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Abstract
Discovering the causes of performance problems in virtualized 
systems is often more difficult than without virtualization, because 
they can be caused by changes in infrastructure configuration 
rather than the user’s application. vQuery is a system that collects, 
archives, and exposes configuration changes alongside fine-grained 
performance data, so the two can be correlated. It gathers 
configuration change data without modifying the systems it 
collects from and copes with platform-specific details within a 
general, graph-based model of Infrastructure-as-a-Service (IaaS) 
infrastructures. Configuration data collected from two VMware® 
vSphere™ environments reveals that configuration changes are 
frequent and involved, opening interesting new directions for 
configuration-aware performance diagnosis techniques.

1. Introduction
Consolidating computing activities onto shared infrastructures, 
such as in cloud computing and other virtualized data centers, 
offers substantial efficiency benefits for providers and consumers 
alike. But, it also introduces complexities when trying to understand 
the performance behavior of any given activity, since it can depend 
on many factors not present when using dedicated infrastructure. 
For example, the VMs used for the activity can migrate or be resized, 
or new VMs for other activities can be instantiated on shared 
hardware. As on-demand resource allocation (as in cloud computing) 
and automated configuration optimization (e.g., via VMware DRS1) 
grow more common, such factors increasingly create potentially 
confusing performance effects.

Traditionally, to understand application performance and diagnose 
performance problems, administrators and application engineers 
rely on resource usage instrumentation data from infrastructure 
runtime systems, such as time-sampled CPU utilization, memory 
allocated, and network packets sent/received. In VM-based 
infrastructures, the same data types can be captured for each VM  
as well. But, while such data exposes how resource usage changed 
at a given point in time, it offers little insight into why. Deducing 
why, so that one can decide what (if any) reactive steps to take, 
often is left entirely to the intuitions and experience of those 
involved in the diagnosis.

We believe an invaluable additional source of information should 
be captured and explicitly correlated with resource utilization data: 
the configuration history. Of course, any runtime infrastructure 
maintains its current configuration, and many log at least some 
configuration changes. Since configuration changes often cause 
performance changes, purposefully or otherwise, correlating the 
two should make it possible to highlight root causes of many 
problems automatically. In addition, the combination of the  
two offers the ability to expose powerful insights for system 
management and automation, such as which configuration 
changes usually improve performance and how particular 
problems were overcome in the past. 

This paper describes our prototype system (called vQuery) for 
configuration change tracking and mining, together with initial 
experiences. vQuery collects time-evolving configuration state 
alongside fine-grained resource usage data from a VMware 
vCloud™-based infrastructure, stores it, and allows it to be queried. 
Configuration changes are captured by listening to vSphere’s API 
and vCloud’s internal update notifications. They are stored as a 
time-evolving graph of entities (e.g., VMs and physical hosts) as 
vertices and relationships as edges. This general approach avoids 
changes to the infrastructure software, accommodates a range of 
IaaS systems, and allows a range of configuration history queries.

We deployed vQuery on a local VMware software based private 
cloud (referred to as Carnegie Mellon’s vCloud) as well as a VMware 
testbed, with positive initial results. We illustrate some of the power 
of configuration change history with interesting anecdotes and 
data from these deployments, and discuss challenges still ahead 
on this line of research.

The remainder of this paper is organized as follows. Section 2 
explains what we mean by “configuration data” and configuration 
changes in more detail, including examples from VMware systems. 
Section 3 describes the design and current implementation of 
vQuery, focusing on how configuration data is captured, stored, 
and queried. Section 4 presents some data, early experiences,  
and anecdotes from vQuery deployments. Section 5 discusses our 
ongoing research on vQuery and exploiting configuration change 
data. Section 6 discusses related work.
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A key aspect of configuration on which we focus is that much  
of it changes over time. Some configuration properties may 
change very slowly (e.g., the amount of RAM on a physical host  
is seldom adjusted), while others are increasingly dynamic (e.g.,  
the placement of a VM on a physical host is adapted by DRS).  
In tracking configuration as it relates to performance, we focus  
on recording changes in order to ask questions such as “was there  
a relevant configuration change around the same time as a given 
performance change?” and “what were all the configuration changes 
associated with a given VM?” Beyond diagnosis, maintaining a change 
history can also help us understand how and why systems evolve2.

Additionally, infrastructure configuration is not a collection of 
unrelated facts. Configuration properties are associated with 
entities, whether physical (hosts and physical networks) or virtual 
(VMs and users), and these entities are meaningfully related. For 
example, VMs are placed on physical hosts, and users own vApps, 
which contain VMs. Examples of these “relational” properties are 
shown in italic in Table 1. We believe maintaining information about 
the relational structure of configuration—and how it changes—is 
important for diagnosis. It is intuitively important to be able to ask 
questions, such as “which VMs were on a given host when there 
was a performance problem?” Additionally, a variety of diagnosis 
approaches have taken advantage of the fact that the effects of 
changes often propagate through causal dependencies among  
the components of a distributed system3 4 5, many of which are 
directed along these relations.

3. vQuery: Design
vQuery is designed to track fine-grained configuration data in a 
way that maintains the features described above. At a high level, 
the problems we need to solve are the same as those for performance 
monitoring: how to collect, store, and access configuration data.  
A simplified overview of our approach is shown in Figure 1, and  
this section describes each component in turn.

 

3.1 Configuration Collection
Changes to configuration occur from both human and automated 
sources, and they clearly do not happen only at a fixed interval. It  
is insufficient for just the current configuration to be exposed by 
infrastructure APIs. For the collection process to be more efficient 

2. Configuration Data and Changes
In a distributed computing infrastructure, various types of 
configuration are spread across files, databases, and within 
software. The word “configuration” often is used for concepts  
that include command-line flags to programs, OS-level settings, 
and the layout of virtual machines across computing resources. In 
this work, we focus on the last type: infrastructure-level properties 
that affect how virtualized environments, such as vSphere and 
vCloud, function and that reflect their current state.

Even this type of configuration is very heterogeneous. Some data 
are as simple as key-value pairs, but other data encodes lists, objects, 
and hierarchies. Some is controlled by end users (e.g., the choice of 
guest operating system for a VM), some is primarily automated by the 
computing infrastructure (e.g., which IP address a VM is assigned), 
and some can be managed by both (e.g., the choice of physical 
resources that back a VM). More concretely, Table 1 shows a selection 
of configuration properties in a VMware-based environment, ranging 
from simple descriptive properties to relationships with other entities.

EntIty tyPE ConfIguRAtIon PRoPERtIES

VM vSphere: host system, networks, datastore,  
name, annotation, memory, vCPUs, CPU allocation 
(reservation/limit/shares), memory allocation 
(reservation/limit/shares), virtual disk layout (chain 
length), power state, guest OS type, guest OS state, 
guest OS screen dimensions, guest NIC (IPs, network, 
state), guest disk (capacity, free space, path), IP address, 
VMware tools state + version
vCloud: vApp, networks, name, vCPUs, memory,  
guest OS, status, storage

vApp vCloud: owner, vDC, networks, status

User vCloud: name, VM quota

Host vSphere: network, CPU (frequency, number of cores and 
packages), memory size, power state 

Network vSphere: name
vCloud: fence mode, parent, DNS (addresses, suffix), 
netmask, IP ranges

Datastore vSphere: name, capacity, free space, type, url

Table 1: selected configuration properties in vSphere and vCloud. The properties that 
represent other entities are shown in italic.

Modeling configuration consistently is one focus of vQuery. In 
addition to the different types and meanings of configuration 
within vSphere and vCloud, different virtualized infrastructures 
expose different configuration properties. For example, where 
vSphere has a platform-independent datastore abstraction, the 
OpenStack infrastructure platform separates storage into block 
storage, local storage, and a separate VM image service. We would 
like to represent configuration in a sufficiently general way to model 
such different environments.

Figure 1: high-level overview of the vQuery configuration tracking system. It collects 
data from vSphere and vCloud, stores them in separate logs, and ingests them into a 
graph database to be queried.



 1 1
vQuery: a pLatforM for connectIng  
confIguratIon anD perforMance

3.2 Configuration Storage
A primary challenge in storing configuration is how to represent it. 
Here, we describe a time-evolving representation of configuration 
information that is designed to support historical and relational 
queries using a general model. The representation is a graph with  
a loose schema—formally a typed, directed, attributed multigraph 
that also tracks time.

Infrastructure entities (VMs, physical hosts, storage nodes, networks, 
and so on) are vertices of this graph. Each vertex is associated with 
three mandatory fields: a unique identifier (id), a type (VM, host, and 
so on), and a valid-time interval9. Infrastructure entities can be created 
and removed over time (as in Figure 3, VMs can be allocated and 
deleted), but their historical presence must be remembered to 
support retrospective analytics. Each vertex also has a map of 
attribute names to a list of time-changing values ordered by time. 
The intuition behind this format is that each infrastructure attribute 
can change over time (e.g, a user changing the allocation of a VM, 
as shown as vRAM in Figure 3). The after-image of each value  
is appended to the list. Our implementation currently supports 
primitive types (strings, integers, floating-point numbers) and 
arrays thereof.

Edges between entities have two mandatory fields: a type of 
relationship and a valid-time interval. Similar to entities, such  
a relationship often exists only for a given time interval. For 
instance, in Figure 3, vm-1 moved from host-a to host-b at  
time t3 and was removed at time t4. In this way, the graph 
captures events such as VM migration not simply as events  
but as changes that relate entities. These edges—akin to foreign 
keys—are the schema of the configuration graph. Administrators 
must specify which configuration attributes have semantic meaning 
as dependencies (and must contain identifiers as values). 

and accurate than polling, there must be some way of obtaining 
updates. Ideally, the mechanism should require minimal, if any, 
modification of the infrastructure. We built our prototype without 
modifying code in vSphere or vCloud.

For vSphere, we build on the existing interface for subscribing  
to update notifications. Specifically, we use a PropertyCollector 
and its WaitForUpdates method to receive changes to a set of 
configuration properties of interest.

Although vCloud does not currently offer such an interface, we 
collect configuration from vCloud by listening to internal messages 
as a signal for when to query its configuration API. As an example, 
vCloud sends a message to start an action (e.g, start a VM,  
(1) in Figure 2), which results in a message sent to an AMQP  
message bus (1) and actions in vSphere (2). When the task is 
finished, a completion message is posted to the message bus.  
Our configuration collector listens to the same AMQP message  
bus (3), filters to listen to only task completion messages, and 
queries an appropriate API to find details about configuration 
change after a task completes (4). 

This design pattern is not restricted to vCloud. The recently popular 
OpenStack IaaS also uses an AMQP message bus for inter-node 
communication6. We built enough of a collector for OpenStack to 
confirm that messages can be intercepted for configuration event 
notification. The same technique is not limited to message bus 
transports. For example, systems based on bare Remote Procedure 
Calls (RPC) could be instrumented similarly, albeit with a lower-level 
interceptor. In addition to vSphere, we have started collecting 
limited configuration data from an instance of the Tashi cluster 
management system7.

In an ideal world, we would capture changes to all types of 
configuration that might affect performance, including those  
from the application layer. For example, recent research describes 
mechanisms for capturing changes to configuration files within 
guest VMs without modifying guest software8. Integrating such 
changes with those accessible from vCloud and vSphere is a 
direction for future work.

Figure 2: Configuration collection strategy for vCloud and OpenStack. The configuration 
collector listens to messages on the vCloud message bus and polls an appropriate API 
upon intercepting a task completion message.

Figure 3: property graph of changing configuration. Each entity (VM, host, etc.) is 
associated with a number of time-evolving properties, in addition to time-evolving 
relationships with other entities. A unique identifier (id) and type of entity (type) are 
the only two required properties. The properties that track relationships (e.g. host)  
are specified by a user.
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Maintaining configuration in this format also allows for the use of 
existing graph databases as an underlying persistence layer—in 
particular, those that store property graphs and have the ability  
to build indexes on properties. 

Updating the graph, while relatively straightforward in principle, 
requires care in practice. The principle of the algorithm is reminiscent 
of that used to update a transaction-time state table in a temporal 
database10, as applied to a property graph. Unfortunately, when 
receiving configuration updates from different layers of infrastructure, 
dependencies can be reported before the entities to which they 
refer. Consider the following ordered sequence of observations, 
similar to events observed in practice:

1. The VLAN network-1 is created

2. vCloud reports that vm-1 is connected to network-1

3. vSphere reports the existence of network-1

The final desired graph should contain a has-network edge from 
vm-1 to network-1. If updates are applied in the given order, the 
graph will contain an invalid edge after step #2, since the existence 
of network-1 is not yet known. We maintain a set of these “pending 
edges,” which are scanned as new updates arrive. If one matches a 
newly-created entity the dependency is added with the original 
valid-time. As a beneficial side effect, this technique allows the 
update algorithm to operate with insertion batches atop the 
transactional graph database used (Neo4j11).

One drawback of storing configuration so generally is that we  
push the problem of forming meaningful queries to the querier.  
For example, retrieving a list of VMs requires selecting entities  
with the VM type rather than scanning a table named “VMs.”  
Also, we assume loosely synchronized timestamps across  
different reporters of entity information, a property provided  
by the underlying VMware infrastructure.

3.3 Configuration Query
To ask questions about configuration history, we build a few 
abstractions on top of the graph database to supplement its query 
language12. Here, we focus on a few that align with our primary 
goals of historical queries that provide the history of an entity or 
the system, and relational queries that discover entities that likely 
depend on or influence each other.

•	Historical:	get-backlog(tstart, tend): obtain all configuration changes 
to any entity between times tstart and tend. 

•	Historical:	get-property-names(E): get a list of properties 
associated with entity E, followed by get-property (E, name) to 
get a time-ordered list of changes to the property with name n.

•	Relational:	get-subgraph	(E, d): do a breadth-first traversal of 
entities connected to entity E, up to a maximum depth d (or, with 
get-subgraph(E, n), up to a maximum number of entities n).

3.4 Performance Collection
In addition to the technique for storing configuration data 
described above, a source of performance data is necessary to 
connect configuration with performance. The performance data 
we consider consists of time series streams of metrics reported  
by the hypervisor and aggregated by management software. In 
contrast to configuration data, many mature systems exist for 
collecting and archiving this data at the infrastructure level13 14 15. 

For performance data collection, we use the StatsFeeder prototype 
described in more detail in the first issue of the VMware technical 
journal16. We collect nine metrics from each virtual machine and  
15 metrics from each physical host every 20 seconds. These 
performance metrics are described briefly in Table 2.

VIRtuAL MAChInE

CPU usage: time used by this VM
system: time spent in the VMkernel
wait: time spent waiting for hardware/kernel locks
ready: time spent waiting for a CPU  
(e.g., on an oversubscribed host)
guaranteed: time used of the total guaranteed  
to the VM
extra: time used beyond what  
the VM was originally assigned

Memory swapped: amount of VM memory swapped out to disk
swaptarget: amount of memory the VMkernel  
is aiming to swap
vmmemctl: size of the memory balloon

hoSt

CPU usage: aggregated time the CPU was used
idle: time the CPU was idle

Disk usage: average disk throughput
read: average read throughput
write: average write throughput
commands: disk commands issued
commandsAborted: disk commands aborted
busResets: SCSI bus reset commands
numberRead: number of disk reads
numberWrite: number of disk writes

Network packetsRx: packets received
packetsTx: packets transmitted
usage: average transmit + receive KB/s
received: average receive KB/s
transmit: average transmit KB/s

Table 2: collected performance data. All metrics are times, averages, or sums over a 
sample period (20s).
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4. Early experiences with vQuery
A full evaluation of the vQuery framework would assess whether  
it can answer real diagnosis and monitoring queries. Although the 
project is still in the preliminary stage, this section provides some 
early experiences with configuration data collection and synthetic 
relational queries.

4.1 Historical
A functional configuration monitor collects and stores configuration 
changes over extended periods. This section describes some of the 
output from the two vSphere instances to which vQuery has been 
connected. The Virtual SE Lab (vSEL)17 is an environment at VMware 
that is used for events at VMworld, training, and demos. We collected 
configuration changes from it a month prior to VMworld 2011. The 
vCloud at Carnegie Mellon (CMU) is a cloud we deployed to support 
academic workloads from courses, individual researchers, and 
groups with large research computing demands submitted via 
batch schedulers. Table 3 lists a few basic metrics of configuration 
change for each environment.

The last row of Table 3 highlights the diversity of configuration—and 
the need to be somewhat selective in what is collected and retained. 
One of the configuration properties exposed by vSphere and collected 
in the CMU dataset was datastore free space, a frequently updated 
property that accounted for over 63% of the configuration changes 
we observed. Although free space changes can be important to 
monitor, either collecting them infrequently or treating them as 
time series metrics (rather than as configuration changes) is  
more appropriate.

vSEL CMu

Collection period 12 days, starting 
21 July 2011

75 days, starting 
12 July 2012

Number of physical hosts 100 15

Number of changes 27888 63820

Number of configuration 
properties gathered

11 36

Number of changes,  
less free space changes

27888 23466

Table 3: Basic metrics of configuration change from two vSphere instances.

To better understand configuration changes that have occurred, 
visualization is crucial. As one example view, Figure 4 shows the 
configuration changes that occurred in the 75-day CMU dataset. 
Since there are so many types of configuration changes, we only show 
the top 10 types of change in the legend (by number of changes). 
A number of noteworthy events are visible from temporal and 
spatial groups on the chart. (See the caption for detail.)

An additional observation we make about the snapshot of 
configuration in Figure 4 is that many configuration changes 
co-occur. For example, when VMs are restarted (e.g., the events 
marked as (c)), their power state changes along with the status  
of VMware tools in the guest OS and the status of its connection  
to a virtual network. Together, these changes represent the event 
“VM restart”. Attributing its performance effects to a single one of 
these changes (particularly a change such as the state of VMware 
tools) would be misleading. Together with the observation in Table 3 
that some configuration events are less meaningful than others, 
distilling semantically meaningful changes from the noise in 
configuration will be an important step forward.

4.2 Relational
One important aspect of vQuery is providing query access to related 
entities, which builds on database support for rapid neighborhood 
queries in the spatio-temporal configuration graph. We use a graph 
database (Neo4j); these databases are typically optimized for fast 
constant-time adjacency lookup18. This feature is one key way to 
manage queries across large graphs: the entities that are closer 
through dependency traversal are those that are more likely related. 

For example, when performing a diagnosis query involving the 
performance of VM v, likely culprits include configuration changes 
to its resources (e.g., compute, networking, storage), which are within 
a traversal distance of 1. Furthermore, other VMs contending for those 
resources are also of interest, and are within a distance of 2. Although 
infrequent, relationships with a distance of 3 also arise: VMs in vCloud 
are modeled as abstract entities that are backed by VMs in vSphere. 

Figure 4: Configuration changes to a small datacenter. 
Dots represent configuration events to VMs, hosts, and 
datastores (spread on the vertical axis) across the 
horizontal time axis. The labeled periods are:

a)  changes to many hosts and datastores around  
the time of a switch outage (first event) and  
switch replacement (second event) in another 
virtual datacenter

b)  a user adding 30 VMs to an existing set of VMs  
to run experiments

c)  the same user restarting the entire set of VMs  
when they became unresponsive

d)  a user setting up a Windows VM, including  
many restarts

e) many points in this region (and between (b) and (c)) are VM migrations

f)  this row of changes is primarily changes to datastore free space.  
(The VM disk free space changes shown in Table 3 are filtered out of this image.)
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a host, datastore, or network can be a source of performance 
variation for VMs sharing that resource. The configuration 
changes we measure include migrations and power state 
changes, which we hope to correlate with performance 
monitoring data of contending entities. We believe relational 
queries will be necessary to identify configuration changes that 
occur to “neighbors,” which are potential sources of contention.

•	Explaining parameters. simply understanding which performance 
metrics are influenced by a configuration change can be a valuable 
source of guidance when identifying configuration-related 
problems, since the impact of configuration parameters often  
is unclear from name or documentation alone. Identifying 
performance changes related to configuration could allow  
us to annotate configuration parameters with the metrics  
they affect, providing guidance towards how they behave.

6. Related Work
6.1 Configuration Management
Recognition of the complexity of deploying and managing 
applications across clusters has spurred many configuration 
management efforts. Tools that have received recent attention 
include Chef19 and Puppet20, which focus on automated application 
deployment and configuration. CFengine21 was among the first such 
tools, designed to reduce the burden of manually scripting policies 
and configurations across Unix workstations. It has since added 
support for deploying policies across the cloud computing 
environments we consider.

These tools primarily facilitate the creation of configuration rather 
than monitoring changes over time. That is, most focus on actuating 
configuration rather than monitoring what exists. CFengine is notable 
among the examples above for also incorporating a familiar-sounding 
notion of “knowledge management,” which is a collection of facts 
about infrastructure and the relationships between them.

6.2 Correlating Configuration with Performance
Much work on understanding the connection between configuration 
and performance is focused on tuning configuration to optimize 
application performance. At least a few techniques, though, focus 
on our primary motivating use case: finding configuration changes 
that are the root cause of performance changes. 

Many of these techniques have emerged from work on diagnosis  
in large-scale networks. MERCURY22 considers an instance of the 
problem in ISP networks, and identifies the impact of upgrades 
and routing configuration changes on time series performance 
indicators, such as CPU utilization and packet loss. Whereas 
MERCURY considers mostly long-term changes in performance, 
PRISM23 operates in the same setting and focuses instead on shorter 
time-scale changes, such as “spikes.” WISE24 also operates on ISP 
configuration and performance, but uses it to answer questions  
of the form “what would be the performance impact of making  
a configuration change?”

Correlating configuration changes from a vCloud VM to a colocated 
vSphere VM needs 3 hops. If one needs to connect configuration 
changes to another vCloud VM, the distance would be 4 hops. 
Most cases involve just 1-2 hops.

To demonstrate that queries in common cases are relatively fast, 
Figure 5 shows the time required to run a query starting over the 
largest portion of the vSEL configuration graph. We run queries 
starting from a random entity in the 1821-entity graph up to a given 
depth. One can observe that querying for entities separated by  
a distance of 1 is fast (typically less than two milliseconds), and 
queries to distance 2 are typically under 10ms.

5. Next Steps
As described above, vQuery forms an infrastructure for collecting, 
storing, and querying fine-grained configuration and performance 
data. Moving forward, we plan to use these augmented sources of 
monitoring data to perform more accurate diagnoses than with 
traditional black-box performance data alone. In particular, our 
next aim is to find configuration changes that are the root cause  
of performance problems. Three concrete examples are:

•	Short-term changes. VM migration performed by DRS  
and virtual disk migration performed by storage DRS require 
network bandwidth and physical host resources. By monitoring 
performance, we hope to observe the short-term impact of these 
mechanisms and attribute it to the host and storage configuration 
changes we observe. We believe the fine-grained performance 
information we collect will be important to distinguish these 
performance variations, in addition to recent historical configuration

•	Contention. virtualized workloads contend for resources, and 
perfect isolation is not yet a reality across resources, such as 
caches and disks. Migrating or starting workloads that use  

Figure 5: time taken to retrieve related entities to a random starting entity. 1,000 queries 
were performed at each distance, and boxes extend to the interquartile range.
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In the context of distributed applications, although NetMedic25 uses 
two known snapshots in time as “good” and “problematic” points 
for diagnosing application-level errors, it uses some of the same 
concepts discussed here—notably, inference based on system 
performance data and an (automatically generated) dependency 
graph. ASDF26 also correlates multiple time evolving measurements, 
similar to the black-box monitoring data described here, to perform 
root-cause diagnosis of performance problems.

6.3 Problem Diagnosis
Our work shares high-level goals with efforts to diagnose problems 
in distributed systems using widely available black-box performance 
metrics, such as CPU time and network throughput. For instance, 
Kasick et al. use statistical comparison across multiple machines  
to perform root-cause diagnosis in parallel file systems27. At the 
application level, work focused on multi-tier distributed systems 
has used time series CPU performance metrics to localize faults to 
individual machines28, and domain-specific counters in IP networks29.

By taking advantage of deeply instrumented “white-box” systems, a 
broader range of distributed system diagnosis techniques have been 
used for finding the sources of performance problems. For example, 
end-to-end traces , which track activity as it moves across system 
components, can be a rich source of insight30. Spectroscope31 is one 
such tool that leverages these traces for root-cause performance 
problem diagnosis.

7. Summary
In virtualized environments, such as VMware vSphere, the additional 
indirection between workloads and the resources they use can lead 
to additional challenges when finding the source of performance 
problems. Infrastructure configuration changes can be a hidden 
source of performance variation. Identifying such effects requires 
configuration change capture and analysis. vQuery is a system for 
tracking configuration changes so that we can correlate them with 
traditional performance data, and early experiences with it are 
promising. Moving forward, we plan to integrate the data we 
collect to automatically produce insight about configuration-
related performance problems in virtualized infrastructures.
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