
Scaling Video Analytics on Constrained Edge Nodes

Christopher Canel * 1 Thomas Kim * 1 Giulio Zhou 1 Conglong Li 1 Hyeontaek Lim 1 David G. Andersen 1

Michael Kaminsky 2 Subramanya R. Dulloor 3

Abstract
As video camera deployments continue to grow, the need to process large volumes of real-time data strains
wide-area network infrastructure. When per-camera bandwidth is limited, it is infeasible for applications such as
traffic monitoring and pedestrian tracking to offload high-quality video streams to a datacenter. This paper presents
FilterForward, a new edge-to-cloud system that enables datacenter-based applications to process content from
thousands of cameras by installing lightweight edge filters that backhaul only relevant video frames. FilterForward
introduces fast and expressive per-application “microclassifiers” that share computation to simultaneously detect
dozens of events on computationally-constrained edge nodes. Only matching events are transmitted to the datacenter.
Evaluation on two real-world camera feed datasets shows that FilterForward improves computational efficiency
and event detection accuracy for challenging video content while substantially reducing network bandwidth use.

1 Introduction
Video camera deployments in urban areas are ubiquitous:
in malls, offices, and homes, and on streets, cars, and
people. Almost 100 million networked surveillance cam-
eras were purchased worldwide in 2017 (IHS). Machine
learning–based analytics on real-time streams collected by
these cameras, such as traffic monitoring, customer tracking,
and event detection, promise breakthroughs in efficiency
and safety. However, tens of thousands of always-on cam-
eras installed in a modern city collectively generate hun-
dreds of gigabits of data every second, overloading shared
network infrastructure. This problem is worse for wire-
lessly and cellularly–connected nodes and areas outside of
infrastructure-rich metropolitan centers (FCC), as they often
have more constrained networks (Google Wireless Internet;
ITU/UNESCO Broadband Commission for Sustainable De-
velopment, 2017). Moreover, the infeasibility of uploading
streaming video is at odds with the growing complexity
of video analytics applications that are designed to run in
datacenters. This paper addresses the question of how to
overcome this network bottleneck and offload large volumes
of data from a distributed camera deployment in real-time
to a datacenter for further processing.

Deployment proliferation, combined with increasing camera
*Equal contribution 1Computer Science Department, School

of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA 2Intel Labs, Pittsburgh, Pennsylvania, USA
3ThoughtSpot, Palo Alto, California, USA. Correspondence to:
Christopher Canel <ccanel@cmu.edu>.

Proceedings of the 2nd SysML Conference, Palo Alto, CA, USA,
2019. Copyright 2019 by the author(s).

resolution, necessitates an edge-based filtering approach that
is parsimonious with limited bandwidth. We present Filter-
Forward (FF), a system that offers the benefits of both edge
computing and datacenter-centric approaches to wide-area
video processing. Using edge-compute resources collo-
cates with the cameras, FilterForward identifies the video
sequences that are most relevant to datacenter applications
(“filtering”) and offloads only that data for further analysis
(“forwarding”). In this way, FilterForward supports near-
real-time processing running in datacenters while limiting
the use of low-bandwidth wide-area network links.

FilterForward is designed for scenarios meeting two key
assumptions, which hold for some, though certainly not
all, applications: First, relevant events are rare. There is
bandwidth to be saved by transmitting only relevant data.
Second, datacenter applications require high-quality video
data to complete their tasks. This precludes solutions such as
heavily compressing streams or reducing their spatial (frame
dimensions) or temporal (frame frequency) resolutions.

In the FilterForward model, datacenter applications express
interest in specific types of visual content (e.g., “send me
sequences containing dogs”). Each application installs on
the edge a set of small neural networks calledmicroclassifiers
(MCs) that perform binary classification on each incoming
frame to determine whether an interesting state is occurring.
Typically, an interesting state is described in terms of the
presence of a certain object. EachMC is trained offline by an
application developer. At runtime, frame-level classification
results are smoothed to determine the start and end points of
“events” during which the interesting state occurred. Events
are re-encoded and streamed to the datacenter.

Scaling Video Analytics on Constrained Edge Nodes

FilterForward scales to multiple independent applications
(e.g., “find dogs and find bicycles”) by evaluating manyMCs
in parallel. Optimizing this multi-tenancy is FilterForward’s
key contribution. Instead of designing the MCs to operate
on raw pixels, FilterForward draws inspiration from modern
object detectors and uses a shared base deep neural network
(DNN) to extract general features from each frame. All MCs
operate on the activations from the base DNN, but they may
draw from different layers. This amortizes the expensive
task of pixel processing across all of the MCs, allowing
FilterForward to execute tens of concurrent MCs using the
CPU power available in a small-form-factor edge node. The
base DNN is an expensive per-frame up-front overhead, but
it enables a significant performance improvement once the
number of concurrent MCs passes a break-even point.

For applications meeting FilterForward’s requirements (op-
erating with severe bandwidth constraints and requiring
high-fidelity data), our architecture delivers a greater num-
ber of useful frames to the datacenter than existing filtering
approaches and standard compression/sampling techniques.
Our evaluation using two real-world camera feed datasets
demonstrates that FilterForward is computationally efficient,
surpassing the frame rate of existing techniques (Kang et al.,
2017) when more than 4 MCs run together and achieving
up to 6.8× higher throughput with 50 concurrent MCs (Sec-
tion 4.4). Furthermore, MCs are up to 1.29× more accurate
than pixel-based DNN filters used in prior work while having
up to a 22.9× lower marginal cost (Section 4.5).

2 Background and Challenges
This section provides an overview of video analytics before
delving into the key challenges introduced by a large-scale
camera deployment.

2.1 Video Analytics

Typical video analytics primitives include: Image classifica-
tion categorizes a whole frame based on its most dominant
features (e.g., “This is an image of an intersection.”). Object
detection finds interesting objects that may occupy only a
small portion of the view and categorizes them (e.g., “This
rectangle defines a region containing a car.”). Object track-
ing aims to label each object’s location across multiple
frames (e.g., “This path plots the progress of pedestrian A
crossing the road.”). These and other primitives form the
basis of more advanced analyses, such as traffic monitoring,
pedestrian action understanding, and hazard detection.

Video analytics workloads entail extensive computation on
large amounts of data (e.g., a 1920 × 1080 pixel stream at
30 frames per second is ≈ 1.5 Gb/s when decompressed).
Accomplishing video analytics at scale requires abundant
compute, memory, and storage resources, so existing systems

often perform this processing in the cloud, usingGPUs (Kang
et al., 2017; Zhang et al., 2017).

2.2 Edge-to-cloud Challenges

The scenarios that motivate FilterForward include remote
“Internet of Things” monitoring and “smart city” deploy-
ments of tens or hundreds of thousands of wide-angle,
fixed-view cameras. In this section, we describe three key
challenges presented by this use case.

2.2.1 Limited Bandwidth

Running video analytics by streaming all video to the cloud
conflicts with the bandwidth constraints of some deploy-
ments, which preclude uploading all camera data. Each
camera’s uplink bandwidth is limited, both by the physical
constraints of modern wide-area network infrastructure and
the monetary cost of operating a widespread camera deploy-
ment. Specifically, we consider large-scale deployments
where each camera receives a bandwidth allocation of a
few hundred kilobits per second, or less (Public Parking
Authority of Pittsburgh, 2018). For comparison, a low-
qualityH.264-encoded 1080p (1920×1080 pixels) stream is
approximately two Mb/s, an order of magnitude greater than
our available uplink bandwidth. Yet, such low-quality data is
often insufficient to perform accurate analysis: Modern 4K
(3840×2160 pixels) cameras produce up to 30-40 Mb/s, two
orders of magnitude beyond the uplink bandwidth, and this
gap will only expand as 8K (7680 × 4320 pixels) cameras
become more common. As a concrete example, we have an
off-campus deployments where cameras are mounted next
to traffic lights at an intersection. The local Internet service
provider charges $400 per month for a single 35 Mb/s uplink,
creating a strong economic incentive for us to share that
bandwidth between as many cameras as possible (currently,
eight 4K cameras share each uplink).

This bandwidth gap, exacerbated by the requirement for
high-quality data, necessitates an edge-based decision about
which frames to send to the datacenter. FilterForward
answers this challenge with semantic filtering that uploads
only frames that are relevant to applications.

2.2.2 Real-world Video Streams

In many surveillance deployments, cameras are mounted
high on buildings or light posts and fitted with wide-angle
lenses that capture broad views of the surrounding area.
Interesting objects (e.g., pedestrians, license plates, parcels,
animals, etc.) occupy a small portion of the frame. This
poses a challenge for the video analytics primitives discussed
in Section 2.1. Image classification maps the entire image
to a single category, so a urban viewpoint would always
be labeled “street” or “traffic,” which is of limited use.
Object detection and tracking are designed to pick individual

Scaling Video Analytics on Constrained Edge Nodes

Feature Extractor

Feature
maps

Frames
Events
clips

DatacenterEdge Node

Microclassi�er 1

Microclassi�er 2

Microclassi�er N

...

App. 1

App. 2

App. N

...

Camera
DNN Layer Activations

Figure 1. The FilterForward architecture.

objects out of a frame, but often operate on low-resolution
images (e.g., as small as 300 × 300 pixels (Liu et al., 2016)).
Aggressive downsampling of a wide-angle image causes
details such as license plates and distant people to disappear.
To detect these fine-grained details, FilterForward introduces
microclassifiers that process high-resolution images on the
edge, avoiding quality degradation caused by the decimation
required to meet bandwidth constraints.

2.2.3 Scalable Multi-tenancy

In real-world deployments, cameras observe scenes contain-
ing diverse objects and activities. A single camera may
record pedestrians walking down the sidewalk, vehicles
stopped at a traffic light, and shoppers entering stores; all
while capturing the current weather, the quantity of leaves
on the trees, and whether there is snow on the roads. Dif-
ferent applications are simultaneously interested in all of
this information, and more. Therefore, any edge-filtering
approach must scale to multiple cloud applications focused
on disjoint regions of the frame in parallel.

Given edge nodes’ limited compute resources, scaling to
multiple applications naturally poses a performance chal-
lenge. A naïve approach to handling N applications is to
run N full DNNs concurrently. However, even relatively
lightweight DNNs are costly. In our experience, on a modest
Intel® CPU (not GPU), MobileNet (Howard et al., 2017)
runs at approximately 15 fps for 512 × 512 pixel images
while consuming more than 1 GB of memory Even rela-
tively lightweight DNNs have high resource requirements,
precluding execution of more than a handful of full DNNs in
real time on an edge node. Therefore, to achieve scalability,
FilterForward’s lightweight MCs simplify per-application
processing while the base DNN shares redundant computa-
tion between applications.

The rest of this paper describes how FilterForward addresses
the above challenges: semantic filtering decimates video
streams to meet bandwidth constraints, novel microclassifier
architectures detect fine-grained details in wide-angle video,
and computation reuse enables scalable multi-tenancy.

3 Designing FilterForward
FilterForward is a novel video analytics platform that reuses
computation to provide highly accurate, multi-tenant video
filtering for bandwidth-constrained edge nodes. Purely
edge-based approaches constrain applications to the static
compute and storage resources of field installations, while
datacenter-only analytics necessitate heavily compressing
the video for transport. FF offers applications the flexibility
of splitting their work between the edge and the cloud, taking
advantage of high-fidelity data at the edge to make relevant
video sequences available in the cloud.

This section describes the architecture of FF’s two main
components, the feature extractor and microclassifiers, and
explains how they address the three challenges described in
Section 2.2: meeting bandwidth constraints, detecting subtle
details in real-world video, and supporting many concurrent
applications. The system architecture is shown in Fig 1.

3.1 Generating Features

In FilterForward, MCs reuse computation by taking as
input feature maps produced from the intermediate results
(activations) of a single reference DNN, which we refer to as
the base DNN. The component that evaluates the base DNN
and produces feature maps is called the feature extractor.

As prior work observes (Sharghi et al.; Yeung et al.), acti-
vations capture information that humans intuitively desire
to extract from images, such as the presence and number
of objects in a scene, and outperform handcrafted low-level
features (Razavian et al., 2014; Yue-Hei Ng et al., 2015;
Babenko & Lempitsky, 2015). The activations of the first
layers of a DNN (often simple convolutional filters such as
edge detectors) are still visually recognizable. Later acti-
vations represent higher-level concepts (e.g., “eye”, “fur”,
etc.). Processing feature maps created from these activations
has been used successfully for tasks such as object region
proposals, segmentation, and tracking (Ren et al., 2015;
Hariharan et al., 2015; Ma et al., 2015; Bertinetto et al.,
2016), as well as action classification (Sharma et al., 2015).

For our evaluation, we use the MobileNet (Howard et al.,

Scaling Video Analytics on Constrained Edge Nodes

2017) architecture trained on ImageNet (Russakovsky et al.,
2015) as the base DNN. MobileNet offers a balance between
accuracy and computational demand that is appropriate for
constrained edge nodes. We use the 32-bit (unquantized)
version of the network. Picking an appropriate base DNN
is, of course, a moving target, and we do not view the
selection of a specific network as a contribution of this
work. Evaluating the robustness of our filtering algorithm
to different base DNNs is left for future research.

The feature extractor plays a crucial role in addressing the
challenge of detecting small objects in real-world surveil-
lance video (Section 2.2.2). Instead of drastically shrinking
incoming frames as is typical in ML-based video analyt-
ics, FilterForward examines full-resolution frames. For
our evaluation, the full resolution is either 1920 × 1080
or 2048 × 850 pixels (Section 4.1), which represent 41.3×
and 34.7× increases in total input data, respectively, versus
the typical MobileNet input size of 224 × 224 pixels. By
operating on high resolution frames, small content such as
distant pedestrians, make and model–specific automobile
details, and faces are captured in greater detail.

However, processing drastically more pixels imposes a sig-
nificant computation overhead, as the work done by each
layer of the base DNN increases. Although feature extraction
is the most computationally intensive phase of FilterFor-
ward, its results are reused by all of the MCs, amortizing
the up-front, per-frame overhead once the number of MCs
passes a break-even point. This computation reuse is the key
to achieving scalable multi-tenancy, a major challenge for
real-world surveillance deployments (Section 2.2.3). On-
going architectural improvements in off-the-shelf feature
extraction networks as well as advances in hardware accel-
erators (Jouppi et al., 2017; Apple, 2017; intel-movidius;
microsoft-project-brainwave) will continue to reduce Filter-
Forward’s computational overhead.

We evaluate the baseDNN’s computation overhead in Sec 4.4.
Ultimately, the feature maps generated by the base DNN
underpin FF’s accuracy and scalability achievements.

3.2 Finding Relevant Frames Using Microclassifiers

Microclassifiers are lightweight binary classification neural
networks that take as input feature maps extracted by the base
DNN and output the probability that a frame is relevant to a
particular application. An edge node can run multiple MCs
on a single stream, or on several streams simultaneously.

An application developer chooses an MC architecture (we
present several possibilities in Section 3.3) and trains it
offline to detect the application’s desired content. To deploy
an MC, the developer supplies the network weights and
architecture specification along with the name of the base
DNN layer (and, optionally, a crop thereof) to use as input.

Each microclassifier can pull feature maps from any layer of
the base DNN, enabling FilterForward to support different
types of tasks (Section 2.2.3). Section 3.4 discusses the layer
selection process. Furthermore, each MC can optionally
crop its feature map to focus on a certain portion of the
frame. This reduces computation while increasing accuracy
for certain applications by constraining the MC’s spatial
scope. Selecting a static sub-region of the field of view is
a natural optimization for a fixed camera feed, and helps
specialize FilterForward to wide-angle surveillance video
(Section 2.2.2). One key insight is that by cropping feature
maps instead of raw pixels, FilterForward retains its ability to
simultaneously support MCs interested in different content,
a key scalability requirement.

Dropping irrelevant frames is crucial to limiting bandwidth
use, FilterForward’s primary objective (Section 2.2.1). Ide-
ally, an MC will identify all of the frames that an application
needs to process in the cloud, while rejecting a large fraction
of unimportant frames. The redundancy inherent in video
provides a safety margin for false negatives. False posi-
tives are particularly harmful because they consume upload
bandwidth with irrelevant data.

In the background, edge nodes record the original video
stream to disk so that datacenter applications can demand-
fetch additional video (e.g., context segments surrounding a
matched segment) from the edge nodes’ local storage.

As discussed in Section 3.1, sharing computation between
MCs via the base DNN is FilterForward’s solution to the
multi-tenancy demands of real-world surveillance deploy-
ments (Section 2.2.3). We show in Sections 4.4 and 4.5 that
operating on feature maps instead of raw pixels provides
microclassifiers with competitive accuracy while reducing
marginal compute cost by an order of magnitude.

3.3 Microclassifier Architectures

As discussed in Section 2.2.2, off-the-shelf classifiers and
detectors perform poorly on wide-angle surveillance video
because the objects of interest are often small. We propose
three customMC architectures, shown in Figure 2, that solve
this challenge in different ways. Two important features
of these designs are: (1) they operate on activations from
whichever base DNN layer, and therefore whichever granu-
larity of features, is most appropriate for their task, while
(2) optionally cropping away irrelevant regions of the frame.
Both of these capabilities help achieve high accuracy on
real-world data, as evaluated in Section 4.5.

3.3.1 Full-frame Object Detector (Figure 2a)

Modeled after sliding window–style object detectors such as
SSD (Liu et al., 2016) and Faster R-CNN (Ren et al., 2015),
the full-frame object detector MC applies a small binary

Scaling Video Analytics on Constrained Edge Nodes

Conv
1x1

32 filters
1x1 stride

ReLU

Conv
1x1

32 filters
1x1 stride

ReLU

Conv
1x1

1 filter
1x1 stride

ReLU

33
x6

0x
10

24

33
x6

0x
32

33
x6

0x
32

33
x6

0x
1

1x
1x

1

M
ax

1

si
gm

oi
d

(a) Full-frame object detector

SepConv
3x3

1x1 stride
depth 16

ReLU

SepConv
3x3

2x2 stride
depth 32

ReLU

FC
200
units
ReLU67

x1
20

x5
12

1x
1x

20
0

1

si
gm

oi
d

67
x1

20
x1

6

34
x6

0x
32

(b) Localized binary classifier

Conv
3x3

32 filters
1x1 stride

ReLU

Conv
3x3

32 filters
2x2 stride

ReLU

FC
200 units

ReLU

FC
1 unit

sigmoidi+2
i+1

i-1
i

i-2

67x120x512

C
on

ca
t

(6
7x

12
0x

32
)x

5

67
x1

20
x1

60

67
x1

20
x3

2

34
x6

0x
32

1x
1x

20
0

1Conv
1x1

32 filters
1x1 stride

(c) Windowed, localized binary classifier

Figure 2. Three microclassifier architectures. The specific dimensions have been calculated for a 1920 × 1080 pixel video, assuming no
spatial crop (in which case the dimensions will be smaller).

classification DNN at each location in a convolutional layer
feature map and then aggregates the detections to make a
global prediction. This is achieved by using multiple layers
of 1 × 1 convolutions and then applying a max operator over
the grid of logits (signifying looking for ≥ 1 objects). This
model is specifically designed for pattern matching queries,
with an implicit assumption of translational invariance (i.e.,
the model runs the same template matcher everywhere), and
is well-suited to processing entire wide-angle frames.

3.3.2 Localized Binary Classifier (Figure 2b)

The localized binary classifier MC is a lightweight convolu-
tional neural network (CNN) that processes spatially cropped
feature maps. Consisting of two separable convolutions and
a fully-connected layer, this architecture is designed to de-
tect prominent objects within a localized region (i.e., like
zooming in to a region of the original frame).

3.3.3 Windowed, Localized Binary Classifier (Figure 2c)

This architecture extends the localized binary classifier MC
to incorporate nearby temporal context, improving per-frame
accuracy. The user specifies a temporal window ofW frames.
Given the convolutional feature maps for a symmetric W-
sized window centered at frame F, the windowed, localized
binary classifier MC first applies a 1 × 1 convolution to
each frame’s feature map, then depthwise-concatenates the
resulting activations and applies a CNN to predict whether
frame F is interesting. This setup allows the MC to pick
up on motion cues in the scene, which helps achieve higher
accuracies on taskswhere objects are constantlymoving. The
initial single-frame 1×1 convolution significantly reduces the
size of the input feature map, making this larger architecture
computationally tractable on edge node hardware. As an
optimization, the 1×1 convolutions are only computed once,
and their outputs are buffered and reused by subsequent
windows, eliminating redundant computation.

3.4 Choosing Microclassifier Inputs

Choosing which layer to use as each microclassifier’s input
is critical to its accuracy. The layers of a CNN feature
hierarchy offer a trade-off between spatial localization and
semantic information. Too late a layer may not be able to
observe small details (because they have been subsumed
by global semantic classification). Too early a layer could
be computationally expensive due to the large size of early
layer activations and the amount of processing still required
to transform low-level features into a classification result.

As a baseline, we hand-select a layer (and optionally a crop
region) based upon two simple heuristics. For the layer
depth, we try to match the typical size of the object class we
were detecting (e.g., to find pedestrians in a 1920×1080 pixel
video where the average height of a human is 40 pixels, we
choose the first layer at which a roughly 20:1–50:1 spatial
reduction has occurred). We chose the optional crop region
based on the region of interest for the application, such as
the crosswalks when detecting people.

In the prototype version of FilterForward, we pull features
from a single layer per MC, and constrain the feature crops to
be rectangular. Interesting future work would be to combine
features from multiple layers and experiment with free-form
and non-contiguous crop regions. Furthermore, automating
the process of choosing which layer activations and crops to
use is an optimization problem worth investigating.

3.5 From Per-frame Classifications to Events

A microclassifier outputs binary per-frame classifications
(i.e., is this frame relevant or not), which FilterForward then
smooths into event detections. First, each MC’s results for
N consecutive frames are accumulated into a window. Then,
to mask spurious misclassifications, we apply K-Voting
to this window, treating the middle frame as a detection
if at least K of the N frames in the window are positive

Scaling Video Analytics on Constrained Edge Nodes

detections. For our evaluation, we conservatively set N = 5
and K = 2, which provides fairly aggressive false negative
mitigation at the expense of potential false positives. The
resulting smoothed, per-frame labels are fed into a transition
detector that considers each contiguous segment of positively-
classified frames to be a unique event. Each event is assigned
an MC-specific, monotonically increasing, unique ID, which
is stored in each frame’s metadata. These IDs are used by
applications to determine the event boundaries.

A single framemay be classified as part of an interesting event
by multiple MCs. For example, if frame F is part of event X
for MC A and event Y for MC B, then F’s internal metadata
will contain the mapping (A→ X; B→ Y), indicating that it
is part of multiple events. As for the frames themselves, they
are re-encoded using H.264 at a user-configured bitrate and
streamed back to the datacenter. The application developer
specifies a bitrate that is sufficiently high for their tasks (the
implications of this parameter are discussed in Section 4.3).

4 Evaluation
FilterForward’s goal is to maximize filtering accuracy while
limiting bandwidth use and scaling to multiple applications.
We show that FilterForward achieves a high frame rate
on commodity hardware by sharing computation between
microclassifiers while maintaining high event-level accuracy
on two event detection tasks.

All performance experiments were conducted on a desktop
computer with a quad-core Intel® Core™ i7-6700KCPU and
32 GB of RAM, using only the CPU (not the integrated or
discreteGPUs). In our experience, this CPU is representative
of an edge node, but we expect deployments to also contain
GPUs or hardware accelerators.

4.1 Real-world Datasets

Weevaluate using two datasets (Figure 3) showing scenes that
are representative of the real-world surveillance deployments
that FilterForward targets. The first dataset consists of video
captured from a traffic camera deployment in Jackson Hole,
Wyoming (the Jackson dataset). We collected two six-hour
videos from two consecutive days between 10 AM and
4 PM. Then, we annotated the twelve hours of data with
labels for when pedestrians appear in the crosswalks (the
Pedestrian task). This task allow us to demonstrate the
spatial selectivity of our microclassifiers in a way that is
hopefully relevant to future traffic monitoring applications.
For example, combined with a simple traffic light detector,
one could craft composite queries to detect jaywalkers.

In addition, we collected a second dataset from a higher-
quality camera in our own city deployment. It consists of
two three-hour videos of a city street (the Roadway dataset),
captured back-to-back during the middle of the day. We

(a) The Jackson (left) and Roadway (right) datasets.

(b) Dataset details.

Dataset Jackson Roadway

Resolution 1920 × 1080 pixels 2048 × 850 pixels
Frame rate 15 fps 15 fps
Frames 600,000 324,009
Task Pedestrian People with red
Event frames 95,238 71,296
Unique events 506 326

Figure 3. Real-world video datasets used for evaluation.

annotated the six hours of data with labels for when passing
pedestrians are wearing red articles of clothing or carrying
red parcels (the People with red task). For each dataset, the
first video is used for training and the second for testing.

4.2 Defining Event F1 Score

Most classification metrics operate on a per-frame basis.
Because FilterForward is event-centric, we adopt a custom
metric from recent work that defines a modified recall metric
for events that span multiple frames (Lee et al., 2018). For
an event i, the resulting EventRecalli metric weighs two
success measures: Existencei rewards detecting at least one
frame from an event, and Overlapi rewards detecting an
increasing fraction of the frames from an event.

Existencei =

{
1 if detect any frame in event i
0 otherwise

Overlapi =
∑
j

|Intersect(Ri,Pi)|

|Ri |

EventRecalli = α × Existencei + β × Overlapi
Ri and Pi are the ground truth and predicted event ranges,
respectively. We choose α = 0.9 and β = 0.1 to place
a greater importance on detecting a single frame in each
event. For real-time event detection in a surveillance setting,
we believe that not missing events is more important than
capturing all frames in an event. If an application receives
any frame from an event, it can demand-fetch additional
frames while prioritizing between events.

On the other hand, we retain the standard definition of preci-
sion: The fraction of predicted frames that are true positives
(i.e., # correctly detected

total # detected). For FilterForward, precision deter-
mines what fraction of bandwidth is used to send relevant

Scaling Video Analytics on Constrained Edge Nodes

10 100 1000 10000
Average bandwidth used (kilobits per second, log scale)
0.0

0.2

0.4

0.6

0.8

1.0
E

ve
nt

F1
sc

or
e

FilterForward Compress Everything

(a) Full-frame binary classifier

10 100 1000 10000
Average bandwidth used (kilobits per second, log scale)
0.0

0.2

0.4

0.6

0.8

1.0

E
ve

nt
F1

sc
or

e

FilterForward Compress Everything

(b) Localized binary classifier

Figure 4. Bandwidth use on the Roadway People with red task for
two strategies for offloading data: (1) compressing the video using
H.264 and sending all frames; and (2) FilterForward, where only
relevant sequences are sent (also H.264-encoded).

frames. A precision of 1.0 means that all bandwidth is spent
sending useful true positive frames. We combine standard
precision with our modified definition of event recall to cal-
culate an event F1 score—the harmonic mean of precision
and recall—which is used throughout this evaluation.

4.3 Saving Wide-area Bandwidth

Conserving edge-to-cloud bandwidth is FilterForward’s pri-
mary goal (Section 2.2.1). As a proxy for the bandwidth used
in a real deployment, we evaluate the bitrate of the stream of
frames that FilterForward selects to upload. As a baseline,
we compare to the bitrate of offloading all frames at various
compression qualities. Note that reducing the resolution is
infeasible because doing so decimates small details. Simi-
larly, temporal sampling is not an option because dropping
large numbers of frames can hide short events, and dropping
only a few frames does not provide proportional bandwidth
savings because video compresses very well (each frame
does not add much overhead).

Figure 4 shows the bandwidth use and event F1 scores for
two MC architectures on the Roadway dataset’s People with
red task, compared to compressing the entire stream. The
compression data points’ event F1 scores are the result of
running the MCs on data with that particular bitrate, which
simulates filtering in the datacenter on low quality streams.

For bothMCs, FilterForward reduces the network bandwidth
by nearly an order of magnitude compared to sending the
full video stream back to the datacenter at high quality.

Compared to compressing to a low bitrate, FF provides
substantially higher accuracy by processing the original high-
fidelity stream at the edge, whereas compression destroys
information crucial to solving challenging vision tasks.

In Figures 4a and 4b, FilterForward re-encodes/uploads
matched frames at 250 Kb/s and 500 Kb/s, respectively.
These bitrates are chosen as sufficient for their respective
tasks (Section 3.5). FF’s empirical bandwidth use in this
experiment is based on these. However, it is important to
note that FilterForward’s relative bandwidth savings is inde-
pendent of the selected upload bitrate. Whatever bitrate the
application developer chooses for their tasks, FilterForward
allows them to utilize that bandwidth more efficiently by
dropping irrelevant frames. Phrased another way, instead of
distributing the available bandwidth uniformly across the
frames, FilterForward allows the user to concentrate their
limited bandwidth resources on the frames that matter most,
thus delivering them at the highest possible quality.

4.4 End-to-end Performance Scalability

FilterForward embraces performance scalability as a first-
class design objective (Section 2.2.3). To demonstrate
microclassifiers’ low marginal cost, we compare to two al-
ternative filtering techniques: (1) naïvely running multiple
instances of a full DNN, and (2) training specialized pixel-
level classifiers. We use MobileNet as the full DNN. The
custom classifiers, referred to as discrete classifiers (DCs)
because they process raw pixels, are similar to techniques
used in NoScope (Kang et al., 2017) (discussed further in
Section 5.2.1). A DC is faster than a general-purpose classi-
fication DNN, but more expensive than an MC. Section 4.5
offers a more detailed cost and accuracy comparison with
DCs. For fairness, FilterForward, the full DNNs, and the
DCs all operate on full resolution frames, which for these
experiments are 1920 × 1080 pixels.

We execute the base DNN using a version of the Caffe deep
learning framework (caffe) that has been optimized for Intel
CPUs(Intel) and uses the Intel Math Kernel Library for Deep
Neural Networks (Intel MKL-DNN) (intel-mkl-dnn). We
execute the MCs using TensorFlow (Abadi et al., 2016). We
set the neural network batch size based on a short parameter
sweep. Evaluation videos are H.264-compressed and reside
on disk, so all performance experiments implicitly contain
disk reads and H.264 decoding. The incoming video is
simultaneously recorded to disk.

Figure 5 compares the filtering throughput of FilterFor-
ward’s three MC architectures to that of multiple DNNs
and NoScope-style discrete classifiers. With only a single
classifier, FilterForward processes frames at 0.36× the speed
of the DCs. By 10 classifiers, this has risen to 2.15 − 2.84×,
and by 50 classifiers, FilterForward is up to 6.84× faster.
DCs have higher throughput when the number of classifiers

Scaling Video Analytics on Constrained Edge Nodes

1 5 10 15 20 25 30 35 40 45 50
Number of classifiers

0

2

4

6

8

10

12
Th

ro
ug

hp
ut

(fp
s)

Full-frame object detector
Windowed, localized binary classifier
Localized binary classifier
Discrete classifiers
Multiple MobileNets

Figure 5. Throughput (in frames per second) of the three MC
architectures compared to full DNNs and discrete classifiers. Fil-
terForward amortizes the cost of the base DNN when running 4 or
more concurrent MCs.

is low because in FilterForward, the cost of the base DNN
dominates. But since each DC must compute the full trans-
lation from pixels to a decision, once FilterForward runs
more than 4 MCs its compute-sharing design achieves the
amortization break-even point. Running multiple DNNs,
while straightforward, is always less efficient and runs out
of memory beyond 35 instances.

To further understand FilterForward’s throughput scalability,
for each frame we measure the time taken by the base
DNN and MCs. Figure 6 shows this breakdown our three
proposed microclassifier architectures. With few queries,
the base DNN’s execution time dominates, as expected, but
the total execution time grows modestly as we add dozens
of concurrent MCs. In the worst case, the base DNN’s CPU
time is equivalent to that of 20 microclassifiers.

4.5 Microclassifier Cost and Accuracy

Because they operate on feature maps, MCs have substan-
tially lower marginal cost than discrete classifiers while
achieving higher accuracy on real-world datasets (Sec. 2.2.2).

Multiply-adds are a good proxy for the computational cost
of a model (Howard et al., 2017). Given a feature map of
size H ×W and depth M , the number of multiply-adds in a
fully-connected layer with N hidden units is: N×H×W×M .
A convolutional layer with N filters of size K × K and a
stride of S operating on the same feature maps has a cost of:
H
S ×

W
S × M × K2 × N . The cost of a convolutional layer

can be reduced using separable or “factored” convolutions
with some accuracy penalty (kernels are split into depthwise
followed by pointwise convolutions). The multiply-add cost
of a separable convolution layer is: H

S ×
W
S ×M × (K2 + N).

Recall that FilterForward ingests full resolution video, so
in our experiments the number of multiply-adds is much
greater than for typical input sizes, such as 224 × 224 or
512 × 512 pixels.

Figure 7 compares themicroclassifiers’ accuracy (using event
F1 score) and computational cost (in number of multiply-
adds) to those of the discrete classifiers on both of our
datasets. We constructed several DCs with between 100 mil-
lion and 2.5 billion multiply-adds, varying the number of
convolutional layers (2-4), the number of kernels (16-64),
the stride length (1-3), the number of pooling layers (0-2),
and the type of convolution (standard or separable). We fixed
the kernel size to 3, and selected a representative example
from the pareto frontier.

We trained the MCs and DCs on 0.5 epochs of data, using
spatial crops for the applicable MCs and the Roadway
dataset’s DC (the Jackson dataset’s DC did not benefit from
a spatial crop). Microclassifiers are up to 1.29× more
accurate while being 22.9× cheaper on the Jackson dataset
and 1.09×more accurate and 11.0× cheaper on the Roadway
dataset.

5 Related Work
This section outlines related work that applies to the three
challenges raised in Section 2.2 (limited bandwidth, real-
world video streams, and scalable multi-tenancy)

5.1 Conventional Machine Learning Approaches

Conventional ML techniques for reusing computation im-
prove scalability, but their rigidity sacrifices accuracy.

Transfer learning accelerates multi-application training and
inference by leveraging the observation that DNNs trained
for image classification and object detection identify general
features that transfer well to specialized tasks (Donahue
et al., 2014; Yosinski et al., 2014). During inference, transfer
learning shares computation by running one base DNN to
completion and extracting its last layer’s activations as a
feature vector, which is then used by multiple specialized
classifiers (one per application) (Pakha et al., 2018). Recent
work allows application-specific DNNs to share multiple
layers with the base DNN (Jiang et al., 2018a), similar
to how our microclassifiers can pull from any layer of
FilterForward’s base DNN. However, conventional transfer
learning suffers from poor accuracy for small objects because
it retains the original DNN architecture for the retrained
layer(s). Even though these approaches are computationally
efficient, they are not tailored to real-world video streams.

Multi-task learning (Caruana, 1998) offers an efficient way
to share computation across models, but all models must
be retrained when new tasks are added. This retraining
overhead makes multi-task learning unsuited to real-world
deployments, where tasks are frequently added and removed.

Scaling Video Analytics on Constrained Edge Nodes

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50
Number of classifiers

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
xe

cu
tio

n
tim

e
pe

rf
ra

m
e

(s
)

Microclassifiers
Base DNN

(a) Full-frame binary classifier

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50
Number of classifiers

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
xe

cu
tio

n
tim

e
pe

rf
ra

m
e

(s
)

Microclassifiers
Base DNN

(b) Localized binary classifier

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50
Number of classifiers

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

E
xe

cu
tio

n
tim

e
pe

rf
ra

m
e

(s
)

Microclassifiers
Base DNN

(c) Windowed, localized binary classifier

Figure 6. Execution time (in seconds) breakdown of FilterForward’s main components for the three microclassifier architectures.
FilterForward pays the upfront cost of evaluating the base DNN, but then reaps the resulting benefit of each additional MC being cheap.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of multiply-adds (×108)

0.0

0.2

0.4

0.6

0.8

1.0

E
ve

nt
F1

sc
or

e

Full-frame object detector
Localized binary classifier
Discrete classifier

(a) Jackson dataset, Pedestrian task.

0 2 4 6 8 10
Number of multiply-adds (×108)

0.0

0.2

0.4

0.6

0.8

1.0

E
ve

nt
F1

sc
or

e

Full-frame object detector
Localized binary classifier
Discrete classifier

(b) Roadway dataset, People with red task.

Figure 7. Number of operations versus event F1 score for microclas-
sifiers and discrete classifiers. MCs have a much lower marginal
cost than DCs, yet achieve higher accuracy.

5.2 Filtering-based Approaches

Filtering video by dropping irrelevant frames reduces compu-
tation and transmission load (Kang et al., 2017; Pakha et al.,
2018; Wang et al., 2018). One method of filtering is to use a
cascade of progressively more accurate and expensive detec-
tors, stopping execution at the cheapest model that produces
a high confidence prediction. This is a common technique
for optimizing the “fast path” where most frames can be
discarded near the beginning of the cascade. Early work in
this field includes (Viola & Jones, 2001), which introduces
a detector cascade based on traditional computer vision
features and includes an attention mechanism to prune the
feature space and improve throughput. FilterForward builds
on this idea but specializes to the task of detecting small
objects in surveillance video. Similar to the aforementioned
attention mechanism, FF includes an optional optimization
where a microclassifier can spatially crop its feature map
to focus on a particular region (to improve accuracy) and

reduce model complexity (to save computation).

5.2.1 Saving Compute During Bulk Analytics

Recent work has applied filter cascades to reduce computa-
tion load during bulk video analytics. NoScope (Kang et al.,
2017) drops frames whose pixel-level differences from a
reference image or previous frame do not meet a threshold,
before feeding that frame into the CNN cascade. NoScope
first evaluates cheap, task-specific, pixel-level CNNs (e.g., a
custom “Shetland pony” binary classifier), which we refer to
as discrete classifiers, and only applies an expensive CNN
(e.g., YOLO9000 (Redmon & Farhadi, 2016)) when the
confidence of the cheap CNN is below a threshold. Discrete
classifiers are similar to our MCs, except that they operate on
raw pixels. In FilterForward, the base DNN amortizes pixel
processing across all MCs, reducing the marginal cost of
each classifier without sacrificing accuracy. We compare the
throughput and accuracy of our MCs to NoScope’s discrete
classifiers in Sections 4.4 and 4.5.

Previous systems are often evaluated on highly-curated
datasets, where video processing is orchestrated to be easier.
For example, NoScope (Kang et al., 2017) is evaluated on
video that has been cropped to a narrow region of interest
(with objects typically occupying the majority of the frame).
Enlarging objects in this waymakes classification both easier
(because objects are more prominent) and cheaper (because
the CNN input resolution can be reduced). Importantly, how-
ever, modifying the data in this way diverges from our goal
of processing wide-angle surveillance video. FilterForward
includes an optimization that crops in a similar way, but this
is not a primary contribution of our design.

Focus (Hsieh et al., 2018) divides processing between ingest
time and query time, using cheap CNNs and clustering to
build an approximate index up front that dramatically accel-
erates offline queries. Focus’s ingest CNN is conceptually
similar to FilterForward’s base DNN—they both generate
semantic information about each frame that is used for fu-
ture processing—but our use of feature maps instead of top
classes is more general. The notion of storing per-frame
metadata in an index is applicable to FilterForward and an

Scaling Video Analytics on Constrained Edge Nodes

interesting direction for future work.

Both NoScope and Focus assume that it is possible to
stream all video to a resource-rich datacenter. This is not
fundamental to their algorithms, but pushing components
of either system to the edge would introduce additional
compute constraints. A basic premise of FilterForward is
that uploading all video is infeasible, so our design builds off
computation sharing that enables an edge node to support
many concurrent applications.

5.2.2 Saving Bandwidth on Constrained Edge Nodes

Similar to FilterForward, others have approached the chal-
lenges of running ML workloads on edge-generated video in
real time. Both (Pakha et al., 2018) and (Wang et al., 2018)
push computation to the edge to determine which frames
are “uninteresting” to heavyweight analytics in the cloud.

(Pakha et al., 2018) uses sampling and superposition coding
to send frames only where relevant objects appear using the
lowest possible quality. While the work displays impressive
bandwidth savings, the iterative communication between the
edge and the cloud limits its throughput.

(Wang et al., 2018) examines the heavily bandwidth-
constrained use case of offloading video in real time from a
swarm of autonomous drones using the 4G LTE cellular net-
work. Similar to FilterForward, this system uses lightweight
DNNs (e.g., MobileNet) running on the edge (here, on
the drones) combined with lightweight classifiers (they use
support-vector machines (SVMs)) to give an early indication
of whether a frame is interesting. These SVMs are similar
in principle to our microclassifiers, but always operate on
activations extracted from the base DNN’s final pooling
layer and are much shallower than MCs, meaning that they
have a lower capacity to learn and inferior accuracy.

Additionally, both of these systems are not optimized for
multi-tenant environments. FilterForward is designed with
query scalability as a first-class concern, and can run dozens
of concurrent microclassifiers.

Both (Pakha et al., 2018) and (Wang et al., 2018) focus on
streams where the camera is moving, whereas FilterForward
considers stationary surveillance cameras. Operating on
streams with less global motion gives FilterForward an
advantage because it is easier to train classifiers for these
streams, and the larger proportion of unchanging pixels
makes such streams more compressible.

5.3 Resource Scheduling for Video Pipelines

Resource management is crucial for practical video analytics
because applications often impose the conflicting goals of
maximizing their overall benefit and meeting performance
constraints. For instance, VideoStorm (Zhang et al., 2017)

adjusts query quality to maximize a combined utility, using
efficient scheduling that leverages offline quality and re-
source profiles. LAVEA (Yi et al., 2017) places tasks across
edge nodes and clients (e.g., mobile phones) to minimize the
latency of video analytics. DeepDecision (Ran et al., 2018)
expresses resource scheduling in video processing as a com-
binatorial optimization problem. Chameleon (Jiang et al.,
2018b) dynamically adjusts a video processing pipeline’s
hyperparameters as the content in the scene changes, using
temporal and spatial (i.e., across nearby cameras) correla-
tions to prune the optimization search space.

Much of this scheduling work is complementary to Filter-
Forward, which shares a similar motivation of balancing
accuracy and throughput, but focuses on edge nodes with
constrained network bandwidth. Unlike prior scheduling
work that adjusts only general knobs such as video bi-
trate, resolution, and choice of DNN model, FilterForward’s
computation sharing directly improves the computational
efficiency of multiple filters running on the same edge node.

6 Conclusion
Scaling real-time, wide-area video analytics poses a chal-
lenge for bandwidth-limited, compute-constrained camera
deployments. This paper presents FilterForward (FF), a
new edge-based filtering architecture that uses lightweight,
per-application microclassifiers to identify relevant video
segments to offload. We show that FF reduces bandwidth
use by an order of magnitude without sacrificing accuracy,
while scaling to as much as 6.8× higher throughput than
existing approaches. We believe that FF’s hybrid edge-to-
cloud design provides crucial building blocks for emerging
smart camera deployments.

Acknowledgements We appreciate the insights from the SysML19
program committee, and our colleagues at Carnegie Mellon Uni-
versity and Intel Labs. This work was supported by Intel via the
Intel Science and Technology Center for Visual Cloud Systems
(ISTC-VCS).

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur,
M., Levenberg, J., Monga, R., Moore, S., Murray, D. G.,
Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: A system for
large-scale machine learning. In Proc. 12th USENIX
OSDI, Savannah, GA, November 2016.

Apple. The future is here: iPhone X. https:
//www.apple.com/newsroom/2017/09/the-futur
e-is-here-iphone-x/, 2017.

Babenko, A. and Lempitsky, V. Aggregating local deep

https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/
https://www.apple.com/newsroom/2017/09/the-future-is-here-iphone-x/

Scaling Video Analytics on Constrained Edge Nodes

features for image retrieval. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. Fully-convolutional siamese networks for
object tracking. In European Conference on Computer
Vision, pp. 850–865. Springer, 2016.

caffe. Caffe. http://caffe.berkeleyvision.org/,
2017.

Caruana, R. Multitask learning. In Learning to learn, pp.
95–133. Springer, 1998.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E., and Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. In Inter-
national conference on machine learning, pp. 647–655,
2014.

FCC. 2016 BROADBAND PROGRESS REPORT. 2016.

Google Wireless Internet. Google’s Excellent Plan To
Bring Wireless Internet To Developing Countries.
https://www.forbes.com/sites/timworstall/2
013/05/25/googles-excellent-plan-to-bring-
wireless-internet-to-developing-countries/,
2013.

Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J.
Hypercolumns for object segmentation and fine-grained
localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 447–456,
2015.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017.
URL http://arxiv.org/abs/1704.04861.

Hsieh, K., Ananthanarayanan, G., Bodik, P., Venkataraman,
S., Bahl, P., Philipose, M., Gibbons, P. B., and Mutlu, O.
Focus: Querying large video datasets with low latency
and low cost. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pp. 269–
286, Carlsbad, CA, 2018. USENIX Association. ISBN
978-1-931971-47-8. URL https://www.usenix.org
/conference/osdi18/presentation/hsieh.

IHS. Top Video Surveillance Trends for 2017.
https://cdn.ihs.com/www/pdf/TEC-Video-
Surveillance-Trends.pdf, 2017.

Intel. Intel distribution of caffe. https://github.com/i
ntel/caffe.

intel-mkl-dnn. Intel Math Kernel Library for Deep Neural
Networks. https://01.org/mkl-dnn, 2018.

intel-movidius. Intel Movidius Neural Compute Stick. ht
tps://developer.movidius.com/, 2018.

ITU/UNESCO Broadband Commission for Sustainable De-
velopment. The State of Broadband: Broadband catalyz-
ing sustainable development. 2017.

Jiang, A., Wong, D. L.-K., Canel, C., Misra, I., Kaminsky,
M., Kozuch, M., Pillai, P., Andersen, D. G., and Ganger,
G. R. Mainstream: Dynamic stem-sharing formulti-tenant
video processing. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018a.

Jiang, J., Ananthanarayanan, G., Bodik, P., Sen, S., and
Stoica, I. Chameleon: Scalable adaptation of video
analytics. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication,
SIGCOMM ’18, pp. 253–266, New York, NY, USA,
2018b. ACM. ISBN 978-1-4503-5567-4. doi: 10.1145/
3230543.3230574. URL http://doi.acm.org/10.1
145/3230543.3230574.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., et al. In-datacenter performance analysis
of a tensor processing unit. CoRR, abs/1704.04760, 2017.
URL http://arxiv.org/abs/1704.04760.

Kang, D., Emmons, J., Abuzaid, F., Bailis, P., and Zaharia,
M. Noscope: Optimizing deep cnn-based queries over
video streams at scale. PVLDB, 10(11):1586–1597, 2017.

Lee, T. J., Gottschlich, J., Tatbul, N., Metcalf, E., and Zdonik,
S. Precision and recall for range-based anomaly detection.
In Proc. SysML Conference, Stanford, CA, February 2018.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. Ssd: Single shot multibox detector.
In European conference on computer vision, pp. 21–37.
Springer, 2016.

Ma, C., Huang, J.-B., Yang, X., and Yang, M.-H. Hier-
archical convolutional features for visual tracking. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 3074–3082, 2015.

microsoft-project-brainwave. Microsoft unveils
Project Brainwave for real-time AI. https:
//www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/, 2018.

Pakha, C., Chowdhery, A., and Jiang, J. Reinventing
video streaming for distributed vision analytics. In 10th
USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 18), Boston, MA, 2018. USENIX Associa-
tion. URL https://www.usenix.org/conference/
hotcloud18/presentation/pakha.

http://caffe.berkeleyvision.org/
https://www.forbes.com/sites/timworstall/2013/05/25/googles-excellent-plan-to-bring-wireless-internet-to-developing-countries/
https://www.forbes.com/sites/timworstall/2013/05/25/googles-excellent-plan-to-bring-wireless-internet-to-developing-countries/
https://www.forbes.com/sites/timworstall/2013/05/25/googles-excellent-plan-to-bring-wireless-internet-to-developing-countries/
http://arxiv.org/abs/1704.04861
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://www.usenix.org/conference/osdi18/presentation/hsieh
https://cdn.ihs.com/www/pdf/TEC-Video-Surveillance-Trends.pdf
https://cdn.ihs.com/www/pdf/TEC-Video-Surveillance-Trends.pdf
https://github.com/intel/caffe
https://github.com/intel/caffe
https://01.org/mkl-dnn
https://developer.movidius.com/
https://developer.movidius.com/
http://doi.acm.org/10.1145/3230543.3230574
http://doi.acm.org/10.1145/3230543.3230574
http://arxiv.org/abs/1704.04760
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.microsoft.com/en-us/research/blog/microsoft-unveils-project-brainwave/
https://www.usenix.org/conference/hotcloud18/presentation/pakha
https://www.usenix.org/conference/hotcloud18/presentation/pakha

Scaling Video Analytics on Constrained Edge Nodes

Public Parking Authority of Pittsburgh. Rfp for unified
security camera system. http://apps.pittsburghpa.
gov/redtail/images/3780_RFP_FOR_UNIFIED_SE
CURITY_CAMERA_SYSTEM_9.20.18.pdf, 2018.

Ran, X., Chen, H., Zhu, X., Liu, Z., and Chen, J. DeepDeci-
sion: A mobile deep learning framework for edge video
analytics. In Proc. INFOCOM, 2018.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. Cnn features off-the-shelf: An astounding baseline for
recognition. In Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition Workshops,
CVPRW ’14, 2014.

Redmon, J. and Farhadi, A. YOLO9000: better, faster,
stronger. CoRR, abs/1612.08242, 2016. URL http:
//arxiv.org/abs/1612.08242.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, pp. 91–99, 2015.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet large scale
visual recognition challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

Sharghi, A., Laurel, J. S., and Gong, B. Query-focused
video summarization: Dataset, evaluation, and A memory
network based approach. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017,
CVPR 2017.

Sharma, S., Kiros, R., and Salakhutdinov, R. Action
recognition using visual attention. arXiv preprint
arXiv:1511.04119, 2015.

Viola, P. and Jones, M. Rapid object detection using a
boosted cascade of simple features. In Proceedings of the
2001 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2001), 2001.

Wang, J., Feng, Z., Chen, Z., George, S., Bala, M., Pillai, P.,
Yang, S.-W., and Satyanarayanan, M. Bandwidth-efficient
live video analytics for drones via edge computing. In
Proceedings of the Third ACM/IEEE Symposium on Edge
Computing (SEC 2018), Bellevue, WA, 2018.

Yeung, S., Russakovsky, O., Mori, G., and Fei-Fei, L. End-
to-end learning of action detection from frame glimpses
in videos. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, CVPR 2016.

Yi, S., Hao, Z., Zhang, Q., Zhang, Q., Shi, W., and Li,
Q. LAVEA: Latency-aware video analytics on edge

computing platform. In 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS),
2017.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How
transferable are features in deep neural networks? In
Advances in neural information processing systems, pp.
3320–3328, 2014.

Yue-Hei Ng, J., Yang, F., and Davis, L. S. Exploiting
local features from deep networks for image retrieval. In
The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2015.

Zhang, H., Ananthanarayanan, G., Bodik, P., Philipose, M.,
Bahl, P., and Freedman, M. J. Live video analytics at
scale with approximation and delay-tolerance. In Proc.
14th USENIX NSDI, Boston, MA, March 2017.

http://apps.pittsburghpa.gov/redtail/images/3780_RFP_FOR_UNIFIED_SECURITY_CAMERA_SYSTEM_9.20.18.pdf
http://apps.pittsburghpa.gov/redtail/images/3780_RFP_FOR_UNIFIED_SECURITY_CAMERA_SYSTEM_9.20.18.pdf
http://apps.pittsburghpa.gov/redtail/images/3780_RFP_FOR_UNIFIED_SECURITY_CAMERA_SYSTEM_9.20.18.pdf
http://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242

