
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Figure 1: Early Discard - Unlike traditional architectures
for exhaustive search, where all of the data must be
shipped from to the host computer, the Diamond archi-
tecture employs early discard to efficiently reject the bulk
of the irrelevant data at the active storage device.

ing the semantic content from many data types are still
rather primitive (the semantic gap [23]). Second, the
richness of the data often requires a high-dimensional
representation that is not amenable to efficient indexing
(a consequence of the curse of dimensionality [6, 9, 33]).
Third, realistic user queries can be very sophisticated,
requiring a great deal of domain knowledge that is of-
ten not available to the system for optimization. Fourth,
expressing the user’s needs in a usable form can be ex-
tremely difficult (e.g., “I need a photo of an energetic
puppy playing with a happy toddler”). All of these prob-
lems limit the usability of interactive data analysis [15]
today.

2.2 Importance of Early Discard

Figure 1(a) shows the traditional architecture for exhaus-
tive search. Each data item passes through a pipeline
from the disk surface, through the disk logic, over an in-
terconnect to the host computer’s memory. The search
application can reject some of the data before present-
ing the rest to the user. Two problems with this design
are: (1) the system is unable to take full advantage of the
parallelism at the storage devices; (2) although the user
is only interested in a small fraction of the data, all of
it must be shipped from the storage devices to the host
machine, and the bulk of the data is then discarded in the
final stages of the pipeline. This is undesirable because
the irrelevant data will often overload the interconnect
or host processor.

Early discard is the idea of rejecting irrelevant data as
early in the pipeline as possible. For instance, by exploit-
ing active storage devices, one could eliminate a large
fraction of the data before it was sent over the intercon-
nect, as shown in Figure 1(b). Unfortunately, the storage

device cannot determine the set of irrelevant objects a
priori — the knowledge needed to recognize the useful
data is only available to the search application (and the
user). However, if one could imbue some of the earlier
stages of the pipeline with a portion of the intelligence
of the application (or the user), exhaustive search would
become much more efficient. This is supported by our
experiments, as described in Section 6.3.

For most real-world applications, the sophistication
of user queries outpaces the development of algorithms
that can understand complex, domain-dependent data.
For instance, in a homeland security context, state-of-
the-art algorithms can reliably discard images that do not
contain human faces. However, face recognition soft-
ware has not advanced to the point where it can reliably
recognize photos of particular individuals. Thus, we be-
lieve that a large fraction of exhaustive search tasks will
be interactive in nature. Unlike a typical web search,
an interactive brute-force search through a large dataset
could demand hours (rather than seconds) of focused at-
tention from the user. For example, a biochemist might
be willing to spend an afternoon in interactive explo-
ration seeking a protein matching a new hypothesis. It is
important for such applications to consider the human as
the most important stage in the pipeline. Effective man-
agement of the user’s limited bandwidth becomes cru-
cial as the size and complexity of the data grows. Early
discard enables the system to eliminate clearly useless
data items early in the pipeline. The scarcest resource,
human attention, can be directed at the most promising
data items.

Ideally, early discard would reject all of the irrele-
vant data at the storage device without eliminating any
of the desired data. This is impossible in practice for
two reasons. First, the amount of computation avail-
able at the storage device may be insufficient to perform
all of the necessary (potentially expensive) application-
specific computations. Second, there is a fundamental
trade-off [9] between false-positives (irrelevant data that
is not rejected) and false-negatives (good data that is in-
correctly discarded). Early discard algorithms can be
tuned to favor one at the expense of the other, and differ-
ent domain applications will make different trade-offs.
For instance, an advertising agency searching a large
collection of images may wish to quickly find a photo
that matches a particular theme and may choose aggres-
sive filtering; conversely, a homeland security analyst
might wish to reduce the chance of accidentally losing a
relevant object and would use more conservative filters
(and accept the price of increased manual scanning). It
is important to note that early discard does not, by itself,
impact the accuracy of the search application: it simply
makes applications that filter data more efficient.



2.3 Sdf-Tuning for Hardware Evolution

The idea of performing specialized computation close to
the data is not a new concept. Database machines [7,17]
advocated the use of specialized processors for efficient
data processing. Although these ideas had significant
technical merit, they failed, at the time, because design-
ing specialized processors that could keep pace with the
sustained increase in general-purpose processor speed
was commercially impractical.

More recently, the idea of an active disk [1, 20, 25],
where a storage device is coupled with a general-purpose
processor, has become popular. The flexibility provided
by active disks is well-suited to early discard; an active
disk platform could run filtering algorithms for a variety
of search domains, and could support applications that
dynamically adapt the balance of computation between
storage and host as the location of the search bottle-
neck changes [2]. Over time, due to hardware upgrades,
the balance of processing power between the host com-
puter and storage system may shift. In general, a system
should expect a heterogeneous composition of computa-
tional capabilities among the storage devices as newer
devices may have more powerful processors or more
memory. The more capable devices could execute more
demanding early discard algorithms, and the partitioning
of computation between the devices and the host com-
puter should be managed automatically. Analogously,
when the interconnect infrastructure or host computer
is upgraded, one may expect computation to shift away
from the storage devices. To be successful over the
long term, the design needs to be self-tuning; manual
re-tuning for each hardware change is impractical.

In practice, the best partitioning will depend on the
characteristics of the processors, their load, the type and
distribution of the data, and the query. For example, if
the user were to search a collection of holiday pictures
for snowboarding photos, these might be clustered to-
gether on a small fraction of devices, creating hotspots
in the system.

Diamond provides two mechanisms to support these
diverse storage system configurations. The first allows
an application to generate specialized early discard code
that matches each storage device’s capabilities. The sec-
ond enables the Diamond system to dynamically adapt
the evaluation of early discard code, and is the focus
of this paper. In particular, we explore two aspects
of early discard: (1) adaptive partitioning of computa-
tion between the storage devices and the host computer
based on run-time measurements; (2) dynamic ordering
of search terms to minimize the total computation time.

2.4 Exploiting the Structure of Search

Diamond exploits several simplifications inherent to the
search domain. First, search tasks only require read ac-
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cess to data, allowing Diamond to avoid locking com-
plexities and to ignore some security issues. Second,
search tasks typically permit stored objects to be ex-
amined in any order. This order-independence offers
several benefits: easy parallelization of early discard
within and across storage devices, significant flexibil-
ity in scheduling data reads, and simplified migration of
computation between the active storage devices and host
computer. Third, most search tasks do not require main-
taining state between objects. This “stateless” prop-
erty supports efficient parallelization of early discard,
and simplifies the run-time migration of computation be-
tween active storage device and host computer.

3 Diamond Architecture

Figure 2 illustrates the Diamond storage architecture.
Diamond provides a clear separation between the front
end, which encapsulates domain-specific application
code on the host computer, and the back end, which con-
sists of a domain-independent infrastructure that is com-
mon across a wide range of search applications.

Diamond applications aim to reduce the load on the
user by eliminating irrelevant data using domain-specific
knowledge. Query formulation is domain-specific and is
handled by the search application at the front end. Once
a search has been formulated, the application translates
the query into a set of machine executable tasks (termed
a searchlet) for eliminating data, and passes these to the
back end. The searchlet contains all of the domain-
specific knowledge needed for early discard, and is a
proxy of the application (and of the user) that can ex-
ecute within the back end.

Searchlets are transmitted to the back end through the
searchlet API, and distributed to the storage devices. At
each storage device, the runtime system iterates through
the objects on the disk (in a system-determined order)
and evaluates the searchlet. The searchlet consists of a
set of filters (see Section 5), each of which can inde-
pendently discard objects. Objects that pass through all
filters in a searchlet are deemed interesting, and made
available to the domain application through the search-
let API.

The domain application may perform further process-
ing on the interesting objects to see if they satisfy the



user’s request. This additional processing can be more
general than the processing performed at the searchlet
level (which was constrained to the independent evalua-
tion of a single object). For instance, the additional pro-
cessing may include cross-object correlations and auxil-
iary databases. Once the domain application determines
that a particular object matches the user’s criteria, the
object is shown to the user. When processing a large
data set, it is important to present the user with results as
soon as they appear. Based on these partial results, the
user can refine the query and restart the search. Query
refinement leads to the generation of a new searchlet,
which is once again executed by the back end.

3.1 Searchlets

3.1.1 Searchlet Structure

The searchlet is an application-specific proxy that Dia-
mond uses to implement early discard. It consists of a set
of filters and some configuration state (e.g., filter param-
eters and dependencies between filters). For example,
a searchlet to retrieve portraits of people in dark busi-
ness suits might contain two filters: a color histogram
filter that finds dark regions and an image processing fil-
ter that locates human faces.

For each object, the runtime invokes each of the fil-
ters in an efficient order, considering both filter cost and
selectivity (see Section 5.2). The return value from each
filter indicates whether the object should be discarded,
in which case the searchlet evaluation is terminated. If
an object passes all of the filters in the searchlet, it is sent
to the domain application.

Before invoking the first filter, the runtime makes a
temporary copy of the object. This copy exists only un-
til the object is discarded or the search terminates, al-
lowing the filters to share state and computation without
compromising the stored object.

One filter can pass state to another filter by adding
attributes (implemented as name-value pairs) to the tem-
porary object being searched. The second filter recovers
this state by reading these attributes. If the second filter
requires attributes written by the first filter, then the con-
figuration must specify that the second filter depends on
the first filter. The runtime ensures that filters are evalu-
ated in an order that satisfies their dependencies.

The filter functions are sent as object code to Di-
amond. This choice of object code instead of alter-
natives, such as domain-specific languages, was driven
by several factors. First, many real-world applications
(eg., drug discovery) may contain proprietary algo-
rithms where requiring source code is not an option.
Second, we want to encourage developers to leverage
existing libraries and applications to simplify the devel-
opment process. For instance, our image retrieval ap-
plication (described in Section 4) relies heavily on the

OpenCV [8] image processing library.

Executing application-provided object code raises se-
rious security and safety implications that are not specif-
ically addressed by the current implementation. Exist-
ing techniques, such as processes, virtual machines, or
software fault isolation [31], could be incorporated into
future implementations. Additionally, Diamond never
allows searchlets to modify the persistent (on-disk) data.

3.1.2 Creating Searchlets

Searchlets can be generated by a domain application in
response to a user’s query in a number of ways. The
most straightforward method is for domain experts to
implement a library of filter functions that are made
available to the application. The user specifies a query
by selecting the desired filters and setting their parame-
ters (typically using a GUI). The application determines
filter dependencies and assembles the selected functions
and parameters into a searchlet. This works well for do-
mains where the space of useful early discard algorithms
is well spanned by a small set of functions (potentially
augmented by a rich parameter space). These functions
could also be provided (in binary form) by third-parties.

Alternately, the domain application could generate
code on-the-fly in response to the user’s query. One
could envision an application that allows the user to
manually generate searchlet code. We believe that the
best method for searchlet creation is highly domain-
dependent, and the best way for a human to specify a
search is an open research question.

3.2 Key Interfaces

The Diamond architecture defines three APIs to isolate
components: the searchlet API, the filter API and asso-
ciative DMA. These are briefly summarized below.

e The searchlet API provides the interface that ap-
plications use to interact with Diamond. This API
provides calls to query device capabilities, scope a
search to a specific collection of data, load search-
lets, and retrieve objects that match the search.

e The filter API defines the interface used by the filter
functions to interact with the storage run-time envi-
ronment. This API provides functions to read and
write object contents, as well as functions to read
and write object attributes to share state among fil-
ters. Any changes only affect the temporary version
of the object.

e Associative DMA isolates the host and the storage
implementations. This API abstracts the transport
mechanism and flow control between host and stor-
age run-time systems. Associative DMA also pro-
vides a common interface that enables Diamond to
employ diverse back-end implementations without
modifications to the host runtime.



3.3 Host and Storage Systems

The host system is where the domain application exe-
cutes. The user interacts with this application to formu-
late searches and to view results. Diamond attempts to
balance computation between the host and storage sys-
tems. To facilitate this, storage devices may pass unpro-
cessed objects to the host runtime, due to resource lim-
itations or other constraints. The host runtime evaluates
the searchlet, if necessary; if the object is not discarded,
it is made available to the domain application. The stor-
age system provides a generic infrastructure for search-
let execution; all of the domain-specific knowledge is
completely encapsulated in the searchlet. This enables
the same Diamond back-end to serve different domain
applications (simultaneously, if necessary).

Diamond is well-suited for deployment on active stor-
age, but such devices are not commercially available to-
day, nor are they likely to become popular without com-
pelling applications. Diamond provides a programming
model that abstracts the storage system, enabling the de-
velopment of applications that will seamlessly integrate
with active storage devices as they become available.

Diamond’s current design assumes that the storage
system can be treated as object storage [30]. This allows
the host to be independent of the data layout on the stor-
age device and should allow us to leverage the emerging
object storage industry standards.

4 Diamond Applications

Diamond provides a general framework for building in-
teractive search applications. All of the domain-specific
knowledge is contained in the front-end application and
in the searchlets. To illustrate the process, consider the
problem of drug candidate design.

Given a target protein, a chemist must search through
a large database of 3D ligand structures to identify can-
didates that may associate strongly with the target. Since
accurate calculation of the binding free energy of a par-
ticular ligand is prohibitively expensive, such programs
could benefit from user input to guide the search in two
ways. First, the chemist could adjust the granularity
of the search (trading accuracy for speed). Second, the
chemist could test hypotheses about a particular ligand-
protein interaction using interactive molecular dynam-
ics [14]. In Diamond, the former part of the search
could be downloaded to the storage device while the lat-
ter could be performed on the chemist’s graphical work-
station. Early discard would reject hopeless ligands from
consideration allowing the chemist to focus attention on
the more promising candidates. If none of the initial
candidates proved successful, the chemist would refine
the search to be less selective. This example illustrates
some of the characteristics that make an application suit-

able for early discard. First, that the user is searching for
specific instances of data that match a query rather than
aggregate statistics about the set of matching data items.
Second, that the user’s criteria for a successful match is
often subjective, potentially ill-defined, and typically in-
fluenced by the partial results of the query. Third, that
the mapping between the user’s needs and the matching
objects is too complex for it to be captured by a batch op-
eration. An everyday example of such a domain is image
search; the remainder of this section presents SnapFind,
a prototype application for this domain built using the
Diamond programming model.

4.1 SnapFind Description

SnapFind was motivated by the observation that digi-
tal cameras allow users to generate thousands of photos,
yet few users have the patience to manually index them.
Users typically wish to locate photos by semantic con-
tent (e.g., “show me photos from our whale watching trip
in Hawaii”); unfortunately, computer vision algorithms
are currently incapable of understanding image content
to this degree of sophistication. SnapFind’s goal is to
enable users to interactively search through large col-
lections of unlabeled photographs by quickly specifying
searchlets that roughly correspond to semantic content.
Research in image retrieval has attracted considerable
attention in recent years [11,29]. However, prior work in
this area has largely focused on whole-image searches.
In these systems, images are typically processed off-line
and compactly represented as a multi-dimensional vec-
tor. In other systems, images are indexed offline into
several semantic categories. These enable users to per-
form interactive queries in a computationally-efficient
manner; however, they do not permit queries about lo-
cal regions within an image since indexing every subre-
gion within an image would be prohibitively expensive.
Thus, whole-image searches are well-suited to queries
corresponding to general image content (e.g., “find me
an image of a sunset”) but poor at recognizing objects
that only occupy a portion of the image (e.g., “find me
images of people wearing jeans”). SnapFind exploits Di-
amond’s ability to exhaustively process a data set using
customized filters, enabling users to search for images
that contain the desired content only in a small patch.
The remainder of this section describes SnapFind and
presents an informal validation of early discard.
SnapFind allows users to create complex image
queries by combining simple filters that scan images for
patches containing particular color distributions, shapes,
or visual textures (detailed in a technical report [19]).
The user can either select a pre-defined filter from a
palette (e.g., “frontal human faces” or “ocean waves”
or create new filters by clicking on sample patches in
other images (e.g., creating a “blue jeans” color filter



Figure 3: SnapFind - a proof-of-concept image search
application designed using the Diamond programming
model. Users can search a large image collection using
customized filters. Here, the user has filtered for regions
containing water texture (marked with white boxes). The
filter correctly identifies most of the water in the images,
but occasionally makes errors; for example, the sky in the
bottom right image is incorrectly labeled as water.

by giving half a dozen examples). Indexing is infeasi-
ble for two reasons: (1) the user may define new search
filters at query time; (2) the content of the patches is
typically high-dimensional. When the user submits the
query, SnapFind generates a searchlet and initiates a Di-
amond search. Diamond typically executes a portion of
the query at the storage device, enabling early discard to
reject many images in the initial stages of the pipeline.

4.2 SnapFind Usage Experience

We designed some simple experiments to investigate
whether early discard can help exhaustive search. Our
chosen task was to retrieve photos from an unlabeled
collection based on semantic content. This is a realis-
tic problem for owners of digital cameras and is also one
that untrained users can perform manually (given suffi-
cient patience). We explored two cases: (1) purely man-
ual search, where all of the discard happens at the user
stage; (2) using SnapFind. Both scenarios used the same
graphical interface (see Figure 3), where the user could
examine six thumbnails per page, magnify a particular
image (if desired) and mark selected images.

Our data set contained 18,286 photographs (approx-
imately 10,000 personal pictures, 1,000 photos from
a corporate website, 5,000 images collected from an
ethnographic survey and 2,000 from the Corel image
CD-ROMs).  These were randomly distributed over
twelve emulated active storage devices. Users were
given three minutes to tackle each of the following two
queries: (S1) find images containing windsurfers or sail-
boats; (S2) find pictures of people wearing dark business
suits or tuxedos.

For the manual scenario, we recorded the number of
images selected by the user (correct hits matching the
query) along with the number of images that the user
viewed in the alloted time. Users could page through the

MANUAL DIAMOND
user user system  early
hits seen | hits seen seen discard
S1
al 7 684 | 46 396 18,286 97.8%
b| 8 774 | 39 396 18,286 97.8%
c| 13 966 | 46 396 18,286 97.8%
S2
al 29 600 | 29 78 15,286 99.5%
b| 18 612 | 29 74 15,362 99.5%
c| 24 630 | 29 74 15,198 99.5%

Table 1: SnapFind user study - Results of an informal
interactive search experiment using SnapFind. Users
(a,b,c) were given three minutes to locate photographs
matching each query (S1 and S2) in a collection of
18,286 images.

images at their own pace, and Table 1 shows that users
scanned the images rapidly, viewing 600-1,000 images
in three minutes. Even at this rate of 2-5 images per
second, they were only able to process about 5% of the
total data.

For the SnapFind scenario, the user constructed early
discard searchlets simply by selecting one or more im-
age processing filters from a palette of pre-defined fil-
ters, configured filter parameters using the GUI, and
combined them using boolean operators. Images that
satisfied the filtering criteria (i.e., those matching a par-
ticular color, visual texture or shape distribution in a
subregion) were shown to the user. Based on partial
results, the user could generate a new searchlet by se-
lecting different filters or adjusting parameters. As in
the manual scenario, the user then marked those images
that matched the query. For S1, the early discard search-
let was a single “water texture” filter trained on eight
32x 32 patches containing water. For S2, the searchlet
was a conjunction of a color histogram filter combined
with a face detector. Table 1 shows these results, and
searchlets are detailed in Table 2.

For S1, SnapFind significantly increases the number
of relevant images found by the user. Diamond is able to
exhaustively search through all of the data, and early dis-
card eliminates almost 98% of the objects at the storage
devices. This shows how early discard can help users
find a greater number of relevant objects.

For S2, the improvement, as measured by hits alone,
is less dramatic, but early discard shows a different ben-
efit. Although Diamond fails to complete the exhaus-
tive search in three minutes (it processes about 85% of
the data), the user achieves approximately as many hits
as in the manual scenario while viewing 88% fewer im-
ages. For applications where the user only needs a few
images, early discard is ideal because it significantly de-
creases the user’s effort. By displaying fewer irrelevant



items, the user can devote more attention to the promis-
ing images.

5 Prototype |l mplementation

Our Diamond prototype is currently implemented as
user processes running on Red Hat Linux 9.0. The
searchlet API and the host runtime are implemented as a
library that is linked against the domain application. The
host runtime and network communication are threads
within this library. We emulate active storage devices
using off-the-shelf server hardware with locally-attached
disks. The active storage system is implemented as a
daemon. When a new search is started, new threads are
created for the storage runtime and to handle network
and disk 1/0. Diamond’s object store is implemented as
a library that stores objects as files in the native file sys-
tem. Associative DMA is currently under definition; Di-
amond uses a wrapper library built on TCP/IP with cus-
tomized marshalling functions to minimize data copies.
The remainder of this section details Diamond’s two
primary mechanisms for efficient early discard: run-time
partitioning of computation between the host and stor-
age devices, and dynamic ordering of filter evaluation to
reject undesirable data items as efficiently as possible.

5.1 Dynamic Partitioning of Computation

As discussed in Section 2, bottlenecks in exhaustive
search pipelines are not static. Diamond achieves sig-
nificant performance benefits by dynamically balancing
the computational task between the active storage de-
vices and the host processor.

The Diamond storage runtime decides whether to
evaluate a searchlet locally or at the host computer. This
decision can be different for each object, allowing the
system to have fine-grained control over the partitioning.
Thus, even for searchlets that consist of a single mono-
lithic filter, Diamond can partition the computation on
a per-object basis to achieve the ratio of processing be-
tween the storage devices and the host that provides the
best performance. The ability to make these fine-grained
decisions is enabled by Diamond’s assumption that ob-
jects can be processed in any order, and that filters are
stateless.

If the searchlet consists of multiple filters, Diamond
could partition the work so that some filters execute on
the storage devices and the remainder execute on the
host; the current implementation does not consider such
partitionings. Diamond could also detect when there are
many objects waiting for user attention and choose to
evaluate additional filters to discard more objects.

The current implementation supports two methods
for partitioning computation between the host and the
storage devices. The effectiveness of these methods in
practice is evaluated in Section 6.3.

511 CPU Splitting

In this method, the host periodically estimates its avail-
able compute resources (processor cycles), determines
how to allocate them among the storage devices, and
sends a message to each device. The storage device re-
ceives this message, estimates its own computational re-
sources, and determines the percentage of objects to pro-
cess locally. For example, if a storage device estimates
that it has 100 MIPS and receives a slice of 50 MIPS
from the host, then it should choose to process 2/3 of
the objects locally and send the remaining (unprocessed)
objects to the host. CPU splitting has a straightforward
implementation: whenever the storage runtime reads an
object, it probabilistically decides whether to process the
object locally.

5.1.2 QueueBack-Pressure

Queue Back-Pressure (QBP) exploits the observation
that the length of queues between components in the
search pipeline (see Figure 1) provide valuable informa-
tion about overloaded resources. The algorithm is im-
plemented as follows.

When objects are sent to the host, they are placed
into a work queue that is serviced by the host runtime.
If the queue length exceeds a particular threshold, the
host refuses to accept new objects. Whenever the stor-
age runtime has an object to process, it examines the
length of its transmit queue. If the queue length is less
than a threshold, the object is sent to the host without
processing. If the queue length is above the threshold,
the storage runtime evaluates the searchlet on the ob-
ject. This algorithm dynamically adapts the computa-
tion performed at the storage devices based on the cur-
rent availability of downstream resources. When the
host processor or network is a bottleneck, the storage de-
vice performs additional processing on the data, easing
the pressure on downstream resources until data resumes
its flow. Conversely, if the downstream queues begin to
empty, the storage runtime will aggressively push data
into the pipeline to prevent the host from becoming idle.

5.2 Filter ordering

A Diamond searchlet consists of a set of filters, each
of which can choose to discard a given object. We as-
sume that the set of objects that pass through a particular
searchlet is completely determined by the set of filters in
the searchlet (and their parameters). However, the fil-
ter order dramatically impacts the efficiency with which
Diamond processes a large amount of data.

Diamond attempts to reorder the filters within a
searchlet to run the most promising ones early. Note
that the best filter ordering depends on the set of filters,
the user’s query, and the particular data set. For example,
consider a user who is searching a large image collection
for photos of people in dark suits. The application may



determine that a suitable searchlet for this tasks includes
two filters (see Table 3): a face detector that matches im-
ages containing human faces (filter F1); and a color filter
that matches dark regions in the image (filter F3). From
the table, it is clear that F1 is more selective than F3,
but also much more computationally expensive. Run-
ning F1 first would work well if the data set contained
a large number of night-time photos (which would suc-
cessfully pass F3). On the other hand, if the collection
contained a large number of baby pictures, running F1
early would be extremely inefficient.

The effectiveness of a filter depends upon its selec-
tivity (pass rate) and its resource requirements. The total
cost of evaluating filters over an object can be expressed
analytically as follows. Given a filter, Fi, let us denote
the cost of evaluating the filter as c(Fi), and its pass rate
as P(Fi). In general, the pass rates for the different filters
may be correlated (e.g., if an image contains a patch with
water texture, then it is also more likely to pass through
a blue color filter). We denote the conditional pass rate
for a filter Fi that is processing objects that successfully
passed filters Fa, Fb, Fc by P(Fi|Fa,Fb,Fc). The av-
erage time to process an object through a series of filters
FO...Fnis given by the following formula:

C = c(F0)+P(F0)c(F1)+P(F1|FO)P(FO)c(F2)+
P(F2|F1,F0)P(F1|FO0)P(FO)c(F3)+---

The primary goal of choosing a filter order is to mini-
mize this cost function. To perform this optimization,
the system needs the costs of the different filters and the
conditional pass rates. Diamond estimates these values
during a searchlet execution by varying the order the fil-
ters are evaluated and measuring the pass rates and costs
over a number of objects.

5.2.1 Partial Orderings

Allowing filters to use results generated by other fil-
ters enables searchlets to: (1) use generic components
to compute well-known properties; (2) reuse the results
of other filters. For instance, all of the color filters in
SnapFind (see Section 4) rely on a common data struc-
ture that is generated by an auxiliary filter. Filter devel-
opers can explicitly specify the attributes that each filter
requires, and these dependencies are expressed as par-
tial ordering constraints. Figure 4 shows an example
of a partial order. The forward arrows indicate an ‘al-
lows’ relationship. For example, “Reader” is a prereg-
uisite for “Histogram” and “WaterTexture”, and “Red”
and “Black” are prerequisites for “ColorTest”. The filter
ordering problem is to find a linear extension of the par-
tial order. Figure 5 shows one possible order. Note that
finding a path through this directed acyclic graph is not
sufficient; all of the filters in the searchlet still need to be
evaluated.

WaterTexture
Application

Figure 4. Example partial ordering - “Reader” must be
executed before “Histogram” and “WaterTexture”. “His-
togram” must be evaluated before “Red” and “Black”.

Chisogan >—>C o >
Application @ WaterTexture

Figure 5: Linear Extension - a possible ordering for the
filters shown in Figure 4.

5.2.2 Ordering Policies

The filter ordering policy is the method that Diamond
uses for choosing the sequence for evaluating the filters.
We describe three policies below.

e Independent: assumes that there is no correla-
tion between P(Fi) and P(F ), or c(Fi) and c(Fj).
Using this assumption we can find an optimal se-
quence by sorting on c(Fi)/P(Fi) [24]. In practice
the correlations between filters may cause this pol-
icy to perform poorly.

e Hill climbing (HC): picks a random sequence from
the space of all legal linear extensions. The pol-
icy attempts to iteratively improve the order by
swapping adjacent filters until a local minimum is
reached. Multiple random restarts are used to re-
duce sensitivity to the starting point.

o Best filter first (BFF): iteratively expands a list
of valid sub-sequences to find the optimal filter
sequence. BFF initializes a list with the set of
single-element sub-sequences consisting of the fil-
ters that have no dependencies. BFF then removes
the cheapest sub-sequence from the list, computes
all valid sub-sequences that are one filter longer,
and reinserts them into the list. BFF terminates
when the cheapest sub-sequence is complete; this
is an optimal sequence. The algorithm is motivated
by the observation that later filters typically have
less impact on the average cost than earlier filters,
because the overall pass probability drops as one
goes deeper in the filter chain.



6 Experimental Evaluation

This section presents empirical results from a variety of
experiments using SnapFind running on the Diamond
implementation described in Section 5. The active stor-
age devices were emulated using rack-mounted comput-
ers (1.2 GHz Intel® Pentium® 111 processors, 512 MB
RAM and 73 GB SCSI disks), connected via a 1 Gbps
Ethernet switch. The host system contained a 3.06 GHz
Intel® pentium® Xeon™processor, 2 GB RAM, and
a 120 GB IDE disk. The host was connected via Eth-
ernet to the storage platforms. We varied the link speed
between 1 Gbps and 100 Mbps depending on the exper-
iment. Some experiments required us to emulate slower
active storage devices; this was done by running a real-
time task that consumed a fixed percentage of the CPU.
These experiments employ homogeneous backends.

6.1 Description of Searchlets

We evaluate Diamond using the set of queries enumer-
ated in Table 2. These consist of real queries from
SnapFind searches supplemented by several synthetic
queries. The searchlets are described in Table 2, and
the filters used by these searchlets are listed in Table 3.

The Water (S1) and Business Suits (S2) queries
match the tasks we used in Section 4. The Hal-
loween (S3) query is similar to Business Suits with an
additional filter. The three synthetic queries (S4-S6)
are used to test filter ordering and the two Dark Patch
queries (S7, S8) are used to illustrate bottlenecks for dy-
namic partitioning.

Table 3 provides a set of measurements summarizing
the discard rate and the computational cost of running
the various filters. We determined these filter charac-
teristics by evaluating each filter over the objects in our
image collection (described in Section 4). The overall
discard rate is the fraction of objects dropped divided by
the total number of images, and the cost is the average
number of CPU milliseconds consumed. Filters FO-F5
are taken from SnapFind. The other filters were synthet-
ically generated with specific characteristics.

The searchlets S5 and S6 were designed to examine
the effect of filter correlation. F14, F15 and F16 are
correlated: P(F14,F15,F16) # P(F14)P(F15)P(F16).
F17, F18 and F19 are uncorrelated: P(F17,F18,F19) =
P(F17)P(F18)P(F19).

6.2 Disk and Host Processing Power

Our first measurements examine how variations in sys-
tem characteristics (number of storage devices, intercon-
nect bandwidth, processor performance, queries) affect
the average time needed to process each object. For each
configuration, we measure the completion time for a dif-
ferent static partitioning between the host and storage
devices. A particular partition is identified by percent-
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Figure 6: Compute Limited - This graph shows how the
average time spent processing an object varies with the
percentage of the objects evaluated at the storage sys-
tem when the CPU is the bottleneck. The average time is
computed as the total search time divided by the number
of objects searched.

age of objects that are evaluated at the storage devices.
Remaining objects are passed to the host for processing.

In these experiments, each storage device has 5,000
objects (1.6 GB). As the number of storage devices in-
creases, so does the total number of objects involved in a
search. For each configuration, we report the mean time
needed for Diamond to process each object (averaged
over three runs). Our data set was chosen to be large
enough to avoid startup transients but small enough to
enable many different experiments. Using a larger data
set would give the same average time per object, but will
increase the overall completion time for a search.

The first set of experiments (see Figure 6) shows how
variations in the relative processing power of the host
and storage devices affect search time for CPU-bound
tasks. These experiments use searchlet S3 to find pic-
tures of a child in a Halloween costume.

We observe that, as the number of storage devices in-
creases, more computation is moved to the storage de-
vices. This matches our intuition that as the aggregate
processing power of the storage devices increases, more
of the overall processing should be done at the storage
devices.

When there is no processing at the storage devices,
this is equivalent to reading all of the data from network
storage. On the left-hand side of the lines, we see linear
decreases as processing is moved to the storage devices,
reducing the load on the bottleneck. When most of the
processing moves to the storage device, the bottleneck
becomes the storage device and we see increases in av-
erage processing time. The best case is the local min-
imum; this corresponds to the case where the load be-



Query Searchlet Description CPU
Cost

Water - regions containing water waves S1 | Uses texture fi lter trained on water samples. Low

Business Suits - images of people in dark S2 | Uses face detector and color histogram trained on dark High

business suits patches of color.

Halloween - images of a child in Halloween S3 | Uses face detector and color histograms trained on red High

costume patches and dark patches of color.

Synthetic S4 | Synthetic fi Iters with inversely (non-linearly) related pass | Med
rate and cost.

Synthetic S5 | Three fi lters with correlated pass rate and constant cost. Low

Synthetic S6 | Three fi lters with independent pass rate (same as S5 Low

overall) and constant cost.

Dark Patch A - searchlet with high selectivity | S7

Uses color histogram trained on black sample patch; hasa | Low
high threshold so few images match.

Dark Patch B - searchlet with low selectivity | S8

Uses color histogram trained on black sample patch; hasa | Low
low threshold so many images match.

Table 2: Test Queries - The queries and associated searchlets used to evaluate the Diamond prototype.

Filter Searchlet | Discard | CPU

rate (ms)
FO - Reader (required) | S1,2,3,7,8 0 5
F1 - Face Detect S2,3 99% 530
F2 - Histogram S2,3,7,8 0 20
F3 - Black (reqg. F2) S2 83% 2
F3a - Black (reqg. F2) S7 99% 2
F3b - Black (reg. F2) S8 78% 2
F4 - Red (req. F2) S2 99% 2
F5 - Wave Texture S1 95% 14
F6 - Synthetic 20% 2
F7 - Synthetic 22% 4
F8 - Synthetic 26% 8
F9 - Synthetic S4 29% 16
F10 - Synthetic 31% 32
F11 - Synthetic 33% 64
F12 - Synthetic 36% 128
F13 - Synthetic 36% 256
F14 50% 1
F15 - Synthetic S5 40% 8
F16 30% 8
F17 50% 1
F18 - Synthetic S6 40% 8
F19 30% 8

Table 3: Filters - The discard rate is over a collection of
18,286 images. FO and F2 are helper filters that do not
discard data. The filters in S5 are correlated; those in S6
are uncorrelated.

tween the host and the storage devices is balanced. Note
that Diamond benefits from active storage even with a
small number of storage devices.

Our next measurements (see Figure 7) examine the
network-bound case using searchlets S7 and S8. Both
searchlets look for a small dark region and are relatively
cheap to compute. S7 rejects most of the objects (highly
selective) while S8 passes a larger fraction of the objects
(non-selective).

Avg. Time per Object (ms)

0 10 20 30 40 50 60 70 80 90 100

Percent Computation at Storage Device
—— S8, 4 Devs, 100Mbps —# — S7, 4 Devs, 100Mbps
--4 --88, 4 Devs, 1Gbps — X — 8§87, 4 Devs, 1Gbps

Figure 7: Network Limited - This graph shows how the
average time per object varies with the percentage of
objects evaluated at the storage system when the net-
work is the bottleneck. The average time is computed
as the total search time divided by the number of objects
searched.

These experiments demonstrate that as the network
becomes the limiting factor, more computation should
be performed at the storage device. We also see that
these lines flatten out at the point where reading the data
from the disk becomes a bottleneck. The upper two lines
show S7 and S8 running on a 100 Mbps network. We see
that S8 is always slower, even when all of the computa-
tion is performed at the storage device. This is because
S8 passes a large percentage of the objects, creating a
data transfer bottleneck in all cases.

6.3 Impact of Dynamic Partitioning

This section evaluates the effectiveness of the dynamic
partitioning algorithms presented in Section 5. As a
baseline measurement, we manually find the ideal par-
titioning based on the results from the previous sec-
tion. We then compare the time needed to complete
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Figure 8: Dynamic Partitioning - This graph compares
the performance of two automated partitioning algo-
rithms against a hand-tuned manual partitioning.

the search using this manual partitioning to those for the
two dynamically-adjusting schemes: CPU Splitting and
Queue Back-Pressure (QBP).

For these tests, we use both a CPU-bound task
(searchlet S3) and a network-bound task (searchlet S7).
We run each task in a variety of configurations and com-
pare the results as shown in Figure 8.

In all of these cases, the QBP technique gives similar
performance to the Best Manual technique. CPU Split-
ting does not perform as well in most of the cases for
two reasons. First, in the network-bound task (searchlet
S7), the best results are obtained by processing all ob-
jects at the storage devices. CPU Splitting always tries to
process a fraction of the objects on the host, even when
sending data to the host is the bottleneck. QBP detects
the network bottleneck and processes the objects locally.
Second, relative CPU speeds are a poor estimate of the
time needed to evaluate the filters. Most of these search-
lets involve striding over large data structures (images)
so the computation tends to be bound by memory ac-
cess, not CPU. As a result, increasing the CPU clock
rate does not give a proportional decrease in time. It is
possible that more sophisticated modeling would make
CPU Splitting more effective. However, given that the
simple QBP technique works so well, there is probably
little benefit to pursuing that idea.

6.4 Impact of Filter Ordering

This section compares the different policies described in
Section 5.2.2, and illustrates the significance of filter or-
dering. We use searchlets S1-S6, which are composed
of the filters detailed in Table 3. This experiment elim-
inates network and host effects by executing entirely on
a single storage device and compares different local op-
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Figure 9: Filter Ordering - Execution time for evaluating
searchlets using different ordering policies, normalized to
the Offline Best policy.

timizations. Total time is normalized to the Offline Best
policy; this is the best possible static ordering (computed
using an oracle), and provides a bound on the minimum
time needed to process a particular searchlet. Random
picks a random legal linear order at regular intervals.
This is the simplest solution that avoids adversarial worst
cases without extra state, and would be a good solution
if filter ordering did not matter.

Figure 9 shows that completion time varies signifi-
cantly with different filter ordering policies. The poor
performance of Random demonstrates that filter order-
ing is significant. There is a unique legal order for S1,
and all methods pick it correctly. Independent finds the
optimal ordering when filters are independent, as in S6,
but can generate expensive orderings when they are not,
as in S5. Hill Climbing sometimes performs poorly be-
cause it can get trapped in local minima. Best Filter First
is a dynamic techniques that works as well as Indepen-
dent (it has a slightly longer convergence time) with in-
dependent filters, and has good performance with depen-
dent filters. The dynamic techniques spend time explor-
ing the search space, so they always pay a penalty over
the Offline Best policy. This is more pronounced with
more filters, as in S4.

The next experiment examines Diamond perfor-
mance when dynamic partitioning and filter ordering are
run concurrently. For our baseline measurement, we
manually find the best partitioning and the best filter or-
dering for each configuration. We then compare the time
needed to execute searchlet S3 against two test cases that
use dynamic adaptation. The first uses dynamic parti-
tioning (QBP) and the filter ordering (BFF); the second
uses dynamic partitioning (QBP) and randomized filter
orders. Figure 10 shows the results of these experiments.
As expected, the combination of dynamic partitioning
and dynamic filter ordering gives us results that are close
to the best manual partitioning. Random filter ordering
performs less well because of the longer time needed to
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Figure 10: Dynamic Optimizations - Execution times
for evaluating searchlets using a combination of dynamic
partitioning and filter ordering, compared against a hand-
tuned algorithm.

process each object.

6.5 Using Diamond on Large Datasets

To better understand the impact of Diamond on real-
world problems, we consider a typical scenario: how
much data could a user search in an afternoon? The
results from Figure 10 show that Diamond can pro-
cess 40,000 objects (8 storage devices with 5,000 ob-
jects each) in 247 seconds. Thus, given four hours, the
user should be able to search through 2.3 million objects
(approximately 0.75 TB) using the same searchlets. In
the case of searchlet S3, this would imply that the user
should see about 115 objects. However, since the num-
ber of objects seen by the user is sensitive to search pa-
rameters and the distribution of data on the storage de-
vice, it could vary greatly from this estimate.

Although raw performance should scale as disks are
added, the limitations imposed by the user and the do-
main application are less clear. For instance, in the drug
discovery application described in Section 4, the user’s
think-time may be the limiting factor even when Dia-
mond discards most of the data. Conversely, in other
domains, the average computational cost of a searchlet
could be so high that Diamond would be unable to pro-
cess all of the data in the alloted time. These questions
are highly domain-dependent and lie beyond the scope
of this paper.

As we discussed in the introduction, the current im-
plementation is focused on pure brute-force search, but
other complimentary techniques can be used to im-
prove performance. One technique would be to use
pre-computed indices to reduce the number of objects
searched. For example, filter F1 from Table 3 could be

used to build an index of pictures containing faces. Us-
ing this index would reduce the search space by 99% for
any searchlets that use filter F2.

Another complimentary technique is to take advan-
tage of cached results. In certain domains, a user may
frequently refine a searchlet based on partial results in a
manner that leaves most of its filters and their param-
eters unchanged. For instance, in SnapFind, the user
may modify a search by adding a filter to the existing
set of filters in the searchlet. When re-executing a fil-
ter with the same parameters, Diamond could gain sig-
nificant computational benefits by retrieving cached re-
sults. However, caching may provide very little bene-
fit for other applications. For instance, a Diamond ap-
plication that employs relevance feedback [16] typically
adjusts filter arguments at each iteration based on user-
provided feedback. Since the filter arguments are dif-
ferent with each search, the use of cached information
becomes more difficult. We plan to evaluate the bene-
fits of caching as we gain more experience with other
Diamond applications.

7 Related Work

To the best of our knowledge, Diamond is the first at-
tempt to build a system that enables efficient interactive
search of large volumes of complex, non-indexed data.
While unique in this regard, Diamond does build upon
many insights and results from previous work.

Recent work on interactive data analysis [15] out-
lines a number of new technologies that will be required
to make database systems as interactive as spreadsheets
— requiring advances in databases, data mining and
human-computer interaction. Diamond and early dis-
card are complementary to these approaches, providing
a basic systems primitive that furthers the promise of in-
teractive data analysis.

In more traditional database research, advanced in-
dexing techniques exist for a wide variety of specific
data types including multimedia data [10]. Work on
data cubes [13] takes advantage of the fact that many
decision support queries are well-known to pre-process
a database and then perform queries directly from the
more compact representation. The developers of new
indexing technology must constantly keep up with new
data types, and with new user access and query pat-
terns. A thorough survey of indexing and the outline of
this tension appear in a recent dissertation [27], which
also details theoretical and practical bounds on the (of-
ten high) cost of indexing.

Work on approximate query processing, recently sur-
veyed in [5], complements these efforts by observing
that users can often be satisfied with approximate an-
swers when they are simply using query results to iter-



ate through a search problem, exactly as we motive in
our interactive search tasks.

In addition, in high-dimensionality data (such as fea-
ture vectors extracted from images to support indexing),
sequential scanning is often competitive with even the
most advanced indexing methods because of the curse
of dimensionality [6, 9, 33]. Efficient algorithms for ap-
proximate nearest neighbor in certain high-dimensional
spaces, such as locality-sensitive hashing [12], are avail-
able. However, these require the similarity metric be
known in advance (so that the data can be appropri-
ately pre-indexed using the proximity-preserving hash-
ing functions) and that the similarity metric satisfy cer-
tain properties. Diamond addresses searches where nei-
ther of these constraints is satisfied.

In systems research, our work builds on the insight
of active disks [1, 20, 25] where the movement of search
primitives to extended-function storage devices was an-
alyzed in some detail, including for image processing
applications. Additional research has explored methods
to improve application performance using active stor-
age [21,22,26,32]. The work of Abacus [2], Coign [18],
River [3] and Eddies [4] provide a more dynamic view
in heterogeneous systems with multiple applications or
components operating at the same time. Coign focuses
on communication links between application compo-
nents. Abacus automatically moves computation be-
tween hosts or storage devices in a cluster based on
performance and system load. River handles adap-
tive dataflow control generically in the presence of fail-
ures and heterogeneous hardware resources. Eddies [4]
adaptively reshapes dataflow graphs to maximize perfor-
mance by monitoring the rates at which data is produced
and consumed at nodes. The importance of filter order-
ing has also been the object of research in database query
optimization [28]. The addition of early discard and fil-
ter ordering bring a new set of semantic optimizations to
all of these systems, while retaining the basic model of
observation and adaptation while queries are running.

Recent efforts to standardize object-based storage de-
vices (OSD) [30] provide the basic primitives on which
we build our semantic filter processing. In order to
most efficiently process searchlets, active storage de-
vices must contain whole objects, and must understand
the low-level storage layout. We can also make use of
the attributes that can be associated with objects to store
intermediate filter state and to save filter results for pos-
sible re-use in future queries. Offloading space man-
agement to storage devices provides the basis for under-
standing data in the more sophisticated ways necessary
for early discard filters to operate.

8 Conclusion

Diamond is a system that supports interactive data anal-
ysis of large complex data sets. This paper argues that
these applications require applying brute-force search to
a portion of the objects. To efficiently perform brute-
force search the Diamond architecture uses early discard
to push filter processing to the edges of the system — ex-
ecuting semantic data filters directly at storage devices,
and greatly reducing the flow of data into the central bot-
tlenecks of a system. The Diamond architecture also en-
ables the system to adapt to different hardware configu-
rations by dynamically adjusting where computation is
performed.

To validate our architecture, we have implemented
a prototype version of Diamond and an application,
SnapFind, that interactively searches collections of dig-
ital images. Using this system, we have demonstrated
that searching large collections of images is feasible and
that the system can dynamically adapt to use the avail-
able resources such as network and host processor effi-
ciently.

In the future, we plan to work with domain experts
to create new interactive search applications such as lig-
and screening or satellite imagery analysis. Using these
applications, we plan to validate our approach to inter-
active search of large real-world datasets.
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