
Improving ML applications in shared

computing environments

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Department of Engineering

Aaron Harlap

B.S., Electrical & Computer Engineering, Northeastern University
M.S., Electrical & Computer Engineering, Carnegie Mellon University

Thesis Committee:
Gregory R. Ganger, Chair

Phillip B. Gibbons
Ameet Talwalkar

Amar Phanishayee

Carnegie Mellon University
Pittsburgh, PA

May 2019

Copyright c© 2019 Aaron Harlap
All Rights Reserved

Keywords: Distributed Machine Learning, Cloud Computing, Stragglers, Elasticity,
DNNs

For my parents.

Acknowledgments

Throughout the last five years I have often thought about what I would
write here when the time came, and even after five years I am not sure I have
the right words to describe how much the people I have met along the way have
helped, and how much they have meant to me.

It all starts with my advisors, Greg Ganger and Phil Gibbons. This whole
dissertation could be about how good they are. I have often told prospective
students asking about working with Greg, that getting him to be my advisor
is the best decision I have made. I have never worked with a more even-
keeled, helpful, supportive person than Greg. He has helped me grow as both
a researcher and a person. Teaching me everything from how to go about the
research process, to proper grammar (although the latter is still definitely a
work in progress). Even though it was was sometimes painful during the process,
I will always look back fondly on the many sleepless nights we spent preparing
paper submissions. And I hope that one day Greg’s ultimate dream will come
true and Michigan football will finally be able to get a win or two against the
Ohio State.

At the end of my first year I was also lucky enough get Phil as my advisor.
Phil has this amazing ability to provide feedback in the most constructive way
possible, always clearly explaining why something needs to be changed or done
differently. I still remember when Phil helped me rewrite the evaluation section
of my first paper submission. I have found that I learn best from examples, and
there is no better example to learn from than Phil. I consider myself extremely
lucky to have had the opportunity to learn from Greg and Phil.

Another person who has been very helpful to me is Amar Phanishayee from
Microsoft Research. He hired me as a summer intern a couple years ago and I
have been collaborating with him ever since. Amar gave me the opportunity to
work on a cutting edge project, and has supported me in so many different ways,
from providing valuable advice to giving me thousands of dollars of computing
resources, making it possible for us to do really awesome work together. Getting
to work with Amar has been one of the highlights of grad school for me and I
am very happy to have him on my thesis committee.

Henggang Cui who graduated a couple years before me was an invaluable
resource for me. As a younger student I used him as a role model for how to
be a successful PhD student. He never minded me asking him hundreds of
questions daily, always patiently explaining things to me, and showing me how
to succeed in grad school. I also got to work alongside a number of other of
Greg’s students. From my random chats about all kinds of things with Rajat
Kateja, going through the graduation process at the same time as Jun Woo
Park, talking latest NBA rumors with Andrew Chung, getting to know Saurabh
Kadekodi at ATC, collaborating with Alexey Tumanov, Angela Jiang having
the neatest cube in our area by a mile, and watching Daniel Wong get started
on his studies, I have enjoyed the time I got to spend around all of them.

There have been numerous people within the Parallel Data Lab (PDL) group
that have made it infinitely easier for me to be able to just focus on my work.
Karen Lindenfelser is the PDL mom, don’t think I could even count high enough
to keep track of the number of times I have asked her for help with all kinds of
things. From bringing back pages of expense receipts in Serbian from EuroSys,
to her making sure I made it through the last PDL retreat when my shoulder
wasn’t doing that well, she always helped. And there are many others as well.
Bill Courtright who was always willing to share some of his wisdom and provide
advice. Joan Digney who made awesome posters and never minded how late I
sent her my drafts. Jason Boles, Chad Dougherty, and Mitch Franzos who spent
countless hours helping me set up my experiments and were always willing to
answer all kinds of questions. I also want to thank Ameet Talwalkar for joining
my thesis committee and providing invaluable feedback, and for giving me my
first job after graduation.

The CIC 2nd floor has been a great working environment, and definitely
not because of the building itself. When I came to Pittsburgh five years ago,
I knew very few people here and now I feel like I have made friends for a life.
Janos Szurdi, Josh Tan, Mahmood Sharif, Jinliang Wei, Orsi Kovacs, Sruti
Bhagavatula, Dan Smullen, and Aymeric Fromherz made the last five years feel
like just a few weeks.

I also want to thank all the awesome people of PDL and my collaborators
for the insightful technical discussions and the random chats over the years
including Kevin Hsieh, Jin Kyu Kim, Deepak Narayanan, Majd Sakr, Garth
Gibson, George Amvrosiadis, Jack Kosaian, Michael Kuchnik, Dana Van Aken,
Tian Li, Timothy Zhu, Christopher Canel, Lei Cao, Andy Pavlo, Vivek Seshadri,
Matei Zaharia, Nandita Vijaykumar, David Andersen, Gauri Joshi, Aurick Qiao,
Lin Ma, Abutalib Aghayev, Alex Glikson, Chris Fallin, Akira Kuroda, Soo-Jin
Moon, Charlene Zang, Giulio Zhou, Wei Dai, and Qing Zheng.

I also want to thank the members and companies of the PDL Consortium
including Alibaba, Amazon, Datrium, Dell EMC, Facebook, Google, Hewlett-
Packard Labs, Hitachi, IBM Research, Intel Corporation, Micron, Microsoft
Research, NetApp, Oracle Corporation, Samsung, Seagate Technology, Two
Sigma, Veritas, and Western Digital for their interest, insights, feedback, and
support. This research is also supported in part by Intel as part of the Intel
Science and Technology Center for Cloud Computing, NSF under awards CNS-
1042537, 1409723, CCF-1533858, CNS1042543 (PRObE [25]).

I would like to thank Tom Brady, Bill Belichick, Malcolm Butler, Donta
Hightower, and all the New England Patriots. Them winning three super bowls
in the past five years made my time in Pittsburgh that much more enjoyable.

I want to thank Greg Ganger, Phil Gibbons, Ameet Talwalkar, and Amar
Phanishayee for being on my thesis committee and supporting me throughout
the entire process.

Finally I would like to thank my family, without their support none of this
would have been possible.

vi

Abstract

Machine learning (ML) has become a powerful building block for modern
services, scientific endeavors and enterprise processes. The expensive computa-
tions required for training ML models often makes it desirable to run them in
a distributed manner in shared computing environments (e.g., Amazon EC2,
Microsoft Azure, in-house shared clusters). Shared computing environments
introduce a number of challenges, including uncorrelated performance jitter,
heterogeneous resources, transient resources and limited bandwidth. This dis-
sertation demonstrates that, by structuring software frameworks and work
distribution to exploit transient resources and address performance jitter and
communication bandwidth limitations, we can improve the efficiency of training
machine learning models.

We support this assertion with three case study systems: FlexRR, Proteus,
and PipeDream. FlexRR is a distributed machine learning training system
that combines a flexible synchronization model with dynamic peer-to-peer re-
assignment of work among workers to address stragglers caused by performance
jitter. FlexRR observes near ideal run-time, mitigating the adverse effects of
stragglers observed in shared computing environments. Proteus is an agile
elastic machine learning training system that uses tiers of reliability and intel-
ligent resource management to efficiently utilize transient compute resources.
Evaluations on AWS EC2 show that Proteus reduces cost by 85% relative to
non-transient pricing, and by 43% relative to previous approaches, while simul-
taneously reducing runtimes by up to 37%. PipeDream is a distributed training
system for deep neural networks (DNNs) that partitions ranges of DNN layers
among machines and aggressively pipelines computation and communication.
By reducing the amount of communication, and overlapping communication
and computation, PipeDream provides a 5x or more improvement in “time to
accuracy” for training large DNN models.

Contents

1 Introduction 1
1.1 Thesis statement . 2
1.2 Contributions . 3
1.3 Outline . 4

2 Background: Data-Parallel ML and Parameter Servers 5
2.1 Shared Computing Environments . 5

2.1.1 Transient Resources . 5
2.1.2 Performance Variation . 6

2.2 Data Parallel ML . 6
2.2.1 Parameter Server Architecture . 6
2.2.2 Distributed All-Reduce . 7
2.2.3 Consistency Models . 7

2.3 Example ML Tasks . 8
2.3.1 Recommendation Systems . 8
2.3.2 Image Classification . 8
2.3.3 Topic Modeling . 8
2.3.4 Deep Neural Networks (DNN) . 9

3 Addressing the Straggler Problem in Iterative Convergent ML 11
3.1 Prior Approaches Addressing Stragglers . 13
3.2 FlexRR Design & Implementation . 14

3.2.1 Workers and Execution Management 15
3.2.2 Parameter Server for Shared State 15
3.2.3 Straggler Mitigation . 16

3.3 RapidReassignment Design . 16
3.3.1 Worker Groups . 16
3.3.2 Worker Communication . 17
3.3.3 RapidReassignment Actions . 18

3.4 Evaluation . 20
3.4.1 Experimental Setup . 21
3.4.2 Naturally-occurring Straggler Results 23
3.4.3 Slow Worker Pattern Results . 24
3.4.4 Other Straggler Patterns . 27

viii

3.4.5 Partial Replication . 28
3.4.6 Sensitivity Study . 29

3.5 Summary . 30

4 Agile ML Elasticity Through Tiered Reliability in Dynamic Resource
Markets 31
4.1 Motivation and Background . 34

4.1.1 Dynamic Availability of Revocable Resources 34
4.1.2 Exploiting Transient Resources for ML 35

4.2 AgileML Design . 36
4.2.1 Workers and Execution Management 36
4.2.2 Architecture . 37
4.2.3 Handling Elasticity: Policy and Mechanism 39

4.3 BidBrain Design . 41
4.3.1 Formulation . 41
4.3.2 Resource Acquisition . 44
4.3.3 Application Compatibility . 44

4.4 Proteus Implementation . 44
4.5 Evaluation . 45

4.5.1 Experimental Setup . 46
4.5.2 Cost Savings with Proteus . 47
4.5.3 Efficiency with AgileML Tiering . 49
4.5.4 AgileML Scalability . 51
4.5.5 Efficiency of AgileML Elasticity . 52

4.6 Discussion and Limitations . 53
4.7 Related Work on Exploiting Transient Resources 54
4.8 Summary . 55

5 Generalized Pipeline Parallelism for DNN Training 56
5.1 Introduction . 56
5.2 Background and Related Work . 58

5.2.1 Intra-batch Parallelism . 58
5.2.2 Inter-batch Parallelism . 61
5.2.3 DNN Model and Hardware Diversity 62

5.3 Pipeline Parallelism . 62
5.3.1 Challenge 1: Work Partitioning . 63
5.3.2 Challenge 2: Work Scheduling . 67
5.3.3 Challenge 3: Effective Learning . 68

5.4 Implementation . 70
5.5 Evaluation . 71

5.5.1 Experimental Setup . 72
5.5.2 Comparison to Data Parallelism . 73
5.5.3 Comparison to Other Intra-batch Parallelism 78
5.5.4 Comparison to Inter-batch Parallelism 78

ix

5.5.5 Microbenchmarks . 80
5.6 Summary . 83

6 Conclusion and Future Directions 84
6.1 Conclusion . 84
6.2 Future Directions . 85

6.2.1 Combining FlexRR, Proteus, and PipeDream 85
6.2.2 Automatic Stage Transitions in Proteus 85
6.2.3 Pipeline Parallelism with Heterogeneous Resources 85
6.2.4 Operator Level Partitioning for Pipeline Parallelism 86
6.2.5 Scheduling ML Training in Hybrid Clouds 86

x

List of Figures

2.1 Traditional Parameter Server Architecture. The left figure illustrates the
logical architecture, and the right figure illustrates that the parameter server
is usually sharded across the same machines as the workers. 7

3.1 Comparison of Matrix Factorization performance on EC2. The graph shows

average time-per-iteration running on 64 EC2 instances. For each of two EC2

machine classes, four approaches are compared: “BSP” and “FlexRR” represent the

traditional approach and our solution, which combines flexible consistency bounds

with our temporary work re-assignment technique. The “SSP” and “BSP RR”

bars show use of individual ones of these two primary techniques, demonstrating

that neither alone addresses the straggler problem for iterative convergent ML.

FlexRR outperforms BSP and SSP by 53% and 39% (left) and 35% and 25%

(right), for these two EC2 machine classes. Experimental details are in Section 3.4. 12

3.2 RapidReassignment example. The middle worker sends progress reports to
the other two workers (its helpee group). The worker on the left is running
at a similar speed, so it ignores the message. The worker on the right is
running slower, so it sends a do-this message to re-assign an initial work
assignment. Once the faster worker finishes its own work and begins helping,
it sends a begun-helping message to the slow worker. Upon receiving this,
the slow worker sends a do-this with a follow-up work assignment to the
fast worker. 18

3.3 EC2, LDA, no injected delay. 24

3.4 PRObE Nome, large MF, no injected delay. 24

3.5 Microsoft Azure, MF, no injected delay. 25

3.6 Slow Worker Pattern Speed Tests. 26

3.7 Convergence Tests. 26

3.8 MF Speed, Power-Law Pattern. 27

3.9 Disrupted Machine Pattern. 27

3.10 Uneven Workload . 28

3.11 Partial Replication . 28

3.12 Sensitivity Tests. 29

xi

4.1 Cost and time benefits of Proteus. This graph shows average cost (left
axis) and runtime (right axis) for running the MLR application (see Sec-
tion 2.3) on the AWS EC2 US-EAST-1 Region. The three configurations
shown are: 128 on-demand machines, using 128 spot market machines with
checkpoint/restart for dealing with evictions and a standard strategy of
bidding the on-demand price, and Proteus using 3 on-demand and up to
189 spot market machines. Proteus reduces cost by 85% relative to using
all on-demand machines and by ≈50% relative to the checkpointing-based
scheme. Full experimental details can be found in Section 4.5. 32

4.2 AWS spot prices over time. Spot prices for two classes of machines are shown
for 6 days in January 2016. The unchanging on-demand price for c4.2xlarge
is shown, and the values shown for c4.xlarge are doubled so that all three
lines show the price for the same number of cores; c4.2xlarge machines have
8 cores and c4.xlarge machines have 4 cores. 34

4.3 Three stages of AgileML architecture. Stage 1: ParamServs only on reliable
machine. Stage 2: ActivePSs on transient and BackupPSs on reliable. Stage
3: No Workers on Reliable Machines. 36

4.4 AgileML component and data transitions as resources are added and evicted.
In this toy example, there are 40 pieces of input data. Initially, one on-
demand Machine 0 runs BackupPS, and 2 spot instances (Machine 1,2) are
processing 1

2
of the input data each. 2 new spot instances (Machine 3,4) are

added, at the same time, price, of the same type, and shown in the same
color (we refer to these atomic sets as allocations, described in Sec. 4.3).
Each new instance ∈ {3, 4} loads 1

2
of the input data, but works only on 1

4
of

it. An eviction of the 2 yellow spot instances triggers the second transition.
The remaining spot instances assume ownership of the evicted input data
with minimal delay. 38

4.5 Expected cost per unit work for the toy example transitions in 4.4. Each
block represents an allocation (Sec. 4.3), described by how many instances
are in the allocation (k), instance type, the expected cost of the allocation,
and the expected work produced by this allocation. Each block’s height
equates to that allocation’s relative contribution to the cost of the total work
done in its phase. Combining the blocks’ heights in each phase equates to the
total expected cost per unit work for that phase. In phase 1, BidBrain has an
expensive, required on-demand allocation (red) that produces no work and
a spot allocation (yellow). The on-demand instance type is pre-determined
to be c4.xlarge and is never terminated by BidBrain, even if it negatively
affects cost-per-work. In phase 2, BidBrain further amortizes the cost of the
red allocation by adding a second spot allocation [2] (green), which lowers
the total expected cost-per-work. This transition increases its actual cost at
that moment, but reduces the final cost by decreasing the amount of time
for which the on-demand allocation is needed. 42

4.6 The Proteus architecture consists of the resource allocation component,
BidBrain, and the elastic ML framework, AgileML. 45

xii

4.7 2hr Job Duration. 46

4.8 20hr Job Duration. 46

4.9 Breakdown of machine hours (for 2-hour jobs) among on-demand resources,
spot resources (not evicted), and free resources (spot resources evicted prior
to end of billing hour). 48

4.10 AgileML stage 1 with 4–32 reliable machines out of 64 total compared to
traditional (all 64 reliable; cyan), for MF. 49

4.11 AgileML stage 2 with 4 reliable and 60 transient compared to stage 1 (same
ratio; magenta) and traditional (64 reliable). 49

4.12 AgileML stage 3 (red) with 1 reliable and 63 transient compared to stage 2
(same ratio; blue) and traditional. 49

4.13 AgileML running on 8 reliable and 8 transient machines in stage 2 and stage
3 mode. Stage 2 is better for lower transient-to-reliable ratios. 51

4.14 AgileML scalability for LDA. Showing time-per-iteration when using 4 to 64
machines. 51

4.15 AgileML starts with 4 reliable resources, adds 60 transient resources at
iteration 11, evicting 35 transient resources at iteration 35. 52

5.1 Communication overhead of data-parallel training (on one or two p3.16xlarge
AWS instances each with eight NVLink-connected V100 GPUs) for popular
image classification and machine translation DNN models, using PyTorch
1.0 and Gloo. 58

5.2 Model parallel training with 4 workers. Numbers indicate minibatch ID, and
backward work takes twice as long as forwards work. For simplicity, here
we assume that communicating activations/gradients across workers has no
overhead. 60

5.3 GPipe’s inter-batch parallelism approach. Frequent “pipeline flushes” lead
to increased idle time. 61

5.4 An example PipeDream pipeline with 4 workers, showing startup and steady
states. In this example, the backward pass for a minibatch takes twice as
long as the forward pass. 63

5.5 An example pipeline-parallel assignment with four GPUs and an example
timeline at one of the GPUs (worker 3), highlighting the temporal overlap of
computation and activation / gradient communication. 64

5.6 PipeDream Overview: profiler, optimizer, and runtime. 65

5.7 An example 2-level hardware topology. Green boxes represent GPUs. Each
server (yellow boxes) has 4 GPUs connected internally by links of bandwidth
B1; each server is connected by links of bandwidth B2. In real systems,
B1 > B2. 66

5.8 Weight stashing as minibatch 5 flows across stages. Arrows point to weight versions

used for forward and backward passes for minibatch 5 at the first and third stages. 69

5.9 Accuracy vs. time for VGG-16 using 16 GPUs. Each circle or triangle
represents two epochs of training. 74

xiii

5.10 Accuracy vs. time for GNMT-16 using 16 GPUs. Each circle or triangle
represents an epoch of training. 75

5.11 Statistical efficiency (accuracy vs. epoch) using LARS (VGG-16, 8 GPUs). 76
5.12 Accuracy vs. epoch using 16 GPUs on Cluster-B. 77
5.13 Comparison of PipeDream (red) vs. non-DP intra-batch techniques (blue)

for 4-GPU configurations on Cluster-A. 79
5.14 Impact of weight stashing on convergence for GNMT-8. 79
5.15 Real vs. optimizer’s predicted throughput for VGG-16 with 16 workers. Each

symbol represents a different partioning configuration, including the triangle
for vanilla data-parallelism and the diamond for the optimizer’s selection. 80

5.16 Memory footprint for various 4-GPU configurations in PipeDream. Data
Parallel (DP) overhead is equivalent on all 4 GPUs. 81

5.17 Bytes communicated per training sample by data-parallel (DP) and the best
non-DP configurations for 4 GPUs on Cluster-A. 81

5.18 Effect of pipeline depth for GNMT-8 on 4 V100s in Cluster-A on accuracy-
vs-time and memory overhead. 82

xiv

List of Tables

3.1 FlexRR Parameter Settings . 23

4.1 Types of solution state servers used by AgileML 37
4.2 Summary of parameters used by BidBrain 43

5.1 Summary of results comparing PipeDream with data parallelism (DP) when
training models to advertised final accuracy. A PipeDream config of “2-1-1”
means the model is split into three stages with the first stage replicated across
2 workers, and a “straight“ configuration is a pipeline with no replicated
stages—e.g., “1-1-1-1” on 4 workers. Batch sizes used to train these models
are reported in Sec. 5.5.1. 72

5.2 Characteristics of servers used for evaluation. 72

xv

Chapter 1

Introduction

Statistical machine learning (ML) has become a powerful building block for modern services,
scientific endeavors and enterprise processes. Modern day machine learning is made up
of different mathematical models, depending on the problem being solved, that are able
to describe observed input data. Such mathematical models are able to predict outcomes
for new data items based on selected characteristics (e.g., language translation, image
classification), expose relationships among data items (e.g., or grouping documents into
topics), and so on. In order to fit the observed data, these models contain model parameter
values that are adjusted throughout the training process.

In this dissertation, we focus on the major category of ML approaches that employ
iterative algorithms to determine the model parameters that best fit a given set of input
data. Included in this category are convolutional neural networks, recurrent neural networks,
matrix factorization, and many others. Iterative algorithms, such as stochastic gradient
descent and Adam [62], make initial guesses at the appropriate model parameter values [76]
and then iterate over the training data, adjusting the model parameters.

The expensive computations required for training ML applications often makes it
desirable to run them in a distributed manner in shared computing environments (e.g.,
Amazon EC2, Microsoft Azure, in-house shared clusters). Distributed training of ML
applications commonly requires the resources involved to maintain the model parameter
values (solution state), evenly distribute work, synchronize progress and communicate
amongst each other in order for the ML application to function effectively [49, 28, 103].

Shared computing environments introduce a number of challenges that need to be
solved in order for the training process to execute efficiently. These challenges include:
uncorrelated performance jitter; heterogeneous resources; transient resources; and limited
communication bandwidth. In our work, we focus on improving the efficiency, reducing
cost and reducing runtime of training ML applications in shared computing environments
by addressing these challenges.

1

1.1 Thesis statement

This dissertation describes our work in addressing the challenges that arise in deploying
machine learning systems in shared computing environments. In particular, we make the
following thesis statement:

Improvements of 5x or more can be achieved for training ML models in shared computing
environments by structuring software frameworks and work distribution to exploit transient
resources and to address performance jitter and communication bandwidth limitations.

To support this thesis, we will describe three case studies of structuring software frame-
works and work distribution for training ML applications in shared computing environments.

• Addressing the straggler problem in iterative convergent ML (Chapter 3).
The frequent (e.g., per iteration) barriers used in traditional BSP-based distributed
ML implementations cause every transient slowdown of any worker thread to de-
lay all others. When training ML applications in shared computing environments,
performance jitter from a variety of causes is commonplace, creating stragglers that
adversely affects the training progress. We designed a system, FlexRR, that combines
a more flexible synchronization model with dynamic peer-to-peer re-assignment of
work among workers to address straggler threads. Experiments with real straggler
behavior observed on Amazon EC2 and Microsoft Azure, as well as injected straggler
behavior stress tests, confirm the significance of the problem and the effectiveness
of FlexRR’s solution. Using FlexRR, we consistently observe near-ideal run-times
(relative to no performance jitter) across all real and injected straggler behaviors
tested.

• Agile ML elasticity through tiered reliability in dynamic resource markets
(Chapter 4). Many shared computing clusters allow users to utilize excess idle re-
sources at lower cost or priority, with the proviso that some or all may be taken
away at any time. However, exploiting such dynamic resource availability, and the
often fluctuating markets for them, requires agile elasticity and effective acquisition
strategies. Our system, Proteus, aggressively exploits such transient revocable re-
sources to do machine learning cheaper and/or faster. Its parameter server framework,
AgileML, efficiently adapts to bulk additions and revocations of transient machines,
through a novel 3-stage active-backup approach, with minimal use of more costly
non-transient resources. Its BidBrain component adaptively allocates resources from
multiple Amazon EC2 spot markets to minimize average cost per work as transient
resource availability and cost change over time. Our evaluations show that Proteus
reduces cost by 85% relative to non-transient pricing, and by 43% relative to previous
approaches, while simultaneously reducing runtimes by up to 37%.

• Pipeline parallelism for DNN training (Chapter 5). DNN training is extremely
computationally expensive, necessitating the need for efficient multi-accelerator par-
allelization. Current approaches to parallelizing training primarily use intra-batch
parallelization, where a single iteration of training is split over the available workers,
but suffer from diminishing returns at higher worker counts. Our system, PipeDream,
adds inter-batch pipelining to intra-batch parallelism in order to further improve par-

2

allel training throughput, helping to better overlap computation with communication
and reduce the amount of communication when possible. PipeDream versions model
parameters for backward pass correctness, schedules forward and backward passes
of different minibatches to keep workers well utilized, and systematically partitions
DNN layers among workers to balance work and minimize communication. Extensive
experimentation with a range of DNN tasks, models, and hardware configurations
shows that PipeDream reaches target accuracy up to 4.78× faster than data-parallel
training.

1.2 Contributions

This dissertation makes the following key contributions.

FlexRR:

• It describes FlexRR, a new approach to straggler mitigation without the correctness
problems of redundant task execution, for iterative convergent ML on efficient ML
frameworks.

• It describes the concept of helper groups, limiting the amount of communication and
data preloading required, allowing FlexRR to scale efficiently to large number of
workers.

• It demonstrates that FlexRR successfully addresses stragglers for three real ML tasks
in both private and publicly shared computing environments.

Proteus:

• It describes Proteus, the first parameter server ML framework designed to elastically
scale with bulk additions and revocations of computing resources.

• It describes an adaptive architecture and algorithm for exploiting multiple tiers of
machine reliability.

• It describes a new resource manager that aggressively exploits the EC2 spot market
properties to achieve major cost savings.

• It presents results from experiments and analysis showing that aggressive multi-tier
exploitation of transient computing resources is both possible and beneficial.

PipeDream:

• It introduces pipeline-parallel training, which combines efficient model-parallel and
data-parallel training for DNNs.

• It identifies the key challenges in designing a pipeline-parallel training system, and
details how PipeDream addresses them.

• It presents results that experimentally demonstrate that PipeDream enables effi-
cient inter-batch parallel DNN training, even in circumstances where communication
overheads cripple data-parallel training.

3

1.3 Outline

The remainder of this dissertation is organized as follows. Chapter 2 motivates our
works with more background on shared computing environments, consistency models, the
parameter server architecture, and some popular machine learning tasks. Chapter 3 describes
FlexRR [49], our parameter server system that mitigates the effects of performance variation
(stragglers) on iterative ML tasks. Chapter 4 describes Proteus [51], our parameter server
design specialized for transient resources commonly found in shared computing environments.
Chapter 5 describes PipeDream [50], our system for parallelized training of DNN models that
are inefficient to train using data parallel approaches. Chapter 6 concludes the dissertation
and discusses future research directions.

4

Chapter 2

Background: Data-Parallel ML and
Parameter Servers

This section describes some additional background of our work, including shared computing
environments, the parameter server architecture, consistency models, and example ML
tasks.

2.1 Shared Computing Environments

Shared computing environments, both public and private, where multiple users time-
share computing resources, have become popular for training machine learning models.
This section provides background on two characteristics of modern shared computing
environments that we explore in our work: transient resources and performance variation.

2.1.1 Transient Resources

Today’s cluster infrastructures are increasingly dynamic, and working with transient re-
sources on a regular basis is common. Resources may be available as temporarily-unused
nodes on a revocable basis at a discount (in public pay-as-you-go clouds) or for lower-
priority best effort workloads (in multi-use corporate clusters). For both public clouds and
mixed-purpose corporate clusters, lower intensity periods for business critical workloads
create an opportunity for extra machines to be made available to other workloads. However,
those machines may need to be taken back if business-critical workload intensity increases.

Amazon AWS EC2 [1] is a public cloud that allows customers to purchase time on
virtualized machine resources. The traditional EC2 model, referred to as “on demand”
because machines can be requested and released by customers at any time (though billing is
based on an hourly granularity), involves paying a pre-determined fixed hourly rate to have
guaranteed access to rented machine resources. Amazon also has a so-called “spot market”
for machines, where machines are often available at a steep discount (e.g., 70–80% lower
price) with the proviso that they can be taken back at any time. Therefore, a customer
who can exploit transient machines for their work can potentially save money and/or time.

5

2.1.2 Performance Variation

Another characteristic of shared computing environments that we address in our works
is performance variation. Performance variation exists in both a persistent and transient
nature. Most shared cloud providers offer a variety of hardware to users leading to
persistent performance variation due to hardware heterogeneity [80, 95, 63, 1]. Examples
of transient performance variation include hardware failures [14], garbage collection in
high-level languages, various OS effects [17, 78] and resource contention. When using private
dedicated hardware, it is possible to eliminate many of these performance variations [40,
78, 77], but in shared computing environments (especially public clouds) this is difficult
and/or impossible.

2.2 Data Parallel ML

This section provides background on data parallel machine learning and the consistency
models that are used to synchronize worker progress. In data-parallel machine learning
training, inputs are partitioned across workers. Each worker maintains a local copy of the
model weights and trains on its own partition of inputs while periodically synchronizing
weights with other workers.

2.2.1 Parameter Server Architecture

The most efficient modern frameworks for data-parallel ML use a parameter server archi-
tecture, which allows programmers to easily build scalable ML algorithms while benefiting
from such specializations [67, 54, 24, 49]. As a result, open source ML model training
frameworks like TensorFlow [8], MxNet [22], Petuum [105] and many proprietary systems
use variants of this architecture.

Figure 2.1 illustrates a simple parameter server system. Commonly, the only state
shared among worker threads is the current parameter values, which is kept in a specialized
key-value store called the parameter server. Worker threads process their assigned training
data and use simple read-param and update-param methods to check and apply deltas to
parameter values. The value type is usually application-defined, but must be serializable
and have a commutative and associative aggregation function so that updates from different
worker threads can be applied in any order.

To reduce cross-machine traffic, parameter server implementations include a worker-side
library that caches parameter values and buffers updates. While logically a single separate
server, the parameter server is usually sharded across the same machines as worker threads,
enabling it to scale with the computation power and aggregate memory and bandwidth
used for training. Threads associated with the worker-side cache communicate with the
appropriate server shards for each given value. Updates are write-back cached and sent
(asynchronously) to the appropriate parameter server shards each iteration.

6

W
W

W
Worker

Data
D

D
D

Parameter Server

(a) Logical Architecture

Worker

ParamServ

Worker

ParamServ

Worker

ParamServ

Worker

ParamServ

Worker

ParamServ

Worker

ParamServ

(b) Common Configuration

Figure 2.1: Traditional Parameter Server Architecture. The left figure illustrates the
logical architecture, and the right figure illustrates that the parameter server is usually
sharded across the same machines as the workers.

2.2.2 Distributed All-Reduce

In recent years, for data-parallel training of machine learning algorithms with dense updates
(e.g., deep neural networks), all-reduce algorithms have grown in popularity as the means
communication between workers [45, 87]. Unlike the parameter server architecture, all
communication in distributed all-reduce happens directly between workers.

2.2.3 Consistency Models

In data-parallel ML, there are three commonly used consistency models: Bulk Synchronous
Parallel (BSP), Stale Synchronous Parallel (SSP)1 [54] and Asynchronous Parallel (ASP) [24]
for synchronizing worker progress. In all three models, workers work on a local copy of
model parameter data, receiving updated versions of the solution state from the parameter
server, which sends the updated solution state once updates are received from all workers
for the current clock (e.g., mini-batch). In BSP, workers block until their local copy is
updated with model parameter data containing all the updates from clock. In ASP, workers
never block, allowing them to work on stale data in favor of improved throughput. The
SSP model is the middle ground between BSP and ASP. It generalizes BSP by allowing
any worker to be up to a bounded number of iterations ahead of the slowest worker. So, for
BSP, the bound would be zero. With a staleness of b, a worker at iteration t is guaranteed
to see all updates from iterations 1 to t− b−1, and it may see (not guaranteed) the updates
from iterations t− b to t. Such a bound admits proofs of convergence [54, 67, 68].

1We refer to Stale Synchronous Parallel (SSP), but the concept has also been described as Bounded
Delay consistency [67].

7

2.3 Example ML Tasks

This section describes six real ML tasks which are often parallelized to improve training
time. In Chapter 3 and 4 we perform experiments using recommendation systems, image
classification, and topic modeling tasks. In Chapter 5 we perform experiments using image
classification, translation, language modeling, and video captioning tasks.

2.3.1 Recommendation Systems

Matrix Factorization is a technique (a.k.a. collaborative filtering) commonly used in
recommendation systems, such as recommending movies to users on Netflix. The goal is
to discover latent interactions between the two entities (e.g., users and movies). Given a
partially filled matrix X (e.g., a matrix where entry (i, j) is user i’s rating of movie j), MF
factorizes X into factor matrices L and R, such that their product approximates X (i.e.,
X ≈ LR). Like others [41, 66, 28], our MF implementation uses the stochastic gradient
descent (SGD) algorithm. Each worker is assigned a subset of the observed entries in X; in
every iteration, each worker processes every element of its assigned subset and updates the
corresponding row of L and column of R based on the gradient. L and R are stored in the
parameter server.

Our MF experiments use the Netflix dataset, which is a 480k-by-18k sparse matrix
with 100m known elements, and factor it into two matrices with rank 1000. We also use a
synthetically enlarged version of the Netflix dataset that is 256 times the original. It is a
7683k-by-284k sparse matrix with 4.24 billion known elements with rank 100.

2.3.2 Image Classification

Multinomial Logistic Regression is a popular model for multi-way classification, often used
in the last layer of deep learning models for image classification [65] or text classification [69].
In MLR, the likelihood that each (d-dimensional) observation x ∈ Rd belongs to each of the

K classes is modeled by softmax transformation p(class=k|x) =
exp(wT

k x)∑
j exp(w

T
j x)

, where {wj}Kj=1

are the linear (d-dimensional) weights associated with each class and are considered the
model parameters. The weight vectors are stored in the parameter server, and we train the
MLR model using SGD, where each gradient updates the full model [18].

Our MLR experiments use the ImageNet dataset [82] with LLC features [102], containing
64k observations with a feature dimension of 21,504 and 1000 classes.

2.3.3 Topic Modeling

Latent Dirichlet Allocation is an unsupervised method for discovering hidden semantic
structures (topics) in an unstructured collection of documents, each consisting of a bag
(multi-set) of words. LDA discovers the topics via word co-occurrence. For example,
“Sanders” is more likely to co-occur with “Senate” than “super-nova”, and thus “Sanders”
and “Senate” are categorized to the same topic associated with political terms, and “super-
nova” to another topic associated with scientific terms. Further, a document with many

8

instances of “Sanders” would be assigned a topic distribution that peaks for the politics
topics. LDA learns the hidden topics and the documents’ associations with those topics
jointly. It is used for news categorization, visual pattern discovery in images, ancestral
grouping from genetics data, community detection in social networks, and other such
applications.

Our LDA solver implements collapsed Gibbs sampling [46]. In every iteration, each
worker goes through its assigned documents and makes adjustments to the topic assignment
of the documents and the words. The LDA experiments use the Nytimes dataset [3],
containing 100m words in 300k documents with a vocabulary size of 100k. They are
configured to classify words and documents into 1000 topics.

2.3.4 Deep Neural Networks (DNN)

Although it is a model type, rather than a task, we describe deep neural networks (DNNs)
here. DNNs consist of a sequence of layers of different types (e.g., convolutional, fully
connected, batch normalization) depending on the task being solved. Each layer computes
a function over its inputs, using parameters (or weights) that are learned, and produces
outputs. For simplicity, we refer to the first layer as the input layer and the last layer as
the output layer of the DNN.

DNN training proceeds in a repeating loop composed of a forward work followed by a
backward work (also known as back propagation). In forward work, training samples are fed
to the input layer. Each layer performs its computation (e.g., convolution using its weights
as filters) and propagates its results to the next layer. This proceeds until the output layer.
At the end of forward work, the output layer makes a class prediction for the image. Based
on the actual class of the image, the output layer then computes a loss (or error). This
kicks off backward work, where each layer computes 1) the error for the previous layer, and
2) weight gradients for that layer, to move the DNN’s prediction towards the desired output.
To efficiently utilize GPU resources, forward and backward work typically involve training
on multiple samples simultaneously; this procedure is called mini-batching. This two-pass
process iterates over all input samples in the training dataset, with samples grouped into
mini-batches. A single iteration over the entire data set is referred to as an epoch. DNN
training usually runs for multiple epochs, until the model reaches a desired level of accuracy
or stops improving.

We use seven different DNN models across four different machine learning tasks:
• Image Classification. For image classification we use three different machine

learning models. VGG-16 [89], ResNet-50 [52], and AlexNet [65]. We train VGG-16
and Resnet-50 using the the ImageNet-1K (ILSVRC12) [82] dataset. For AlexNet, we
use synthetic data (otherwise, data loading is the bottleneck) and measure throughput.

• Translation. For translation we use the Google Neural server Translation (GNMT)
with 8 LSTM layers [104], and GNMT with 16 LSTM layers. We train the translation
tasks using the WMT16 English to German dataset, and then use the Newstest2014
dataset for validation.

• Language Modeling. For language modeling, we use the AWD Language Model

9

(LM) [73]. We train it using the Penn Treebank (PTB) [74] dataset.

• Video Captioning. For video captioning we use the S2VT [100] sequence-to-
sequence model. We train it using the Microsoft Video description corpus (MSVD) [21].

10

Chapter 3

Addressing the Straggler Problem in
Iterative Convergent ML

ML algorithms vary, and this chapter focuses on a major subset: iterative convergent
algorithms solved in a data-parallel manner. As discussed in Chapter 2, such algorithms
begin with a guess of the solution and proceed through multiple iterations over the input
data to improve the solution. Most distributed implementations of such algorithms follow
the Bulk Synchronous Parallel (BSP) computational model. Input data is divided among
worker threads, each of which iterates over its subset of the input data and determines
solution adjustments based on its local view of the latest parameter values. All workers
execute the same iteration at the same time, enforced by barriers, and solution adjustments
from one iteration are exchanged among workers before the next iteration begins. When
many workers are involved, regular barrier synchronization often induces large slowdowns,
due to straggler problems.

A straggler problem arises whenever worker threads experience uncorrelated performance
jitter. In each iteration, under BSP, all workers must wait for the slowest worker in
that iteration, so one slowed worker causes unproductive wait time for all the others.
Unfortunately, even when load is balanced, transient slowdowns are common in real systems
(especially in shared clouds) and have many causes, such as resource contention, garbage
collection, background OS activities, and (for ML) stopping criteria calculations. Worse,
the frequency of such issues rises significantly when executing on multi-tenant computing
infrastructures rather than dedicated clusters (as is becoming increasingly common) and as
the number of workers and machines increases.

Straggler mitigation techniques based on redundant task execution [14, 34, 108, 13] have
been applied successfully to data processing jobs that fit map-reduce-style BSP execution
(e.g., in Hadoop [15] or Spark [107]), relying on the idempotency of redundantly executed
tasks. But, the most efficient frameworks for distributed ML do not work that way. Instead,
these frameworks share state and exploit ML-specific properties to reduce coordination
overheads and converge far faster [70, 67, 29, 11, 24, 22, 8]. Because the changes to shared
state are not idempotent, new approaches to straggler mitigation are needed.

This chapter describes FlexRR, a new approach to straggler mitigation without the
correctness problems of redundant task execution, for iterative convergent ML on efficient

11

c4.xlarge Instances c4.2xlarge Instances0

5

10

15

20

25

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 3.1: Comparison of Matrix Factorization performance on EC2. The graph shows average
time-per-iteration running on 64 EC2 instances. For each of two EC2 machine classes, four ap-
proaches are compared: “BSP” and “FlexRR” represent the traditional approach and our solution,
which combines flexible consistency bounds with our temporary work re-assignment technique.
The “SSP” and “BSP RR” bars show use of individual ones of these two primary techniques,
demonstrating that neither alone addresses the straggler problem for iterative convergent ML.
FlexRR outperforms BSP and SSP by 53% and 39% (left) and 35% and 25% (right), for these
two EC2 machine classes. Experimental details are in Section 3.4.

ML frameworks. FlexRR combines flexible consistency bounds with a new temporary
work reassignment mechanism we call RapidReassignment. Flexible consistency bounds via
SSP remove the barriers of BSP, allowing fast workers to proceed ahead of slowed workers
by a bounded amount [25, 54, 67]. The flexibility improves efficiency, while the bound
enables convergence to be proven [54, 68]. With RapidReassignment, a slowed worker can
offload a portion of its work for an iteration to workers that are currently faster, helping
the slowed worker catch up. The two techniques complement each other, and both are
necessary to address the straggler problem for iterative convergent ML. Flexible consistency
bounds provide FlexRR with enough slack to detect slowed workers and address them with
RapidReassignment, before any worker reaches the bound and is blocked.

FlexRR’s RapidReassignment is a specialized form of work shedding optimized for
large-scale data-parallel iterative ML: (1) It takes advantage of the well-defined notion
of progress through an iteration to identify slowed workers quickly. (2) It uses P2P
communication among workers to detect slowed workers and perform work re-assignment,
bounding communication overhead and avoiding a central decision-making bottleneck. (3)
It uses explicit helper groups, limiting to which other workers any given work can be
offloaded, to minimize data movement and enable input data preloading. (4) Optionally, it
exploits iteration knowledge to further reduce how much data needs to be preloaded on
helpers. Overall, RapidReassignment’s design enables efficient and scalable temporary work
reassignment for state-of-the-art efficient ML frameworks.

Extensive experiments demonstrate that FlexRR successfully addresses the straggler
problem for three real ML tasks and various real and injected straggler behaviors. As
illustrated in Figure 3.1, FlexRR reduces time-per-iteration by 35–53% on average, compared

12

to the traditional BSP approach, and by 25–39% over SSP, even for relatively small ML
problems on relatively expensive Amazon EC2 instances (which would be expected to have
minimal resource sharing with other tenant activities). Similar results are observed in
experiments on Microsoft Azure. In addition, various synthetic stragglers behaviors drawn
from prior studies are used for controlled study of a wider range of scenarios; FlexRR
consistently nearly matches an “ideal” lower bound in which all work is at all times perfectly
balanced at no overhead, resulting in 5–10× improvement over BSP and SSP in extreme
cases.

3.1 Prior Approaches Addressing Stragglers

Stragglers have long plagued parallel computing, and many techniques have been developed
to mitigate them.

Eliminating performance variation. The HPC community—which frequently runs
applications using the BSP model—puts significant effort into identifying and removing
sources of performance jitter from the hardware and OSs of their supercomputers [40, 78].
Naiad [77] uses the same approach. While this approach can be effective at reducing
performance “jitter” in specialized and dedicated machines, it does not solve the more
general straggler problem. For instance, it is not applicable to programs written in garbage-
collected languages, does not handle algorithms that inherently cause stragglers during some
iterations, and does not work for today’s multi-tenant computing infrastructures [31, 39, 53].

Blacklisting is a limited form of performance variation elimination, which attempts to
mitigate stragglers by ceasing to assign work to workers that are falling behind. However,
this approach is fragile. Stragglers caused by temporary slowdowns (e.g., due to resource
contention with a background activity) often occur on non-blacklisted machines [32]. Worse,
good workers that have such a temporary slowdown may then be blacklisted, unnecessarily
reducing the computing power available.

Speculative execution and task cloning. Speculative execution is used to mitigate
stragglers in data processing systems like MapReduce, Hadoop, and Spark [15, 34, 14, 108,
13]. Jobs in these systems consist of stateless, idempotent tasks like “map” and “reduce”,
and speculative execution runs slow tasks redundantly on multiple machines. While this
consumes extra resources, it can significantly reduce job completion delays caused by
stragglers, because the output from the first instance of any given task can be used without
waiting for slower ones.

State-of-the-art frameworks for high-performance parallel ML use a parameter server
architecture, which does not accommodate computation redundancy. While iterative ML
can be built as a series of collections of idempotent tasks, doing so precludes many effective
techniques for reducing overhead and speeding convergence [67, 28]. In parameter server
systems, worker processing involves shared state and is not idempotent. Applying the same
adjustments more than once can affect convergence negatively or even break algorithm
invariants. FlexRR uses peer-to-peer interactions among workers to offload work when
necessary, avoiding the wasted resources and potentially incorrect behavior of redundant
work.

13

Work stealing, work shedding. Work stealing and work shedding are mirror ap-
proaches for adaptively re-balancing work queues among workers [19, 38, 9, 37]. The
concept is to move work from a busy worker to an idle worker. FlexRR’s temporary
work reassignment mechanism is a form of work shedding, specialized to the nature of
data-parallel iterative ML. There are several key differences. First, FlexRR takes advantage
of the well-defined notion of progress through an iteration to identify slowed workers early
on and avoid delays; work stealing, in contrast, waits for a worker to idle before looking to
steal work, incurring additional delays until work is found. Second, while work stealing
is computation-centric (e.g., data is moved to the thread that steals the work), FlexRR
carefully avoids data movement by limiting and pre-determining reassignment patterns to
avoid expensive on-demand loading of input data and parameter state. Third, because
of its focus on transient stragglers, FlexRR’s reassignments are temporary—only for the
remainder of an iteration. Finally, it is designed explicitly to work in conjunction with
flexible consistency bounds, as discussed below.

Using less strict progress synchronization. The strict barriers of BSP can be
replaced with looser coordination models. One approach is to reduce the need for syn-
chronization by restricting communication patterns. For example, GraphLab [70, 71]
programs structure computation as a graph, where data can exist on nodes and edges. All
communication occurs along the edges of this graph, so non-neighboring nodes need not
synchronize. However, GraphLab requires the application programmer to know and specify
the communication pattern.

Albrecht et al. [12] describe partial barriers, which allow a fraction of nodes to pass
through a barrier by adapting the rate of entry and release from the barrier.

Yahoo! LDA [11] and Project Adam [24], as well as most solutions based around NoSQL
databases, allow workers to run asynchronously (ASP), relying on a best-effort model for
updating shared data. While such approaches can work well in some cases, they provide no
guarantees of convergence for ML algorithms and indeed can readily diverge.

FlexRR uses SSP (Sec. 2.2.3). Consistent with our results, SSP has been shown to
mitigate small transient straggler effects [28, 67] but not larger effects. FlexRR combines
SSP with temporary work reassignment to address the straggler problem for iterative ML.

3.2 FlexRR Design & Implementation

FlexRR provides parallel execution control and shared state management for input-data-
parallel iterative convergent ML algorithms. This section overviews FlexRR’s API, basic
execution architecture, shared state management approach, and solution to the straggler
problem.

FlexRR’s design relies on a few assumptions about application behavior. It assumes data-
parallel processing, with worker threads processing assigned input data items independently
and without order-dependence. It assumes iterations (or mini-batches, when used) are
not too short to detect and react to slowed workers and that a worker’s progress through
an iteration can be measured, such as by the fraction of its input data items processed.
Also, RapidReassignment’s performance relies on being able to reassign work quickly; so, it

14

assumes that there is either no cross-iteration data-item-specific local state or that there is a
way to avoid needing to transfer it with reassigned work.1 These characteristics are common
to most data-parallel iterative ML applications, including our benchmark applications as
well as K-means clustering, Sparse Coding and many others.

FlexRR is implemented as a C++ library linked by an ML application using it. During
execution, FlexRR consists of one process executing on each node being used. Each FlexRR
process starts a worker thread for each core on the node and a number of background
threads for its internal functionality. The worker threads execute the ML application code
for adjusting model parameters based on input data and possibly local state. The shared
model parameters, which may be read and adjusted by all worker threads, are stored in a
parameter server (Fig. 2.1) maintained by the set of FlexRR processes.

3.2.1 Workers and Execution Management

During initialization, an ML application provides FlexRR with the list of nodes/cores
to be used, the input data file path, several functions called by FlexRR, and a stopping
criterion. The input file contains data items in an understood format (e.g., rows that each
contain one input data item in an easy-to-process format). The stopping criterion may
be a number of iterations, an amount of time, or a determination of convergence. The
most important function provided (process-input) is for processing a single input data
item, taking the data item value as input and processing it to determine and apply model
parameter adjustments as needed.

Each worker thread is assigned a unique ID, from zero to N − 1, and a disjoint subset
of the input data items. The default assignment is a contiguous range of the input data,
determined based on the worker ID, number of workers, and number of data items. Each
worker has an outer loop for iterating until the stopping criterion is reached and an inner
loop for each iteration.

3.2.2 Parameter Server for Shared State

FlexRR uses a parameter server which is derived from LazyTable [28, 29]. It exposes a simple
key-value interface to the ML application code, which uses read-param and update-param

functions to read or update (apply a delta to) a model parameter value specified by the key.
The value type is application-defined, but must be serializable and have a commutative
and associative aggregation function, such as plus, union, or multiply. With this property
different worker threads can apply changes in any order without affecting the result. For the
ML applications used in this chapter, the values are vectors and the aggregation function is
addition.

The parameter server implementation reduces cross-node traffic by including a client-side
cache for model parameter entries. While logically separate, the parameter server is part
of the same FlexRR processes as the worker threads. Every process has a number of

1An example of the latter is our LDA application, which originally relied on local state. Instead of
transferring local state between workers, which we found to be too inefficient, we designed an LDA-specific
mechanism to avoid dependence on the local state.

15

parameter server threads and maintains a shard of the shared state. Each iteration updates
are write-back cached, and asynchronously sent to the appropriate parameter server shards.

FlexRR supports both the BSP and SSP models. Each cached value is associated with
an iteration number that indicates the latest iteration for which all workers’ updates have
been applied to it. During a read, the cached value is returned only if it reflects all updates
up to the slack-bound (zero, for BSP); that is, the value is up-to-date enough if it reflects all
updates from iterations more than “slack-bound” before the worker’s current local iteration
number. Otherwise, the read must proceed to the appropriate server shard to retrieve the
value, possibly waiting there for other workers’ updates.

For fault tolerance, FlexRR supports the same checkpointing mechanism as LazyTable [28]–
its RapidReassignment mechanism does not affect it.

Although FlexRR is implemented using a parameter server architecture for data parallel
training, we believe that it can also be implemented to work with machine learning training
system that use distributed all-reduce (Sec. 2.2.2). The temporary work re-assignments
in FlexRR are communicated directly worker-to-worker, independent of how parameters
updates are communicated.

3.2.3 Straggler Mitigation

FlexRR combines two mechanisms, flexible consistency bounds via the SSP model and
temporary work reassignments via our RapidReassignment protocol, to address the straggler
problem for iterative ML. The SSP model allows each worker thread to be ahead of the
slowest worker by up to a specified slack-bound number of iterations. This flexibility
mitigates stragglers to some extent [28] (see also the SSP bars in Figure 3.1 and Section 3.4),
but more importantly provides enough flexibility for RapidReassignment to be highly
effective. RapidReassignment uses peer-to-peer communication to enable workers to self-
identify as stragglers and temporarily offload work to workers that are ahead.

3.3 RapidReassignment Design

The goal of RapidReassignment is to detect and temporarily shift work from stragglers
before they fall too far behind, so that workers never have to wait for one another. Workers
exchange progress reports, in a peer-to-peer fashion, allowing workers to compare their
progress to that of others. If a worker finds that it is falling behind, it can send a portion
of its work to its potential helpers (a subset of other workers), which can confirm that they
are indeed progressing faster and provide assistance (see Figure 3.2). Combined with SSP,
RapidReassignment is highly effective in mitigating straggler delays of all intensities.

3.3.1 Worker Groups

RapidReassignment is designed for scalability, using peer-to-peer coordination among
workers instead of a central arbiter. Like overlay networks [91, 81], workers exchange
progress reports and offloaded work with only a few other workers, avoiding the scalability

16

problems that would arise from all-to-all progress tracking or a centralized work reassignment
approach, especially for short iterations when progress tracking and reassignment are more
frequent.2

During initialization, each worker is assigned a group of workers that are eligible to
provide assistance, referred to as its helper group, and a group of workers to whom the
worker is eligible to provide assistance, referred to as its helpee group. The size of each
group is set at start up and can be configured by the ML application. Each worker is
assigned one helper on the same machine, and its other helpers are spread across different
machines. While helper and helpee groups may overlap, they are usually not identical.
For example, in a system containing 64 workers assigned round-robin to 8 machines and 4
helpers assigned to every worker, worker 14 might be eligible to assist workers (8,9,15,22)
while workers (6,11,12,13) would be designated as its helpers. A waterfall effect results,
whereby a worker providing a lot of assistance to some workers can in turn offload its own
work to others, and so on, such that all workers make similar progress.

Worker groups also improve work reassignment efficiency. A helper needs to access the
input data associated with the reassigned work. While it could fetch that data on demand,
the helper’s help is much more efficient if the data is fetched in advance. Indeed, based on
our experiments, work reassignment is too slow to be helpful without doing so. Toward
that end, each worker under RapidReassignment prefetches a copy of the input data of
its helpee group members after loading its own data. The limited set of helpees bounds
the cache space needed, which can be further reduced by caching only the tail of each
helpee’s iteration. Our experiments show that FlexRR suffers minimal performance loss
from workers caching only the tail fraction of their helpees’ input data (see Section 3.4.5).

3.3.2 Worker Communication

RapidReassignment uses non-blocking Message Passing Interface (MPI) for communication
among workers. Workers explicitly poll for messages during each iteration, in order to
compare their respective progress. The message check frequency parameter specifies how
many times during each iteration a worker checks for incoming messages. The default
setting is 100 checks per iteration, which our sensitivity experiments (Section 3.4.6) show is
a good value.

To determine speed differences between workers, each worker keeps a runtime timer
to track how long it has been running. These timers are launched during initialization,
following a joint barrier. Because RapidReassignment addresses relatively large differences in
progress (e.g., 20% of a multi-second iteration), with smaller differences mitigated by flexible
consistency bounds, these timers are sufficiently precise and need to be resynchronized only
infrequently (e.g., hourly).

2For small scale systems and longer iterations, our design could be readily adapted to use a central
master to handle inter-worker coordination and reassignment. However, this approach would not outperform
our P2P design in general. Moreover, the computation and communication of the master would compete
with doing real work on that server, adding an additional straggler effect.

17

SlowFastOk

I’m this far I’m this farIgnore!
(I don’t need help)

Do assignment #2!
 (green work)

Started Working

Do assignment #1!
(red work)

I’m behind!
(I need help)

Figure 3.2: RapidReassignment example. The middle worker sends progress reports to the
other two workers (its helpee group). The worker on the left is running at a similar speed,
so it ignores the message. The worker on the right is running slower, so it sends a do-this

message to re-assign an initial work assignment. Once the faster worker finishes its own
work and begins helping, it sends a begun-helping message to the slow worker. Upon
receiving this, the slow worker sends a do-this with a follow-up work assignment to the
fast worker.

3.3.3 RapidReassignment Actions

This section describes the five primary RapidReassignment actions in FlexRR, designed
to quickly offload work from slow workers to faster helpers (Figure 3.2). As will be seen,
RapidReassignment is carefully tuned to the properties of data-parallel iterative convergent
algorithms, such as the freedom to delay and reorder updates on the one hand, yet the need
to avoid duplicating work on the other (recall that duplicating work can lead to incorrect
behavior).

Identifying Stragglers. Upon reaching the progress checkpoint in the current iteration,
which by default is set to 75% completion, a worker sends out a progress-report message
to its helpee group, containing its current iteration number and the local time in its runtime
timer. During each message check, a worker checks for progress-report messages from
its helpers. Upon receiving such a message, the worker calculates its progress compared to
the progress of the eligible helper. The logic for calculating the progress difference is shown
in Algorithm 1. The result informs the worker how far ahead or behind (as a percentage of

18

the iteration) it is relative to the progress-report sender.

Algorithm 1 Progress Difference Calculation
1: completion diff ← progress in the message minus progress of the current worker
2: current avg ← weighted average time it takes the current worker to complete an iteration
3: time diff ← timer value of the current worker minus timer value contained in progress message
4: progress difference ← completion diff + time diff

current avg

Reassigning Work. If a worker finds that it has fallen behind the sender of a
progress-report by more than a set threshold (the straggler trigger threshold, with a
default of 20%), it will send an initial work assignment in a do-this message back to the
sender. This initial work assignment is a percentage of its work for the current iteration.
Section 3.4.6 shows that a default of 2.5% is a good setting for this tunable. The do-this

message contains the current iteration number of the slow worker, beginning and end of
the work assignment (a range of the input data), and a local timestamp of the message. A
sample message is do-this (iteration: 4, start: 140, end: 160, timer: 134.43).
Note that, as shown in Figure 3.2, the slow worker reassigns ranges of work starting
from the end of its current iteration. Assigning from the end is the least disruptive to
the slow worker’s progression through its input data items, and takes advantage of the
robustness of iterative convergent algorithms to processing data items in any order despite
the data dependencies (such dependencies between item processing—resulting from their
update-param calls—would make this reordering unsafe for general code).

Algorithm 2 Helping Decision
1: msg ← check for helping requests
2: if msg.timestamp ≤ last cancellation timestamp OR msg.iteration > current iteration

then
3: Discard msg
4: else if msg.iteration < current iteration OR finished its own work this iteration then
5: Send begun-helping and do the help
6: else
7: Save msg for the end of this iteration
8: end if

Helping with Work. Workers check for do-this messages on every message check.
Upon receiving a do-this message, the worker (the potential helper, in this case) will
compare the timestamp of the message to the timestamp of the latest cancel-help message
(see below) from the same worker. If the timestamp in the do-this message is greater,
the potential helper will compare its current iteration to the iteration number contained
in the do-this message. If the iteration number contained in the message is smaller than
the helper’s current iteration, the helper will immediately send a begun-helping message
and begin working on the work assignment. Upon completing the work assignment, the
worker will send a help-completed message to the original worker and check for additional
do-this messages prior to returning to its own work.

19

If the iteration number in the do-this message equals the helper’s current iteration (as
in assignment #1 in Figure 3.2), then the helper will put aside the work assignment until
the end of the current iteration. If at the end of the iteration the worker has yet to receive a
cancel-help message containing a timestamp greater than the timestamp of the do-this

message, the helper will send out a begun-helping message and begin working on the work
assignment. Upon completing the work assignment, the helper will send a help-completed

message to the original worker (the helpee) and, after checking for additional valid do-this

messages, will move on to its own next iteration. Algorithm 2 shows the pseudo-code for
the worker’s decision about if and when to provide assistance.

Assigning Additional Work. After much experimentation, we have found that a
good strategy for balancing various concerns is to first assign a relatively small amount of
initial work, immediately followed by a larger amount (double) of additional work once a
helper begins processing the initial assignment. To that end, after a worker sends out a
do-this message, it will check for begun-helping messages during every message check in
that iteration. If such a message is received, and more help is needed, the worker will send
an additional do-this message to the faster worker, containing a follow-up work assignment
of twice the size (see Figure 3.2). For the rest of the iteration, the worker will send another
follow-up work assignment each time it receives a begun-helping message.

Cancelling Work Reassignments. After reassigning a portion of its work, a worker
will continue working on its current iteration until it completes all the work it has not
given away. At this point, for all pending do-this messages the worker has sent out, the
worker will check for begun-helping messages. If there is a work assignment for which a
begun-helping message has yet to be received, the worker will send out a cancel-help

message containing the current timestamp and complete the work on its own. Upon
completing all such messages, the worker will wait to receive a help-completed message for
all work assignments before moving on to the next iteration. This is is done to guarantee the
slack-bound. There is a small window in which both the helpee and a helper may begin the
same work, which can be addressed by having the helpee only commit changes corresponding
to reassigned work after it confirms that the helper acknowledged the cancel-help message.
Again, we are relying here on the robustness of data-parallel iterative convergent algorithms
to delayed and out-of-order updates.

3.4 Evaluation

This section evaluates the effectiveness of FlexRR. Results are reported for sets of Amazon
EC2 and Microsoft Azure instances as well as for local clusters. The results support
a number of important findings: (1) significant straggler problems occur in real cloud
infrastructures, (2) when straggler problems occur, FlexRR greatly outperforms BSP and
SSP, achieving near-ideal performance for all of the various straggler patterns studied;
(3) to achieve ideal performance, the RapidReassignment and SSP techniques need to be
combined, as is done by FlexRR, as neither alone is sufficient; (4) FlexRR is not sensitive
to the choices of run-time configuration parameters, within a wide range of reasonable
settings.

20

3.4.1 Experimental Setup

Experimental Platforms. We use a variety of clusters for our experiments. Cluster-A
is 16 virtual machines running on a dedicated cluster of 16 physical machines, each with a 2
quad-core Intel Xeon E5430 processor running at 2.66GHz, connected via 1 Gbps Ethernet
(≈700 Mbps observed). Each VM runs on one physical machine, and is configured with 8
vCPUs and 15 GB memory, running Debian Linux 7.0. Cluster-B is a cluster of 64 Amazon
EC2 c4.2xlarge instances. Each instance has 8 vCPUs and 15 GB memory, running 64-bit
Ubuntu Server 14.04 LTS (HVM). Cluster-C is a cluster of 64 Amazon EC2 c4.xlarge
instances, a lower class version of Cluster-B. Each instance has 4 vCPUs and 7.5 GB
memory, running 64-bit Ubuntu Server 14.04 LTS (HVM). From our testing using iperf,
we observe a bandwidth of 1 Gbps between each pair of EC2 instances. Cluster-D is a
cluster of 64 Microsoft Azure A4 Standard instances. Each instance has 8 vCPUs and 15 GB
memory, running 64-bit Ubuntu Server 14.04 LTS (HVM) on Intel Xeon E5507 processors.
Cluster-E is a cluster of 64 Microsoft Azure A3 Standard instances. Each instance has
4 vCPUs and 7 GB memory, running 64-bit Ubuntu Server 14.04 LTS (HVM) on AMD
Opteron 4171 HE processors. From our testing using iperf, we observed a bandwidth
of 1.1 Gbps between each pair of Azure instances. Cluster-F is a PRObE Nome [42]
dedicated cluster of 128 high-end computers running Ubuntu 14.04. Each machine contains
4 quad-core AMD Opteron 8354 CPUs (16 physical cores per machine) and 32GB of RAM.
The machines are connected via 1Gb Ethernet.

For experiments that control and/or instrument straggler causes, we primarily use
Cluster-A. The other five clusters are used to experiment with naturally occurring stragglers
in two public clouds and for a larger-scale example. We use our limited access to Cluster-F
to experiment on a large problem and dataset that does not fit on the other clusters.

Naturally-occurring and Injected Straggler Patterns. Our goal is to experiment
with a wide variety of straggler patterns that are likely to be encountered in practice, as well
as with more extreme patterns that provide stress tests. Our experiments with EC2, Azure,
and Nome provide evaluation in the presence of a variety of naturally-occurring stragglers in
several real infrastructures. But, we are unable to instrument these systems to evaluate the
causes or particular nature of those stragglers; we consistently observe straggler problems,
but whatever happens happens when using public clouds. To evaluate a broader range
of straggler effects and intensities beyond what arose during the particular times of the
experiments, and to directly measure attributable delays, we also perform more controlled
experiments with injected transient stragglers, using three distinct methodologies:

Slow Worker Pattern: Models transient worker slowdown by inserting sleep commands
into worker threads. At each of 10 possible delay points within an iteration, each worker
decides (independently) to be slowed, with 1% probability, for a period uniformly randomly
chosen between 0–2× the duration of an iteration. Naturally, multiple (or no) workers may
be slowed at any given time. We denote the transient delay intensity % (delay % for short)
to be the percentage by which a worker is slowed (e.g., 100% delay means runs twice as
slow). To simulate the effect of a worker being slow, we divide each iteration into 1000
parts and insert milliseconds-long sleep commands at each of these 1000 points. For a delay
% of d within a t second iteration, each of these sleeps are d × t milliseconds long. For

21

example, for a 50% delay within a 6 second iteration, we insert a 3ms sleep at each point.
Disrupted Machine Pattern: Models transient resource contention (e.g., due to sub-

machine allocation or a background OS process) by running a disruptor process that takes
away CPU resources. Every 20 seconds, each machine independently starts up a disruptor
process with 20% probability. The disruptor launches a number of threads that each
executes a tight computational loop for 20 seconds. For a transient delay intensity % of d
on a p-core machine running p application threads, the disruptor launches d× p processes
of its own. For example, on our 8-core machines running 8 worker threads, a 200% delay
means having the disruptor launch 16 threads. Such a delay experienced by a worker for a
whole iteration will cause it to run roughly 200% slower than without delays.

Power-Law Pattern: Based on a real-world straggler pattern [78], this uses a power-law
distribution [79] to model the time t for a worker to complete an iteration: p(t) ∝ tα, where
α is the parameter that controls the “skewness” of the distribution. sleep commands are
used, as in the Slow Worker Pattern, to extend an iteration as determined. Smaller α values
make the distribution more “flat” and lead to more delay on average. Each experiment
uses a fixed α, and the iteration time of each worker is chosen independently from this
distribution. When we set the α parameter to 11, the iteration times in our emulated
environment without FlexRR have the same distribution as was measured on real clusters
in [78].

We also study a persistent straggler pattern where half the machines get 75% of the
work per iteration—such uneven workloads could arise in cases where data processing skew
is correlated with data placement.

Systems Compared. We compare the speed and convergence rates of four modes
implemented in FlexRR: 3

BSP Classic BSP execution
SSP SSP execution
BSP RR BSP with our RapidReassignment
FlexRR Our solution
Ideal Best possible (computed lower bound)

We also compute a value termed “Ideal”, which represents the speed that should be
achieved if all work is at all times perfectly balanced with no overhead. Reporting results
for BSP RR and SSP (without RapidReassignment) enables us to study the impact of
RapidReassignment and flexible consistency bounds in isolation versus in combination, as
in FlexRR. For SSP, we use a slack-bound of 1 in all experiments after verifying that it
leads to the fastest convergence on these benchmarks.

FlexRR features several run-time configuration parameters such as helper group size
and work assignment sizes. Table 3.1 lists these parameters, the range of values studied,
and their default values. The default values are the best settings obtained after extensive

3Although we do not show results of comparisons to other systems, the base system in which we
integrated FlexRR compares favorably to state-of-the-art frameworks, as noted in Section 3.1. For example,
its BSP mode is faster than GraphLab [70, 43] by 10–14× for MF and 50–100% for LDA [29], which in turn
has been shown to outperform Hadoop and Spark implementations [70, 44]. It also outperforms efficient
single-threaded implementations of MF and LDA by 99× and 62×, respectively, when using 8 64-core
machines [29].

22

experimentation over the range of parameters shown. Section 3.4.6 provides a sensitivity
analysis on the parameter settings, showing that FlexRR performs well over a broad range
of settings.

Table 3.1: FlexRR Parameter Settings

Parameter Range Default

Helper group size 2–16 4
Initial work assignment 1.25%–15% 2.5%
Follow-up work assignment 2.5%–30% 5%
Message checks/iteration 20–50k 100
Straggler trigger threshold 10%–40% 20%

Experimental Methodology. Every experiment was run at least thrice, and we
report arithmetic means. In experiments that had injected stragglers, the first run was
conducted from smallest delay injections to largest, the second in reverse order, and the
third in random order.

3.4.2 Naturally-occurring Straggler Results

We performed experiments on Amazon EC2, Microsoft Azure and PRObE Nome to evaluate
FlexRR in the presence of naturally-occurring straggler effects observed during the particular
times of the experiments. No synthetic straggler effects are injected during these experiments.

Amazon EC2 results. Figure 3.1 and Figure 3.3 show the results for MF and LDA,
respectively, Cluster-B (c4.2xlarge VMs) and Cluster-C (c4.xlarge VMs). Using c4.2xlarge
VMs, FlexRR reduces time-per-iteration by 35% (25%) for MF and by 34% (15%) for LDA
relative to BSP (SSP, respectively). Using c4.xlarge VMs, the reductions are 53% (39%)
for MF and 49% (32%) for LDA. The improvements are larger for c4.xlarge VMs, because
these less expensive VMs experience more transient straggler effects.

The improvements on EC2 come despite executing relatively short experiments on
relatively expensive EC2 instances that would be expected to have minimal resource sharing
with other tenant activities, highlighting the real-ness of transient stragglers in cloud
infrastructures.

Microsoft Azure results. Figure 3.5 shows the results of MF on Cluster-D (A4
VMs) and Cluster-E (A3 VMs) on Microsoft Azure. Using the A4 VMs, FlexRR reduces
time-per-iteration by 43% (32%) relative to BSP (SSP, respectively). Using the A3 VMs,
FlexRR reduces time-per-iteration by 56% (38%) relative to BSP (SSP). While the A4
instances are bigger and more expensive VMs, the times-per-iteration are larger than on the
A3 instances because the A3 CPUs perform better on MF’s floating point computations.
Nonetheless, significant straggler effects are observed for both setups, and the results are
akin to those for the c4.xlarge VMs on EC2.

PRObE Nome large MF experiment. To verify FlexRR’s effectiveness for a larger
workload, we used the Netflix * 256 synthetically enlarged dataset on Cluster-F. Figure 3.4
shows that FlexRR reduces time per iteration by 21% over SSP and 51% over BSP, even

23

0

5

10

15

20

25

30
Ti

m
e

pe
r i

te
ra

tio
n

(s
ec

)

BSP
SSP
BSP RR
FlexRR

c4.xlarge c4.2xlarge

Figure 3.3: EC2, LDA, no injected delay.

0
10
20
30
40
50
60
70
80

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 3.4: PRObE Nome, large MF, no
injected delay.

on this dedicated cluster with no injected delays. As expected, more straggler effects are
observed as cluster size increases, and FlexRR effectiveness is not hampered by the increased
problem size.

3.4.3 Slow Worker Pattern Results

This section studies the speed and convergence rate of the ML tasks under the Slow Worker
Pattern.

Speed Tests

For each task, we measured the time-per-iteration, Overall run time
Number of iterations

, for the four modes,

varying the transient delay intensity %. Each experiment ran for 20 iterations. (Running
more iterations yields the same results.)

Results on Cluster-A. Figure 3.6(a) and Figure 3.6(b) show the results for the MF
and LDA applications running on Cluster-A. MLR results looks similar to MF (not shown
due to space constraints). BSP slows down linearly with delay intensity. By controlling
straggler intensity, we see that SSP can mitigate delays below its slack-bound (e.g., see
the 50% delay intensity points), but then too suffers linearly. (The natural stragglers
from Section 3.4.2 were clearly too big for SSP alone.) FlexRR, on the other hand, nearly
matches Ideal even up to 400% delays, which are more extreme than should be expected in
practice. We measured the percentage of work that gets reassigned by FlexRR: it ranges
from 8–9% of the work at 0% delay (i.e., no injected delays) to 19–22% at 400% delay.
Even at 0% delay, FlexRR runs 18% faster than BSP on MF and LDA and 13% faster than
BSP on MLR. The figures also show that our RapidReassignment technique can be used in
BSP to decrease its straggler penalty, but it is FlexRR’s combination of flexible consistency
bounds and RapidReassignment that nearly matches Ideal.

At high delay % values, there is some divergence from Ideal for LDA. That is because
LDA uses a special mechanism to handle its local state, which involves two extra model

24

A4 Standard A3 Standard0

5

10

15

20

25

30

35

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 3.5: Microsoft Azure, MF, no injected delay.

parameter updates for each work re-assignment. At higher delays, more work is re-assigned,
thus these extra updates begin to have an effect on the run-time, causing FlexRR to deviate
from Ideal.

Results on Cluster-B. Figure 3.6(c) shows the results for MF on the larger Amazon
EC2 cluster, which are qualitatively the same as on Cluster-A. As on Cluster-A, BSP slows
down linearly with delay intensity, SSP can mitigate stragglers only up to its slack-bound,
and FlexRR nearly matches Ideal. FlexRR reassigns 21% of the work at 0% delay and 31%
at 400% delay. The main difference between the Cluster-B and Cluster-A results is that on
Cluster-B there is an even larger separation between FlexRR and the next best approach
(BSP with our RapidReassignment). E.g., at 400% delay, BSP RR is 10 times slower than
FlexRR. At 0% delay (no injected delays, corresponding to Figure 3.1 (right)), FlexRR is
35% faster than BSP and 25% faster than SSP, because of non-injected performance jitter.
The results for LDA on Cluster-B are qualitatively as on Cluster-A.

Convergence Tests

We also measure the time to convergence for the ML tasks running in each of the modes.
We calculate Ideal by multiplying the Ideal time-per-iteration values from Section 3.4.3 by
the number of iterations needed to reach convergence by the BSP experiment.4

Criteria for Convergence. We use the following stopping criterion, based on guidance
from our ML experts: If the objective value (for MF) or log-likelihood (for LDA) of the
solution changes less than 2% over the course of 10 iterations, then convergence is considered

4We use BSP iterations in this lower bound because the flexible consistency bounds of FlexRR and SSP
can lead to a (modest) increase in the number of iterations needed [25, 54], e.g., 2-3 extra iterations in our
experiments.

25

0 100 200 300 4000

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(a) MF Cluster-A

0 100 200 300 4000

50

100

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(b) LDA Cluster-A

0 100 200 300 4000

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

(c) MF Cluster-B

Figure 3.6: Slow Worker Pattern Speed Tests.

0 100 200 300 4000

2000

4000

6000

8000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
SSP
BSP RR
FlexRR
Ideal

(a) MF Convergence

0 100 200 300 4000

1000

2000

3000

4000

5000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
SSP
BSP RR
FlexRR
Ideal

(b) LDA Convergence

Figure 3.7: Convergence Tests.

to have been reached. We also verified that they reached the same objective value. Because
the objective value calculation is relatively expensive, and we wanted to observe it frequently,
we did it offline on FlexRR checkpoints.

Convergence Test Results. Figure 3.7(a) shows the results for MF. For all delay %,
BSP (and BSP RR) required 112 iterations to reach convergence and SSP required 113
iterations. FlexRR required 114 iterations, with the exception of 400% delay, where it
took 115 iterations. Even with the extra iterations required to reach convergence, FlexRR
converged 10% faster than BSP at 0% delay injected. With delays injected, BSP suffered
from linear increase in convergence time, while FlexRR effectively matched the Ideal
convergence time even at 400% delay. As expected, adding RapidReassignment to BSP
improves its convergence times, to faster than SSP but still much slower than FlexRR.

Figure 3.7(b) shows the results for LDA. For all delay %, BSP required 41 iterations
to converge. For 0%, 50%, and 100% delays, FlexRR required 42 iterations, for 200%

26

Alpha = 4 Alpha = 7 Alpha = 110

20

40

60

80

100

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR

Figure 3.8: MF Speed, Power-Law Pattern.

and 300% delays it required 43 iterations, and for 400% delay it required 44 iterations.
Despite the need for these extra iterations, FlexRR converges significantly faster than BSP.
With no injected delays, FlexRR converged 18% faster than BSP, and maintains near-Ideal
convergence time with increasing delays. BSP, on the other hand, suffers from a linear
increase in convergence time when delays are injected. LDA deviates from Ideal at higher
delays for the same local state issue discussed in Section 3.4.3.

3.4.4 Other Straggler Patterns

Disrupted Machine Pattern. We compare the average time-per-iteration (20 iterations)
of FlexRR to the alternative modes for the Disrupted Machine Pattern. Figure 3.9 shows
results for MF on Cluster-A—results for LDA and MLR are qualitatively similar. SSP
and BSP RR individually reduce the delay experienced by BSP by up to 49% and 42%,
respectively. The combination of the two techniques in FlexRR matches Ideal, reducing the
run-time by up to 63%.

0 100 200 300 4000

10

20

30

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

Figure 3.9: Disrupted Machine Pattern.

27

0
5

10
15
20
25
30
35
40

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP Uneven
BSPRR Uneven
SSP Uneven
FlexRR Uneven
FlexRR Even

Figure 3.10: Uneven Workload

0

5

10

15

20

25

30

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP 10% 25% 50% 100%

Figure 3.11: Partial Replication

Power-Law Pattern Results. Next, We compare the average time-per-iteration (20
iterations) of FlexRR to the alternative modes for the Power-Law Pattern. We present
results on Cluster-A for each of our applications, setting α to 4, 7, and 11. Recall that
α = 11 emulates a real cluster measured in [78], and the configurations with smaller α values
yield more severe delay. Figure 3.8 shows the results for MF. For α = 11, SSP and BSP RR
are faster than BSP by 39% and 40%, respectively. When the two techniques are combined
in FlexRR, the run-time is 48% faster than BSP. Similarly to experiments conducted in
earlier sections, with increasing delays (smaller α), the other three modes experienced
significant increases in run-times, while FlexRR experienced only slight increases.

The results for MLR and LDA show similar trends. For α = 11, SSP and BSP RR
were 36% and 31% respectively faster than BSP for MLR and 37% and 42% respectively
faster than BSP for LDA. FlexRR was 43% and 52% faster than BSP on MLR and
LDA respectively. With increasing delays (smaller α), the other three modes experienced
significant increases in run-times for both MLR and LDA. FlexRR experienced only modest
delays for MLR and somewhat larger delays for LDA (not shown due to space constraints).
In all cases, FlexRR significantly outperforms the other three modes.

Uneven Workload Distribution. While FlexRR was originally designed to mitigate
transient stragglers, it is also effective at dealing with long-term workload differences among
workers. Figure 3.10 shows an experiment on Cluster-A where half of the machines are
assigned 75% of the workload, and the remaining half of machines are assigned 25% of
the workload. FlexRR was able to mitigate the straggler effects of the uneven workload
distribution, running at close to ideal speed shown in the FlexRR Even Bar, while SSP
experienced a 54% slowdown.

3.4.5 Partial Replication

In all previous experiments, workers replicated 100% of the input data belonging to the
workers that they are helping. We found that FlexRR is still effective when workers
replicate only a portion of the input data, and thus are only eligible to help with that

28

portion. Figure 3.11 shows the MF application with no injected delays run on Cluster-A
with different percentages of the input data replicated on the helper workers. FlexRR with
just 25% replication is close to FlexRR with 100% replication and much better than SSP
(and BSP—not shown).

0 100 200 300 4000

10

20

30

40

50

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
2 Helpers
3 Helpers
4 Helpers
8 Helper
12 Helpers
16 Helper
Ideal

(a) Helper Group Size

0 100 200 300 4000

20

40

60

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
2.5%
5%
10%
20%
30%
Ideal

(b) Work Assignment Size

0 100 200 300 4000

20

40

60

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

SSP
20 Checks
100 Checks
800 Checks
10K Checks
25K Checks
50K Checks
Ideal

(c) Message Check Frequency

Figure 3.12: Sensitivity Tests.

3.4.6 Sensitivity Study

This section reports on tests used to determine good settings for FlexRR parameters. We
vary each parameter across its Table 3.1 range while using the default values for other
parameters. For brevity, we show sensitivity results for MF ’s average time-per-iteration
(for 20 iterations) when running on Cluster-A under the Slow Worker straggler pattern,
although similar results hold for the other two applications, convergence time, and the
other clusters (same default settings used in all experiments, on all clusters).

Helper Group Size Test. Recall that the helper group is the set of workers to whom
a worker is eligible to provide assistance. Figure 3.12(a) shows the results of varying the
helper group size from zero helpers, which is equivalent to running in SSP mode, to sixteen
helpers for each worker. The results show that, once the helper group size is set to 3
or higher, near-Ideal performance is achieved. Closer inspection reveals that using four
helpers provides the best performance. But, the difference between settings from 3 to 16 is
negligible.

Work Assignment Size Test. One of the key design decisions was the amount of work
to be re-assigned in do-this assignment messages. Work assignments occur in two different
sizes, an initial work assignment size and a follow-up work assignment size. Figure 3.12(b)

29

shows the results of varying the follow-up work assignment size from 0% (equivalent to
SSP) to 30%. The initial work assignment size is always half the follow-up work assignment
size. Near-Ideal performance is achieved across the range of non-zero sizes, although as
delays increased, the larger work assignments do perform worse. This occurs because of
a rare corner case where workers that run slowly can re-assign a portion of their work to
a faster worker that starts to complete the extra work but then is delayed significantly.
Because the current implementation of FlexRR does not look to reassign work that has
already been reassigned and accepted, other workers end up waiting in this case. This
corner case is not a problem for smaller work assignments, because the helper does not fall
behind significantly.

Message Check Frequency Test. FlexRR depends on messages between workers to
keep track of progress and re-assign work. The message check frequency is the number of
times a worker checks for incoming messages during an iteration. If the checks are not
performed often enough, the system runs the risk of not reacting fast enough, while checking
too often can cause an unnecessary overhead. Figure 3.12(c) shows that any frequency
between 100 and 10K performs well, but the performance suffers once the frequency is
greater than 10K.

3.5 Summary

This Chapter presents FlexRR, which addresses the straggler problem for iterative convergent
machine learning. FlexRR combines flexible synchronization bounds with temporary work
re-assignment in order to successfully minimize synchronization time for workers. Our
experiments demonstrated improvements of up to 10× compared to traditional work division
combined with BSP and SSP.

30

Chapter 4

Agile ML Elasticity Through Tiered
Reliability in Dynamic Resource
Markets

Many modern compute infrastructures offer a great opportunity: transient availability
of cheap but revocable resources. For example, Amazon EC2’s spot market and Google
Compute Engine’s preemptible instances often allow customers to use machines at a 70–80%
discount [4] off the regular price, but with the risk that they can be taken away at any time.
Many cluster schedulers similarly allow lower-priority jobs to use resources provisioned but
not currently needed to support business-critical activities, taking the resources away when
those activities need them. ML model training could often be faster and/or cheaper by
aggressively exploiting such revocable resources.

Unfortunately, efficient modern frameworks for parallel ML, such as TensorFlow [8],
MxNet [22], and Petuum [105], are not designed to exploit transient resources. Most use
a parameter server architecture (Sec. 2.2.1), in which parallel workers process training
data independently and use a specialized key-value store for shared state, offloading
communication and synchronization challenges from ML app writers [67, 54, 24]. Like
MPI-based HPC applications, these frameworks generally assume that the set of machines
is fixed, optimizing aggressively for the no machine failure and no machine change case
(and restarting the entire computation from the last checkpoint on any failure). So, using
revocable machines risks significant rollback overhead, and adding newly available machines
to a running computation is often not supported.

This chapter describes Proteus—a parameter server system that combines agile elasticity
with aggressive acquisition strategies to exploit transient revocable resources. Figure 4.1
illustrates the benefits for one ML example on Amazon EC2. Using three on-demand
instances and up to 189 spot market instances, Proteus reduces cost by 85% when compared
to using only on-demand instances, even when accounting for spot market variation and
revocations, while running 24% faster. Compared to using a standard bidding strategy with
a checkpointing-based approach (i.e., run on spot market machines and checkpoint regularly
to retain progress if evicted [47, 88, 92]), Proteus reduces cost by ≈50% and runtimes by
32–43%, winning by avoiding checkpoint overheads, reducing restart delays, and exploiting

31

0

20

40

60

80

100

120

C
os

t (
$)

0

1

2

3

Ti
m

e
(H

rs
)

Cost
RunTime

All On-
Demand

Standard +
Checkpointing Proteus

Figure 4.1: Cost and time benefits of Proteus. This graph shows average cost (left axis)
and runtime (right axis) for running the MLR application (see Section 2.3) on the AWS
EC2 US-EAST-1 Region. The three configurations shown are: 128 on-demand machines,
using 128 spot market machines with checkpoint/restart for dealing with evictions and a
standard strategy of bidding the on-demand price, and Proteus using 3 on-demand and up
to 189 spot market machines. Proteus reduces cost by 85% relative to using all on-demand
machines and by ≈50% relative to the checkpointing-based scheme. Full experimental
details can be found in Section 4.5.

32

spot market properties.
Proteus consists of two principal components: AgileML and BidBrain. The AgileML

parameter-server system achieves agile elasticity by explicitly combining multiple reliability
tiers, with core functionality residing on more reliable resources (non-transient resources,
like on-demand instances on EC2) and most work performed on transient resources. This
allows quick and efficient scaling, including expansion when resources become available
and bulk extraction of revoked transient resources without big delays for rolling back state
or recovering lost work. AgileML transitions among different modes/stages as transient
resources come and go. When the ratio of transient to non-transient is small (e.g., 2-to-1), it
simply distributes the parameter server functionality across only the non-transient machines,
instead of across all machines, as is the usual approach. For much larger ratios (e.g., 63-to-1),
the one non-transient machine would be a bottleneck in that configuration. In that case,
AgileML uses non-transient machine(s) as on-line backup parameter servers (BackupPSs)
to active primary parameter servers (ActivePSs) that run on transient machines. Updates
are coalesced and streamed from actives to backups in the background at a rate that the
network bandwidth accommodates.

BidBrain is Proteus’ resource allocation component that decides when to acquire
and yield transient resources. BidBrain is specialized for EC2, exploiting spot market
characteristics in its policies, but its general approach would apply to other environments
with transient resources (e.g., private clusters or other cloud costing models). It monitors
current market prices for multiple instance types, which move relatively independently, and
bids on new resources when their addition to the current footprint would increase work per
dollar. Similarly, resources near the end of an hour may be released if they have become
less cost-effective relative to others. As part of its considerations, BidBrain estimates the
probability of getting free compute due to instance revocation within the billing hour (with
later in the hour being better than earlier) for different bids and spot market conditions.
Simultaneously considering costs (e.g., revocation and scaling inefficiencies) and benefits
(e.g., cheaper new resources), BidBrain finds a happy medium between aggressive bidding
on transient resources and more conservative choices.

Experiments with three real ML tasks (recommendation systems, image classification,
topic modeling) confirm that Proteus achieves significant cost and runtime reductions.
AgileML’s elasticity support introduces negligible performance overhead, scales well, and
suffers minimal disruption during bulk addition or removal of transient machines. In
breaking down the sources of benefit, we find that both the agile elasticity of AgileML and
the aggressive policies of BidBrain are needed—using either one alone (e.g., BidBrain with
checkpointing instead of AgileML) achieves half or less of the cost and runtime savings.

This chapter makes four primary contributions. First, it describes the first parameter
server ML framework (Proteus) designed to elastically scale with bulk additions and
revocations of transient machines. Second, it describes an adaptive architecture+algorithm
(AgileML) for exploiting multiple tiers of machine reliability (i) to more agilely resize in
the face of such changes and (ii) to balance work given different ratios of non-transient to
transient resources. Third, it describes a new resource manager (BidBrain) that aggressively
exploits EC2 spot market properties to achieve major cost savings. Fourth, it presents
results from experiments and analyses showing that aggressive multi-tier exploitation of

33

transient machines is both possible and beneficial, reducing costs and runtimes significantly.

4.1 Motivation and Background

This section overviews transient availability of revocable cluster/cloud resources, and what
is needed for machine learning training frameworks to exploit them.

4.1.1 Dynamic Availability of Revocable Resources

As discussed in Section 2.1, today’s cluster infrastructures are increasingly dynamic. This
section describes how transient resources are made available in several modern infrastruc-
tures.

Amazon AWS EC2 Spot Market. Amazon AWS EC2 [1] is a public cloud that
allows customers to purchase time on virtualized machine resources. In addition to “on-
demand” machines, which are released at a time of the customer’s choosing, Amazon also
offers “spot market” for machines, where machines are often available at a steep discount
(e.g., 70–80% lower price) with the proviso that they can be taken back at any time.

Jan 19 Jan 20 Jan 21 Jan 22 Jan 23 Jan 240

1

2

3

4

5

Date

Pr
ice

 p
er

 H
ou

r (
$)

c4.2xlarge
c4.xlarge
On−Demand

Figure 4.2: AWS spot prices over time. Spot prices for two classes of machines are shown
for 6 days in January 2016. The unchanging on-demand price for c4.2xlarge is shown, and
the values shown for c4.xlarge are doubled so that all three lines show the price for the same
number of cores; c4.2xlarge machines have 8 cores and c4.xlarge machines have 4 cores.

The EC2 spot market design has interesting properties that affect customer savings
and the likelihood of eviction. First, it is not a free market [10]. Customers specify their
bid prices for a given machine class, but generally do not pay that amount. Instead, a
customer is billed according to the current EC2-determined spot price for that machine
class. Fig. 4.2 shows one example of spot price variability over a week, for two machine
classes in an EC2 zone. Second, if a customer receives machine resources in response to
their bid price, they will retain those resources until either they release them or the spot
price rises above the customer’s bid price. If the latter occurs, the customer is not billed
for the current hour, but the resources are taken back from the customer. Third, EC2

34

does not guarantee any warning when resources are going to be revoked, but since 2015
EC2 has provided a two-minute warning prior to eviction in most cases. Fourth, once a
customer submits a bid and receives a resource, the bid price cannot be changed. The bid
can be canceled, if not yet granted, and a new bid price submitted. But, once the resource
is granted, the bid price cannot be changed until the resource is terminated.

Google Preemptible Instances. Google Compute Engine (GCE) [2] offers revocable
machine resources, called “preemptible instances”, akin to those provided by the EC2 spot
market. Google preemptible instances can be revoked at any time, as the name suggests,
but differ from EC2’s spot market in several ways. First, Google charges a fixed price of
70% less than the “on-demand” (non-revocable instance) price for the requested machine
type. There is no price variability. Second, GCE offers a 30-second warning, rather than a
2-minute warning. Third, GCE limits preemptible instances to 24 hours.

Dynamic Resource Offers in Mixed-Function Corporate Clusters. Many cor-
porate clusters serve a mix of online services, business critical batch analytics jobs (often
with deadlines), and ad hoc jobs (often called “best effort”) for application development,
exploratory data analyses, etc. Business critical activities are usually given priority, but
extra resources are often available for ad hoc jobs. Moreover, modern schedulers for such
clusters, such as YARN [99] and Mesos [53], have mechanisms to offer recently-freed re-
sources to already running jobs’ “application master” components, allowing some of them
(e.g., large map-reduce jobs) to elastically grow to higher performance levels by spreading
work over more machines. But, these resources may subsequently be revoked if higher
priority workloads intensify or additional jobs arrive [31, 99, 101].

4.1.2 Exploiting Transient Resources for ML

To exploit transient resources, ML frameworks need to couple agile elasticity with good
resource allocation strategies. The elasticity must accommodate efficient bulk extraction of
revoked transient resources with little-to-no warning, which is akin to correlated failures.
Existing solutions that address ML framework elasticity include checkpointing [47, 88, 92]
and Spark RDDs. Spark RDDs in particular allow fine-granularity Spark application
checkpointing and rollback to handle resource revocations. Elasticity to transient resources
can, thus, be achieved by relying on the fault tolerance mechanisms of RDDs. There are
two problems with this, first, RDDs work well only for deterministic computation. Second,
for highly correlated bulk revocations, the amount of recovery work approaches that of the
checkpointing mechanisms (see Sec. 4.7).

Section 4.2 describes Proteus, which is a parameter server system that exploits resource
reliability tiers (e.g., stable EC2 on-demand instances and transient spot market instances)
to achieve agile elasticity efficiently. Section 4.3 describes BidBrain, which uses an aggressive
strategy of bidding on multiple spot markets to minimize the cost of training ML models.
Section 4.4 describes how these two components are combined in Proteus.

35

WorkerWorker

Spot Instances (Cheap)

Elasticity
Controller

Worker Worker Worker

Worker

Worker

On-Demand Instances (Reliable)

ParamServ

Worker

ParamServ

(a) Stage 1

Worker

Worker

Spot Instances (Cheap)

On-Demand Instances (Reliable)

Elasticity
Controller

Worker

ActivePS

Worker

Worker

ActivePS

Worker

Worker

ActivePS

BackupPS

Worker

BackupPS

(b) Stage 2

Spot Instances (Cheap)

On-Demand Instances (Reliable)
Elasticity
Controller BackupPS

ActivePS

Worker
ActivePS

Worker
ActivePS

Worker
ActivePS

Worker
ActivePS

Worker

ActivePS

Worker
ActivePS

Worker
ActivePS

Worker
ActivePS

Worker
ActivePS

Worker

Worker Worker Worker Worker Worker

Worker Worker Worker Worker Worker

(c) Stage 3

Figure 4.3: Three stages of AgileML architecture. Stage 1: ParamServs only on reliable
machine. Stage 2: ActivePSs on transient and BackupPSs on reliable. Stage 3: No Workers
on Reliable Machines.

4.2 AgileML Design

This section describes AgileML, Proteus’ elastic ML training component. AgileML intro-
duces the concept of “tiers of reliability” to organize resources into tiers based on their
expected reliability (and associated cost) and deploy different functional components of the
ML framework to different tiers. AgileML, which is implemented as a C++ library linked
by an ML application using it, is built upon the parameter server architecture described in
Sec. 2.2.1. Functional components include workers, parameter servers (ParamServs), and
newly introduced Active and Backup parameter servers (Tab. 4.1). These solution state
servers hold ML model parameter state and have different fault tolerance expectations.
AgileML uses different combinations of these components to allow safe and agile exploitation
of different quantities of transient resources.

4.2.1 Workers and Execution Management

During initialization, an ML application provides AgileML with an initial list of reliable and
transient nodes to be used, the input data file path, several functions called by AgileML,
and a stopping criterion.1 During execution, AgileML consists of one process executing
on each node. Each process then starts one worker thread per core. The worker threads
execute the ML application code for model training—adjusting model parameters as a
function of input (training) data and current solution state. Each worker thread operates on
a disjoint subset of input data items. By default, input data is partitioned evenly amongst
workers. Workers iterate on the data until reaching the stopping criteria.2

1The stopping criterion may be a number of iterations, an amount of time, or a determination of
convergence.

2This is an over-simplification. For greater flexibility, AgileML actually provides a notion of a clock of
work that gets executed on each iteration. It may be some number of data items (a “mini-batch” of an
iteration) or some number of iterations.

36

ParamServs Serve solution state for workers and always run on

reliable resources

BackupPSs Serve as a hot backup for solution state served by

ActivePSs and always runs on reliable resources

ActivePSs Serve solution state for workers, periodically pushing

aggregated updates to BackupPSs, and run on transient

resources

Table 4.1: Types of solution state servers used by AgileML

4.2.2 Architecture

This section describes how AgileML uses reliability tiers and the mechanism of moving
between its different stages of execution. At a high level, AgileML enables ML applications
to run on a dynamic mix of reliable and transient machines, maintaining the state required
for continued operation on reliable machines, while taking advantage of transient machine
availability. AgileML uses three stages of system functionality partitioning in order to avoid
bottlenecking the reliable nodes, as the ratio of transient to reliable resources grows..

Stage 1: Parameter Servers Only on Reliable Machines. For most ML applica-
tions including K-means, DNN, Logistic Regression, Sparse Coding, as well as MF, MLR,
and LDA (Sec. 2.3), the workers are stateless, while the ParamServs contain the current
solution state. AgileML’s first stage spreads the parameter server across reliable machines
only, using transient nodes only for workers, thereby taking advantage of these two primary
levels of machine reliability. This has the effect of removing all solution state from transient
machines. Fig. 4.3(a) illustrates a running example of eight AWS EC2 machines with six
spot instances (transient) and two on-demand instances (reliable).

Pros: By removing parameter state from transient resources, AgileML is able to utilize
them without losing progress when transient resources are revoked (or fail). Unlike a
traditional parameter-server architecture, no checkpointing is required to assist with using
transient resources.3 Cons: While stage 1 successfully removes state from transient
resources, it causes a network bottleneck (Sec. 4.5.3) when the ratio of transient to reliable
resources grows too large. With 60 transient and 4 reliable machines, for example, the
network bottleneck to the ParamServs slows the MF application by over 85%. Limiting
this ratio is undesirable, as it caps achievable savings/benefits from transient resources.

Stage 2: ActivePSs on Transient Machines and BackupPSs on Reliable Ma-
chines. For higher transient to reliable node ratio, AgileML switches to stage 2 (Fig. 4.3(b)).
Stage 2 uses a primary-backup model for parameter servers, using transient nodes for an
active server (ActivePS) and reliable nodes for the hot standby (BackupPS). This shifts
the heavy network load from the few reliable resources to the many transient resources.
Solution state is sharded across the set of ActivePS instances. Workers send all updates and
read requests to the ActivePSs, which update their state and push updates in bulk to the

3In AgileML, there is benefit in checkpointing the reliable resources in case they fail, however as we
show later in this section, this checkpointing has no overhead on system performance in stages 2 and 3.

37

BackupPS
Machine 0

ActivePS
state part1

Input 1-10

Machine 1

Input 11-20
ActivePS

state part2

Input 21-30

Machine 2

Input 31-40

BackupPS
Machine 0

ActivePS
state part1

Input 1-10

Machine 1

ActivePS
state part2

Input 11-20

Machine 2

Machine 3

Input 21-30

Machine 4
Input 31-40

BackupPS
Machine 0

ActivePS
state part1

Input 1-10

Machine 3

Input 11-20
ActivePS

state part2

Input 21-30

Machine 4

Input 31-40

Add 2 more spot instances 2 instances evicted

Figure 4.4: AgileML component and data transitions as resources are added and evicted.
In this toy example, there are 40 pieces of input data. Initially, one on-demand Machine
0 runs BackupPS, and 2 spot instances (Machine 1,2) are processing 1

2
of the input data

each. 2 new spot instances (Machine 3,4) are added, at the same time, price, of the same
type, and shown in the same color (we refer to these atomic sets as allocations, described in
Sec. 4.3). Each new instance ∈ {3, 4} loads 1

2
of the input data, but works only on 1

4
of it.

An eviction of the 2 yellow spot instances triggers the second transition. The remaining
spot instances assume ownership of the evicted input data with minimal delay.

BackupPSs. Solution state affected by transient node failures or evictions is recovered from
BackupPSs. Stage 2 improves on stage 1 for higher transient-to-reliable ratios (Sec. 4.5.3)
but loses to an all-reliable baseline by 2x for ratios exceeding 63:1.

Stage 3: No Workers on Reliable Machines. Workers collocated with BackupPSs
on reliable machines were found to cause straggler effects at transient-to-reliable ratios
beyond 15:1, causing Proteus’ performance drop relative to the PS baseline. Stage 3 simply
removes these workers (Fig. 4.3(c)), allowing AgileML to match all-reliable performance
levels (Sec. 4.5.3). The optimal ratio threshold to switch to stage 3 depends on the network
bandwidth, transient-to-reliable ratio and the size of the model.

Transitioning Between Stages. AgileML dynamically transitions between these
stages to match the number of transient nodes available. Transitioning between stages
1 and 2 involves switching between a set of ParamServs and the active/backup PS pair.
This process is described in Sec. 4.2.3. When scaling up, workers are directed to send their
requests to ActivePSs started in the background. When scaling down, ActivePSs push their
updates to BackupPSs, which become ParamServs. The worker requests are then redirected
to the ParamServs. This transition is done with minimal overhead in the background.
Transitioning between stages 2 and 3 boils down to re-assigning work between reliable and
transient resources. Scaling up, work is offloaded from workers on reliable nodes to workers
on transient nodes, followed by shutting down the former workers. Transitioning back to
stage 2 requires reassigning input data to reliable workers. This change of assignment incurs
zero run-time overhead, as it involves just a single worker notification message.4

Elasticity Controller: This component of AgileML makes decisions to switch between
stages based on the transient-to-reliable ratio and the network bandwidth. It is responsible
for (a) tracking which resources are participating in ongoing computations, (b) assigning

4Input data assigned to workers on reliable resources is preloaded by workers on transient resources,
simplifying the transition from stage 2 to 3.

38

a subset of input data to each worker, and (c) starting new ActivePSs. On eviction, it
reshards the solution state and shuts down ActivePSs using policies discussed next.

4.2.3 Handling Elasticity: Policy and Mechanism

The toy example in 4.4 illustrates how AgileML handles adding and removing resources from
an ongoing computation. We evaluate AgileML’s effectiveness at handling such elasticity in
4.5.5.

Scaling Up. Workers. Once a node becomes available, and the appropriate software
has been initialized, it contacts the elasticity controller responsible for the job and receives
its input data assignment (see transition to phase 2 in 4.4). It loads the data (from S3
storage for AWS EC2) and signals the elasticity controller that it’s ready. The elasticity
controller then signals corresponding workers to update their working sets. ActivePS.
AgileML achieves best performance when running ActivePSs on half of the resources
(Sec. 4.5.3). This ratio is thus maintained when scaling the resource footprint. When the
resource footprint increases, AgileML starts new ActivePSs on the longest running transient
resources that do not yet have an ActivePS. It notifies the resource to host the ActivePS
and serve a given partition assignment. A partition is a unique subset of the parameter
state. During start-up, AgileML divides the parameter state into N partitions, where N is
the maximum number of ActivePSs that can exist at any one point. We found that setting
N equal to half of the maximum number of resources that could be used by AgileML at
any point to be effective. Each partition is assigned to a ParamServ. In stage 2 and 3
each partition is also assigned to an ActivePS, which is responsible for forwarding updates
applied to the partition to the BackupPS that owns it. By using partitions in this way,
AgileML avoids the need to re-shard the parameter state when adding or removing servers,
instead re-assigning partitions as needed.

The resource that starts the new ActivePS contacts the previous partition owner for a
copy of the partition. The original owner points all workers to the new partition owner.
During ownership propagation, all partition messages are forwarded to the new ActivePS.
Workers and ActivePS additions happen in the background with negligible impact on system
performance (Sec. 4.5.5).

Scaling Down. AgileML differentiates between evictions and failures based on whether
it received a warning, and it handles them differently. When resources are removed from
an ongoing computation after some warning, such as the two-minute warning offered by
AWS or the 30-second warning offered by GCE, we call this an eviction. When resources
are removed without warning or with a warning detected with insufficient lead time, we
call this a failure or an effective failure, respectively.

Evictions. AgileML’s elasticity controller checks for eviction warnings every 5s. These
warnings consist of a set of instances marked for eviction, if any. When this set includes
all transient resources, the elasticity controller signals all ActivePSs to push their most
recent consistent state to the BackupPSs and cease operation. A special end-of-life flag is
appended to these updates to signal the last message from ActivePS to BackupPS. When
the BackupPSs receive end-of-life messages from ActivePSs, they signal any workers on
reliable machines (including those getting turned on by the elasticity controller, as discussed

39

at the end of this section) to address read and update requests to them. Note that the
AgileML design makes this scenario simple and fast.

When an eviction is about to take back only some of the transient resources, the elasticity
controller signals the ActivePSs that are being evicted to either (i) move their partitions
to the ActivePSs that will survive the eviction, or (ii) move them to transient resources
that are going to survive the eviction and do not yet have an ActivePS running on them
(see transition to phase 3 in Fig. 4.4). The process for relocating partitions mirrors the
process of adding ActivePSs above, which includes pointing all surviving workers to the
new partition owner.

Failures. In the case of failures, which are detected via heartbeat messages, or effective
failures, when the eviction warning is not early enough for all evicted ActivePSs to send
their end-of-life messages to BackupPSs, AgileML performs a form of on-line roll-back
recovery. This roll-back recovery depends on how many resources have failed.

When all or most of the transient resources fail (usually due to an effective failure), the
BackupPSs will use the last consistent state5 from the ActivePSs as the new solution state,
and the workers will re-do the work lost in the roll-back recovery. The ActivePSs send the
workers the iteration number of the last iteration included in the new solution state, and
all workers will restart from what is essentially an online checkpoint. When a single or few
resources running ActivePSs fail, the elasticity controller reassigns partition ownership from
those ActivePSs to other transient resources. This is done by the BackupPSs sending their
solution states to the new owners of the ActivePSs. The surviving ActivePSs then roll-back
to a state consistent with the current state of the BackupPSs. This roll-back to a consistent
state is straightforward, because the ActivePSs already store the aggregate of the delta
applied to their local state since the last time they applied their state to the BackupPSs.

Reacting to the eviction and failures of workers is orchestrated by the elasticity controller.
When a worker is removed from a computation, the previous owner of the worker’s input
data takes ownership for it. A previous owner always exists when input data is assigned to
a transient node. Thus, there will be no need to stop and load the input data from storage.
To account for the infrequent failure of reliable resources, checkpointing of reliable resources
can be used. In stage 3 of AgileML, checkpointing of reliable resources has no overhead on
ML training speed because there are no worker threads running on these resources.

Stage Transitions. AgileML uses the ratio of transient to reliable resources to de-
termine which stage to use. For ratios greater than 1:1, AgileML uses stage 2, and for
ratios greater than 15:1, it uses stage 3 (Sec. 4.5.3). While transitioning between stages is
important for AgileML performance, as the ratio of transient to reliable resources changes,
we find that perfect threshold settings are not required. For our work, appropriate thresh-
olds for different compute clusters were determined by measuring and comparing system
performance for the three stages at different ratios (Sec. 4.5.3), resulting in the 1:1 and 15:1

5Recall that parameter server systems often allow flexibility in progress synchronization among workers
and shared state consistency. Often, workers see parameter values that do not yet reflect recent updates
from all other workers, but a bound on the staleness is often enforced [28, 67]. In such systems, the
consistent state corresponds to the latest common iteration and reflects all updates up to that iteration
and no updates afterwards. Achieving a consistent state requires either synchronization of worker progress
or (usually) some extra buffer memory.

40

thresholds as well as the observation regarding low sensitivity. We believe that future work
can automate the threshold selection process for any given cluster.

Hyperparameters. AgileML uses strong scaling and applies updates inside parameter
server shards. By using strong scaling, where the global batch size is kept consistent,
AgileML makes it unnecessary to tune the learning rate when workers are added or removed.
It is also possible to perform weak scaling and tune the learning rate appropriately [45].

4.3 BidBrain Design

BidBrain is Proteus’ resource allocation component. It keeps track of current and historical
market prices for different types of resources (e.g., Amazon EC2 instance types) and makes
allocation decisions of the form ~x, where xi corresponds to the set of instances allocated of
type i. Fig. 4.5 illustrates how this allocation vector changes over time as the allocation
footprint managed by BidBrain changes (due to BidBrain decisions or to evictions).

BidBrain decisions consider several parameters characterizing the application (4.2),
including its ability to scale with more instances (φ), cost of modifying its resource footprint
(σ), and the cost of evictions (λ). BidBrain’s primary objective is to minimize cost per unit
work. The current implementation of BidBrain focuses on Amazon EC2, but we believe that
its mathematical framework and mechanisms can also be applied in other cloud provider
settings.

Resource Allocation. BidBrain interfaces with AWS to acquire new resources. To do
so, BidBrain supplies a (instance type, count, bid price) tuple. We call this an allocation
request. An allocation is defined as a set of instances of the same type acquired at the
same time and price. BidBrain’s total footprint ~x is a set of such allocations that are the
elements of ~x. We use different colors in 4.4 and 4.5 to signify different atomic allocations.
Resource allocation decisions are made periodically as well as a few minutes before the
termination of each billing hour.

4.3.1 Formulation

At each allocation decision, BidBrain calculates the total expected cost and the total
expected work by considering available instance types and their current spot market prices.
BidBrain works with the following free variables: (a) instance type i to choose, (b) bid delta
to bid over the spot price.

Expected Cost. Given a set of allocations, the total cost for a given footprint ~x is
calculated as the sum over individual allocation costs CA [xi], where each allocation’s cost
is calculated as the product of its instance count ki and instance price Pi:

CA =
n∑
i=0

CA[xi] =
n∑
i=0

ki ∗ Pi

One of BidBrain’s features is to reason about the probability of free compute it can get if
its instances are evicted before the billing hour expires. If the allocation is evicted, AWS

41

[0]-(k=1,c4.xlarge,$0.2,W=0)

[1]-(k=2,m4.xlarge,$0.1,W=2)

[0]-(k=1,c4.xlarge,$0.2,W=0)
[1]-(k=2,m4.xlarge,$0.1,W=2)
[2]-(k=2,c4.xlarge,$0.05,W=2)

[2]-(k=2,c4.xlarge,$0.05,W=2)

Add 2 Spot Instances 2 Instances Evicted

Ex
p.

 C
os

t/(
To

ta
l w

or
k

in
 p

ha
se

)

Phase 1 Phase 2 Phase 3

[0]-(k=1,c4.xlarge,$0.2,W=0)

Exp Total: Cost: $0.3, Work: 2

Exp Total: Cost:$0.35, Work: 4

Exp Total: Cost:$0.25, Work: 2

On-Demand
On-Demand

On-Demand

Figure 4.5: Expected cost per unit work for the toy example transitions in 4.4. Each block
represents an allocation (Sec. 4.3), described by how many instances are in the allocation
(k), instance type, the expected cost of the allocation, and the expected work produced
by this allocation. Each block’s height equates to that allocation’s relative contribution
to the cost of the total work done in its phase. Combining the blocks’ heights in each
phase equates to the total expected cost per unit work for that phase. In phase 1, BidBrain
has an expensive, required on-demand allocation (red) that produces no work and a spot
allocation (yellow). The on-demand instance type is pre-determined to be c4.xlarge and
is never terminated by BidBrain, even if it negatively affects cost-per-work. In phase 2,
BidBrain further amortizes the cost of the red allocation by adding a second spot allocation
[2] (green), which lowers the total expected cost-per-work. This transition increases its
actual cost at that moment, but reduces the final cost by decreasing the amount of time for
which the on-demand allocation is needed.

refunds the amount charged at the beginning of the current billing hour. To capture this,
BidBrain calculates the expected cost of an allocation by considering the probability of
eviction βi for a given instance type i at a given bid delta. There are only two possibilities:
an allocation can either be evicted (with probability βi) or it will reach the end of its billing
hour in the remaining tr minutes (with probability 1−βi). The expected cost can, therefore,
be written down by the definition of expectation (Eq. 4.1).

CA[xi] = (1− βi) ∗ Pi ∗ ki ∗ tr + βi ∗ 0 ∗ ki ∗ tr (4.1)

Estimating Evictions. To estimate βi in Eq. 4.1, BidBrain uses historical AWS spot
market price data. This historical data is gathered individually for each instance type in
each availability zone and indicates the price at each instant in time. Combining such data
with knowledge that spot instances are evicted when the price rises above the bid, BidBrain
computes the historical probability of being evicted within the hour and the median time
to eviction for a given bid delta. The bid delta is the difference between the bid price and
the market price. Using the AWS spot market trace from March to June of 2016, we ran
simulations with a wide range of bid deltas [$0.0001,$0.4] and recorded the probability of
getting evicted within the hour, β, and the median time to eviction. Using this information,
BidBrain estimates the probability of eviction for any allocation.

Expected Work. BidBrain explicitly reasons about the expected amount of work each
allocation is expected to produce. To capture this, BidBrain computes the expected useful

42

β Probability that allocation is evicted (0-1)

φ How efficiently application scales (0-1)

σ Overhead of adding/removing resources (min)

λ Overhead of evicting resource (min)

ν Work produced by instance type

ωi Max compute time remaining in allocation i

CA Expected cost of a set of allocations ($)

WA Expected work of a set of allocations

EA Expected cost per work of a set of allocations

Table 4.2: Summary of parameters used by BidBrain

compute time ∆ti for each allocation by considering factors such as eviction overhead,
overhead for resource addition, and scalability of the application.

The maximum useful compute time of any allocation is the time remaining in the current
billing hour ωi. If BidBrain expects the allocation to be evicted prior to the end of the
billing hour, it reduces ωi accordingly. The eviction of any allocation reduces the useful
compute of each allocation xi by the eviction overhead λ of the application. The probability
of an eviction for a set of allocations is computed as: 1 −∏n

j=0(1 − βj), where βj is the
probability of eviction for allocation j. When considering removing or adding resources,
BidBrain subtracts this overhead σ from the expected compute time for each allocation
(Eq. 4.2).

The expected work for an allocation is the product of its resources ki, expected useful
compute time ∆ti and the work produced per time by that instance type ν.6 BidBrain
expresses the expected work for a set of allocations as the sum of each allocation’s expected
work reduced by the scalability overhead φ of the application (Eq. 4.3).

∆ti = ωi − (1−
n∏
j=0

(1− βj)) ∗ λ− σ (4.2)

WA = (
n∑
i=0

ki ∗∆ti ∗ ν) ∗ φ (4.3)

4.2 summarizes the parameters used by BidBrain. In future work, we plan to automate
the process of determining φ, σ, λ and ν. Currently, we set φ, σ, λ empirically (see
experiment description in 4.5.4 and 4.5.5). ν is set to equal the number of virtual cores in
the instance and is a proxy for how much work an application is expected to achieve on
that instance per unit time. φ measures the first order Taylor series expansion coefficient of
the application’s scalability curve as a function of instance count of a given type. σ and λ
measure for how long the application does not make progress after a change in the resource
footprint.

6 For ML workloads performed by AgileML, work produced is proportional to the number of cores on
an instance. For example, ν of a c4.2xlarge instance (8 cores) is equivalent to 2 * ν of a c4.xlarge instance
(4 cores).

43

4.3.2 Resource Acquisition

BidBrain acquires resources xi only if they lower the footprint’s expected cost per work.
For a set of allocations in ~x, it is approximated [86] as the expected cost divided by the
expected work produced (Eq. 4.4).

EA = CA/WA (4.4)

During every “decision point”, BidBrain builds a list of possible allocations that it can
make. This set of possible allocations is constructed by pairing different bid prices with
different instance types. The range of possible bid prices includes [$.0001, $.4] over the
current spot market price. Once BidBrain constructs the set of possible allocations, it
computes the cost per work for the current allocations and the cost per work for current
allocations plus each of the possible allocations. If the cost per work for the best possible
allocation is smaller than for the current allocations, BidBrain will send this allocation
request to AWS. As described earlier, each allocation is made for the duration of the billing
hour. This means that briefly before the end of an allocation’s billing hour, BidBrain
compares the cost per work if the allocation is renewed or terminated. If the cost per work
is lower when the allocation is not renewed, BidBrain will terminate all the instances in
the allocation prior to them reaching the next billing hour. In addition to spot resources,
BidBrain acquires the required amount of on-demand resources (reliable instances in Fig 4.3).
It does not consider terminating these resources even if they negatively affect cost-per-work.

4.3.3 Application Compatibility

BidBrain’s design is compatible with applications beyond AgileML. It should work well
for batch computations, where optimizing cost per unit work makes sense, that are able to
efficiently add and remove large portions of their resource footprint quickly and efficiently.
In future work, we plan to explore other optimization metrics to fit other elastic application
types.

4.4 Proteus Implementation

This section describes how Proteus incorporates BidBrain and AgileML and how it connects
to AWS. Figure 4.6 shows a high level overview. As described in Section 4.2, the user links
an ML application to Proteus and specifies the location of the training data-set. The user
is also responsible for providing the security credentials necessary to connect to AWS.

Upon start-up, Proteus connects AgileML to BidBrain via a ZMQ message that specifies
the application characteristics (Sec. 4.3). Proteus then connects to AWS, gathers the
current spot market price via boto.ec2 API calls and loads the historic spot market data,
both of which are directed into BidBrain. Using the information about the AWS spot
market in combination with information about the characteristics of the ML application,
BidBrain builds allocation requests (Sec. 4.3), which Proteus sends to AWS via the boto.ec2
API. Upon receiving the allocation requests, AWS returns a set of spot request ids, which
are translated by BidBrain to the assigned AWS EC2 instances. Once these instances

44

Figure 4.6: The Proteus architecture consists of the resource allocation component,
BidBrain, and the elastic ML framework, AgileML.

become reachable via SSH, BidBrain sends a ZMQ message to AgileML’s elasticity controller
containing the list of IP addresses and sizes of the instances in the new allocation.

BidBrain considers making new allocation requests to AWS every two minutes, briefly
before the end of a billing hour of any current allocations, and immediately following an
eviction. BidBrain monitors AWS for eviction notifications. Upon receiving an eviction
notification, BidBrain translates it to the ids of the resources that are affected and notifies
AgileML’s elasticity controller. Proteus assumes that multiple ML applications are executed
in sequence. Upon completing the final job in the queue, Proteus immediately terminates
the on-demand resources. It then waits until the end of current billing hours to terminate
the spot allocations, in hope that they are evicted by AWS prior to the end of the billing
hour, lowering the overall cost.

In the current design, there is no redundancy for BidBrain or the elasticity controller. If
either components fails, Proteus is still able to continue making progress. Either component
can be restarted, if it fails, and synchronized with the ongoing computation.

4.5 Evaluation

This section evaluates Proteus’ effectiveness. The results support a number of findings,
including: 1) In the context of AWS, Proteus’ exploitation of spot market resources
significantly reduces cost (e.g., by ≈85% compared to on-demand only) and outperforms
standard bidding policy combined with a checkpointing-based elasticity in terms of both
cost (by 42%–47%) and runtime (by 32%–43%); 2) Proteus’ elasticity support introduces
minimal overhead to a traditional non-elastic parameter-server configuration; 3) Proteus
enacts bulk machine additions and revocations with minimal disruption, performing most

45

0

5

10

15

20

25

30

35

C
os

t(%
) N

or
m

al
iz

ed
 to

 O
n−

D
em

an
d

Standard+Checkpoint
Standard+AgileML
Proteus

(a) Cost Savings

0

0.5

1

1.5

R
un
−T

im
e

(H
rs

)

Standard+Checkpoint
Standard+AgileML
Proteus

(b) Run-time

Figure 4.7: 2hr Job Duration.

0
5

10
15
20
25
30
35
40

C
os

t(%
) N

or
m

al
iz

ed
 to

 O
n−

D
em

an
d

Standard+Checkpoint
Standard+AgileML
Proteus

(a) Cost Savings

0
2
4
6
8

10
12
14

R
un
−T

im
e

(H
rs

)

Standard+Checkpoint
Standard+AgileML
Proteus

(b) Run-time

Figure 4.8: 20hr Job Duration.

setup actions in the background.

4.5.1 Experimental Setup

Experimental Platforms. We report results for experiments on two virtual cluster
configurations on AWS. Cluster-A is a cluster of 64 Amazon EC2 c4.2xlarge instances.
Each instance has 8 vCPUs and 15 GB memory, running 64-bit Ubuntu Server 14.04 LTS
(HVM). Cluster-B is a cluster of 128 Amazon EC2 c4.xlarge instances. Each instance has
4 vCPUs and 7.5 GB memory, running 64-bit Ubuntu Server 14.04 LTS (HVM). From our
testing using iperf, we observe a bandwidth of 1 Gbps between each pair of EC2 instances.

46

4.5.2 Cost Savings with Proteus

Proteus enables significant cost reductions on infrastructures that offer inexpensive transient
machines. Fig. 4.1 summarizes the cost and time savings using BidBrain and AgileML for
the MLR application. This section drills down further by evaluating Proteus’ ability to
reduce cost on EC2, relative to using only reliable on-demand machines, by analyzing the
AWS Spot Market Traces from June 11, 2016 to August 14, 2016 for the US-EAST-1 region
(all 4 zones).7 We also compare the cost savings achieved by Proteus to those from existing
approaches (see Section 4.7), which combine a checkpointing-based scheme for exploiting
spot market machines with a standard spot market bidding strategy.

We perform cost savings analysis with long-term AWS traces, rather than experiments
on EC2 for several reasons. Simulations on long-term AWS traces let us experiment with
different approaches applied to the same market data, allowing for fair comparisons. Using
AWS traces also allows us to gather data points across many months to get a full picture
of expected behavior than our budget-limited experiments could otherwise provide. For
each scheme and bidding model considered, we present the average cost (relative to full
on-demand price) across 1000 randomly chosen day/time starting points in each zone. We
perform experiments on durations with length of 2 and 20 hours, which is representative of
long-running ML experiments (e.g., 4 hours for MLR) as well as the common practice of
performing sequences of ML jobs for hyperparameter explorations.

We present cost results as average cost per job, so for accounting purposes we do not
charge a given job for any minutes that remained in a job’s final billing hours (e.g., if 20
minutes left, the job is charged for only 2/3 of the cost of the hour). We did this because
the left over time is used by the following job in a sequence. This accounting was done the
same way for all experiments, providing no benefit to Proteus.

Checkpointing-Based Scheme. As a comparison point for AgileML, we consider a
scheme that tries to run entirely on spot market machines, using checkpointing to recover
from evictions. We assume an MTTF-based checkpointing frequency, like that used in
Flint [88]. We observe a resulting average checkpointing overhead of 17% for MF on both
Cluster-A and Cluster-B (Sec. 4.5.2) when bidding the on-demand price, from the combined
overheads of producing a consistent checkpoint state (recall that bounded staleness is allowed
during ML application execution) and storing it. These overhead values are consistent with
those reported by others [88].

Standard Bidding Strategy. As a comparison point for BidBrain, we consider an
oft-used bidding strategy that selects the resource type with the lowest current market price
and bids the on-demand price. It uses these resources until they are evicted, at which point
it again selects the resources with the lowest current market price and bids the on-demand
price. This is the default bidding policy used by Spot Fleet EC2, a service provided by
AWS for users to acquire allocations of spot resources.

Cost Savings Results. Figure 4.7 and 4.8 show the cost savings and run-time for
three different configurations for jobs of 2 hours and 20 hours, respectively, relative to
running on 64 on-demand machines from Cluster-A: (1) the standard bidding strategy

7We used AWS Spot Market Traces from March 14, 2016 to Jun 10, 2016 to train the β parameter used
in BidBrain.

47

0

40

80

120

160

M
ac

hi
ne

 H
ou

rs

On−Demand
Spot
Free

Standard +
Checkpointing

ProteusOn-Demand

Figure 4.9: Breakdown of machine hours (for 2-hour jobs) among on-demand resources,
spot resources (not evicted), and free resources (spot resources evicted prior to end of billing
hour).

combined with the checkpointing-based scheme (blue). (2) the standard bidding strategy
combined with AgileML, allowing evaluation of the incremental benefit of AgileML over the
checkpointing-based scheme (green). (3) Proteus which combines BidBrain and AgileML
(red). Comparing Proteus to the second configuration allows evaluation of the additional
benefit of BidBrain over the standard bidding strategy.

The results demonstrate that Proteus significantly reduces both cost and run-times. On
average, Proteus reduces cost by 83%–85% compared to traditional execution on on-demand
machines and by 42%–47% compared to the state-of-the-art approach (Standard+Checkpoint).
In addition to significantly lowering costs, Proteus also reduces run-times by 32%–43%. The
results also show that each of BidBrain and AgileML contribute significantly to Proteus’
overall cost and runtime improvements.

Attribution of Benefits. Proteus’ superior performance arises from several factors.
AgileML’s ability to perform agile elasticity, ability to efficiently handle evictions, and lack
of run-time overhead reduces the cost by 18%–20% compared to the checkpointing-based
scheme (see blue and green bars in Figure 4.7 and 4.8). Similar benefits are seen when
evaluating AgileML vs. the checkpointing-based scheme combined with BidBrain. The
remaining improvements come from BidBrain’s ability to effectively exploit the spot market.
BidBrain reduces cost and run-time by providing opportunities for free computing and
projecting how resource allocations impact work throughput.

Free computing occurs when an allocation produces useful work but is evicted by AWS
before the end of a billing hour. The user receives a refund for the last partial hour, which
means that any work produced by the allocation during the current billing hour has no cost
to the user. Users increase their likelihood of getting free computing by bidding closer to
the current spot market price, which increases the likelihood of evictions. When executing
applications with significant eviction overheads, regularly bidding just above the current

48

0

5

10

15

20

25
Ti

m
e

pe
r i

te
ra

tio
n

(s
ec

)

4 ParamServs
16 ParamServs
32 ParamServs
Traditional (High Cost)

Figure 4.10: AgileML stage 1 with 4–
32 reliable machines out of 64 total com-
pared to traditional (all 64 reliable; cyan),
for MF.

0

5

10

15

20

25

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

4 ParamServs
16 ActivePS
32 ActivePS
48 ActivePS
Traditional (High Cost)

Figure 4.11: AgileML stage 2 with 4 reli-
able and 60 transient compared to stage 1
(same ratio; magenta) and traditional (64
reliable).

0
1
2
3
4
5
6
7

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

Workers on Reliable
No workers on Reliable
Traditional (High Cost)

Figure 4.12: AgileML stage 3 (red) with
1 reliable and 63 transient compared to
stage 2 (same ratio; blue) and traditional.

market price hoping to gain free computing is not an effective strategy. BidBrain accounts
for eviction overheads in making decisions about how much above the market price to
bid. We experimented with always bidding just above the market price to acquire free
computing as often as possible, but it increased the run-time of applications (3-4x) and
resulted higher cost due to suffering too many evictions after too short a period of time.
BidBrain’s predictions of eviction likelihood and times are effective enough to find a happy
medium. On average, 32% of Proteus’ computing is free computing, as shown in 4.9.

Experiments in the Wild. In addition to simulations, we ran a number of Proteus
jobs on AWS. Although the results cover a much smaller sample size than our simulations,
the observed behavior is consistent with the simulation results.

4.5.3 Efficiency with AgileML Tiering

AgileML enables execution on a mix of reliable and transient machines, and efficient scale-up
and scale-down, while always maintaining state required for continued operation on reliable
machines. To avoid the reliable machines becoming a bottleneck, AgileML uses three stages
of functionality partitioning (see Section 4.2.2), decreasing reliance on reliable machines as
the ratio of transient to reliable increases. (Of course, higher ratios are better from a cost

49

standpoint, because transient machines are often 70–80% cheaper.) This section evaluates
AgileML’s performance relative to the traditional parameter-server architecture run entirely
on high-cost reliable machines, in which all functionality (worker and parameter server) is
partitioned among all machines, showing that AgileML avoids performance loss at least
to a ratio of 63 transient machines to 1 reliable machine. All results in this section are
for the MF application with the Netflix data set on Cluster-A, but results for the other
applications and Cluster-B are consistent and omitted only due to space constraints.

Stage 1: Parameter Servers only on Reliable Machines. The first stage spreads
the parameter server across the reliable machines, rather than all machines, using transient
machines only for worker processes.

Figure 4.10 shows the time-per-iteration for different numbers of machines running
parameter server shards (ParamServs) in a 64-machine Cluster-A, representing different
ratios of transient to reliable machines under the stage 1 configuration. All 64 machines run
workers. The 64 ParamServ case, which is labeled “Traditional” in the graph, represents
the traditional parameter server architecture in which all machines are reliable and run
both worker and parameter server processes. The results show that stage 1 has negligible
slowdown for a small ratio (e.g., 1:1, represented by “32 ParamServ”) of transient to reliable
machines, but introduces significant slowdown as the ratio increases. The slowdown is
caused by network bottlenecks caused by many workers communicating with a relatively
smaller number of ParamServs.

Stage 2: ActivePSs on Transient Machines and BackupPSs on Reliable Ma-
chines. To avoid the network bottleneck for higher ratios, stage 2 switches to a tiered
primary-backup model, using reliable machines for continuity but not requiring them to
serve as active parameter servers for a much larger number of workers.

Figure 4.11 shows the time-per-iteration for different configurations in a 64-machine
Cluster-A that consists of 4 reliable machines and 60 transient machines. The “4 ParamServs”
and “Traditional” bars described above for Figure 4.10 are included as well, for comparison.
The other three bars represent running ActivePSs on different numbers of transient machines,
together with BackupPSs on the 4 reliable machines. In each case all 64 machines run
worker processes. The results show that the ActivePS-based architecture with 32 ActivePSs
introduces ≈18% slowdown compared to the traditional parameter-server architecture, when
using a 15:1 ratio of transient to reliable machines. This slowdown does not occur at 7:1
and represents the beginning of the straggler problem addressed by stage 3.

Stage 3: No Workers on Reliable Machines. When the ratio of transient to
reliable machines increases beyond 15:1, we observe even larger slowdowns for AgileML
stage 2 relative to the traditional parameter-server architecture. This slowdown is caused by
the workers running on reliable machines becoming stragglers; the network load of running
BackupPSs for a much larger number of ActivePSs interferes with worker communication.
To solve this problem, stage 3 does not run workers on the reliable machines when the ratio
is very high. While this reduces aggregate worker computation power, stage 3 is only used
when the reduction is small because the fraction of reliable machines is low.

4.12 shows time-per-iteration with and without workers on the one reliable machine
in a 64-machine Cluster-A that consists of 1 reliable machine and 63 transient machines.
The one reliable machine runs only a BackupPS. The “Traditional” bar is again shown

50

0

10

20

30

40

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

Stage 2
Stage 3

Figure 4.13: AgileML running on 8 reliable and 8 transient machines in stage 2 and stage
3 mode. Stage 2 is better for lower transient-to-reliable ratios.

4 8 16 32 640

50

100

150

Number of Machines

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

AgileML
Ideal

Figure 4.14: AgileML scalability for LDA. Showing time-per-iteration when using 4 to 64
machines.

for comparison. The results show that, by shutting down reliable machine workers once
they become stragglers, AgileML is able to match the performance of the traditional
parameter-server architecture at a 63:1 ratio of transient to reliable machines.

Stage 3 provides the best performance only as the ratio of transient vs. reliable machines
increases. Thus, all three stages are needed for AgileML to achieve high performance across
a range of possible ratios. To illustrate, 4.13 compares time-per-iteration attained with the
same footprint (8 reliable + 8 transient machines), but in two different modalities: stage 2
and stage 3. Stage 2 is clearly best for this 1:1 ratio, unlike 4.12, where the ratio was 63:1.

4.5.4 AgileML Scalability

This section confirms that AgileML scales well as machines are added, like the traditional
parameter-server architecture has been shown to do. Figure 4.14 shows time-per-iteration

51

0 10 20 30 400

10

20

30

40

50

Iteration

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

Figure 4.15: AgileML starts with 4 reliable resources, adds 60 transient resources at
iteration 11, evicting 35 transient resources at iteration 35.

for the LDA application as a function of the number of Cluster-A machines used. (We
observe the same scaling behavior for the other ML applications tested.) So, strong scaling
is evaluated, and the curve labeled “Ideal” corresponds to perfect scaling of the 4-machine
case. The 4-machine case uses the traditional parameter-server architecture to provide a
baseline. The 8-machine case uses the stage 1 configuration for 4 reliable and 4 transient
machines. The 16-, 32-, and 64-machine cases use the stage 3 configuration for 1 reliable
machine and the remainder transient. These results show that AgileML scales effectively,
exploiting available transient machines to speed up applications.

4.5.5 Efficiency of AgileML Elasticity

This section confirms that AgileML’s mechanisms for bulk incorporation and eviction of
machines induce minimal disruption of the ongoing ML application. Figure 4.15 shows time-
per-iteration for each of 45 MF iterations on Cluster-A machines. The first 10 iterations
execute on 4 reliable machines. 60 transient machines are incorporated during iteration
11, resulting in immediate speedup consistent with Figure 4.14. Adding the 60 machines
causes no disruption because they are started, initialized, and prepared in the background,
signaling the elasticity controller for final incorporation when ready. The opposite change is
made in iteration 35, evicting the 60 transient machines from the computation, as though
in reaction to an eviction notice. A 13% blip in performance is seen during the iteration in
which the eviction is done, after which the time-per-iteration stabilizes, returning to its
full 4-machine value. The blip occurs because of network overhead in aggressively bringing
up-to-date the BackupPSs and transitioning them to being active ParamServs.

52

4.6 Discussion and Limitations

The popularity of systems like Proteus may increase spot market prices. We believe,
however, that infrastructure clouds will continue to offer cheaper transient resources in order
to monetize resources that would otherwise be idle due to varying demand on resources
provisioned for contract customers. We also believe that AWS will eventually transition
to a free market, where users are charged the bid price instead of the market price. This
transition will render the commonly used strategy of bidding far above the market price
obsolete, further motivating the need for intelligent bidding strategies, such as the one we
instantiate with BidBrain.

BidBrain’s allocation policies use AWS market price information to estimate resource
reliability. However, BidBrain’s allocation policies could be retargeted to be applicable
beyond the AWS spot market. While this would eliminate the benefit received from free
compute, only a portion of BidBrain’s wins comes from such AWS specifics (Sec. 4.5.2).
Instead of basing resource reliability predictions on historical AWS spot market data,
BidBrain may perform reliability calculations by observing available resource capacity,
its dynamics over time, and the activity of higher-priority jobs sharing the cluster. For
example, in a private cluster setting, purchase cost (Pi) may be the same constant value for
any best-effort allocation, but the expected work (4.3) still varies based on expected time
to eviction (4.2).

Worker State. Proteus is designed to work with stateless AgileML workers, which
reduces system complexity and obviates the need for I/O intensive state-management
operations, such as checkpointing. Indeed, the elasticity controller only needs to coordinate
easily reassigned state in ActivePSs and ParamServs. This design choice is further motivated
by the fact that most ML training algorithms can be implemented with stateless workers.

Distributed All-Reduce. AgileML is designed to work with parameter server archi-
tecture. But, we believe it could be modified to work with distributed all-reduce (Sec. 2.2.2).
In order to maintain high resources efficiency, this modification would require AgileML to
use only stage three of its architecture (Sec. 4.2.2). In stage three, distributed all-reduce
could be used to update model parameters on all transient machines, with the latest
parameters then pushed to reliable machines in the background.

Communication Overhead. In a traditional parameter server configuration (Sec. 2.2.1),
each machine co-locates ML workers and a parameter server shard responsible for 1/N
of the model parameters (N is the number of machines). If every model parameter is
read and updated by every machine during every iteration, each machine will communi-
cate 4 ∗W ∗ (N − 1)/N , where W is the number of model parameters. In stage three
of AgileML’s architecture, half of the machines contain both ML workers and ActivePSs
(responsible for 2/N of the model parameters), and the other half machine contain only
workers. Machines with ActivePSs, communicate 4 ∗W ∗ (N − 2)/N , and machines with
only workers communicate 2 ∗W ∗N per iteration. This means that for N > 2, AgileML
reduces the amount of communication performed by each machine.

53

4.7 Related Work on Exploiting Transient Resources

Previous work exploits transient resources using checkpointing, DHTs, RDDs, and heuristic
bidding strategies.

Checkpointing. Checkpointing can be used to preserve state when using transient
resources [47, 88, 92]. For example, a non-elastic computation can be started on EC2 spot
market machines and checkpointed regularly. If the machines are revoked, the computation
can be restarted on another set of machines from the last completed checkpoint. Gupta et
al. [47] propose this approach for scientific computations. Parameter server architectures
such as TensorFlow [8], MxNet [22], Petuum [105], LazyTables [28], and IterStore [29]
provide no explicit mechanism for exploiting transient resources, and hence would likewise
rely on checkpointing. A single machine failure causes most of these systems to restart
an ongoing computation from the most recent checkpoint.8 Although this is reasonable
in small-to-medium clusters under traditional failure models, it can incur high overheads
in elastic settings due to the frequency of revocations (e.g., all the spikes in Figure 4.2).
Moreover, dynamically adding machines to running ML applications is not supported by
these frameworks. To do so would seem to require stopping the computation in a consistent
state, adding the resources, adjusting the mapping of computation tasks to machines
and copying any needed state accordingly, and then restarting. (Section 4.2.3 describes
AgileML’s alternative, efficient approach.) We hope this work will motivate other ML
frameworks to become agile elastic, and when they do, we believe they will integrate well
with BidBrain and provide a great comparison for AgileML. In our experimental study, we
compare Proteus’ explicit elasticity support to this checkpointing-based approach.

Distributed Hash Tables (DHTs). The parameter server system described by Li et
al. [67] includes support for adding and removing machines during execution. To realize this
feature, the system uses a direct-mapped DHT design based on consistent hashing, wherein
each parameter server process is responsible for a particular key range, and parameter value
replication. Protocols for adding and removing machines are described. While DHTs are
effective for adding or removing resources one-at-a-time, we believe that Proteus’ approach
to elasticity is better suited to the bulk addition and removal of nodes that characterize the
transient resource availability discussed above. Li et al. did not evaluate the speed of node
set changes, but we expect that it would be insufficient to address revocation of a sizable
subset of cheap machines within the limited warning period provided. The replication
mechanism also would not solve this issue, because bulk revocation is akin to correlated
failure of many nodes, while the mechanism is designed for independent failures.

Spark and RDDs. Spark achieves fault tolerance with RDDs, storing deterministic
transformations for subsequent replay on recovery from checkpoint. Flint [88], concurrently
with our work, proposed a system for running Spark applications on transient machines.
Unlike our tiered approach leveraging a mix of transient and non-transient machines
simultaneously, Flint runs ML workloads entirely on transient nodes,9 like the checkpointing
approach above. RDDs reduce the cost of checkpointing/recovery for Spark applications

8Tensorflow has a mechanism for handling single machine failures via its straggler mitigation mechanism.
9or entirely on non-transient nodes in the rare cases when they are cheaper

54

by selectively choosing the set of RDDs needed. Whereas Flint relies heavily on the
Spark’s computing model in exploiting transient machines, AgileML enables exploitation of
such resources for parameter server systems, which are different and much more efficient
for iterative convergent ML. Furthermore, Proteus’ aggressive allocation strategy on the
spot market provides significant savings, including 32% free computing on average. In
contrast, Flint only considers switching when current resources are revoked and only bids
the on-demand price, corresponding to Standard+AgileML in our graphs.

Bidding Strategies. Bidding strategies for EC2 spot instances have been studied [10,
110, 93]. Agmon et al. [10] show minimal correlation between near term AWS spot prices
and spot instance availability. Marathe et al. [72] propose using redundancy across AWS
zones for HPC computations on EC2. For interactive workloads, Flint [88] seeks to diversify
across zones and machine classes to minimize revocation probability. Spot Fleet EC2, an
AWS service, allows users to specify a resource capacity target and automatically maintain
that target, replacing evicted instances. It is application agnostic, however, and does not
take into account any application-level concerns, such as maximizing performance per unit
cost. By default, Spot Fleet follows the same configured strategy as the standard bidding
policy, bidding the on-demand price on the currently cheapest available resource (Sec. 4.5.2).
We show significant improvements over such a bidding strategy. Tributary [48] proposes
using many diversified sets on unreliable resources to achieve reliability for jobs requiring
high reliability (e.g., jobs with SLOs).

4.8 Summary

This chapter presents Proteus, which efficiently utilizes transient resources for machine
learning training through tiers of reliability. Proteus combines agile elastic machine learning
training system with an intelligent resource manager. Our experiments show that both
components are required to achieve maximum improvements of ≈85% compared to using
only on-demand machines.

55

Chapter 5

Generalized Pipeline Parallelism for
DNN Training

5.1 Introduction

Deep Neural Networks (DNNs) are being applied to great effect across a wide range
of applications, including image classification [65, 89, 52], translation [104], language
modeling [73] and video captioning [100]. As DNNs have become more widely developed
and used, they have also become more computationally expensive to train, thus requiring
parallel execution across multiple accelerators (e.g., GPUs).

DNN training proceeds in iterations of forward and backward pass computations, with
each iteration processing a minibatch of input data at a time, and the model parameters
updated at the end of each iteration. Current approaches focus on parallelizing each
iteration of the optimization algorithm, one at a time, across a set of workers. For
example, data parallelism partitions the input data across workers [65], model parallelism
partitions operators across workers [33, 24], and hybrid schemes partition both [60, 61, 64].
Unfortunately, these intra-batch parallelization schemes suffer from poor scaling due to
high communication costs and low resource utilization. For example, Figure 5.1 shows the
communication overhead for data parallelism across five different popular DNN models on
state-of-the-art p3.16xlarge instances on AWS, each with eight V100 GPUs connected
over NVLink. Over 16 GPUs, the communication overhead for some models, computed as
the percentage of total time spent on communication, is as much as 90% due to expensive
all reduce communication. Moreover, rapid increases in GPU compute capacity over time
will further shift the bottleneck of training towards communication for all models.

In this chapter, we propose a new form of parallelism, pipeline parallelism, which enables
faster DNN training by combining intra-batch parallelism with inter-batch parallelization.
Pipeline parallelism divides the model among available workers, assigning a group of adjacent
layers (stages) to each of them, and then overlaps the computation and communication of
different minibatches in a pipelined fashion. Inter-worker communication is greatly reduced
because it can be limited to layer inputs and outputs (activations in the forward pass and
gradients in the backward pass) solely across adjacent layers assigned to different workers.

56

While pipelining is a simple idea, DNN training poses an important requirement not
present in traditional pipelining: DNN training is bi-directional—the forward pass is followed
by a backward pass through the same layers in reverse order, using state and intermediate
results from the forward pass. To keep the pipeline full and thus achieve high hardware
efficiency, a simple scheduling mechanism is injecting all minibatches into the pipeline, first
completing forward passes for all input minibatches followed by backward passes. But, such
an approach has low statistical efficiency [27], increasing the number of iterations needed to
produce a high-quality model, or even preventing the model from reaching the desired target
accuracy, since gradients are averaged over all training samples [20]. To improve statistical
efficiency, one could inject only a subset of m minibatches into the pipeline, and apply
weight updates every m minibatches. This would, however, result in reduced hardware
efficiency due to frequent pipeline flushes; traditional model parallel training corresponds
to an extreme case of this (m = 1). Thus, a more nuanced approach to pipelining is needed
– one that achieves both high hardware efficiency and statistical efficiency.

Given a pipeline of stages, our system, PipeDream, proposes a scheduling algorithm
called 1F1B to keep hardware well utilized while achieving high statistical efficiency in a bi-
directional pipeline. In 1F1B’s steady state, each worker strictly alternates between forward
and backward passes for its stage, ensuring high resource utilization (negligible pipeline
stalls) even in the common case where the backward pass takes longer than the forward pass,
and uses different versions of model weights for good statistical efficiency. Each backward
pass at a stage results in weight updates; the next forward pass uses the latest version of
weights available, and “stashes” a copy of these weights to use during the corresponding
backward pass. Although the forward pass will not see updates from incomplete in-flight
mini-batches, learning is effective because model weights change relatively slowly and
bounded staleness has been shown to not affect statistical efficiency [28]. However, for
the backward pass to compute numerically correct gradients, the same weight version
used during the forward pass must be used. PipeDream limits the number of “in-pipeline”
minibatches to the minimum needed to keep the pipeline full, keeping the number of stashed
weights to a minimum.

Operating the pipeline at peak throughput also requires that it be balanced. Because
the throughput of a pipeline is bottlenecked by the slowest stage, PipeDream automatically
determines how to partition the layers of the DNN based on a short profiling run (on a
single GPU), balancing computational load among the different stages while minimizing
communication for the target platform. PipeDream effectively load balances even in the
presence of model diversity (computation and communication) and platform diversity
(interconnect topologies and hierarchical bandwidths). As DNNs do not always divide
evenly among available workers, PipeDream may decide to use data parallelism for some
stages—multiple workers can be assigned to a given stage, processing different minibatches
in parallel. PipeDream extends 1F1B to incorporate round-robin scheduling across data-
parallel stages, while making sure that gradients in a backward pass are routed to the
corresponding worker from the forward pass since the same weight version and intermediate
outputs need to be used for a correct gradient computation. The combined scheduling
algorithm, 1F1B-RR produces a static schedule of operators that each worker runs repeatedly,
keeping utilization high across all workers. Thus, pipeline-parallel training can be thought

57

1 2 4 8 16
Number of GPUs

0

20

40

60

80

100

C
om

m
.

ov
er

h
ea

d
(%

of
to

ta
l

ti
m

e)

AlexNet

VGG-16

ResNet-50

GNMT-8

GNMT-16

Figure 5.1: Communication overhead of data-parallel training (on one or two p3.16xlarge

AWS instances each with eight NVLink-connected V100 GPUs) for popular image classifica-
tion and machine translation DNN models, using PyTorch 1.0 and Gloo.

of as a principled combination of inter-batch pipelining with intra-batch parallelism.
Our evaluation with many combinations of DNN models, datasets, and hardware

configurations confirms the training time benefits of PipeDream’s pipeline parallelism.
Compared to data-parallel training, PipeDream reaches target accuracy on multi-GPU
machines up to 4.78× faster for image classification tasks, up to 3.45× faster for machine
translation tasks, 4.25× faster for language modeling tasks, and 3× faster for video
captioning models. PipeDream is also 2.5× – 18× faster than model parallelism, up to
1.9× faster than hybrid parallelism, and 1.7× faster than simpler approaches to pipelining.

Contributions. PipeDream is the first system to implement pipelining efficiently for DNN
training. This chapter makes three primary contributions. First, it introduces the use of
inter-batch parallelism via pipeline-parallel training. Second, it identifies the key challenges
in realizing the potential of this idea and details how PipeDream addresses each, through
its load balancing optimizer, 1F1B-RR scheduler, and weight stashing mechanism. Third,
it experimentally demonstrates that PipeDream enables fast parallel DNN training even in
circumstances where communication overheads cripple traditional intra-batch parallelization
approaches.

5.2 Background and Related Work

This section covers two broad classes of parallel DNN training: intra- and inter-batch. It
also highlights parallelization challenges posed by DNN model and hardware diversity.

5.2.1 Intra-batch Parallelism

The most common way to train DNN models today is intra-batch parallelization, where a
single iteration of training is split across available workers.

58

Data Parallelism. In data parallelism, inputs are partitioned across workers. Each
worker maintains a local copy of the model weights and trains on its own partition of
inputs while periodically synchronizing weights with other workers, using either collective
communication primitives like all reduce [45] or parameter servers [67]. The amount of
data communicated is proportional to the number of model weights and the number of
workers participating in training.

The frequency of weight synchronization affects both statistical efficiency (number of
iterations needed to reach a particular target accuracy) and hardware efficiency (time
needed per iteration). Synchronizing at the end of every minibatch, referred to as bulk
synchronous parallel or BSP [97]1 reduces the staleness of weights used to compute gradients,
ensuring good statistical efficiency. However, BSP requires each worker to wait for gradients
from other workers, lowering hardware efficiency. Despite optimizations such as Wait-
free Backpropagation [109], where weight gradients are sent as soon as they are available
(common in modern frameworks), communication stalls are inevitable due to the structure
of the DNN computation, and because communication time often dominates computation
time.

Figure 5.1 quantitatively shows the fraction of training time spent in communication
stalls with data parallelism for different classes of DNNs on 2, 4, 8, and 16 NVIDIA
V100 GPUs using 8-GPU instances with NVLink interconnects within servers and 25Gbps
interconnects across servers (one instance for 2,4,8 and two instances for 16).

We focus on three takeaways. First, the communication overhead for many of these
models is high despite using multi-GPU servers and state-of-the-art communication libraries
like Gloo. Data parallelism comparatively scales well for models like ResNet-50, which have
a large number of convolutional layers with compact weight representations, but scales less
well for other models with LSTM or fully-connected layers, which have more dense weight
representations. Second, applications distributed across multi-GPU servers are bottlenecked
by slower inter-server links, even though faster intra-server links help. Data parallelism
for such hierarchical networks is a poor fit, since the same number of bytes are sent over
both high- and low- bandwidth channels. Third, as the number of data-parallel workers
increases, communication overheads increase for all models, even if training is performed
on a multi-GPU instance with NVLink. Coleman et al. [26] show similar results.

Other DP Optimizations. Asynchronous parallel training (ASP) allows each worker
to proceed with the next input minibatch before receiving the gradients from the previous
minibatch. This approach improves hardware efficiency over BSP by overlapping computa-
tion with communication, but also introduces staleness and reduces the statistical efficiency
of DNN training. Our experimental results corroborate recent findings that show that these
techniques do not reduce end-to-end DNN training time [30, 8].

Seide et al. [84, 83] looked at quantizing gradients to decrease the amount of data needed
to be communicated over the network. This approximation strategy lacks generality and is
effective for limited scenarios; it does not hurt convergence for some speech models [85], but
hurts statistical performance due to noisy gradients in many others [30, 8]. Goyal et al. [45]

1In this paper, we use DP to refer to data-parallelism with BSP.

59

Worker 1

Worker 2

Worker 3

1

1

1 1

1

2

Worker 4 1 1

2

Time
Backward WorkForward Work Idle

1

1

2

2

1

1 1

Figure 5.2: Model parallel training with 4 workers. Numbers indicate minibatch ID, and
backward work takes twice as long as forwards work. For simplicity, here we assume that
communicating activations/gradients across workers has no overhead.

used more efficient implementations of all reduce, like the recursive halving-and-doubling
algorithm and the bucket algorithm [94] to reduce the amount of data being sent over the
network. Others have explored techniques from the HPC literature to reduce the overhead
of communication [16, 96]. All these use synchronous collection communication patterns
with no inter-batch pipelining, and hence only slightly alleviate communication bottlenecks.

Recent work has demonstrated that using large minibatches is effective for training
ResNet-50, especially when combined with Layer-wise Adaptive Rate Scaling (LARS) [45,
106, 58]. Large minibatches reduce the communication overhead by exchanging parameters
less frequently. But, our experiments show that such techniques lack generality beyond
ResNet-50 and pipeline parallelism is still faster than the fastest data-parallel option with
LARS.

Model Parallelism. Model parallelism is an intra-batch parallelism approach where the
operators in a DNN model are partitioned across the available workers. That is, each worker
evaluates and performs updates for only a subset of the model’s parameters for all inputs.
The amount of data communicated is the size of intermediate outputs (and corresponding
gradients) that need to be sent across workers.

Although model parallelism enables training of very large models, traditional model
parallelism is rarely used to accelerate DNN training because it suffers from two major
limitations. First, model-parallel training results in under-utilization of compute resources,
as illustrated in Figure 5.2. Each worker is responsible for a group of adjacent layers; in this
regime, the intermediate outputs (activations and gradients) between these groups are the
only data that need to be communicated across workers.2 For each input, only a single stage
is active at any instant of time. Pipelining multiple minibatches would improve utilization,
but is traditionally not done because 1) the bi-directionality of DNNs makes pipelining
challenging (the forward pass is followed by a backward pass through the same layers in

2While other partitioning schemes are possible, this is the most common, and the one we will use in this
paper.

60

Time

Backward WorkForward Work Idle

Worker 1

Worker 2

Worker 3

1

1

1 4

Worker 4 1 2

2

2

2

3

3

3

3

1

4

4

24 1

1

2

1

11 2

2

Pipeline flush:
add gradients

All inputs use weights from last flush

1

1

3

2

4

3

33

2

3 4

4 4

4

3

4

1 2

12 4 4

2 3 3

Figure 5.3: GPipe’s inter-batch parallelism approach. Frequent “pipeline flushes” lead to
increased idle time.

reverse order), and 2) naive pipelining performs weight update computations with stale
weights, leading to the final model achieving a lower accuracy compared to data-parallel
training.

The second limitation for model-parallel training is that the burden of partitioning a
model across multiple GPUs is left to the programmer [64], resulting in point solutions.
Recent work explores the use of reinforcement learning to automatically determine device
placement for model parallelism [75]. Unfortunately, such techniques are time- and resource-
intensive. They also don’t seamlessly combine intra- and inter-batch parallelism, thus
limiting their effectiveness.

Hybrid Intra-batch Parallelism. Recent work has proposed splitting a single iteration
of the optimization algorithm among multiple dimensions. OWT [64] splits the then-popular
AlexNet model by hand, using data parallelism for convolutional layers that have a small
number of weight parameters but large outputs, while choosing to not replicate fully
connected layers that have a large number of weight parameters but small outputs. OWT
does not use pipelining. FlexFlow [60] proposed splitting a single iteration along samples,
operators, attributes, and parameters, and describes an algorithm to determine how to
perform this splitting in an automated way. However, FlexFlow does not perform pipelining,
and we show in our experiments (Sec. 5.5.3) that this leaves as much as 90% of performance
on the table.

5.2.2 Inter-batch Parallelism

Chen et al. [23] briefly explored the potential benefits of pipelining minibatches in model-
parallel training, but do not address the conditions for good statistical efficiency, scale, and
generality as applicable to large real-world models. Huo et al. [56] explored parallelizing

61

the backwards pass during training. Our proposed solution parallelizes both the forward
and backward pass.

GPipe [55], concurrent work with ours [50], uses pipelining in the context of simple
model-parallel training for very large models. GPipe performs forward passes followed by
backward passes for every m minibatches, aggregating weight gradients along the way; it
also does not store intermediate state generated during the forward pass needed for the
backward pass, instead opting to re-compute them (see Figure 5.3, where m = 4). As a
result, it suffers from reduced hardware efficiency due to re-computation overheads and
frequent pipeline flushes every m minibatches (Sec. 5.5.4).

In comparison, PipeDream addresses key issues ignored in prior work, offering a general
solution that combines pipelining with intra-batch parallelism in a principled way, and
automates partitioning the model across workers.

5.2.3 DNN Model and Hardware Diversity

DNN models are increasingly diverse, with convolutional layers, LSTMs [104], attention
layers [98], and fully-connected layers commonly used. These different types of models
exhibit vastly different characteristics; this makes the optimal parallelization strategy highly
model-dependent.

Picking an optimal parallelization scheme is made harder by the fact that the efficacy
of such a scheme depends on the characteristics of the target deployment hardware as well.
GPUs, ASICs, and FPGAs have very different compute capabilities. Moreover, interconnects
linking these accelerators have different topologies and capacities; cloud servers are linked
by tens to 100Gbps networks, accelerators within servers might be connected over shared
PCIe trees (10 to 15GBps), and specialized expensive servers, such as the DGX-1 [36], use
NVLink with point-to-point 30GBps bandwidth capabilities. This diversity in models and
deployments makes it extremely hard to manually come up with an optimal parallelization
strategy. PipeDream automates this process.

5.3 Pipeline Parallelism

PipeDream uses pipeline parallelism (PP), a new parallelization strategy that combines
intra-batch parallelism with inter-batch parallelism. Pipeline-parallel computation involves
partitioning the layers of a DNN model into multiple stages, where each stage consists of
a consecutive set of layers in the model. Each stage is mapped to a separate GPU that
performs the forward pass (and backward pass) for all layers in that stage.3

In the simplest case, only one minibatch is active in the system, as in traditional model-
parallel training (Figure 5.2); in this setup, at most one GPU is active at a time. Ideally,
we would like all GPUs to be active. With this in mind, we inject multiple minibatches
into the pipeline one after the other. On completing its forward pass for a minibatch, each
stage asynchronously sends the output activations to the next stage, while simultaneously

3We use GPUs as a concrete instance of accelerators and use the terms “GPU” and “worker” inter-
changeably.

62

Time
Backward WorkForward Work Idle

Startup State Steady State

Worker 1

Worker 2

Worker 3

1

1

1 4 2

1

Worker 4 1 1 3 4

2

2

2

1

3

3

3

2

4

4

1

32

1

1

2

2

11 5

2

3

3

2

3

4 5

5

22 6

3

4

4

3

5

6

6

6

4

4 4

4

5 5

5 5

3 3

6

7

7

Figure 5.4: An example PipeDream pipeline with 4 workers, showing startup and steady
states. In this example, the backward pass for a minibatch takes twice as long as the
forward pass.

starting to process another minibatch. When the last stage completes its forward pass, it
starts the backward pass on the same minibatch. On completing its backward pass, each
stage asynchronously sends the gradient to the previous stage while starting computation
for the next minibatch (Fig. 5.4).

Pipeline parallelism can outperform intra-batch parallelism methods for two reasons.

Pipelining communicates less. PP often can communicate far less than DP. Instead
of having to aggregate the updates for all the parameters and send the result to all the
workers, as is done in data-parallel approaches (using either collective communication or
a parameter server), each worker in a PP execution has to communicate only subsets of
the updates and output activations, often to only a single other worker. This can result in
large reductions in communication (e.g., >90% reduction for VGG-16).

Pipelining overlaps computation and communication. Asynchronous communica-
tion of forward activations and backward gradients across stages results in significant overlap
of communication with the computation of a subsequent minibatch as shown in Figure 5.5.

However, to realize the opportunity of PP, PipeDream must overcome three challenges.
In discussing PipeDream’s solutions to the challenges, we will refer to Figure 5.6, which
shows PipeDream’s high-level workflow.

5.3.1 Challenge 1: Work Partitioning

PipeDream treats model training as a computation pipeline, with each worker executing
a subset of the model as a stage. Like with any pipeline, the steady state throughput of
the resulting pipeline is the throughput of the slowest stage. Having each stage process
minibatches at vastly differently throughputs can lead to bubbles in the pipeline, starving

63

Time

Cn+1
Cn+1 Bn-x

Cn-x-1 Cn Cn-x Cn+1

Fn+1 Bn-x+1Fn

Backward WorkForward Work

Background Communication
(Activations & Gradients)

Worker 1 Worker 2 Worker 3 Worker 4

Output stage
Input
stage

Figure 5.5: An example pipeline-parallel assignment with four GPUs and an example
timeline at one of the GPUs (worker 3), highlighting the temporal overlap of computation
and activation / gradient communication.

faster stages of minibatches to work on, leading to resource under-utilization. Excessive
communication between workers can also lower the throughput of the training pipeline.
Moreover, the allocation of stages to workers needs to be model- and hardware-aware to be
effective, and there may be cases for which no simple partitioning across the GPUs achieves
both limited communication and load balance.

Solution: PipeDream’s optimizer determines a balanced pipeline. Its algorithm parti-
tions DNN layers into stages, such that each stage completes at roughly the same rate, while

64

trying to minimize communication across workers in a topology-aware way (for example,
large outputs should be sent over higher bandwidth links if possible). To further improve
load balancing, PipeDream goes beyond straight pipelines, allowing a stage to be replicated
(i.e., data parallelism is used on the stage). This partitioning problem is equivalent to
minimizing the time taken by the slowest stage of the pipeline, and has the optimal sub-
problem property : a pipeline that maximizes throughput given a worker count is composed
of sub-pipelines that maximize throughput for smaller worker counts. Consequently, we use
dynamic programming to find the optimal solution.

PipeDream exploits the fact that DNN training shows little variance in computation and
communication time across inputs, especially epochs. PipeDream records the computation
time taken by the forward and backward pass, the size of the layer outputs, and the
size of the associated parameters for each layer as part of an initial profiling step; this
profile is used as the input to the optimizer’s partitioning algorithm (Figure 5.6). The
partitioning algorithm also takes into account other constraints such as hardware topology
and bandwidth, number of workers, and memory capacity of the compute devices.

Profiler. PipeDream records three quantities for each layer l, using a short (few minutes)
profiling run of 1000 minibatches on a single GPU: 1) Tl, the total computation time across
the forward and backward pass for the layer on the target GPU, 2) al, the size of the output
activations of the layer (and the size of input gradients in the backward pass) in bytes, and

Computational
graph with profile
Activation sizes
Parameter sizes
Compute times

Input DNN

Pipeline-parallel
execution

Constraints
(e.g., device memory capacity, hardware

topology including number of workers and
interconnect bandwidths)

Stage 4

Stage 3

Stage 2

Stage 1

Optimizer

Figure 5.6: PipeDream Overview: profiler, optimizer, and runtime.

65

B2B2B1 B1Network

Figure 5.7: An example 2-level hardware topology. Green boxes represent GPUs. Each
server (yellow boxes) has 4 GPUs connected internally by links of bandwidth B1; each
server is connected by links of bandwidth B2. In real systems, B1 > B2.

3) wl, the size of weight parameters for layer l in bytes.
PipeDream estimates the communication time by dividing the amount of data that needs

to be transferred by the network bandwidth of the communication link. The amount of data
communicated in data-parallel configurations with m workers is 2 · (m− 1) · |wl| (assuming
collective communication); this is used to estimate the time for weight synchronization for
layer l when using data parallelism with m workers.

Partitioning Algorithm. Our partitioning algorithm takes the output of the profiling
step, and computes: 1) a partitioning of layers into stages, 2) the replication factor (number
of workers) for each stage, and 3) optimal number of in-flight minibatches to keep the
training pipeline busy.

PipeDream’s optimizer assumes that the machine topology can be organized into levels,
as shown in Figure 5.7. Bandwidths within a level are the same, while bandwidths across
levels are different. We assume that level k is comprised of mk level (k − 1) components,
connected by links of bandwidth Bk. In Figure 5.7, m2 = 2 and m1 = 4. In addition, we
define m0 to be 1; m0 represents the number of compute devices within the first level (green
boxes in Figure 5.7).

PipeDream’s optimizer solves dynamic programming problems progressively from the
lowest to the highest level. Intuitively, this can be thought of as trying to find the optimal
partitioning within a server, and then using these partitions to split a model optimally
across servers.

Notation. Let Ak(i, j,m) denote the time taken by the slowest stage in the optimal
pipeline between layers i and j using m workers at level k. The goal of our algorithm is to
find AL(0, N,mL), and the corresponding partitioning, where L is the highest level and N
is the total number of layers in the model.

Let T k(i→ j,m) denote the time taken by a single stage spanning layers i through j,
replicated over m workers using bandwidth Bk.

Formulation. For all k from 1 to L,

T k(i→ j,m) =
1

m
max

(
Ak−1(i, j,mk−1), 2(m− 1)

j∑
l=i

|wl|
Bk

)
where the left term inside the max is the total computation time for all the layers in the

66

stage using level k − 1 as the computation substrate, and the right term is the time for
data-parallel communication among all layers in the stage.

The optimal pipeline can be broken into an optimal sub-pipeline consisting of layers
from 1 through s with m−m′ workers followed by a single stage with layers s+ 1 through
j replicated over m′ workers. Then, using the optimal sub-problem property, we have:

Ak(i, j,m) = min
i≤s<j

min
1≤m′<m

max

Ak(i, s,m−m′)
2as/Bk

T k(s+ 1→ j,m′)

where the first term inside the max is the time taken by the slowest stage of the optimal
sub-pipeline between layers i and s with m−m′ workers, the second term is the time taken
to communicate the activations and gradients of size as between layers s and s+ 1, and the
third term is the time taken by the single stage containing layers s+ 1 to j in a data-parallel
configuration of m′ workers.

Initialization. Level 0 uses the profiled computation times: A0(i, j,m0) =
∑j

l=i Tl.
For k > 0, optimal compute times with all compute devices in the previous level are used:
Ak(i, j, 1) = Ak−1(i, j,mk−1).

Runtime Analysis. For a given level k, the total number of sub-problems is O(N2mk).
Time complexity per sub-problem is O(Nmk), leading to a total time complexity of O(N3m2

k)
for level k. Total time complexity is

∑L
k=1O(N3m2

k). In our experiments, the running time
is under 8 seconds.

5.3.2 Challenge 2: Work Scheduling

Unlike traditional uni-directional pipelines, training in PipeDream involves a bi-directional
pipeline, where a minibatch proceeds through the computation pipeline first forward and
then backward. Consequently, each active minibatch in the pipeline may be in a different
stage, either in the forward pass or backward pass. As a result, each worker in the system
needs to determine whether it should i) perform its stage’s forward pass for a minibatch,
pushing the minibatch to downstream workers, or ii) perform its stage’s backward pass for
a different minibatch, pushing the minibatch to upstream workers. In addition, how should
minibatches be routed with replicated stages?

Solution: In the startup phase, the input stage admits enough minibatches to keep
the pipeline full in steady state (e.g., see Figure 5.4). Based on the partitioning generated
by our algorithm, the optimal number of minibatches admitted per input stage replica to
keep the pipeline full in steady state is given by:

NUM OPT ACTIVE MINIBATCHES (NOAM) =
d (# workers) / (# of replicas of the input stage) e.

Once in steady state, each stage alternates between performing its forward pass for a
minibatch and its backward pass for an earlier minibatch. We call this the one-forward-
one-backward (1F1B) schedule. 1F1B ensures that every GPU is occupied with a minibatch
in a balanced pipeline, because each stage is producing outputs in aggregate at roughly the

67

same rate, and that backward passes from inputs are applied at regular intervals of time
(Fig. 5.4).

When a stage is run in a data-parallel configuration (replicated across multiple GPUs),
we use deterministic round-robin load balancing based on a minibatch identifier to spread
work across the replicas. Such deterministic load-balancing ensures that each minibatch is
routed to the same worker for both the forward and backward passes of the stage, which is
important since parameters and intermediate outputs from the forward pass are needed for
the backward pass. This mechanism, which we call one-forward-one-backward-round-robin
(1F1B-RR), is a static policy that is executed without expensive distributed coordination.

Figure 5.4 shows the corresponding compute timeline for a pipeline with 4 stages. The
NOAM for this configuration is 4. In the startup phase, the input stage admits exactly
four minibatches that propagate their way to the output stage. As soon as the output
stage completes its forward pass for the first minibatch, it performs its backward pass for
the same minibatch, and then starts alternating between forward and backward passes
for subsequent minibatches. As the backward pass starts propagating to earlier stages in
the pipeline, every stage starts alternating between its forward and backward passes for
different minibatches. As shown in the figure, in steady state, every worker is busy doing
either its forward or backward pass for some minibatch. For 1F1B-RR to be effective, it is
not necessary for the forward pass to take as long as the backward pass. In fact, we observe
that in practice, the backward pass is always larger than the forward pass, and 1F1B-RR
remains an effective scheduling mechanism, as highlighted in Figure 5.4.4

5.3.3 Challenge 3: Effective Learning

In a naively pipelined system, each stage’s forward pass for a minibatch is performed using
one version of parameters and its backward pass is performed using a different version of
parameters. Figure 5.4 illustrates this using a partitioning with four workers and no stage
replication. In stage 1, the forward pass for minibatch 5 is performed after the updates
from minibatch 1 are applied, whereas the backward pass for minibatch 5 is performed
after updates from minibatches 2, 3, and 4 are applied. As a result, in the backward pass
for minibatch 5 on stage 1, the gradient is computed using a different set of weights than
the ones used in the corresponding forward pass; this discrepancy in weight versions results
in invalid gradients, and prevents model convergence. Experimental results show that naive
pipelining is unable to achieve the same accuracy as data-parallel training.

Solution: To avoid a fundamental mismatch between the version of weights used
in the forward and backward pass, PipeDream uses a technique we call weight stashing
which maintains multiple versions of the weights, one for each active minibatch. When
performing its forward pass, each stage processes a minibatch using the latest version of
weights available. After completing the forward pass, PipeDream stores the weights used
for that minibatch. When performing the minibatch’s backward pass, the same version of
the weights is used to compute the weight update and upstream weight gradient.

41F1B-RR produces a full steady state pipeline even for cases where the ratio of backward- to forward-pass
time is not an integer (e.g., 3 to 2).

68

Time
Backward
Work

Forward
Work Idle

Worker 1

Worker 2

Worker 3

1

1

1 1

Worker 4 1 1

2

2

2

2

3

3

3

3

4

4

4

42

2

2

3

3

4

84 5

81

2

4

Per-worker buffers:
Weight versions

𝐖𝟐
(𝟐)

𝐖𝟑
(𝟑)

𝐖𝟒
(𝟒)

𝐖𝟐
(𝟑)

𝐖𝟑
(𝟒)

𝐖𝟐
(𝟑)

𝐖𝟏
(𝟏) 𝐖𝟏

(𝟐) 𝐖𝟏
(𝟑) 𝐖𝟏

(𝟒)5 6 7

5

5

5

6

6

7

7

7

5

5

5 6

6

1

3

Figure 5.8: Weight stashing as minibatch 5 flows across stages. Arrows point to weight versions
used for forward and backward passes for minibatch 5 at the first and third stages.

Weight stashing ensures that within a stage, the same version of model parameters are
used for the forward and backward pass of a given minibatch. For example, in Figure 5.8,
minibatch 5 uses parameter updates from minibatch 1 on machine 1 and from 2 on machine
2. Weight stashing says nothing about the consistency of parameter versions used for a
given minibatch across stages.

Vertical Sync. Vertical Sync is an optional technique in PipeDream that eliminates
the potential inconsistency across stages. For example, in Figure 5.4, using vertical sync,
minibatch 5 uses parameters updated by minibatch 1 on all workers for both its forward
and backward passes. Each minibatch (bi) that enters the pipeline is associated with the
latest weight version (w(i−x)) seen at the input stage. This information is propagated along
with the activations and gradients as the minibatch bi flows through the pipeline in the
forward direction. Across all stages, the forward pass for bi uses the stashed weights w(i−x),
as opposed to the latest weight update. After performing the backward pass for bi (using
stashed weights w(i−x)), each stage independently applies weight updates to create the latest
weights (w(i)), and can then delete w(i−x). This coordination across stages is asynchronous.

Staleness. We can now formalize the degree of staleness of weight updates for each of
these techniques. For this discussion, we assume a straight pipeline (i.e., no stage replication)
with the model split into n stages; the weights in each stage are represented as w1, w2, and
so on. In addition, we denote w

(t)
l as the weights wl after t minibatches.

Now, after every minibatch, we compute the gradient Of(w1, w2, . . . , wn) averaged over
all samples in the minibatch. Vanilla minibatch SGD (f is the loss function, ν is the
learning rate) has the following gradient update:

w(t+1) = w(t) − ν · Of(w
(t)
1 , w

(t)
2 , . . . , w

(t)
n)

69

With weight stashing, gradients in stage 1 are computed with weights that are n steps
delayed, gradients for stage 2 are computed with weights that are n− 1 steps delayed, etc.
Mathematically, this means the weight update looks like:

w(t+1) = w(t) − ν · Of(w
(t−n+1)
1 , w

(t−n+2)
2 , . . . , w(t)

n)

Without weight stashing, the weight update is not a valid gradient of the loss function
f for any vector w1, . . . , wn.

Adding vertical sync alters the weight update to:

w(t+1) = w(t) − ν · Of(w
(t−n+1)
1 , w

(t−n+1)
2 , . . . , w(t−n+1)

n)

This is semantically similar to data parallelism with BSP synchronization on n workers
(with the same per-worker minibatch size), with the same staleness (but gradients averaged
over a minibatch size B instead of nB).

Memory Overhead. Pipelining does not significantly increase per-worker memory usage
relative to data-parallel, even with weight stashing. Consider a straight pipeline (no data-
parallel stages) where a model is divided across n workers, with each worker holding 1/n of
the weights. With non-pipelined model-parallel training, each worker would need 1/n of
the memory compared to data parallel training. Admitting n inputs into the pipeline, as
PipeDream does, increases this by at most a factor of n, because a version of the (weights,
activations) is needed for each in-flight minibatch. Thus, PipeDream’s per-worker memory
usage is on par with data parallelism. PipeDream’s memory footprint can be further
reduced by efficient memory management of intermediate data [57].

Weight stashing is critical for meaningful learning.5 PipeDream’s default semantics
(weight stashing but no vertical sync) are between regular minibatched SGD on a single
worker, and data parallelism with BSP synchronization [28, 54]. Our evaluation demonstrates
its effectiveness across models, datasets, and hardware configurations.

5.4 Implementation

Figure 5.6 shows PipeDream’s high-level workflow. PipeDream first profiles the model on a
single GPU with a subset of inputs from the training dataset. It then runs the optimization
algorithm described in Section 5.3.1 to partition the DNN model into stages, with some
stages possibly replicated. The PipeDream runtime then assigns each stage (including
replicas for replicated stages) to a single worker, according to its 1F1B-RR schedule.

The interface to PipeDream is implemented as a Python library that manages device
memory, schedules work, and handles communication. The current implementation is
integrated with PyTorch [6]. However, PipeDream is extensible and can work with other
ML frameworks such as Tensorflow [8], MXNet [22], and CNTK [83]. As a proof of concept,
we also integrated PipeDream with Caffe [59].

5In our experiments, we find that the impact of vertical sync is negligible. PipeDream’s default semantics
exclude vertical sync as it requires more metadata to be stored at every stage in the pipeline.

70

Parameter State. For each stage, PipeDream maintains all parameters associated with
the layers assigned to the stage directly in GPU memory. If the stage is not replicated,
PipeDream applies the updates to the most recent parameter version when the weight
update becomes available. If the stage is replicated, the weight updates are synchronized
across replicas prior to being applied. When a newer version of the parameters becomes
available, the prior version is not immediately discarded. Parameters are discarded only
once a backward pass that uses fresher parameters is performed.

Intermediate State. Each stage’s input and output data is assigned a unique blob ID.
Upon receiving intermediate data from the prior stage (or from disk in the case of the input
stage), PipeDream copies the intermediate data to GPU memory and places a pointer to the
associated buffer in a work queue. Intermediate data from the forward pass is not discarded
until the associated minibatch completes that stage’s backward pass. Intermediate data
from the backward pass is freed as soon as the worker finishes using it, and if necessary,
after it is sent to the next stage.

Stage Replication. PipeDream uses PyTorch’s Distributed-

DataParallel library [7] to synchronize parameters for layers of data-parallel stages. Using
wait-free back propagation, weight gradients are communicated to servers as soon as they
are computed, rather than waiting for computation to finish for all layers. Because we
support replication of individual stages, data-parallel training can be thought of as a special
case in our framework – we represent this as a single stage that contains all the layers of
the DNN model, and replicate the stage across all available GPUs.

All inter-GPU communication in PipeDream, both in data-parallel and pipeline-parallel
settings, uses Gloo [5].

Checkpointing. PipeDream supports periodic checkpointing of model parameters for
fault-tolerance, with default checkpointing across stages at the end of every epoch. Check-
points don’t require expensive global coordination; each stage dumps its model parameters
locally when it performs the backward pass for the last minibatch in an epoch. Restarting
a failed training run due to a failure entails starting from the last epoch successfully
checkpointed by all the stages.

5.5 Evaluation

This section evaluates the effectiveness of PipeDream for seven different DNNs on three
different clusters. The results of our experiments support a number of important findings:
1) PipeDream achieves significant speed-ups in time-to-target-accuracy across a wide
range of different learning tasks on different hardware deployments, 2) PipeDream is
more efficient than other recently proposed inter-batch approaches, 3) PipeDream greatly
reduces overheads of communication and does not significantly increase memory footprint
compared to data-parallel training, and 4) combining pipelining, model parallelism, and

71

Task Model # Servers × # GPUs PipeDream PipeDream
per server (Cluster) Config speedup over DP

Image Classification

VGG-16 [89]
1x4 (A) 3-1 2.14×
4x4 (A) 12-1 4.78×
2x8 (B) 15-1 4.33×

ResNet-50 [52]
4x4 (A) 8 1×
2x8 (B) 8 1×

AlexNet [65]
1x4 (A) 3-1 3.4×
4x4 (A) 12-1 4.62×
2x8 (B) 15-1 2.70×

Translation

GNMT-16 [104]
1x4 (A) Straight 3.45×
4x4 (A) Straight 2.91×
2x8 (B) Straight 2.62×

GNMT-8 [104]
1x4 (A) Straight 3.26×
4x4 (A) Straight 2.67×
2x8 (B) Straight 2.14×

Language Modeling AWD LM [73] 1x4 (A) Straight 4.25×
Video Captioning S2VT [100] 4x1 (C) 2-1-1 3.01×

Table 5.1: Summary of results comparing PipeDream with data parallelism (DP) when
training models to advertised final accuracy. A PipeDream config of “2-1-1” means the
model is split into three stages with the first stage replicated across 2 workers, and a
“straight“ configuration is a pipeline with no replicated stages—e.g., “1-1-1-1” on 4 workers.
Batch sizes used to train these models are reported in Sec. 5.5.1.

Cluster Server SKU GPUs per server Interconnects
name Intra-, Inter-server

Cluster-A Azure NC24 v3 4x V100 PCIe, 10 Gbps
Cluster-B AWS p3.16xlarge 8x V100 NVLink, 25 Gbps
Cluster-C Private Cluster 1 Titan X N/A, 40 Gbps

Table 5.2: Characteristics of servers used for evaluation.

data parallelism performs significantly better than using model-, data-, or hybrid-parallelism
in isolation.

5.5.1 Experimental Setup

Clusters. We use three different clusters in our experiments, summarized in Table 5.2.
Cluster-A has servers with 4 NVIDIA V100 GPUs each (Microsoft Azure NCv3 instances),
with 16 GB of GPU device memory, and a 10 Gbps Ethernet interface. Cluster-B has
servers with 8 V100s each (AWS EC2 p3.16xlarge instances), with 16 GB of GPU device

72

memory, and a 25 Gbps Ethernet interface. GPUs within servers are connected via a
shared PCIe interconnect on Cluster-A, and via point-to-point NVLink on Cluster-B. All
servers run 64-bit Ubuntu 16.04 with CUDA toolkit 10.0 and cuDNN v7.4. Cluster-C has
servers with 1 NVIDIA Titan X GPU and 12 GB of GPU device memory, connected via
40 Gbps Ethernet. Unless otherwise stated, all our experiments are run on multi-GPU
servers (Cluster-A and Cluster-B).

Batch Sizes and Training Methodology. We use the largest per-GPU minibatch
that fits in one GPU’s memory – anything larger yields out-of-memory exceptions. This
ensures that we hit peak achievable FLOPs on a single device. Unless otherwise stated,
we report per-GPU minibatch sizes (G); for data-parallel runs with n workers, the global
minibatch size (BS) is n×G. The global minibatch sizes we use are consistent with those
used by the ML community and reported in the literature for these models. We use a
per-GPU minibatch size of 64 per GPU for VGG-16, 256 for AlexNet, 128 for ResNet-50
(e.g., BS = 1024 for 8 GPUs), 64 for GNMT, 80 for S2VT, and batch size of 80 for LM. We
train the VGG-16, ResNet-50, Language Modeling, and S2VT models using SGD with an
initial learning rate of 0.01, 0.1, 30.0, and 0.01 respectively. For GNMT, we use the Adam
optimizer [62] with an initial learning rate of 0.0003.

For all experiments (other than AlexNet), we measure the time taken to train to a
target accuracy: top-1 accuracy of 68% for VGG-16, top-1 accuracy of 75.9% for ResNet-50,
BLEU score of 21.8 for GNMT, a validation perplexity of 98 for LM, and a METEOR [35]
score of 0.294 for S2VT. Guided by prior work, we adjust the learning rate during training
to converge to the desired result faster [90, 62] and adjust initial learning rate and utilize
learning rate warm-up for large global batch sizes [45]. For AlexNet, we use synthetic data
(otherwise, data loading is the bottleneck) and measure throughput.

5.5.2 Comparison to Data Parallelism

Table 5.1 summarizes results comparing PipeDream with data-parallel training (DP). The
table shows PipeDream’s auto-generated configurations and their speedups in training
time-to-accuracy over corresponding data-parallel training configurations.

PipeDream Configurations. As described in Section 5.3.1, given a DNN model and a
set of servers, PipeDream’s optimizer automatically chooses to partition the model into
stages, while also deciding the optimal replication factor for each stage. Although most prior
research has focused on improving data-parallel training, our results indicate that the best
configurations for many models is not data parallelism despite the use of many important
optimizations such as wait-free back propagation. In all but one of our experiments, the
best PipeDream configuration combines model parallelism, pipelining, and sometimes data
parallelism; each of these configurations significantly outperform data-parallel training, thus
highlighting the importance of combining inter-batch pipelining with intra-batch parallelism.
PipeDream’s optimizer recommends data parallelism for ResNet-50 because its weight
representations are small and its layer outputs are large.

73

0 20 40 60
Time (hours)

0

50

100

T
op

-1
A

cc
u

ra
cy

(%
)

DP

PipeDream

(a) Cluster-A.

0 10 20 30
Time (hours)

0

50

100

T
op

-1
A

cc
u

ra
cy

(%
)

DP

PipeDream

(b) Cluster-B (Note x-axis difference from Cluster-A).

Figure 5.9: Accuracy vs. time for VGG-16 using 16 GPUs. Each circle or triangle
represents two epochs of training.

74

0 5 10 15 20
Time (hours)

0

20

40

B
L

E
U

S
co

re

DP

PipeDream

(a) Cluster-A.

0.0 2.5 5.0 7.5 10.0
Time (hours)

0

20

40

B
L

E
U

S
co

re

DP

PipeDream

(b) Cluster-B (Note x-axis difference from Cluster-A).

Figure 5.10: Accuracy vs. time for GNMT-16 using 16 GPUs. Each circle or triangle
represents an epoch of training.

Image Classification. We compare PipeDream and DP time-to-accuracy for VGG-16
using 1 and 4 servers in Cluster-A (1x4 (A) and 4x4 (A) in Table 5.1). PipeDream reaches
target accuracy 2.14× faster than DP on a single server. PipeDream reduces communication
by 95% compared to DP. Inter-server communication is slower than GPU-to-GPU intra-
server communication, thus the reduction in communication overhead leads to an even larger
speedup for PipeDream compared to DP as we scale to 4 servers (16 GPUs) – PipeDream
reaches target accuracy 4.78× faster than DP. Figure 5.9 (a) shows this comparison as the
DNN is trained over time. In the 4-server configuration, PipeDream’s optimizer (Sec. 5.3.1)
recommends a 12-1 configuration, achieving the above speedup with 3 fewer workers than
DP! PipeDream makes this choice because the layers within the non-replicated stage contain
a large number of parameters, making a 12-4 configuration ineffective.

Compared to Cluster-A, which has 4 GPUs per server connected via PCIe, Cluster-B
has 8 GPUs per server connected over faster peer-to-peer NVLink interconnects. On 2

75

0 20 40 60
Epoch

0

50

100

T
op

-1
A

cc
u

ra
cy

(%
)

DP (BS=1024)

PipeDream

DP (BS=4096)

DP (BS=8192)

Figure 5.11: Statistical efficiency (accuracy vs. epoch) using LARS (VGG-16, 8 GPUs).

servers on Cluster-B (16 GPUs total), PipeDream reaches target accuracy 4.33× faster
than DP when training VGG-16. Because of the change in hardware topology, PipeDream
chooses to use all 16 GPUs unlike the 12-1 configuration on Cluster-A. Due to the faster
interconnects on Cluster-B, both PipeDream and DP reach target accuracy faster than on
Cluster-A (see Figure 5.9).

For training ResNet-50 on Cluster-A, PipeDream’s partitioning algorithm recommends
data parallel as the optimal configuration (no pipelining or model parallelism). Later, in
Sec. 5.5.5, we show the reason for this recommendation: non data-parallel configurations
incur higher communication overheads than DP for ResNet-50. For AlexNet, we compare
throughput of PipeDream on Cluster-A and Cluster-B. On Cluster-A, PipeDream achieves
a time-per-epoch speedup of 3.4× and 4.62× for 1 and 4 servers, respectively. On Cluster-B,
PipeDream achieves a speedup of 2.7× when using 16 GPUs.

Translation. We show results for the GNMT model with 8 LSTM layers (GNMT-8)
and 16 LSTM layers (GNMT-16). Using 1 server on Cluster-A, PipeDream reaches target
accuracy 3.26× and 3.45× faster than DP for GNMT-8 and GNMT-16, respectively. When
using 4 servers (16 GPUs) on Cluster-A, PipeDream reaches target accuracy 2.67× (GNMT-
8) and 2.91× (GNMT-16) faster than DP. We show in Sec. 5.5.5 that PipeDream significantly
reduces communication compared to DP, thus reducing its time to target accuracy.

On 2 servers (16 GPUs) of Cluster-B, PipeDream reaches target accuracy 2.14× and
2.62× faster than DP. For GNMT, PipeDream chooses a “straight” configuration (no stage
replication). Since PipeDream uses the same configuration on both Cluster-A and Cluster-B
(in contrast to VGG-16), and because DP has less communication overhead when training
on Cluster-B (see faster time to target accuracy in Figure 5.10), the relative speedup for
PipeDream over DP on Cluster-B is lower.

Language Modeling. This model is made up of six LSTM layers that contain a large
number of model parameters (0.41GB), making data-parallel training inefficient. Using

76

0 5 10 15 20
Time (hours)

0

20

40

B
L

E
U

S
co

re

DP

PipeDream

(a) GNMT-16.

0.0 2.5 5.0 7.5 10.0
Time (hours)

0

20

40

B
L

E
U

S
co

re

DP

PipeDream

(b) VGG-16.

Figure 5.12: Accuracy vs. epoch using 16 GPUs on Cluster-B.

a single server on Cluster-A, PipeDream reaches target accuracy 4.25× faster than DP.
PipeDream chooses a “straight” configuration that reduces communication by 88% compared
to DP.

Video Captioning. PipeDream chooses to use a 2-1-1 configuration for the S2VT on
Cluster-C, reducing communication by 85% compared to DP, which in turn allows it to
reach target accuracy 3.01× faster than DP.

Comparison to DP with large minibatches. Recent work has demonstrated that
using large minibatches is effective for training ResNet-50 and AlexNet models, especially
when combined with Layer-wise Adaptive Rate Scaling (LARS). [45, 106, 58]. LARS
uses different learning rates for each layer based on the ratio of the weight norm to the
gradient norm. Large minibatches decrease the frequency of communication, reducing the

77

communication overhead for data parallelism. Figure 5.11 shows 8-server results for data-
parallel training of VGG-16 using LARS and large minibatches on Cluster-C. Minibatches
of 1024 had the fastest time-to-target-accuracy, while minibatches of 4096 and 8192 failed
to reach target accuracy highlighting the lack of generality of such approaches. PipeDream
still reaches target accuracy over 2.4× faster than the fastest data-parallel option (1024
with LARS).

Comparison to Asynchronous Parallelism (ASP). ASP can reduce communication
overhead in data-parallel training. Unlike BSP, which synchronizes parameters after
every minibatch, ASP has no synchronization overheads, and workers use the most recent
parameter data available. The result is often poor statistical efficiency. For example,
when training VGG-16 on 4 Cluster-B servers, ASP data-parallel takes 7.4× longer than
PipeDream to reach a 48% accuracy (when we terminate ASP for taking too long to
converge), even though ASP has minimal communication delays.

Evaluating quality of work. Figure 5.12 shows accuracy vs. epoch for VGG-16 and
GNMT-16 on Cluster-B. We do not show statistical efficiency for other experiments due to
space constraints, but we consistently observe that PipeDream reaches target accuracy in
the same number of epochs as DP.

5.5.3 Comparison to Other Intra-batch Parallelism

This section compares PipeDream to other intra-batch parallelization techniques besides
data parallelism.

Model Parallelism. Figure 5.13(a) compares model parallelism (blue bars), straight
pipelines without replication (green bars), and pipelining with stage replication (red bars).
For all four models, pipelining alone increases throughput by 2.5× or more. For GNMT-8
and GNMT-16, PipeDream’s optimizer chooses not to replicate any stages, resulting in
identical configurations for the green and red bars. For VGG-16 and AlexNet, PipeDream
replicates the first stage, leading to speedups of 18× and 7× compared to model parallelism.

Hybrid Parallelism. Figure 5.13(b) shows that pipelining for a configuration that
combines data and model parallelism (similar to those proposed by Krizhevsky et al. [64]
and FlexFlow [61, 60]) increases throughput by as much as 70%. In running FlexFlow for
AlexNet on Cluster-B (not shown in Figure 5.13(b)), we observe that PipeDream is 1.9×
faster; a speedup due to pipelining over hybrid parallelism.

5.5.4 Comparison to Inter-batch Parallelism

We compare training GNMT-16 using PipeDream and our implementation of GPipe using
16 GPUs on Cluster-A and Cluster-B. GPipe does not provide an algorithm for partitioning
work across stages, so we use the same partitions as PipeDream. GPipe also does not provide

78

VGG-16 AlexNet GNMT-8 GNMT-16
0

5

10

15

20

S
p

ee
d

u
p

co
m

p
ar

ed
to

M
od

el
P

ar
al

le
lis

m Model Parallelism

+ pipelining

+ replication

(a) Model Parallelism.

VGG-16 AlexNet
0

1

2

3

4

S
p

ee
d

u
p

co
m

p
ar

ed
to

H
yb

ri
d

P
ar

al
le

lis
m Hybrid Parallelism

+ pipelining

(b) Hybrid Parallelism.

Figure 5.13: Comparison of PipeDream (red) vs. non-DP intra-batch techniques (blue) for
4-GPU configurations on Cluster-A.

0 2 4 6 8 10
Epoch

0

20

40

B
L

E
U

S
co

re

W/o stashing Stashing

Figure 5.14: Impact of weight stashing on convergence for GNMT-8.

79

0 1 2 3 4 5
Predicted throughput (epochs / hr)

0
1
2
3
4
5

R
ea

l
th

ro
u

gh
p

u
t

(e
p

oc
h

s
/

h
r)

Figure 5.15: Real vs. optimizer’s predicted throughput for VGG-16 with 16 workers. Each
symbol represents a different partioning configuration, including the triangle for vanilla
data-parallelism and the diamond for the optimizer’s selection.

an algorithm for how many items should be permitted into the “pipeline” (pipeline depth).
When we set the pipeline depth to be equivalent to “NOAM” in PipeDream (Sec. 5.3.2),
GPipe experiences 55% and 71% throughput slowdowns compared to PipeDream on Cluster-
A and Cluster-B, respectively. Setting the pipeline depth for GPipe to the largest number
that does not cause an out-of-memory exception, leads to throughput slowdowns of 35%
and 42% on Cluster-A and Cluster-B, respectively. Note that, unlike PipeDream, GPipe
may suffer from reduced statistical efficiency because each weight is updated only when the
pipeline is flushed (Figure 5.3), but we did not explicitly measure this.

5.5.5 Microbenchmarks

We evaluate PipeDream’s optimizer and weight stashing mechanism, as well as its commu-
nication and memory overhead.

Optimizer. Throughout our experiments, we find the optimizer to be quick and effective,
generating optimal training configurations in under 8 seconds. As one example, Figure 5.15
shows real vs. predicted throughputs for various configurations for VGG-16 with 16 workers.
Predicted and real throughputs are strongly linearly correlated, and the optimizer picks the
best configuration among those tested.

Weight Stashing. One of the key components required for performing effective pipeline-
parallel training is weight stashing (Sec. 5.3.3). Figure 5.14 compares PipeDream training
of GNMT-8 on a 4-GPU Cluster-A server with and without weight stashing. When weight
stashing is not used, the training process fails to reach target accuracy, because the backward
pass is performed on a different weight version from the one used in the forward pass. This
leads to incorrect gradient computations, adversely affecting training quality.

80

Stage 0 Stage 1 Stage 2 Stage 3 DP
0

5

10
M

em
or

y
fo

ot
p

ri
nt

(G
B

) VGG-16 GNMT-8 GNMT-16

Figure 5.16: Memory footprint for various 4-GPU configurations in PipeDream. Data
Parallel (DP) overhead is equivalent on all 4 GPUs.

Memory Footprint. Figure 5.16 shows the per-stage memory footprint of PipeDream for
4-stage configurations for three different models. PipeDream’s worst-case memory footprint
is on par with that of data parallelism, even though PipeDream stashes multiple weight
and activation versions. This is because each stage in PipeDream is responsible for only a
fraction of the total number of weights and activations in the model. As PipeDream scales
to include more stages, the memory overheads remain consistent, as discussed in Sec. 5.3.3.

GNMT-8 GNMT-16 VGG-16 ResNet-50
0.00

0.25

0.50

0.75

1.00

B
yt

es
co

m
m

u
n

ic
at

ed
p

er
tr

ai
n

in
g

sa
m

p
le

×108
Best non-DP DP

Figure 5.17: Bytes communicated per training sample by data-parallel (DP) and the best
non-DP configurations for 4 GPUs on Cluster-A.

Communication Overhead. Figure 5.17 shows the amount of communication performed
per training sample by PipeDream dwarfs data-parallel training for GNMT-8, GNMT-16,
and VGG-16. For ResNet-50, the amount of communication for the best non-data-parallel
configuration is higher than the DP configuration, thus explaining why PipeDream’s

81

optimizer chooses to train it using a data-parallel configuration.

0 5 10 15 20
Time (hours)

0

20

40

B
L

E
U

S
co

re

W/o pipelining

Pipelining (2)

Pipelining (4)

Pipelining (7)

(a) Accuracy vs. time.

Stage 0 Stage 1 Stage 2 Stage 3
0

10

20

M
em

or
y

fo
ot

p
ri

nt
(G

B
)

W/o pipelining

Pipelining (2)

Pipelining (4)

Pipelining (7)

(b) Memory overhead.

Figure 5.18: Effect of pipeline depth for GNMT-8 on 4 V100s in Cluster-A on accuracy-vs-
time and memory overhead.

Effect of Pipeline Depth. Figure 5.18 shows the effect of the number of in-progress
minibatches on (a) training time to accuracy and (b) memory overhead for GNMT-8. We
make three observations. 1) Memory footprint with no pipelining is different across stages,
since PipeDream’s optimizer tries to load balance compute and communication, and not
memory footprint (working set still fits comfortably in GPU memory). 2) As the pipeline
depth increases, from 2 to 7, memory footprint increases because the number of weights
and activations that need to be stashed increases proportionally. 3) In our experiments,
a pipeline depths of 4 (NOAM) and 7 give the best time to target accuracy. While the
working set of stages fits in GPU memory (16 GB), if required, pipeline depth can be
decreased to trade time-to-accuracy for reduced memory footprint.

82

5.6 Summary

This chapter presents PipeDream, which uses pipeline-parallelism to address the communica-
tion bandwidth limitations for DNN training. PipeDream uses a combination of pipelining,
model-, and data- parallelism to reduce the communication overheads that can bottleneck
intra-batch parallelism. Our experiments show that PipeDream reduces training by up to
5× or more for seven different DNN models across four different ML tasks compared to
intra-batch parallelism alone.

83

Chapter 6

Conclusion and Future Directions

6.1 Conclusion

This dissertation demonstrates that improvements of 5x or more can be achieved for
training ML tasks in shared computing environments by structuring software frameworks
and work distribution to exploit transient resources and to address performance jitter and
communication bandwidth limitations. To do so, it presents three case study systems.

First, we designed FlexRR, a system that addresses the straggler problem for iterative
convergent data-parallel ML. By integrating flexible consistency bounds with temporary
peer-to-peer work reassignment, FlexRR successfully avoids having unhindered workers
wait for workers experiencing slowdowns. Experiments with real ML applications under
a variety of naturally-occurring and synthetic straggler behaviors confirm that FlexRR
achieves near-ideal performance. On Amazon EC2 and Microsoft Azure, with their inherent
variability (no injected delays), this results in 15–56% reduction in runtimes, on average,
over SSP and BSP. Experiments with various synthetic straggler patterns confirm that
FlexRR consistently mitigates stragglers, resulting in up to 5–10× improvement over BSP
and SSP in extreme cases.

Second, we designed Proteus, a system that aggressively exploits transient revocable
machines to complete ML model training faster and cheaper. For example, by exploiting
the EC2’s spot market, Proteus saves ≈85% compared to using only on-demand machines.
By combining non-transient (e.g., on-demand) and transient (spot) machines, Proteus can
rapidly and efficiently incorporate transient resources and deal with revocations. Combined
with its aggressive allocation strategy, Proteus saves ≈50% compared to a state-of-the-art
checkpointing-based approach using a standard spot market bidding strategy.

Third, we designed PipeDream, a distributed training system designed specifically for
training Deep Neural Network models. PipeDream uses pipeline-parallel training, which
addresses the communication overheads that can bottleneck data-parallel training of large
DNNs. PipeDream automatically partitions and aggressively pipelines DNN training across
worker machines. Compared to state-of-the-art intra-batch parallelization approaches,
PipeDream is up to 5× or more faster in “time to target accuracy” for experiments with
seven different DNNs on three different clusters.

84

6.2 Future Directions

This section discusses several future research directions for applying or extending the work
described in this dissertation.

6.2.1 Combining FlexRR, Proteus, and PipeDream

The three case studies presented in this dissertation all address different challenges that
arise in shared computing environments. An interesting continuation would explore how
to effectively combine the solutions proposed into a single general solution and evaluate
the aggregate benefits. For example, combining FlexRR and Proteus would improve
performance as we found that using tiers of reliability in Proteus (Sec. 4.2.2) introduced
stragglers into the training process.

6.2.2 Automatic Stage Transitions in Proteus

Section 4.2.3 presents the mechanisms used by Proteus to transition between different stages
depending on the ratio of transient to reliable resources. Currently, the stage transitions
are performed based on ratios that we observed from our experiments specifically targeted
at our workloads. However, as the hardware and workload characteristics change, it is likely
that the optimal transition ratios will also change. Instead of performing manual profiling,
a future direction of research could explore how to design an automated mechanism for
triggering stage transitions. One possible approach could be to monitor network traffic on
the on-demand resources (which are the first to become bottle-necked), and trigger stage
transitions when the traffic exceeds or falls below specified thresholds.

6.2.3 Pipeline Parallelism with Heterogeneous Resources

Chapter 5 shows that pipeline-parallelism can provide significant improvements in training
of deep learning models compared to model and data-parallelism. All of our experiments
were performed on a homogeneous set of resources. However, pipeline parallelism is more
amenable to a heterogeneous approach than data-parallelism. Two interesting types of
heterogeneity that can be explored in the context of pipeline parallelism are: 1) different
machine sizes with homogeneous compute accelerators (e.g., 1-GPU and 4-GPU machines);
and 2) machines with different types of compute accelerators (e.g., GPUs, TPUs). Using
different machine sizes can be beneficial when there are different levels of replication
amongst the stages in the pipeline. For example, when training the VGG-16 model using
four Machines, with 4-GPUs per machine (Sec 5.5.2), it’s faster to use three 4-GPU machines,
and four 1-GPU machines. Heterogeneity in compute accelerators would allow mapping
computation for different layer types onto the compute accelerators best suited to carry out
the computation.

85

6.2.4 Operator Level Partitioning for Pipeline Parallelism

Section 5.3.1 presents the optimizer that is used to partition the DNN computation across
the compute resources available to PipeDream. Currently, it only considers partitioning at
the granularity of the DNN layers. Within each layer, there typically is a large number of
mathematical operations (e.g., matrix-multiply) that could also be partitioned to different
devices [61]. Finer-grained partitioning at the operator level would potentially allow
PipeDream to distribute computation more evenly amongst the compute resources, further
reduce communication, and efficiently scale to larger resource footprints. Finer-grained
partitioning would also significantly increase the computational complexity of the problem
being solved by PipeDream’s partitioning algorithm.

6.2.5 Scheduling ML Training in Hybrid Clouds

Although not strictly a continuation of the three case studies, another future research
area is at the intersection of ML and hybrid clouds. As cloud computing has increased
in popularity, many users have begun using hybrid cloud configurations. Hybrid clouds
are a combination of private and public computing resources (e.g., combination of private
company cluster and AWS EC2). When scheduling machine learning training jobs in a
hybrid cloud, there are several important factors that need to be considered including
hardware requirements, dataset location and size, dataset privacy (can the data be stored
on a public cloud), job deadline, and other important factors.

It will be interesting to explore scheduling policies for deciding whether to place ML
training jobs in private or public portions of a hybrid cloud. Policies that prioritize “packing”
the private cloud prior to acquiring public cloud computing resources appear to be most
cost-efficient. Scenarios where incoming jobs with datasets that are not permitted to be
run on public clouds arrive once the private cloud is already full, however, could potentially
cause such policies to have overheads from migrating jobs to public clouds and/or increased
job-completion time. Additionally, public cloud providers could have higher-grade hardware
availability (e.g., newer GPUs) than private clouds, which should also impact scheduling
decisions. Research questions regarding designing such a system include:
• Success Metrics. The first research question that would need to be answered is

what the success metric should be defined as for a hybrid cloud scheduler designed
specifically for ML training. Possible metrics include total cost, job utility, private
cluster utilization. It is likely that the correct solution would be to allow users to
tweak parameters that dictate the success metric.

• Resource Allocation. Once a success metric is defined, a system for job placement
in both static and elastic settings will need to be designed. In static settings, where
the user specifies amount of resources to be allocated to a job, the scheduler will
need to decide whether to place the job in the private or public portion of the cloud.
In elastic settings, the scheduler will additionally need to determine the amount of
resources to allocate to each job.

86

Bibliography

[1] AWS EC2. http://aws.amazon.com/ec2/.

[2] Google Compute Engine. https://cloud.google.com/compute/.

[3] New York Times dataset. http://www.ldc.upenn.edu/.

[4] Spot Bid Advisor. https://aws.amazon.com/ec2/spot/bid-advisor/.

[5] Gloo. https://github.com/facebookincubator/gloo, 2018.

[6] Pytorch. https://github.com/pytorch/pytorch, 2018.

[7] Pytorch ddp. https://pytorch.org/docs/stable/_modules/torch/nn/

parallel/distributed.html, 2018.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), pages 265–283, GA,
2016.

[9] U. A. Acar, A. Chargueraud, and M. Rainey. Scheduling parallel programs by work
stealing with private deques. In Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, pages 219–228. ACM,
2013.

[10] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir. Deconstructing
Amazon EC2 spot instance pricing. ACM Transactions on Economics and Computa-
tion, 1(3):16, 2013.

[11] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and A. J. Smola. Scalable
inference in latent variable models. In WSDM, pages 123–132, 2012.

[12] J. Albrecht, C. Tuttle, A. C. Snoeren, and A. Vahdat. Loose synchronization for
large-scale networked systems. In USENIX Annual Tech, 2006.

[13] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler
mitigation: Attack of the clones. In NSDI’13, pages 185–198, 2013.

[14] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the outliers in map-reduce clusters using Mantri. In Proceedings
of the 9th USENIX conference on Operating systems design and implementation,
OSDI’10, pages 1–16. USENIX Association, 2010.

87

http://aws.amazon.com/ec2/
https://cloud.google.com/compute/
http://www.ldc.upenn.edu/
https://aws.amazon.com/ec2/spot/bid-advisor/
https://github.com/facebookincubator/gloo
https://github.com/pytorch/pytorch
https://pytorch.org/docs/stable/_modules/torch/nn/parallel/distributed.html
https://pytorch.org/docs/stable/_modules/torch/nn/parallel/distributed.html

[15] Apache Hadoop. http://hadoop.apache.org/.

[16] Baidu Inc. Bringing HPC Techniques to Deep Learning, 2017.

[17] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The Influence of Operating Systems
on the Performance of Collective Operations at Extreme Scale. In IEEE International
Conference on Cluster Computing, pages 1–12, 2006.

[18] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[19] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. JACM, 46(5):720–748, 1999.

[20] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in
neural information processing systems, pages 161–168, 2008.

[21] D. L. Chen and W. B. Dolan. Collecting highly parallel data for paraphrase evaluation.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 190–200. Association for
Computational Linguistics, 2011.

[22] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

[23] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide. Pipelined Back-propagation for
Context-dependent Deep Neural Networks. In Interspeech, 2012.

[24] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building
an efficient and scalable deep learning training system. In OSDI, volume 14, pages
571–582, 2014.

[25] J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson, K. Keeton, and E. Xing.
Solving the straggler problem with bounded staleness. In USENIX conference on Hot
topics in operating systems (HotOS), 2013.

[26] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao, J. Zhang, P. Bailis, K. Oluko-
tun, C. Re, and M. Zaharia. Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. arXiv preprint arXiv:1806.01427, 2018.

[27] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis, K. Oluko-
tun, C. Ré, and M. Zaharia. DAWNBench: An End-to-End Deep Learning Benchmark
and Competition. 2017.

[28] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger,
P. B. Gibbons, et al. Exploiting bounded staleness to speed up big data analytics. In
USENIX Annual Technical Conference, pages 37–48, 2014.

[29] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R.
Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting iterative-ness
for parallel ML computations. In Proceedings of the ACM Symposium on Cloud
Computing, pages 1–14. ACM, 2014.

88

http://hadoop.apache.org/

[30] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. GeePS: Scalable
deep learning on distributed GPUs with a GPU-specialized parameter server. In
Proceedings of the Eleventh European Conference on Computer Systems, page 4. ACM,
2016.

[31] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao.
Reservation-based scheduling: If you’re late don’t blame us! In Proceedings of the
ACM Symposium on Cloud Computing, SOCC’14, pages 2:1–2:14. ACM, 2014.

[32] J. Dean. Achieving rapid response times in large online services. In Berkeley AMPLab
Cloud Seminar, 2012.

[33] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–1231, 2012.

[34] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI, 2004.

[35] M. Denkowski and A. Lavie. Meteor universal: Language specific translation evaluation
for any target language. In Proceedings of the ninth workshop on statistical machine
translation, pages 376–380, 2014.

[36] NVIDIA DGX-1. https://www.nvidia.com/en-us/data-center/dgx-1/.

[37] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha. Scalable
work stealing. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC’09, pages 53:1–53:11. ACM, 2009.

[38] J. Dinan, S. Olivier, G. Sabin, J. Prins, P. Sadayappan, and C.-W. Tseng. Dynamic
load balancing of unbalanced computations using message passing. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pages
1–8, 2007.

[39] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca. Jockey: guaranteed
job latency in data parallel clusters. In Proceedings of the 7th ACM European
conference on Computer Systems, pages 99–112. ACM, 2012.

[40] K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T. Pedretti. The impact of system
design parameters on application noise sensitivity. In Proceedings of the 2010 IEEE
International Conference on Cluster Computing, CLUSTER’10, pages 146–155. IEEE
Computer Society, 2010.

[41] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization
with distributed stochastic gradient descent. In Proceedings of the 17th Conference
on Knowledge Discovery and Data Mining (KDD 11), 2011.

[42] G. Gibson, G. Grider, A. Jacobson, and W. Lloyd. PRObE: A thousand-node
experimental cluster for computer systems research. USENIX; login, 38(3), 2013.

[43] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In Proc. OSDI, 2012.

[44] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

89

https://www.nvidia.com/en-us/data-center/dgx-1/

GraphX: Graph processing in a distributed dataflow framework. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
599–613, 2014.

[45] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch,
Y. Jia, and K. He. Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.
arXiv preprint arXiv:1706.02677, 2017.

[46] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences of the United States of America, 2004.

[47] A. Gupta, B. Acun, O. Sarood, and L. V. Kalé. Towards realizing the potential
of malleable jobs. In Proceedings of the 21st International Conference on High
Performance Computing (HiPC 14), pages 1–10. IEEE, 2014.

[48] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons. Tributary: spot-
dancing for elastic services with latency SLOs. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18), pages 1–14, 2018.

[49] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and
E. P. Xing. Addressing the straggler problem for iterative convergent parallel ML.
In Proceedings of the 7th ACM Symposium on Cloud Computing (SoCC 16), pages
98–111. ACM, 2016.

[50] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger,
and P. Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

[51] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons. Proteus: agile
ML elasticity through tiered reliability in dynamic resource markets. In EuroSys,
pages 589–604, 2017.

[52] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[53] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in the
data center. In NSDI, volume 11, pages 22–22, 2011.

[54] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger,
and E. P. Xing. More effective distributed ml via a stale synchronous parallel parameter
server. In Advances in neural information processing systems, pages 1223–1231, 2013.

[55] Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and Z. Chen. Gpipe:
Efficient training of giant neural networks using pipeline parallelism. arXiv preprint
arXiv:1811.06965, 2018.

[56] Z. Huo, B. Gu, Q. Yang, and H. Huang. Decoupled parallel backpropagation with
convergence guarantee. arXiv preprint arXiv:1804.10574, 2018.

[57] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko. Gist: Efficient
data encoding for deep neural network training. In 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), pages 776–789. IEEE,

90

2018.

[58] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y. Yang, L. Yu,
et al. Highly scalable deep learning training system with mixed-precision: Training
imagenet in four minutes. arXiv preprint arXiv:1807.11205, 2018.

[59] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv
preprint arXiv:1408.5093, 2014.

[60] Z. Jia, S. Lin, C. R. Qi, and A. Aiken. Exploring hidden dimensions in parallelizing
convolutional neural networks. In ICML, 2018.

[61] Z. Jia, M. Zaharia, and A. Aiken. Beyond data and model parallelism for deep neural
networks. arXiv preprint arXiv:1807.05358, 2018.

[62] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[63] E. Krevat, J. Tucek, and G. R. Ganger. Disks are like snowflakes: no two are alike.
In USENIX conference on Hot topics in operating systems (HotOS), 2011.

[64] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

[65] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

[66] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Proceedings of
the 23rd Annual Conference on Neural Information Processing Systems (NIPS 09),
2009.

[67] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter
server. In Proc. OSDI, pages 583–598, 2014.

[68] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed
machine learning with the parameter server. In NIPS, pages 19–27, 2014.

[69] J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regression. In Proceedings of
the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 547–556. ACM, 2009.

[70] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
GraphLab: A new parallel framework for machine learning. In Conference on
Uncertainty in Artificial Intelligence (UAI), 2010.

[71] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed graphlab: A framework for machine learning in the cloud. PVLDB,
5(8):716–727, 2012.

[72] A. Marathe, R. Harris, D. Lowenthal, B. R. De Supinski, B. Rountree, and M. Schulz.
Exploiting redundancy for cost-effective, time-constrained execution of HPC appli-

91

cations on Amazon EC2. In Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing, pages 279–290. ACM, 2014.

[73] S. Merity, N. S. Keskar, and R. Socher. Regularizing and optimizing lstm language
models. arXiv preprint arXiv:1708.02182, 2017.

[74] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural
network based language model. In Eleventh annual conference of the international
speech communication association, 2010.

[75] A. Mirhoseini, H. Pham, Q. Le, M. Norouzi, S. Bengio, B. Steiner, Y. Zhou, N. Kumar,
R. Larsen, and J. Dean. Device placement optimization with reinforcement learning.
2017.

[76] D. Mishkin and J. Matas. All you need is a good init. arXiv preprint arXiv:1511.06422,
2015.

[77] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a
timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 439–455. ACM, 2013.

[78] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer
performance: Achieving optimal performance on the 8,192 processors of ASCI Q.
In Proceedings of the 2003 ACM/IEEE conference on Supercomputing, SC’03, pages
55–55. ACM, 2003.

[79] Power-law distribution. http://en.wikipedia.org/wiki/Power_law.

[80] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In Proceedings of the Third
ACM Symposium on Cloud Computing, page 7. ACM, 2012.

[81] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In Middleware 2001, pages 329–350.
Springer, 2001.

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252, 2015.

[83] F. Seide and A. Agarwal. CNTK: Microsoft’s open-source deep-learning toolkit.
In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pages 2135–2135, New York, NY, USA, 2016.

[84] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[85] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On parallelizability of stochastic
gradient descent for speech dnns. In International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE SPS, May 2014.

[86] H. Seltman. Approximations for E(R
S

) and V(R
S

) for any random variables R and S.
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf.

92

http://en.wikipedia.org/wiki/Power_law
http://www.stat.cmu.edu/~hseltman/files/ratio.pdf

[87] A. Sergeev and M. Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[88] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: Batch-interactive
data-intensive processing on transient servers. In Proceedings of the 11th European
Conference on Computer Systems (EuroSys 16), page 6. ACM, 2016.

[89] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[90] E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin, M. I. Jordan, and T. Kraska.
Automating model search for large scale machine learning. In Proceedings of the Sixth
ACM Symposium on Cloud Computing, pages 368–380. ACM, 2015.

[91] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM
Computer Communication Review, 31(4):149–160, 2001.

[92] S. Subramanya, T. Guo, P. Sharma, D. Irwin, and P. Shenoy. SpotOn: a batch
computing service for the spot market. In Proceedings of the Sixth ACM Symposium
on Cloud Computing (SoCC 15), pages 329–341. ACM, 2015.

[93] S. Tang, J. Yuan, and X.-Y. Li. Towards optimal bidding strategy for Amazon EC2
cloud spot instance. In Proceedings of the 5th IEEE International Conference on
Cloud Computing(CLOUD 12), pages 91–98. IEEE, 2012.

[94] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication
operations in MPICH. The International Journal of High Performance Computing
Applications, 19(1):49–66, 2005.

[95] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch. alsched: Algebraic
scheduling of mixed workloads in heterogeneous clouds. In Proceedings of the Third
ACM Symposium on Cloud Computing, page 25. ACM, 2012.

[96] Uber Technologies Inc. Meet Horovod: Ubers Open Source Distributed Deep Learning
Framework for TensorFlow, 2017.

[97] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8),
Aug. 1990.

[98] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[99] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, , B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache hadoop yarn: Yet another resource negotiator.
In Proceedings of the 4th Annual Symposium on Cloud Computing (SoCC 13), page 5.
ACM, 2013.

[100] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and K. Saenko. Se-
quence to sequence-video to text. In Proceedings of the IEEE international conference
on computer vision, pages 4534–4542, 2015.

93

[101] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-
scale cluster management at Google with Borg. In Proceedings of the 10th European
Conference on Computer Systems (EuroSys 15), page 18. ACM, 2015.

[102] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained linear
coding for image classification. In Proceedings of the Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on, pages 3360–3367. IEEE, 2010.

[103] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson,
and E. P. Xing. Managed communication and consistency for fast data-parallel
iterative analytics. In SoCC, 2015.

[104] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144,
2016.

[105] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,
and Y. Yu. Petuum: A new platform for distributed machine learning on big data. In
Proceedings of the 22th Conference on Knowledge Discovery and Data Mining (KDD
15), pages 1335–1344. ACM, 2015.

[106] Y. You, I. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for imagenet
training. arXiv preprint arXiv:1708.03888, 2017.

[107] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. HotCloud, 10:10–10, 2010.

[108] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
MapReduce performance in heterogeneous environments. In OSDI, 2008.

[109] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie, and
E. P. Xing. Poseidon: An efficient communication architecture for distributed deep
learning on GPU clusters. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), pages 181–193, Santa Clara, CA, 2017. USENIX Association.

[110] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang. How to bid the
cloud. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 71–84. ACM, 2015.

94

	Introduction
	Thesis statement
	Contributions
	Outline

	Background: Data-Parallel ML and Parameter Servers
	Shared Computing Environments
	Transient Resources
	Performance Variation

	Data Parallel ML
	Parameter Server Architecture
	Distributed All-Reduce
	Consistency Models

	Example ML Tasks
	Recommendation Systems
	Image Classification
	Topic Modeling
	Deep Neural Networks (DNN)

	Addressing the Straggler Problem in Iterative Convergent ML
	Prior Approaches Addressing Stragglers
	FlexRR Design & Implementation
	Workers and Execution Management
	Parameter Server for Shared State
	Straggler Mitigation

	RapidReassignment Design
	Worker Groups
	Worker Communication
	RapidReassignment Actions

	Evaluation
	Experimental Setup
	Naturally-occurring Straggler Results
	Slow Worker Pattern Results
	Other Straggler Patterns
	Partial Replication
	Sensitivity Study

	Summary

	Agile ML Elasticity Through Tiered Reliability in Dynamic Resource Markets
	Motivation and Background
	Dynamic Availability of Revocable Resources
	Exploiting Transient Resources for ML

	AgileML Design
	Workers and Execution Management
	Architecture
	Handling Elasticity: Policy and Mechanism

	BidBrain Design
	Formulation
	Resource Acquisition
	Application Compatibility

	Proteus Implementation
	Evaluation
	Experimental Setup
	Cost Savings with Proteus
	Efficiency with AgileML Tiering
	AgileML Scalability
	Efficiency of AgileML Elasticity

	Discussion and Limitations
	Related Work on Exploiting Transient Resources
	Summary

	Generalized Pipeline Parallelism for DNN Training
	Introduction
	Background and Related Work
	Intra-batch Parallelism
	Inter-batch Parallelism
	DNN Model and Hardware Diversity

	Pipeline Parallelism
	Challenge 1: Work Partitioning
	Challenge 2: Work Scheduling
	Challenge 3: Effective Learning

	Implementation
	Evaluation
	Experimental Setup
	Comparison to Data Parallelism
	Comparison to Other Intra-batch Parallelism
	Comparison to Inter-batch Parallelism
	Microbenchmarks

	Summary

	Conclusion and Future Directions
	Conclusion
	Future Directions
	Combining FlexRR, Proteus, and PipeDream
	Automatic Stage Transitions in Proteus
	Pipeline Parallelism with Heterogeneous Resources
	Operator Level Partitioning for Pipeline Parallelism
	Scheduling ML Training in Hybrid Clouds

