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Abstract
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1 Time is of the essence

Monitoring of mechanical and natural systems generates a massive amount of time series data.
For example, data centers collect information about thousands of servers, and meteorologists have
hundreds of years of weather information. In such cases, data is ordered by time, and often it is
critical to obtain query results in near real-time [6, 10]. Consider the case of data center monitoring.
System administrators typically instrument their servers, network, and applications, and collect
information at the granularity of seconds. To detect and alleviate performance anomalies, the
administrator needs to interactively correlate new incoming data with historical observations, and
pinpoint the cause.

Two challenges make it difficult to achieve near real-time response to time series queries. First,
the number of events in a time series can be in the billions, making it difficult to manage and
query data. Twitter collects 170 million time series metrics each minute [6], while Facebook’s Scuba
stores around 70 TB of compressed monitoring data [10]. Even a modest cluster of 100 servers,
instrumented to collect a few metrics per second will generate more than 60 million events per week.
Due to the data size, it is often only cost-effective to store this data on disk, which unfortunately
increases response time when millions of rows have to be scanned during a query. Second, many time
series queries are themselves complex, and involve intricate statistical analysis such as correlation.
These queries can take hours to run on raw data. For example, our experiments show that a single
process may take more than 5 minutes to calculate correlation between two time series with 24
million points. Thus, correlating across hundreds of time series, each representing data from a
server, may take hours.

There are many existing options to store and analyze time series data, including traditional
relational databases (e.g., MySQL [27]), distributed databases (e.g., HP Vertica [7]), systems built
on top of the Hadoop stack (e.g., OpenTSDB [8], HBase [3]), and custom in-memory distributed
systems (e.g., Scuba [10]). These systems overcome the challenge of massive data size by scaling up
or scaling out, essentially relying on more hardware resources to cope with the demands of time series
data. Unfortunately, simply using more hardware resources is insufficient to meet sub-second query
latency requirements for complex time series analyses. Without any domain specific optimization,
complex queries such as correlation and anomaly detection on large time series still take tens of
minutes or more on these systems (Section 5). Although Scuba-like in-memory systems improve
response time by avoiding disks, they are limited by the capacity of the aggregate cluster memory.
In fact, Facebook has been forced to add new machines every 2-3 weeks to keep up with the increase
in data collection [10].

In this paper, we argue that domain-specific ingest-time transformations, such as converting
time series data to the frequency domain and retaining important coefficients, can vastly improve
query latency. These transformations reduce the amount of data that needs to be stored and
processed to answer a query. We describe Aperture, a framework that uses time series specific
transformations to answer queries approximately and in near real-time. Aperture consists of two
components: (1) an ingest module that executes user-defined transformations on batches of input
data, and (2) a query module that uses transformed data to answer queries while meeting an error
bound. Aperture can even process ad-hoc queries (i.e., arbitrary data analysis tasks), by recreating
the original data, when needed, from invertible summaries.

The contributions of the paper are:

• We propose the use of ingest time transformations to summarize time series data, trading
bounded reduction in query accuracy for lower query latency. The transformations vary from
simple sampling techniques to complex wavelet transformations that speed up correlation
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queries. For each, we also capture the sensitivity to error.

• We describe how the ingest time transformations and approximate query processing can be
implemented in an existing database [17]. We modified the ingest phase of the database to
support user defined transformations, and the query phase to use summarized data while
adhering to an error bound.

• We have applied our techniques on three real world use cases. Extensive experiments, on
up to 800 million rows, show that Aperture can reduce query latency by one to four orders
of magnitude, while incurring less than 20% error in accuracy and 10% increase in ingest
overhead.

2 Background

Data scientists want the ability to perform a number of analyses over time series data, ranging from
simple statistics (e.g., average, min, max) to complex calculations like correlations, convolutions
and modeling. In this section, we describe common use cases for time series analysis, highlight
existing approaches and articulate the goals that Aperture addresses.

2.1 Use cases

Time series analysis has many applications. We discuss three real-world use cases below.
Correlation search. An important time series analytics task is to find correlations among

data series. These correlations can be used to understand the relationships between different data
series and to denoise data, predict data, and estimate missing observations. For example, the
effect of server utilization on data center room temperature can be understood by calculating the
correlation between the server utilization data and the room temperature data. In this paper, we
use the commonly employed Pearson correlation coefficient to measure the correlation between two
data series [9]. In the correlation search task, for a given data series we need to identify all data
series in a collection that are significantly correlated with it.

Anomaly detection. Time series analysis is also used to detect anomalies. To detect
anomalies, system administrators first train a model on historical data, and then apply the model
on each incoming data point. If a data point does not fit well into the model, the event is flagged as
an anomaly.

Monitoring event occurrences. Another common operation on time series data is to
summarize the number of times that a certain event happens in a log. For example, many security
monitoring tools log events such as time of login and source IP address. A system administrator
can then use techniques such as counting the occurrence of an IP address visiting their web service
to detect anomalies, and hence security attacks.

2.2 Related work

Prior approaches for analyzing time series data differ along several dimensions, including the
complexity of the supported analyses and queries, whether queries operate on recent data or
historical data (or both), and whether queries provide approximate or precise results. Existing
database systems, such as HP’s Vertica [7] and OpenTSDB [8], are good at managing large amounts
of data efficiently, but usually provide only limited (if any) support for complex time series analytics.
As a result, practitioners often resort to a combination of tools, including SQL queries and Matlab-
like statistical software or other scripts, with the data residing in a database or distributed file
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system. Many systems focus on near-real-time analytics on recent data (e.g., Facebook’s Scuba [10])
or on streaming data (e.g., Apache Storm [4] and Spark Streaming [29]), rather than permitting
analysis of historical data. Conversely, other systems (e.g., Cypress [24]) focus on rich time series
analytics for historical data without providing quick insight into recent data. Related work describes
techniques for approximate queries that permit tradeoffs between query accuracy and performance
(e.g., BlinkDB [12]) and systems that store data in compressed representations that enable limited
queries directly to the compressed format (e.g., Succinct [11]). In this section, we describe several
key systems in more detail.

HP’s Vertica database provides support for “live aggregate projections” [7], which pre-calculate
aggregate functions (e.g., sum, count, min, max, average, top-k) when raw data is initially loaded,
and then maintain the aggregate functions as new data is subsequently loaded. Aggregate queries
to the pre-computed projection are faster than scanning the underlying table and computing the
aggregate at query time. Live aggregate projections provide statistics only for all observed data,
rather than permitting queries on a subset of the data. To date, live aggregation doesn’t support
more complex transformations.

Facebook’s Scuba [10] is a distributed in-memory database used for interactive, ad hoc analyses
over live data. Scuba provides a SQL query interface for aggregation (e.g., count, min, max,
histogram) and grouping queries, as well as a GUI that produces time series graphs and other data
visualizations. Scuba, which is intended for queries over recent data (a few hours to a few weeks),
stores compressed and sub-sampled data in the memory of a cluster of machines; as new data enters
the system, older data is aged out, limiting the history that can be queried.

Cypress [24], a framework for archiving and querying historical time series data, decomposes
time series to obtain sparse representations in various domains (e.g., frequency and time domains),
which can be archived with reduced storage space. Cypress captures high-level trends of signals
using FFTs and downsampling in low-frequency trickles, abrupt events in spike trickles, and random
projections (sketches) that preserve inter-signal correlations in high-frequency trickles. Cypress
supports statistical trend, histogram and correlation queries directly from the compressed data.
Unlike Scuba, Cypress is focused on efficiently archiving data, rather than on the analysis of recent
data.

BlinkDB [12] is a distributed approximate query engine for running interactive SQL-based
aggregation queries; it allows users to trade off query accuracy for response time, by running queries
on data samples. Multiple stratified samples are created based on several criteria, including data
distribution, query history and the storage overhead of the samples. At query time, BlinkDB uses
error-latency profiles to estimate a query’s error and response time on each available sample; a
heuristic then selects the most appropriate sample to meet the query’s goals. BlinkDB focuses on
constructing and using samples over stored datasets, rather than on maintaining such samples in
the face of dynamically changing datasets, as required in time series analytics.

Succinct [11] stores data using an entropy-compressed representation that allows random access
and natively supports count, search, range and wildcard queries without requiring a full data scan.
Although not specifically targeted at time series data, this approach is similar in spirit to Aperture,
as the compressed representation permits a larger memory-resident data size and speeds queries,
due to the ability to directly query the compressed representation. Succinct does not provide an
extensible framework for different summarization techniques to enable a wide range of statistical
queries.
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Figure 1: Ingest-time processing and query-time processing. Three transformation outputs are
generated from the raw data. FreqDomainTransform is chained after DataCleanse.

2.3 Goals

Our goal is to support rich time series analytics, including methods to address the case studies
described above, for both recent and historical data. Queries should provide interactive response
times, and their answers should have acceptable accuracy. The costs of maintaining any additional
data representations to answer queries should be low.

There is a tension between processing the raw data in its entirety to provide exact (i.e., non-
approximate) answers and the cost of reading and processing all data, especially when queries
include historical data. To sidestep this tension, our methodology should permit compaction of
the raw input data, so that less data needs to be read and processed at query time. Ideally, this
compaction would provide lossless summarization, but the types of analyses we target may tolerate
approximate answers, opening the door to a variety of domain-specific analysis techniques with
tunable accuracy-overhead trade-offs. Additional benefit is possible if the act of compacting the
data would provide some useful proactive analysis of the data, to save effort at query time.

In order for this approach to be viable, maintaining the compact representation should require
only minimal additional overhead beyond the baseline ingestion of the raw data. Because time
series data is logically append-only (i.e., only adding new data, rather than updating old data), this
overhead reduction may be achievable through analyses that can be incrementally performed on the
latest incoming data, without requiring re-computation over the data in its entirety. We describe
our approach, Aperture, in Section 3, and we discuss our implementation of Aperture as well as
alternative implementation options in Section 4.

3 Aperture

The Aperture approach uses time series specific data transformations to reduce query response
time. Figure 1 shows the different components of the system. The ingest module applies different
data transformations on raw input to create summaries, in a per-window basis. Aperture supports
multiple transformations on the same input, and it supports chained transformations. The query
module utilizes data transformation by translating queries on the raw data into those on the
transformed data.
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Example. Consider the example of data center monitoring. Data centers can easily generate
100s of gigabytes of monitoring data each day. However, if we assume that the core characteristics of
the data changes slowly, we can use downsampling to reduce the number of events that are retained
for query processing. A simple example of downsampling is to retain every 10th item of the input.
This downsampling technique will reduce the data to one-tenth of the original. Of course, such naive
sampling may impact accuracy, and in Section 5.1 we describe sophisticated transformations that
vastly improve upon downsampling. In addition, Aperture allows us to retain multiple transformed
versions of the same data. For example, we can retain data downsampled to both one-twentieth and
one-tenth of the input. Different transformations on the same data allow the user to trade off query
accuracy for performance.

This section describes the design of Aperture, including its ingest-time data transformations
and query processing using transformed data.

3.1 Data model and assumptions

Aperture stores data as sorted rows in tables. Each table has a schema that defines the fields of
each row. Each row can contain any number of key fields for sorting and any number of data fields.

While a row can have arbitrary number of fields, we encourage users to define their table schema
as narrow tables, such as the OpenTSDB [8] table format: {metric, tags, time, value}, where
value is the only data field. This narrow table format reduces data access overhead by ensuring
queries read only the metrics that are needed to answer them.

Clients upload data to Aperture in upload batches. Each upload batch often represents a group
of data in a new time range, instead of updates to old data.

3.2 Ingest-time processing design

This section describes the design of ingest-time processing of Aperture. The transformations to be
applied are defined together with the table schemas, and Aperture performs these transformations
when the data is ingested. Aperture transforms each upload batch independently, allowing streaming
processing and parallelism across different batches. For each upload batch, Aperture first sorts
the rows by keys 1 and then applies user defined transformations based on the table schema. The
transformed data are written to the database in output tables as specified. Each transformation
is a mapping from a set of fields of the input table to a set of fields of the output table. After
applying transformations, users can choose to keep or discard the raw data. For example, this
feature can be used to pre-process uploaded data by defining a data cleansing transformation (such
as interpolation), and storing only the cleansed data, while discarding raw data.

In the rest of this subsection, we will describe the important features of Aperture’s transformation
framework that enable efficient timeseries data analyses.

3.2.1 Windowed transformation

A key feature of Aperture is its windowed data transformation. It allows users to divide timeseries
data into windows, and generate one window of transformed data from one window of input.

Dividing transformation windows. Users can specify how the transformation windows are
divided separately for each individual transformation. Aperture assumes that the data of each

1Although the uploaded data is often already ordered by time, we still need to sort the time series of different
metrics by their metric keys.
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window are included in a single upload batch, so that each batch of upload could be processed
independently. 2 We provide two options for users to specify window boundaries.

The window-by-count option groups every k (sorted) rows into one window, where k is the
window size. This option is suitable for transformations that expect a fixed number of rows.

The more sophisticated window-by-value option divides window boundaries based on the key
fields. It requires three parameters: name of the time key (typically time), starting time offset (in
case time does not start from zero), and window granularity. Suppose the table has k key fields
{key1, ..., keyk} and time is the i-th key, using this option, each window will contain rows with the
same {key1, ..., keyi−1, b time−offset

granularity c} keys. This option can be used to group the data in the same
range of time into one window. For example, suppose the table has key fields {metric, server,

time}, and we set the window size to one hour. The window-by-value option will then group the
data of the same metric from the same server on an hourly basis.

Both options have the property that each transformation window is a contiguous range of rows
in the sorted upload batch. As a result, we can feed the windowed data to each transformation
function with only one pass of the data.

Assigning keys to transformed data. Aperture is able to translate queries on raw data to
queries on transformed data. To support this query translation, Aperture provides two options to
generate the keys for the transformed data. Both options will use the key fields of the input table
as the prefix of the transformed table keys.

The copy-from-each option uses the key of the j-th input row as the key prefix for the j-th
output row. This option is suitable for one-to-one transformations.

The copy-from-first option uses the key of the first input row in the transformation window
as the key prefix for all output rows and uses other key fields to distinguish different output rows.
This option is often used in combination with the window-by-value option. Using our previous
example, the input rows with the same {key1, ..., keyi−1, b time−offset

granularity c} keys will be grouped into one
window, and {key1, ..., keyi−1, window start time, other keys} will be the keys of the transformed
rows. For example, if the input table has keys {metric, server, time}, we can use {metric,
server, time, summary-id} as the keys of the transformed table, where time is the window start
time and summary-id distinguishes different summaries.

Both options have the property that a key range r that aligns with the transformation windows
in the input table will be transformed into the same key range in the transformed table. Using
our previous example, when we use a window granularity of one hour, the key range “from
{cpu-util,server0,3am} to {cpu-util,server0,6am}” is transformed into the same key range in
the transformed table. This property simplifies query translation. Also, by assigning row keys this
way, we only need to sort the transformed rows of each window, and rows across different windows
are naturally sorted, eliminating additional sorting work.

3.2.2 Transformation chaining

The design of Aperture allows users to chain multiple transformations together. Transformation
chaining is useful for many timeseries applications. For example, when the collected data has missing
values, one can first perform an interpolate transformation to cleanse data, before doing other
transformations. For each upload batch, Aperture applies the transformations in the order defined
by the users, and the transformation outputs are kept in memory before all transformations are
completed. As a result, the users could chain Transform-B after Transform-A by simply using the
output of Transform-A as its input.

2The window granularity is often much smaller than the upload batch size, making this assumption reasonable.

6



3.2.3 Multiple versions of transformed data

Aperture allows applications to generate multiple transformations from the same input, by simply
defining multiple transformation entries in the table schema. Moreover, Aperture allows users to
define multiple transformations using the same function but different parameters. For example, to
satisfy the accuracy requirements of different queries, users can downsample data with different
downsampling rates and store multiple versions of downsampled data in the database. Users can
use the most suitable transformed data to answer each specific query.

3.3 Transformation examples

We describe the details of our transformation framework using the downsampling example. 3 In this
example, a client uploads server utilization data to the Raw table, which contains three key fields
{metric, server, time} and one data field value. We use Aperture to generate multiple versions
of downsampled data with different downsampling rates. Before downsampling, an interpolate

transformation cleanses the data by interpolating the missing values. Raw data is discarded after
transformation. The table schemas and ingest-time transformations are defined in an XML formatted
schema file. Listing 1 shows the transformation entries for this example.

Listing 1: Example transform entries in a schema file

1 <settings discard -raw:"yes">

2 <!-- Interpolate -->

3 <transform

4 func="interpolate"

5 <!--from 0, for every 3600 time -->

6 window="by_value:time ,0 ,3600"

7 input="Raw:time ,value"

8 app -params=""

9 output="Interpolated:time ,value"

10 keyprefix="first:metric ,server"

11 >

12 <!-- Downsample -->

13 <transform

14 func="downsample"

15 window="by_value:time ,0 ,3600"

16 <!-- chained after interpolate -->

17 input="Interpolated:time ,value"

18 <!-- downsample rate is 8 -->

19 app -params="8"

20 output="Downsample_1:time ,value"

21 keyprefix="first:metric ,server"

22 >

23 <!--Downsample using other params -->

24 ...

Each transform entry defines a transformation on a specific table, including the transformation
function, how windows are created, input and output tables, application-specific parameters, and
how transformed data keys are assigned. In this example, we have one interpolate transformation
and several downsample transformation chained after it.

3This overly simplistic downsampling example is provided to illustrate the features of our framework. Aperture
also supports more sophisticated transformations, as described in Section 5.1.
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The interpolate transformation divides windows by value with parameters {time,0,3600},
which creates hourly windows (e.g., a time window of 3600), starting from time=0. As specified
in the keyprefix option, the metric and server fields of the first input row in the window are
used as the key prefix for the output rows of the same window. The downsample transformation
downsamples the interpolated data with a downsampling rate of 8, as specified as an application
parameter.

The actual transformation functions are implemented as C++ functions in application source
files. Each of these functions implements an interface that takes the input fields and application
parameters as inputs, and writes out the output fields.

3.4 Query processing design

Aperture users write query programs to fetch data and run analyses. Our Aperture query APIs
enable them to easily run efficient analyses on the most suitable transformed data. Users specify
their requirement on data transformations by providing a utility function. Aperture automatically
finds the transformation that yields the highest utility value and fetches the transformed data for
the users.

3.4.1 Query processing procedures

Query processing in Aperture involves choosing which (if any) transformation to use and translating
the query accordingly.

Choosing transformations. Aperture reads the transformation information from the table
schemas at runtime and calculates the utility of each transformation using the provided utility
function. The transformation with the highest utility will be selected. Algorithm 1 gives an example
of answering queries using downsampled data. In this example utility function, a downsampling
rate of 8 is most preferred. Downsampling rates larger than 8 have lower utilities than those less
than 8, meaning that the user prefers only limited downsampling. In our more sophisticated use
cases (described in Section 5.1), the utility function often specifies the error bound requirements.

Algorithm 1 Example query using downsampled data.

1: transform← searchTransform(table, utility)
2: data← requestData(table, keyRange, transform)
3: Defined utility function:
4: function Utility(t)
5: if t.func 6= “downsample” then
6: utility ← 0
7: else if t.downsampleRate > 8 then
8: utility ← 1

t.downsampleRate
9: else

10: utility ← t.downsampleRate
11: end if
12: end function

Translating queries and fetching data. Aperture automatically translates the original
query on raw data into a query on the transformed data based on the chosen transformation. As
described in Section 3.2.1, Aperture’s key assignment strategy simplifies query translation, because
the key range of the transformed data will be the same as the original key range. Aperture then

8



uses the translated query information to fetch the transformed data from the database. If the raw
query is a range query, which is often the case for timeseries data analyses, the translated query will
also be a single range query, allowing efficient data fetching.

Identifying transformation window boundaries. Aperture provides the transformed data
to users with window boundary information. This is also enabled by our key assignment options.
When copy-from-each is used, the keys of the transformed rows are the same as those of the
input rows, and the window boundaries can be identified in the same way as we divide windows at
ingest-time. When copy-from-first is used, the transformed data of the same window will share
the same key prefix (copied from the first input row of the window).

3.4.2 Inverse transformation for ad-hoc queries

In most cases, the transformations are designed such that the query-time data analyses can directly
use the transformed data. However, Aperture can also be used to answer ad-hoc queries (i.e.,
arbitrary data analyses tasks) by reconstructing the original data from transformed data, In
order to do that, users can provide an inverse transform function to Aperture, and Aperture will
automatically reconstruct the original data from the transformed data using that function. This
inverse transformation function does not necessarily need to reconstruct exactly the data ingested.
Instead, we often allow some errors and reconstruct data using more compact transformed data to
reduce query latency. For example, as we described in Section 5.4, we can use a wavelet transform
to generate a compact representation of the timeseries data, and at query-time, we reconstruct the
data to answer any queries with bounded errors.

4 Implementation

We have created a prototype of Aperture by extending an existing database system called Lazy-
Base [17]. In LazyBase, the uploaded data is processed through an ingest pipeline which consists of
three stages: receive, sort, and merge. The receive stage collects client uploads and makes them
durable. The sort stage orders rows in each batch by their keys, and the merge stage merges newly
ingested updates with the existing data. Each upload batch is the granularity of transactional (e.g.,
ACID) properties throughout the database. The three stages are run by different worker processes
in parallel. The intermediate results, as well the final output tables, are stored in the file system as
DataSeries [13] files, a compressed record storage format. For read-only queries, LazyBase provides
snapshot isolation, where all reads in a query will see a consistent snapshot of the database, as of
the time that the query started.

We implemented Aperture’s ingest-time transformation framework by modifying the sort

stage of the LazyBase ingest pipeline, as shown in Figure 2. The modified sort+transform stage
first sorts each upload batch and then applies the user defined transformations. Transformation
windows are divided based on the specified window options. The transformed data is written
together with the sorted raw data (if not discarded) as the output of this stage. We implemented
the query processing module of Aperture by adding a layer above LazyBase’s query library to select
transformations, translate queries, and partition data windows.

Alternative implementation options. Aperture can be implemented in a variety of software
infrastructures. One option is a relational database that supports materialized views and user-defined
functions (UDFs) that can be incrementally evaluated on newly added data (e.g., something akin
to Vertica’s live aggregation projections, but with the addition of UDFs). The ingest phase of
the system would perform data transformations, and the query engine could be extended to use
transformed data. Such a system would look similar to our prototype on LazyBase.
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Figure 2: Aperture ingest pipeline.

Aperture could also be implemented in new scale-out systems, such as a deployment of Hive [25]
or HBase [19] that receives streaming data from Storm [26]. In such a deployment, Storm would
perform ingest time transformations, while Hive could be modified to use transformed data to answer
queries. Users would be able to add new data transformations by writing a new Storm program.

5 Case studies and evaluation

We use three real-world use cases to evaluate the benefits of Aperture. Our results show that: (1)
using transformations and approximate query processing can reduce query response time by one to
four orders of magnitude, (2) the overheads of calculating transformations have minimal impact
on the ingest throughput of the database, and (3) the transformed data is small enough that it is
practical to maintain different versions of transformed data and trade accuracy for performance.

Experimental setup. Our experiments use a cluster of HP ProLiant DL580 machines, each
with 60 Xeon E7-4890 @2.80GHz cores, 1.5 TB RAM, running Fedora 19. They are connected
via a 10 Gigabit Ethernet. We use one machine for the case study experiments from Section 5.1
to Section 5.4, emphasizing the performance improvement from ingest-time transformations. For
these experiments, we configured Aperture to launch one database worker (a process with one
worker thread and several I/O threads) for each of the three pipeline stages on each machine. We
use a separate client process to upload data in multiple batches. In Section 5.5, we examine the
scalability of Aperture by adding more machines and having more clients uploading or querying
data simultaneously.

The raw input data as well as the internal database files are stored in the in-memory file
system. The large-memory machines allow us to keep all data in memory, thus demonstrating the
benefits of Aperture over an ideal baseline that does not need to use disks. Otherwise, only the
compact transformations of Aperture would fit in-memory and the baseline (because of the lack of
transformations and large data size) would be penalized for accessing disk. We describe datasets
used in the corresponding use case sections. In the case of multiple machines, the intermediate
database files are exchanged between workers via network sockets.

Experimental methodology. For the query latency numbers, we run each query three times
and use the median latency as the result, showing the minimum and maximum latencies using error
bars.
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5.1 Correlation search

The correlation search task identifies similarities among data series by measuring their correlation.
We use the Pearson correlation coefficient to measure the correlation. Given two data series x and y
each of size N , their Pearson correlation coefficient is given by:

corr(x, y) =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2

√∑N
i=1 (yi − ȳ)2

(1)

where xi and yi represent the i-th value in the data series x and y respectively, and x̄ and ȳ
are the mean values of x and y respectively. The correlation coefficient takes values in the range
of [−1, 1], and a larger absolute value indicates a greater degree of dependence between x and y.
It is common in analytics applications to apply a threshold to the correlation coefficient to decide
whether two data series are significantly correlated. In the correlation search task, for a given data
series we need to identify all the data series in a collection that are significantly correlated with it.

The most straightforward way of identifying pairs of correlated data series is to first fetch
the interested data series (sometimes the entire dataset) from the database and then calculate
their pairwise correlations using a local program (such as a C++ program or a Matlab script). To
compute the pairwise correlation of a pair of length N data series requires O(N) computations,
so that if there are k pairs of such data series, the whole computation takes O(Nk) time, which
might be infeasible for large tasks. If it were possible to determine if two data series are likely to be
correlated by performing significantly fewer than O(N) computations, then this task could be sped
up significantly.
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Figure 3: Correlation search results using transformed data vs. using raw data.

Dimension-reduction using Haar wavelet. There are various dimension-reduction tech-
niques that can be used to speed up correlation search tasks, by transforming time series into alternate
more compact representations. These techniques include discrete wavelet transform [15, 28, 20],

11



discrete Fourier transform [30], singular value decomposition [22], and Piecewise Constant Approxi-
mation [21].

All of those techniques can be implemented using our Aperture framework. For this paper,
we implemented and evaluated a specific type of discrete wavelet transform known as the Haar
wavelet transform [5, 16]. Given a time series x, the Haar wavelet transform represents x as a
linear combination of Haar wavelet times series, i.e., x =

∑N
i=1 aiφi, where φ1, φ2, . . . , φN are Haar

wavelets, and the ais are called the wavelet coefficients of the time series x. Given the wavelet
coefficients, one can reconstruct the original time series exactly and therefore this transform is
lossless. Further, given two time series x and y, their correlation can be computed from just their
corresponding wavelet coefficients. The wavelet representation is usually sparse for real world data,
meaning that many of the wavelet coefficients are zero or very small. Therefore, one can obtain a
compact but good approximation of time series by storing only the largest wavelet coefficients and
treating the rest as zero. Such compact representations can be used to obtain good approximations
of the correlation between two time series. We use a transformation error bound parameter to
determine the number of coefficients that need to be stored. 4

Dataset. We evaluate the performance of correlation search with and without transformations
on a public dataset collected by National Climatic Data Center [1], which contains the daily climatic
data collected at their climatic stations around the globe since 1929. We define the schema of
the raw table as {metric, station-name, time, value}, which is similar to the OpenTSDB [8]
schemas. The data we use has 350 million rows in total, with three metrics: temperature, wind
speed, and dew point. We upload the entire dataset to Aperture in 132 batches.

Transformation. In Aperture, we define a wavelet transformation, which uses the window-by-value
option to divide the data of the same {metric, station-name} for every range of granularity
in time into one window. It then calculates the wavelet coefficients of each window and keeps
the necessary coefficients to satisfy the given error bound. In our implementation, the wavelet
coefficients of each window are represented as an array of {coef-id, coef-val} pairs and are
stored as a byte array in a single row of the transformed table.

In this experiment, we generate six wavelet transformations with different window granularities
(1 day and 1 hour) and error bounds (5%, 10%, and 20%). In addition to the Raw data, we use two
downsample transformations as another baseline, with downsampling rates of 4 and 8. The original
raw data has missing values, so we use an interpolate transformation to cleanse the data before
wavelet and downsample are applied. The raw data is discarded after being transformed, and the
Raw bars in Figure 3 refers to the interpolated data.

Results. Each test query compares 10 years of temperature data collected at one station with
the temperature, wind speed, and dew point data collected at all other stations over the entire
history. It calculates the correlation of all such pairs by sliding the range on a yearly basis (2005 to
2015, 2004 to 2014, and so forth), and reports those pairs with correlations larger than 0.8.

Figure 3(a) and Figure 3(b) summarize the sizes of different tables and the latencies to perform
one correlation query. The table size and query latency decrease when larger downsample rates,
larger error bounds, or larger window granularities are used, because of the vast reduction in the
amount of data accessed and processed to answer the query.

Figure 3(c) and Figure 3(d) summarize the accuracies of the query results, in terms of false
negative rates and false positive rates. We randomly picked 5 queries to run and calculate the
mean and standard deviation (shown in error bars) of the accuracies. The error increases when we
use less data to answer the query (larger downsample rates, larger error bounds, or larger window
granularities). Using a wavelet transformation with a window granularity of 1 year and an error

4More details about correlation calculation using wavelet coefficients can be found in Appendix A.
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bound of 20%, for example, Aperture provides a query latency of 8 seconds, which is only 1.7% of
the baseline latency of 484 seconds. The false negative rate and false positive rates are only 3% and
22%, respectively.

The false positives can be eliminated by validating the detected pairs using the raw data. For
the cost of doing such validation, suppose the number of true correlated pairs is nc, the number of all
pairs is n, the false positive rate is fpr, and the time of comparing one pair is traw for raw data and
ttrans for transformed data, the total query time with validation is ttrans×n+ traw ×nc× (1 + fpr),
compared to traw × n using raw data. When ttrans � traw and nc � n, it’s much more efficient
to use the transformed data, and the only errors are false negatives, so it’s more important to
have a low false negative rate. From Figure 3(c), we find the false negative rates of using wavelet

transformations are much lower that those using downsample.
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Figure 4: Aggregated time spent on each pipeline stage for correlation search.

In order to satisfy different query requirements, we calculate and maintain multiple transforma-
tions with different parameters. For example, we need wavelet transformations with a granularity
of one month to answer queries on specific months, but those with a granularity of one year are
more efficient for answering longer ranged queries.

An important question is whether ingest-time transformations limit the throughput of ingesting
data. In our experiments, the total time to ingest all the uploads (350 million rows) without doing
any transformations is 2629 sec (133 thousand rows per second). When we do one interpolate,
two downsample, and six wavelet transformations, the ingest time is 2723 sec (only 4% overhead).
We explain the low overhead by summarizing the time that each ingest pipeline stage spends on
ingesting the data in Figure 4. Recall that the three stages in our ingest pipeline are executed by
separate worker processes, so the total time for the pipeline to finish ingestion mostly depends on
the stage that takes the most time. As shown in the figure, our low ingestion overhead is majorly
because of two reasons. First, the cost of doing all these transformations is quite low, just a little
more than the sorting time, because wavelet transformation is only O(N) complexity. Second, even
with the additional transformation work, the sort+transform stage still spends less time than the
receive stage, meaning that most of the transformation calculation overlaps with data reception.

5.2 Anomaly detection

ARMA model. The anomaly detection task detects anomalous events based on historical observa-
tions. The common approach to doing this is to train a model based on historical data, and then
flag incoming data points as anomalies based on how well the point fits into the model. For example,
the autoregressive moving average (ARMA) model [14] is often used in time series modeling. In this
model, the observation xt at time t is expressed in terms of the past observations and the residual
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errors ε in modeling past observations:

x̂t = c+

p∑
i=1

ϕixt−i +

q∑
i=1

θiεt−i.

Here p is the number of autoregressive terms, and q is the number of moving-average terms.
The residual of xt is defined as its difference from the predicted value εt = xt − x̂t. Conventionally,
to detect anomalies, the data of interest is fetched from the database and then based on the
pre-calculated ARMA model, and points whose residuals exceed a certain threshold are labelled
anomalies. This query can take a long time to run when the data is large, and the ARMA residual
calculation will be redundant when the same query is asked multiple times.
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Figure 5: Temperature data collected at one station with their residuals calculated from the ARMA
model.

Transformation. Instead, we can calculate the ARMA residuals using the arma-res transfor-
mation at the ingest-time. The transformation fits a window of data into a given ARMA model
and writes the residuals as the output. The ARMA model parameters can either be specified as
transformation parameters or be stored as a file in the database server, allowing updating the model
at runtime. In order to reduce the size of the transformed data and improve query performance,
the arma-res transformation takes in a threshold parameter and only writes residuals larger than
threshold as the output.

Dataset and results. We evaluate the anomaly detection use case on the the same climatic
dataset as the correlation search use case. We use the same table schema {metric, station-name,

time, value} and interpolate the raw data in the same way. Before ingesting the data, we train
one ARMA model for each of the metrics for every station, and store the model parameters in
an in-memory file system. Each ARMA model is configured with 2 autoregressive terms and 2
moving-average terms, trained from two years of data. Figure 5 is an example of the residuals
calculated on the temperature data from one station. We define anomalies as the data points with
abs(residuals) > 10, and the testing query asks for all such anomalies. In this experiment, we
generate three arma-residual transformations, with the threshold being 0, 5, and 10 respectively,
and compare their performance with the raw data baseline.

Figure 6 summarizes the sizes of different tables and the latencies of doing the test query using
them. The size of Arma-res-0 is very close to the size of Raw, because we store the residuals of all
data points, so both tables have the same number of rows. However, the latency of the query using
Arma-res-0 is lower than that using Raw, because the query using Raw needs to do the additional
work of calculating the residuals. With larger thresholds used, both the data sizes and the query
latencies drop, because fewer residual rows are kept as the transformed data. The query program can
pick the transformation with the largest residual threshold that satisfies the application requirement.
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Figure 6: Anomaly detection results using transformed data vs. using raw data. Arma-res-0,
Arma-res-5, and Arma-res-10 are transformed data with residual threshold being 0, 5, and 10
respectively.

For example, when we use Arma-res-10 to find all points with residuals larger than 10, there will
be no query error, but the query latency is only 13 seconds, 2.8% of the baseline of 464 seconds.

The ingest time without doing any transformations is still 2629 seconds. With the transformation
performed, the ingest time is 2848 seconds, which is 8% overhead.

5.3 Monitoring event occurrences

In addition to numeric data analysis, we show that Aperture provides orders of magnitudes speed
up for non-numeric data analysis, by presenting the event monitoring use case.

One common approach of detecting anomalous events (e.g., security attacks from an IP address)
is to monitor the occurrences of events in logs. For example, a suspicious burst of visits from one IP
address is likely to be an attack. A natural way of counting events is to upload the log files to a
database and use SQL queries to count the number of times a certain event occurs:

SELECT COUNT(*)

FROM event-log

WHERE ip=‘the-suspicious-ip’

However, this query can take a long time to run if the log contains billions of entries. Instead,
Aperture uses approximate methods, such as count-min sketch [18, 23], to store data in a compact
form, reducing query response time.

Count-min sketch. Mathematically, count-min sketch stores the counts of all items in d
counter arrays {Ci}di=1, each with size n. All counters are initially set to zero. For each incoming
item s, it calculates d hash values {hsi}di=1 using independent hash functions {fi}di=1, and increases
the corresponding hashed counters {Ci[hsi mod n]}di=1 by one. To find the count of a given item
t, it calculates the hash values {hti}di=1, and the result is the minimum count among the hashed

counters
d

min
i=1

Ci[hti mod n]. The count calculated from the sketch is not 100% accurate because of

hash collisions, but is an upper bound to the true count.
Dataset. We evaluate Aperture on a public dataset collected by Measurement Lab [2]. This

dataset is an event log that records the IP addresses visiting the Measurement Lab service. We
used a log with 800 million entries spanning 8 days. We extract the time and IP address fields from
the dataset and make a row schema of {time, IP}. We group log entries in the same day as one
database upload batch, for a total of 8 batches.

Transformation. A count-min-sketch transformation is defined in Aperture with config-
urable number of sketch arrays d and sketch array size n. The transformation windows are created
using the window-by-value option, grouping events in the same time range into one transformation
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Figure 7: Occurrence count results using transformed data vs. using raw data.

window. The sketch of each window is stored as a byte array in a single row in the transformed table.
In this experiment, we generate six count-min-sketch transformations by varying the window size
(1 day and 1 hour) and sketch array length (2048, 4096, and 8192). We set the number of sketch
arrays to 4 for all six transformations.

Results. Figure 7(a) compares the sizes of the transformed data with raw data (in log scale).
Using count-min sketch, the size of each transformed table is less than 0.1% that of the raw table,
so it does not incur significant storage overhead to store multiple versions of transformed data.

To measure the effect on query latency and query accuracy, we use the following workload: each
query requests the total number of occurrences of one IP address over all 8 days. Figure 7(b) shows
the response time of running one such query (in log scale). The query latency is greatly reduced
when we use the transformed data, because of the vast reduction in the amount of data accessed
and processed to answer the query. The query latency increases when smaller window granularities
or longer sketch arrays are used.

Figure 7(c) summarizes the average error of the query results (count of one specific IP). We

consider the query result from the raw data as ground truth, and define query error as |count−true count|
true count .

We randomly pick five different IP addresses to query, and measure the mean and standard deviation
(the error bars in the graph) of the query errors. The results show that the query error decreases
with more data being used (smaller windows or longer sketch arrays). When we use a window size
of one day and a sketch array length of 8192, for example, the query error is only 12%, but the
query latency is reduced from 579 seconds to an impressive 15 milliseconds (40,000× faster). An
error of 12% is totally acceptable for this use case, because one can confidently identify IP addresses
with heavy visits (e.g., more than a thousand times within the last hour) using this approximation.

We also measure the ingestion overhead of calculating the sketches. In our experiments, the
total time to ingest 8 batches (800 million rows, 100 GB in total), without transformations, is
6249 sec (128 thousand rows per second). With six count-min-sketch transformations, the total
ingest time increases only to 6482 sec (4% overhead), Since we have only 8 uploads, we are able to
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Figure 8: Ingest pipeline profiling for the occurrence count use case. This figure shows the amount of
time that each upload batch spends at each pipeline stage, when we generate six count-min-sketch

transformations.
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Figure 9: Correlation search using reconstructed data.

summarize the amount of time that each upload spends at each pipeline stage in Figure 8, justifying
the low ingestion overhead. The receive worker needs about 700 seconds to receive one batch from
the client, while the sort+transform worker needs only about 200 seconds to sort and transform
one batch, which means the sort+transform worker can finish its work before the reception of the
next batch is completed.

5.4 Ad-hoc queries

Aperture can also process ad-hoc queries, i.e., arbitrary data analyses tasks. Whenever a query
cannot be directly answered using transformed data, Aperture can automatically reconstruct original
data from invertible transformations. To demonstrate this flexibility, we run experiments on the
same wavelet transformations and climate dataset which was used in correlation search (Section 5.1).
We execute a query on the full raw data (350 million rows) to calculate an arbitrary analysis. The
wavelet transformations is calculated with a window granularity of 1 year and varying error bounds
(from 5% to 20%).

Results. Figure 9(a) shows query latencies. We compare the time taken to load or re-create
the raw data before the query can run. Raw data can either be fetched directly (green bar) or
reconstructing from the transformed data (yellow bars). Even though reconstructing data from
wavelet coefficients requires inverse wavelet transformation, it is much faster than fetching raw data.
If we allow an error bound of 20%, we can reduce data preparation time from 458 seconds to 9.7
seconds (mere 2% of fetching raw data).

Figure 9(b) shows the error of the reconstructed data compared to using the original raw data.

The error of timeseries a compared to timeseries b is defined as ‖a−b‖‖b‖ . The result show that the

combined error of all windows is close to (often smaller than) the error bound.
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To measure the end-to-end query latency, we run the correlation search query (same as
Section 5.1) on the reconstructed data. Since the reconstructed data is of the same size as the
raw data, the time taken to calculate correlations is same in both cases, as shown by pink bars in
Figure 9(a). After including the cost of calculating correlations, we notice considerable reduction
in the overall query execution time, which decreases from 484 seconds when using raw data to 22
seconds when using reconstructed data. While reconstructing the raw data provides more flexibility,
especially for ad-hoc analysis, it is slower than the case when a query can be directly run on
transformed data (such as Figure 3(b)).

5.5 Scalability experiments

We examine the scalability of Aperture on the same datasets and transformations (one interpolate,
six wavelet, and two downsample) as used in correlation search (Section 5.1). To evaluate perfor-
mance scalability, we let Aperture run on N machines and launch three workers on each of them
(one worker per pipeline stage). The machines are connected with 10 Gigabit Ethernet.

We first measure the scalability of our ingest processing. We duplicate our dataset into N
copies and launch one client on each machine to upload one copy of the data. Each client uploads
data to a separate table, and each table is transformed in the same way as the correlation search
use case described in Section 5.1. This setup simulates the case where the data is uploaded from
multiple sources. We change N from 1 to 4, and measure the ingest throughput of Aperture in
terms of the number of rows ingested/transformed per second. Figure 10(a) shows that Aperture
scales almost linearly with more machines added. For example, we get 3.8× more throughput using
4 machines, because Aperture transforms each batch of uploaded data in parallel.
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Figure 10: Aperture scalability.

We also measure our query processing scalability by having multiple clients doing queries
concurrently. For this experiment, we run Aperture on four machines and change the number of
query clients from 1 to 4. Each client runs on one of the four machines and issues a range query
to fetch all the Raw data from one table. We measure the query throughput by dividing the total
number of fetched rows by the time it takes for all the clients to finish. Figure 10(b) shows the
result. For each setting, we do three runs with clients querying different tables. The markers and
error bars show medians, maximum values, and minimum values. The result shows that the query
throughput scales almost linearly when we run multiple query clients.
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6 Conclusions

In this paper, we present Aperture, a framework that leverages ingest-time transformations to enable
efficient time series analytics queries. Users define transformations on the data, which operate
at ingest time to create succinct summaries of incoming data. At query time, user queries are
automatically translated into queries on the most suitable transformed data.

This approach provides numerous benefits. Ingest-time transformations permit query-time
speedups for important queries, by leveraging the fact that transformation outputs are typically much
smaller than the raw data and that they pre-compute some of the query-time work. Additionally, the
transformation outputs are compact enough that the summaries for many windows can be maintained
in memory, thus avoiding the costs of accessing slow storage at query time, and permitting efficient
queries to a longer history. Transformations can be calculated without significant overhead beyond
the ingestion of untransformed data. Finally, due to the characteristics of many time series metrics,
queries on transformed data often don’t sacrifice query accuracy to obtain good performance.

We demonstrate the benefits of our approach using three case studies: event occurrence
monitoring, correlation search, and anomaly detection. We observe reductions in query latency of
one to four orders of magnitude for transformations with up to 10% ingest overheads and 20% query
error.
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A Wavelet Transform for Correlation

As is discussed in Section 5.1, the wavelet transform decomposes a signal x of length N into the linear
combination of N wavelet basis functions. We denote the wavelet coefficients of x by X = dwt(x).
The wavelet transform is an orthonormal transform, i.e., the inner product of the wavelet basis
functions is 0. Therefore, the inner product of two signals x and y is the same as the inner product
of their wavelet coefficients:

N∑
i=1

xiyi =

N∑
i=1

XiYi (2)

The correlation of two signals x and y can be calculated from their wavelet coefficients. Let
x̃ = x− x̄ and X̃ = dwt(x̃), and likewise for y. Then following (1) and (2), it can be verified that

corr(x, y) =

∑N
i=1 X̃iỸi√∑N

i=1 X̃i
2
√∑N

i=1 Ỹi
2 (3)

we can achieve a compact representation of the signal by retaining only the large wavelet coefficients.
From among the many choices of wavelet basis functions, we use the Haar wavelet [5, 16] in our

paper. The Haar wavelet has a property that for any constant offset c, the wavelet coefficients of x
and x+ c differ only in the first coefficient, which is determined only by the mean and the length of
the signal (Equation 4).

X1 =
√
Nx̄ (4)

Using the above two properties, we can calculate X̃ from X as

X̃i =

{
0 i = 1

Xi i 6= 1
(5)

Using Equation 5 and 3, we can calculate the correlation coefficient of x and y using their Haar
wavelet coefficients X and Y .

Retaining only the large coefficients. Since the wavelet transforms of many real world
signals are sparse, we can approximate the original signal using just a few large coefficients. The
number of retained coefficients is controlled by a transformation error bound parameter. For any set
S ⊆ {1, 2, . . . , N}, let X{S} be the wavelet representation, where only the coefficients corresponding
to indices in S are retained. Formally,

X
{S}
i =

{
Xi i ∈ S
0 else

(6)

The transformation error of X{S} in retaining the coefficients specified by S is

err(X{S}) = 1−
∑N

i=2 (X
{S}
i )2∑N

i=2X
2
i

(7)

For each window of time series data x, the wavelet transformation with an errbound will
retain the minimal number of wavelet coefficients such that err(X{S}) < errbound. The sparse
X{S} vector can be stored as an array of {coef-id, coef-val} pairs in the transformation output.

Combing multiple windows. Our query program can combine the wavelet coefficients of
multiple contiguous windows to answer correlation queries over windows whose length is a multiple
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of the transformation window size. Suppose the transformation window size is N , and the queried
data series x has length KN , consisting of K windows: x = [x(1), ..., x(K)]. The correlation of two
such signals corr(x, y) can be computed from the windowed wavelet coefficients X(j) = dwt(x(j))
and Y (j) = dwt(y(j)). Let x̃ = x− x̄ and x̃(j) = x(j) − x̄(j) The inner product between x̃ and ỹ can
be written as

x̃ · ỹ = N

K∑
j=1

(
X

(j)
1√
N
− x̄

)(
Y

(j)
1√
N
− ȳ

)
+

N∑
j=1

N∑
i=2

X
(j)
i · Y

(j)
i .

We can similarly calculate x̃ · x̃ and ỹ · ỹ and thus the correlation coefficient of x and y.
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