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ABSTRACT
In applications ranging from image search to recommenda-
tion systems, the problem of identifying a set of “similar”
real-valued vectors to a query vector plays a critical role.
However, retrieving these vectors and computing the corre-
sponding similarity scores from a large database is computa-
tionally challenging. Approximate nearest neighbor (ANN)
search relaxes the guarantee of exactness for efficiency by
vector compression and/or by only searching a subset of
database vectors for each query. Searching a larger subset
increases both accuracy and latency. State-of-the-art ANN
approaches use fixed configurations that apply the same
termination condition (the size of subset to search) for all
queries, which leads to undesirably high latency when trying
to achieve the last few percents of accuracy. We find that
due to the index structures and the vector distributions, the
number of database vectors that must be searched to find the
ground-truth nearest neighbor varies widely among queries.
Critically, we further identify that the intermediate search
result after a certain amount of search is an important run-
time feature that indicates how much more search should be
performed.

To achieve a better tradeoff between latency and accuracy,
we propose a novel approach that adaptively determines
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search termination conditions for individual queries. To do
so, we build and train gradient boosting decision tree models
to learn and predict when to stop searching for a certain
query. These models enable us to achieve the same accu-
racy with less total amount of search compared to the fixed
configurations. We apply the learned adaptive early termi-
nation to state-of-the-art ANN approaches, and evaluate the
end-to-end performance on three million to billion-scale
datasets. Compared with fixed configurations, our approach
consistently improves the average end-to-end latency by up
to 7.1 times faster under the same high accuracy targets.
Our approach is open source at github.com/efficient/faiss-
learned-termination.
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1 INTRODUCTION
Finding the top-k nearest neighbors among database vectors
for a query is a key building block to solve problems such
as large-scale image search and information retrieval [36,
40, 45], recommendation [14], entity resolution [27], and
sequence matching [7]. As database size and vector dimen-
sionality increase, exact nearest neighbor search becomes
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expensive and impractical due to latency and memory con-
straints [8, 9, 52]. To reduce the search cost, approximate
nearest neighbor (ANN) search is used, which provides a bet-
ter tradeoff among accuracy, latency, and memory overhead.
ANN search traditionally uses a mixture of compression

and indexing. Code compression shrinks database vectors into
compact codes, either binary [11, 24] or based on various
quantization methods [3, 12, 31, 55]. These techniques can
reduce computation latency and memory requirements by
nearly an order of magnitude. With code compression alone,
however, the search process remains exhaustive. The second
form of approximation, the indexing structure, restricts the
distance evaluation to a subset of elements. State-of-the-art
approaches include inverted file index [4, 6, 31] which groups
database vectors by clusters, and graph-based approaches [1,
16, 19, 41, 42] which perform beam search on proximity
graphs.
The number of the database vectors to search (i.e., the

search termination condition) affects performance: the more
vectors to search, the higher the accuracy (good) and latency
(bad). The optimal termination condition (minimum search
to find the nearest neighbor) for each query is not obvious.
As a result, state-of-the-art indexing approaches use various
fixed configurations to apply the same search termination
condition for all queries. For example, inverted file index
could terminate after searching the top 5 nearest clusters
for each query, and graph-based index could terminate after
searching 100 neighboring graph nodes for each query.
In our study of three datasets, we find that the number

of vectors that must be searched to find the ground-truth
nearest neighbor varies widely among queries: it is possible
to find the nearest neighbor for most queries by searching
a small fraction of the dataset, but the remaining “difficult”
queries require much more searching. For inverted file index,
it is possible to reach 80% accuracy by only searching up to
the top 1.20% nearest clusters, but reaching 95-100% accuracy
requires searching up to the top 16.90% nearest clusters. For
graph-based approaches, 80% accuracy can be obtained by
searching up to 0.13% of total graph nodes, but reaching
95-100% accuracy requires searching up to 11.83% of total
graph nodes. As a result, fixed configurations force 80% of
queries to search an unnecessarily large number of database
vectors, just to cover the remaining 20% “difficult” queries.

Based on the study we argue that it is necessary to apply
different termination conditions for each query. One chal-
lenge is that static features such as the query vector itself
are not sufficient to predict this termination condition. Dur-
ing our feature exploration, we find that runtime features
such as intermediate search results after a certain amount
of search (e.g. when reaching 60-80% accuracy) are effective
in predicting how much more work should be performed
for each individual query. These features enable us to build

prediction models that achieve the same accuracy with less
total amount of search compared to the fixed configurations.
We build and train gradient boosting decision tree mod-

els [17] (using the LightGBM library [34]) to learn and predict
when to stop searching for each query for three indexing ap-
proaches: IVF [31], HNSW [42], and IMI [4]. We implement
our approach over the Faiss similarity search library [33],
and evaluate the end-to-end performance on three million
to billion-scale datasets (DEEP10M & DEEP1B [5], SIFT10M
& SIFT1B [32], and GIST1M [31]).

Without vector compression and for applications targeting
95 to 100% recall-at-1 accuracy, our approach consistently
reduces end-to-end latency vs. using fixed configurations on
three million-scale datasets (DEEP10M, SIFT10M, GIST1M):
For the IVF index, the average latency is reduced by up to
58% (2.4 times speedup); For the HNSW index, the average
latency is reduced by up to 86% (7.1 times speedup).
With OPQ vector compression [22] and for applications

targeting 95 to 100% recall-at-100 accuracy, our approach
consistently reduces end-to-end latency vs. using fixed con-
figurations. For the IVF index+OPQ (DEEP10M, SIFT10M,
GIST1M), the average latency is reduced by up to 52% (2.1
times speedup). For the IMI index+OPQ (DEEP1B, SIFT1B),
the average latency is reduced by up to 59% (2.4 times speedup).
To summarize the key contributions of the paper: 1) We

identify inefficiencies of state-of-the-art ANN indexing ap-
proaches. 2) We propose and develop the learned adaptive
early termination approach with both static and runtime
features. 3) We conduct extensive experiments on various
datasets to verify the effectiveness of our approach.

Section 2 presents the background of the ANN indexing ap-
proaches. Section 3 provides deeper motivation for our work.
Section 4 describes the design of the proposed prediction
models. Section 5 describes the experimental methodology
and reports the results. Section 6 presents the related work.
Section 7 concludes the paper.

2 BACKGROUND
In this section, we first describe the ANN search problem
and then introduce the state-of-the-art ANN indexing ap-
proaches.

ANN search problem. Nearest neighbor search is the
problem of finding the vectors in a given set that are closest
to a given query vector. As database sizes reach millions
or billions of entries, and the vector dimension grows into
the hundreds [5, 32], approximate nearest neighbor search
becomes necessary in order to achieve a better tradeoff be-
tween accuracy and efficiency. Formally, the ANN search
problem [46] is defined as:

Definition 2.1. Approximate Nearest Neighbor (ANN)
Search Problem. LetX = {x1, ...,xN } ∈ RD represents a set of
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Figure 1: The IVF index.

N vectors in a D-dimensional space and q ∈ RD represents the
query. Given a value K ≤ N , ANN search finds the K closest
vectors in X to q, according to a pair-wise distance function
d ⟨q,x⟩, as defined below:

TopKq = K-argmin
x ∈X

d ⟨q,x⟩ (1)

The result is a set TopKq ⊆ X such that (1) |TopKq | = K and
(2) ∀ xq ∈ TopKq and xp ∈ X −TopKq : d(q,xq) ≤ d(q,xp ).

In this paper we use the Euclidean distance as the distance
function to measure the (dis)similarity between vectors.

2.1 Compressed representation
The first source of approximation comes from compressed
representations, originally proposed to improve search effi-
ciency [52]. Later work proposed compact binary codes to
improve image similarity search [11, 40]. Recent work uses
“vector quantization”, in which a vector is first reduced by
principal component analysis (PCA) dimension reduction
and then is subsequently quantized [22, 25, 31]. Although
code compression introduces distance approximation error,
it provides more efficient vector storage and distance calcu-
lation. However, the search remains exhaustive: all database
vectors must be evaluated.

2.2 Specialized ANN indices
In this paper we focus on improving the efficiency of an-
other approximation method: indexing. The ANN search
index structure restricts the distance evaluations to a subset
of database vectors. In this paper we focus on two state-of-
the-art methods: inverted file index (IVF [31] and IMI [4])
and graph-based approaches (HNSW [41, 42]). There exist
other indexing approaches including deterministic space
partitioning such as kd-trees [10], and randomized indexing
approaches based on locality sensitive hashing (LSH) [15, 20,
28, 29, 37, 57]. We believe that the idea of adaptive termina-
tion conditions also applies to those approaches.

2.2.1 Inverted file index. The inverted file (IVF) index is
a variant of inverted index. Inverted indices were proposed
in the computer vision community [47] and have long been
used in the information retrieval community [43]. In a recent
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Figure 2: A three-layer HNSW index.

paper about product quantization (a vector compression tech-
nique) [31], the inverted file index is introduced as a nearest
neighbor search index to avoid exhaustive search. The IVF
index groups database vectors into different clusters. When
building the index, a list of cluster centroids is trained by
K-means clustering, and each database vector is assigned to
the cluster with the closest centroid. During searching, the
index first computes the distances between the query and all
cluster centroids, then evaluates the database vectors belong-
ing to the top-p nearest clusters as shown in Figure 1. Using
a larger p increases both accuracy (good) and search latency
(bad). Different compression methods often use IVF to avoid
exhaustive search. In those cases the database vectors are
compressed into shorter codes.
Several follow-up projects aim to improve the inverted

file indexing approach. Inverted multi-index (IMI) [4] de-
composes the vectors into several subspaces and trains sep-
arate list of centroids in each subspace, which leads to a
fine-grained space partition. Baranchuk et al. propose to
build sub-clusters in each cluster to further restrict the num-
ber of database vectors to be evaluated [6]. However, all of
IVF variants search the same fixed number of nearest clusters
for all queries.

2.2.2 Graph-based approaches. One of the state-of-the-
art graph-based indexing approaches is the hierarchical nav-
igable small world graphs (HNSW) [41, 42]. This index in-
cludes multiple layers of proximity graphs where each graph
node represents a database vector as plotted in Figure 2. The
top layer contains only a single node and the base layer in-
cludes all database vectors. Each intermediate layer includes
a subset of database vectors covered by the next lower layer.
When building the index, database vectors are inserted one
by one. Each vector is inserted into multiple layers from
the base layer to a certain layer determined by an exponen-
tially decaying probability distribution. At each insertion,
the newly-inserted vector is connected to at most a fixed
number of nearest nodes previously inserted to the same
graph. As a result the graphs created in HNSW are approxi-
mate knn-graphs, since the connected neighbors might not
be the ground truth nearest neighbors. In addition, HNSW’s
algorithm employs heuristics that connect some far away



nodes from different isolated clusters to improve the global
graph connectivity.
When handling a query, a variant of beam search with

beam width 1 (higher layers) or p (base layer) is performed
at each layer. Search starts from the top layer. At each layer
(except the base layer), the neighboring nodes of the start
node are evaluated, and the node nearest to the query is
selected as the start node of the next layer. These 1-hop
beam searches aim to converge to a base layer start node
that is fairly close to the ground truth nearest neighbor of
the query. At the bottom base layer, first the start node is
inserted to an empty candidate priority queue where the
priority is based on the distance to the query. Then at every
iteration the algorithm pops the top candidate node from
the queue, evaluates the distances between the query and
popped node’s neighbors, updates the current found best
neighbor if necessary, and inserts popped node’s neighbors to
the candidate queue. Eventually top-p best candidate nodes
(based on the distance to query) have their neighboring nodes
evaluated. Like in IVF, a larger p increases both accuracy and
latency.
Several follow-up projects aim to improve the proxim-

ity graph-based approach. Douze et al. propose to combine
HNSW with quantization [16]. Navigating Spreading-out
Graph (NSG) aims to reduce the graph edge density while
keeping the search accuracy [18, 19]. SPTAG combines the
IVF index and proximity graph for distributed ANN search [1,
49–51]. GRIP is a capacity-optimized multi-store ANN algo-
rithm which combines the HNSW and IVF index to jointly
optimize search time, memory usage, and accuracy with
both DRAM and SSDs [54]. As with the IVF variants, all of
these proximity graph variants employ fixed configurations
to perform a fixed amount of graph traversal for all queries.

3 MOTIVATION
3.1 Fixed configurations lead to inefficient

latency-accuracy tradeoff
To motivate our work, we first evaluate the baseline per-
formance of existing indexing approaches under different
fixed configurations. We explore three million to billion-scale
datasets summarized in Table 1. DEEP is a dataset of CNN
image representations with 1 billion base vectors and 10000
queries. Each vector has 96 dimensions where each coordi-
nate is a floating-point number between -1 and 1. SIFT is a
dataset of local SIFT image descriptors with 1 billion base
vectors and 10000 queries. Each vector has 128 dimensions
where each coordinate is an integer between 0 and 128. GIST
is a dataset of global color GIST descriptor with 1million base
vectors and 1000 queries. Each vector has 960 dimensions
where each coordinate is a floating-point number between 0
and 1. Each dataset also includes a separate set of training

Num. Num. Num.
Vector Base Training Query

Dataset Dimension Vectors Vectors Vectors

DEEP [5] 96 10M, 1B 1M 10000
SIFT [32] 128 10M, 1B 1M 10000
GIST [31] 960 1M 0.5M 1000

Table 1: Summary of explored datasets.

vectors and we use them to train the prediction models for
the proposed adaptive early termination technique.
In this experiment, for DEEP and SIFT we use the first

10M base vectors as the database. For GIST, we use all 1M
base vectors as the database. We evaluate the CPU-only IVF
and HNSW implementation in the Faiss similarity search
library [33]. We build IVF indices without vector compres-
sion in this experiment. Following the standard approach,
the number of clusters are configured close to the square
root of the database size. For each query, database vectors
belonging to the top-p nearest clusters will be evaluated, and
we evaluate the performance under different p (in Faiss this
parameter p is called nprobe for IVF).
The HNSW index in Faiss uses parametersM and efCon-

struction to adjust the index complexity. For each database
vector, the probability of inserting it into layer i graph is
(1/M)i , while the top layer always has only one node as
the search starting point. Each inserted vector will have at
most 2M connected neighbors in the base layer and at most
M neighbors in other layers and the connections are deter-
mined by a beam search with width = efConstruction. We
build HNSW indices withM = 16 and efConstruction = 500
based on the original HNSWwork [42]. For each query, top-p
best candidate nodes in the base layer have their neighboring
nodes evaluated, and we evaluate the performance under
different p (in Faiss this parameter p is called efSearch for
HNSW).
We search for the top-1 nearest neighbor for each query

and the accuracy is represented as recall-at-1 (the fraction
of queries where the top-1 nearest neighbor returned from
search is (one of) the ground truth nearest neighbor). One
thing to note is that a query may have multiple ground truth
nearest neighbors: one reason is that we find that all three
datasets we use have duplicate base vectors. In that case
we count the search successful as long as one of the ground
truth is returned. Thenwemeasure the recall and the average
latency when using different fixed configurations (nprobe for
IVF and efSearch for HNSW). The detailed methodology is
described in Section 5.1.
Figure 3 illustrates the baseline performance of IVF and

HNSW indices where each dot represents a different fixed
configuration: For DEEP10M, it takes only 0.757 ms/0.610
ms on average to reach 0.8 recall on IVF/HNSW index, but
it takes 2.015 ms/0.865 ms on average to reach 0.95 recall;



0 5 10 15 20
Average end-to-end latency (ms)

0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
l-a

t-1 DEEP10M
SIFT10M
GIST1M

(a) IVF index with 4000 (1000 for GIST1M) clusters

0 5 10 15 20
Average end-to-end latency (ms)

0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
l-a

t-1 DEEP10M
SIFT10M
GIST1M

(b) HNSW index withM=16 and efConstruction=500

Figure 3: Baseline performance with fixed configura-
tions: Average end-to-end latency at different recall-
at-1 targets. Each dot represents a different fixed ter-
mination condition applied to all queries. Note the y-
axis starts at 0.5.
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Figure 4: CDF of the average of ratios between dist(q,
xth neighbors) and dist(q, 1st neighbor). Closer to 1 in-
dicates that it is harder to find the 1st neighbor.

For SIFT10M, it takes only 1.141 ms/0.625 ms on average
to reach 0.8 recall on IVF/HNSW index, but it takes 3.474
ms/0.819 ms on average to reach 0.95 recall; For GIST1M, it
takes only 5.628 ms/0.807 ms on average to reach 0.8 recall
on IVF/HNSW index, but it takes 16.142 ms/2.185 ms on
average to reach 0.95 recall. To reach recall targets above
0.95, some extreme cases take hundreds of milliseconds on
average. This shows that the fixed configuration approach
leads to undesirably high average latency when trying to
reach high recall target.

Both IVF and HNSW have worse performance on GIST1M
for two reasons: First, Euclidean distance computation time
is proportional to the vector dimension. Second, searching
the GIST1M dataset is harder than SIFT10M and DEEP10M,
despite its smaller size. Figure 4 plots the CDF of average
ratio between distance(query, 2nd to 100th neighbors) and
distance(query, 1st neighbor) under exhaustive nearest neigh-
bor search. When the average ratio is closer to 1, it means
that the top 100 neighbors for each query are more similar
to each other, which increases ANN search difficulty: For the
IVF index, queries might be close to many more clusters; For
HNSW index, it could take much more graph node traversal
to reach the ground truth nearest neighbor.
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Figure 5: CDF of minimum amount of search to find
the ground truth nearest neighbor for each query.

3.2 Queries need different termination
conditions

To investigate the reason for undesirably high average la-
tency with fixed configurations, we must identify the min-
imum amount of search needed to find the ground truth
nearest neighbor for each query. For the IVF index, the mini-
mum amount of search is represented by the minimum num-
ber of nearest clusters to search (nprobe). For HNSW index,
we do not use the number of searched top candidate nodes
(efSearch), instead using the minimum number of distance
evaluations to represent the minimum amount of search.
This is because: 1) The distance evaluation between query
and database vector is the time consuming task; 2) The num-
ber of distance evaluations varies greatly even with the same
number of searched top candidate nodes: In some cases the
searched candidate nodes are neighbors to each other, where
many redundant distance evaluations are avoided. In some
cases it is more like a depth-first search, where the number
of evaluations is close to “number of searched top candidate
nodes × number of connected neighbors per node”. For a few
queries in DEEP and GIST datasets, we are not able to find
this minimum amount of search in HNSW index because the
ground truth nearest neighbor is not found after searching
all reachable graph nodes due to graph connectivity issue.

Figure 5 illustrates the CDF of minimum amount of search
to find the ground truth nearest neighbor for each query:
For IVF, 80% of queries only need to search at most top-
6/7/12 nearest clusters for DEEP/SIFT/GIST, but the other
20% queries must search up to top-606/367/169 nearest clus-
ters; For HNSW, 80% of queries only need to perform at
most 547/481/1260 distance evaluations for DEEP/SIFT/GIST,
but the other 20% queries require up to 88696/16618/118277
distance evaluations. We find the same trend when using
the training vectors as query vectors, which shows that the
training and query vectors share the same distribution.



3.3 How to predict the termination
condition

To predict the termination condition for each query, we must
identify relevant measurable features. Static features such
as the query vector are helpful, but our study shows that it
does not suffice: features obtained at the start of search do
not accurately indicate the termination condition.

Instead, we find that the intermediate search result after a
certain amount of search (e.g., when 60-80% of queries/training
vectors have found their ground truth nearest neighbors) is
a critical runtime feature that indicates how much more
work should be performed for each query. For the IVF index,
we measure the 50th, 75th, and 90th-percentile minimum
number of nearest clusters to search for different ranges
of distance between query and intermediate 1st neighbor
after searching top 6 (DEEP)/7 (SIFT)/12 (GIST) nearest clus-
ters. For the HNSW index, we measure the 50th, 75th, and
90th-percentile minimum number of distance evaluations
for different ranges of distance between query and interme-
diate 1st neighbor after 547 (DEEP)/481 (SIFT)/1260 (GIST)
distance evaluations.

Figure 6 illustrates this relationship for the DEEP dataset
(similar trends are found in SIFT and GIST). As the distance
between query and intermediate search result increases, the
minimum amount of search to find the ground truth also
increases. This shows that intermediate search results are
highly relevant features: if your search result is still far away
from the query, you probably want to search more. To get
this feature, we need to search a fixed amount for all queries,
even though some of them need less than that. However we
argue that this runtime feature is necessary for the predic-
tion model as explained in Section 4, and the majority of
the variation among search termination conditions is still
remained to be exploited by the proposed approach.

4 DESIGN
In this section, we lay out the way that our approach is
trained and integrated into both IVF and HSNW. Our pre-
dictor takes a set of inputs from the algorithm reflecting
the current query state, and outputs a numerical value in-
dicating how much more work should be done. We begin
by describing the parameters that our predictor accepts and
how it is trained. We then discuss the integration into the
indices themselves. All the result numbers in this section are
for the DEEP10M, SIFT10M, GIST1M datasets with IVF and
HNSW indices without vector compression. We follow the
same training methodology for the cases with billion-scale
datasets and/or OPQ vector compression.
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Figure 6: DEEP10M: 50th/75th/90th-percentile mini-
mum amount of search for different ranges of dis-
tance between query and intermediate 1st neighbor.

4.1 General workflow
4.1.1 The output. For each query, we want to predict the
minimum amount of work to reach the ground truth nearest
neighbor (i.e., a regression model). Different indexing ap-
proaches may have different metrics, but what we need is a
numerical value that is proportional to the search latency.

4.1.2 The inputs. Our study shows that the following three
categories of features improve the prediction accuracy:

Query vector. Since there could exist intrinsic relevance
between minimum amount of search and query distribution,
we use the query vector as the first kind of features where
each dimension is a single feature.

Index structure. Different indices have different metrics
to describe how far the query is to a certain sub-region of
database. This can help us to understand whether it is likely
that the nearest neighbor belongs to a certain region.

Intermediate search results. Asmotivated in Section 3.3,
we find that the intermediate search result as a runtime fea-
ture demonstrates high relevance to what we want to predict.

4.1.3 Training and tuning. We use the training vectors
in Table 1 to generate training/validation data and use the
query vectors to generate testing data. Each vector generates
one row of data which includes both the output target value
and the input features. For the output value, we need to
first perform an exhaustive search to find the ground truth
nearest neighbor(s), then find theminimum amount of search
to reach (one of) it. Based on the output metric, different
indices have different ways to find this minimum amount.
For the input features, we can compute the index structure
feature based on the training/query vector and the index.



We can compute the intermediate search results feature by
performing the desired fixed amount of search.

Finding the ground truth via exhaustive search may take
up to 13 hours on a single Nvidia GeForce GTX 980 GPU
with 1 billion database vectors and 1 million training vectors.
This exhaustive search is a one-time cost amortized across
all online/offline queries as long as there is no change to
the database and training vectors. From experience at Mi-
crosoft Bing, there could be hundreds of millions of latency-
sensitive online web search queries per day (that require
ANN search) [38, 39]. Thus the exhaustive search is a small
cost compared to the total latency and computation reduc-
tion that the proposed approach can achieve over all queries.
If there is any change to the database/training vectors, we
can incrementally update the ground truth which takes much
less time than the initial computation. Last but not least, it is
possible to greatly reduce this search time by distributing the
search to multiple GPUs/machines since it is a parallelizable
offline computation.
We elected to use gradient boosting decision trees for

the prediction models. We build and train them using the
LightGBM library [34]. Gradient boosting decision trees [17]
are an ensemble model of decision trees. A decision tree is a
flowchart-like tree in which each internal node represents a
“test” on a feature (e.g., whether the feature value is larger
than 10), each branch represents the outcome of the test, and
each leaf node represents a prediction value. The gradient
boosting decision treemodel trains a set of weak decision tree
models in an iterative fashion. At each training iteration, a
newweak decision tree is trained attempting to improve from
the previous trees. At inference, the prediction is computed
as the weighted sum of the predictions from all weak models.
As a result the number of training iterations affects both the
model size and the prediction accuracy/latency.
We select this model because of several of its strengths:

Both training and inference are fast, and the models allow
for introspection. Training takes only 5 to 39 seconds on a
CPU with 1 million training entries and 100 iterations. In-
ference takes only tens of microseconds and the model is
only hundreds of KB in size (although these are proportional
to the number of training iterations), which is a small la-
tency/memory overhead. Importantly, decision tree models
allow us to identify the importance of individual features
by the total error reduction per split in the tree, which is
helpful during feature exploration and for explaining why
the system works.
LightGBM’s documentation includes instruction on pa-

rameters tuning [2]. We use the default decision tree struc-
ture parameters. As described above, the number of training
iterations affects the model size and the prediction accu-
racy/latency. To balance the tradeoff, we choose a relatively
small number of training iterations (100) and high learning

Feature Description

F0: query The query vector
Each dimension is a single feature

F1: c_xth_to_c_1st Dist(q, xth nearest cluster centroid) /
(10 features) Dist(q, 1st nearest cluster centroid)

where x ∈ {10, 20, 30, ..., 90, 100}
F2: d_1st Dist(q, 1st neighbor after a certain

fixed amount of search)
F3: d_10th Dist(q, 10th neighbor after a certain

fixed amount of search)
F4: d_1st_to_d_10th F2: d_1st / F3: d_10th
F5: d_1st_to_c_1st F2: d_1st /

Dist(q, 1st nearest cluster centroid)

Table 2: IVF index input features.

rate (0.2) (except the case of billion-scale dataset where we
use a larger training iterations (500) and smaller learning
rate (0.05)). Since it is important to identify those queries
that need much more search, we choose to minimize the L2
loss function, which favors the outliers.

4.1.4 Integration and online prediction. To integrate
the prediction model into the Faiss baseline, we first load
the prediction model. Then for each query we perform a
fixed amount of search until the intermediate search results
are ready. Then we gather all the features and perform the
prediction which produces the termination condition. If the
predicted termination condition has passed, we stop imme-
diately. Otherwise we keep searching until the termination
condition is met.

4.2 The IVF index case
4.2.1 The output. For the IVF index (and the IMI variant),
we build a regression model to predict the minimum num-
ber of nearest clusters to search. This number is the nprobe
parameter, now determined for each query.

4.2.2 The inputs. We investigate 6 kinds of features sum-
marized in Table 2. We use the ratios of distances between
query and various nearest cluster centroids as the index
structure features. The intuition is that if the query has sim-
ilar distance to many cluster centroids, we probably want
to search more clusters. We use the other four features to
represent the intermediate search results. First we use the
distances between the query and the 1st&10th neighbor af-
ter searching the top 6 (DEEP)/7 (SIFT)/12 (GIST) nearest
clusters as two features. How much should we search before
using the results as features is a hyperparameter. We explain
how to tune it by grid search in Section 4.2.3. Then we use
the ratio between the two features as another feature. Finally,
we use the ratio between distance to the intermediate 1st
neighbor and distance to the 1st nearest cluster centroid as
the last feature. These features all aim to represent how good
the intermediate search results are.



Importance DEEP10M SIFT10M GIST1M

F0: query 44.08% 31.60% 37.92%
F1: c_xth_to_c_1st 13.60% 18.64% 25.88%
F2: d_1st 31.98% 31.16% 0.25%
F3: d_10th 0.50% 0.41% 0.12%
F4: d_1st_to_d_10th 5.78% 12.85% 31.80%
F5: d_1st_to_c_1st 4.06% 5.34% 4.03%

Table 3: IVF index feature importance.

MAE MAPE RMSE

DEEP10M, all features 4.74 149% 16.01
DEEP10M, query only 5.42 209% 17.22
SIFT10M, all features 5.15 162% 12.72
SIFT10M, query only 5.98 217% 13.66
GIST1M, all features 7.68 220% 14.43
GIST1M, query only 8.87 296% 15.56

Table 4: IVF index:mean absolute error,mean absolute
percentage error, and root mean squared error of the
regression model with different feature sets.

4.2.3 Training and tuning. To build the training/testing
data, the output target value (minimum number of nearest
clusters to search) is generated by computing the distances
between query and all cluster centroids to find the rank of
the cluster where the ground truth nearest neighbor belongs
to. The input features are generated by performing the ac-
tual search until the intermediate search results features are
ready.
To find which features are more important, we use the

per-feature gain stats from gradient boosting decision tree
models where the importance of a feature is proportional to
the total error reduction contributed by the feature. Table 3
summarizes the normalized feature importance (note that we
combine the importance of multiple features for the first two
kinds of features). The query vector contributes to roughly
one third of the overall importance. The ratios of distances
between query and nearest cluster centroids are also relevant
as expected: when the ratios are closer to 1, the prediction
value is higher. The other four intermediate results features
contribute to another great portion of importance.

Table 4 summarizes the testing data accuracy when train-
ing with all features or only the query vector (5-fold cross
validation on the training data produces similar accuracy).
For all metrics, lower is better. TheMAPE numbers show that
our model achieves similar accuracy among the 3 datasets.
Accuracy drops when training with only the query. This
shows that using the intermediate search results as runtime
features is critical to the prediction accuracy.
To illustrate the prediction accuracy, Figure 7 plots the

average number of searched clusters v.s. the recall-at-1 for
DEEP10M. We find similar trends in SIFT10M and GIST1M.
For baseline, each dot on the line represents a different fixed
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Figure 7: DEEP10M, IVF index: Average number of
searched clusters vs. recall-at-1. Note the y-axis starts
at 0.95.

configuration. For our approach, the number of nearest clus-
ters to search equals max(max_thresh, multiplier*prediction),
where the max_thresh equals the maximum target value in
the training data. When using all features, we also take the
min between the value above and 6 (DEEP)/7 (SIFT)/12 (GIST)
(the amount of search needed for the intermediate search
results). Each dot on the line represents a differentmultiplier.
Instead of adding an absolute value to the prediction value,
we find that it’s more efficient to multiply a coefficient since
the distribution of target values is highly skewed.

Results show that the adaptive prediction-based approach
consistently reduces the average number of searched clusters
to reach the same recall targets compared with the baseline.
When training with only the query, the performance drops
but is still better than the baseline. One thing to note that
this is not the end-to-end performance measurement since
factors like the prediction overhead are excluded. We will
evaluate the end-to-end performance in Section 5.
As mentioned previously how much should we search

before using the intermediate results as features is a hyper-
parameter. Figure 8 illustrates how to perform grid search
to tune this hyperparameter for DEEP10M. If we search less
before the feature generation, the intermediate result feature
may provide less information gain, reducing the prediction
accuracy. If we search more before the feature generation,
all queries must search more, increasing the end-to-end av-
erage latency. This is why we choose the intermediate result
after searching top-6 clusters which provides the best over-
all performance. To tune this hyperparameter for different
datasets and/or different indexing approaches, we just need
to perform a similar grid search on different intermediate
search results that reach different recall accuracy targets.

4.2.4 Integration and online prediction. Algorithm 1
summarize how to integrate the prediction model into the
IVF index. First we search a fixed number of top nearest clus-
ters. Then we perform the prediction based on the query, the
query-centroid distance ratios, and the intermediate search
results. If the prediction value is larger than the fixed amount,
we perform the remaining searching. At last we return the
search results.



0 20 40 60 80
Average num. searched clusters

0.95
0.96
0.97
0.98
0.99
1.00

R
ec

al
l-a

t-1 x=2,y=60
x=6,y=80
x=19,y=95

Figure 8: DEEP10M, IVF index: Grid search on finding
the best intermediate search result features. Each line
represents using the intermediate search results after
searching the top-x nearest clusters and reaching y%
recall accuracy on the training data.

Algorithm 1: Integration for the IVF index
input :Query vector: q,

number of neighbors to return: k ,
fixed amount to search before prediction: f .

output :List of top-k nearest neighbors.
h ← empty max heap with size k
sort clusters based on query-centroid distance
search the top f nearest clusters and store the results in h
// beginning of the proposed approach
input ← the input features including q, query-centroid
distance ratios, intermediate search results from h

p ← predict(input )
if p > f then

search the top (f + 1)th to pth nearest clusters and store
the results in h

end
// end of the proposed approach
return top-k nearest neighbors in h

4.3 The HNSW index case
4.3.1 The output. For the HNSW index, we build a regres-
sion model to predict the minimum number of distance eval-
uations in the base layer. As explained in Section 3.2, this
value is related but not equivalent to the efSearch parameter.

4.3.2 The inputs. We investigate 6 kinds of features sum-
marized in Table 5. We use the distance between the query
and base layer start node as the index structure feature,
since it indicates the distance between the start node and
the ground truth nearest neighbor. We use the other four
features to represent the intermediate search results. We use
the distances between the query and the 1st&10th neighbor
after 368 (DEEP)/241 (SIFT)/1260 (GIST) distance evaluations
as two features. Again how much should we search before
using the results as features is a hyperparameter that can be
tuned in the same fashion as the IVF case. Then we use the ra-
tios between the two features and the distance-to-start-node
feature as the last two features.

4.3.3 Training and tuning. To build the training/testing
data, the output target value (minimum number of distance
evaluations in the base layer) is generated by performing the

Feature Description

F0: query The query vector
Each dimension is a single feature

F1: d_start Dist(q, base layer start node)
F2: d_1st Dist(q, 1st neighbor after a certain

fixed amount of search)
F3: d_10th Dist(q, 10th neighbor after a certain

fixed amount of search)
F4: 1st_to_start F2: d_1st / F1: d_start
F5: 10th_to_start F3: d_10th / F1: d_start

Table 5: HNSW index input features.

Importance DEEP10M SIFT10M GIST1M

F0: query 13.39% 8.17% 27.65%
F1: d_start 1.02% 3.47% 1.26%
F2: d_1st 59.23% 69.07% 29.38%
F3: d_10th 4.81% 5.37% 0.74%
F4: 1st_to_start 6.11% 3.44% 18.80%
F5: 10th_to_start 15.43% 10.48% 22.17%

Table 6: HNSW index feature importance.

MAE MAPE RMSE

DEEP10M, all features 305 91% 1255
DEEP10M, query only 348 119% 1311
SIFT10M, all features 231 83% 615
SIFT10M, query only 268 111% 665
GIST1M, all features 943 121% 4828
GIST1M, query only 1011 155% 4877

Table 7: HNSW index: MAE, MAPE, and RMSE of the
regression model with different feature sets.

actual ANN search until the ground truth nearest neighbor
is found. Due to HNSW graph connectivity issues, we are
not able to find the ground truth for a few vectors after
evaluating all reachable nodes. So we exclude them from
training data/regard as always missed for testing data. Since
the range of number of distance evaluations for HNSW is
much larger than the range of number of clusters to search
for IVF as plotted in Figure 5, we use the base 2 logarithm
of the number as the actual target value to help the training
converge.
Table 6 summarizes the feature importance. The query

vector again contributes to a fair portion of the overall im-
portance. The distance between query and base layer start
node contributes to a small amount of overall importance
because it is dominated by the intermediate search results.
The other four intermediate results features contribute to
most of the overall importance.

Table 7 summarizes the testing data accuracy when train-
ing with all features or only the query (5-fold cross validation
on the training data produces similar accuracy). The MAPE
numbers show that our model achieves similar accuracy as
the IVF case.

Figure 9 plots the average number of distance evaluations
v.s. the recall-at-1 for DEEP10M. We find similar trends in
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Figure 9: DEEP10M, HNSW index: Average number
of distance evaluations vs. recall-at-1. Note the y-axis
starts at 0.95.

SIFT10M and GIST1M. For baseline, each dot on the line
represents a different fixed configuration. For our approach,
the number of distance evaluations equals max(max_thresh,
multiplier*2ˆprediction), where the max_thresh equals the
maximum ground truth value in the training data. When
using all features, we also take the min between the value
above and 368 (DEEP)/241 (SIFT)/1260 (GIST) (the amount
of search needed for the intermediate search results).

Results show that the adaptive prediction-based approach
again consistently reduces the average number of distance
evaluations to reach the same recall targets compared with
the baseline. When training with only the query, the perfor-
mance again drops but is still better than the baseline.

4.3.4 Integration and online prediction. Algorithm 2
summarize how to integrate the prediction model into the
HNSW index. First we start from the top layer and perform
beam search to reach the base layer. Then we perform beam
search with unlimited beam width up to a fixed number
of distance evaluations. Then we perform the prediction
based on the query, the query-start node distance, and the
intermediate search results. If the prediction value is larger
than the fixed amount, we perform the remaining searching.
At last we return the search results.

5 EVALUATION
The evaluation section aims to compare the end-to-end per-
formance achieved by three ANN indexing approaches (IVF,
HNSW, IMI) with both fixed configurations and adaptive
predictions. We first perform evaluation without compres-
sion because vector compression is orthogonal to the pro-
posed adaptive early termination technique. We then mea-
sure the effectiveness of the proposed method with com-
pression, because compression is often enabled to support
large-scale ANN search. Section 5.1 describes the experi-
mental methodology. Section 5.2 and 5.3 report the results
of IVF and HNSW indices without compression (DEEP10M,
SIFT10M, and GIST1M datasets). Section 5.4 and 5.5 report
the results of IVF (DEEP10M, SIFT10M, and GIST1M datasets)
and IMI (DEEP1B and SIFT1B datasets) indices with OPQ
vector compression [22]. Section 5.6 discusses the effect of
batching.

Algorithm 2: Integration for the HNSW index
input :Query vector: q,

number of neighbors to return: k ,
fixed amount to search before prediction: f ,
HNSW graphs: G,
HNSW top layer start node: s .

output :List of top-k nearest neighbors.
h ← empty max heap with size k
while base layer in G not reached do

s ← beam search with width 1 at the current layer
starting from node s

go to the next layer in G
end
d ← distance between q and s
cnt ← 0 // number of distance evaluations
while cnt < f do

perform beam search with unlimited width at base layer
starting from node s and store the results in h

increment cnt
end
// beginning of the proposed approach
input ← the input features including q, query-start node
distance d , intermediate search results from h

p ← predict(input )
if p > f then

while cnt < p do
perform beam search with unlimited width at base
layer starting from node s and store the results in h

increment cnt
end

end
// end of the proposed approach
return top-k nearest neighbors in h

5.1 Methodology
Setup. We implement our prediction-based approach (using
the models trained with all features) in the Faiss similarity
search library (CPU version) [33], and compare with the fixed
configuration baseline approach as evaluated in Section 3.1.
All experiments are executed on amachinewith Intel® Xeon®
E5-2680 v2 (2.8 GHz) processor and 128 GB of memory.

Prediction overhead. For the memory/latency overhead
of the prediction, we have one prediction model per indexing
type and per dataset with sizes between 247 KB and 310 KB,
which is much smaller compared to the index and data size.
When making a prediction, a temporary array is allocated
to gather the features. We need 1 prediction per query and
each prediction takes between 7 us and 47 us depending
on the indexing type and vector dimension. The number of
input features and the number of training iterations affect the
prediction overhead.When the dataset size increases, wemay
need to increase the number of training iterations in order to
keep prediction accuracy high. For our experiments with 1
billion database vectors, we increase the number of training
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Figure 10: IVF index: Average end-to-end latency vs.
recall-at-1. Note the y-axis starts at 0.95. The yellow
line is a simple heuristic approach for comparison.

iterations from 100 to 500, which increases the prediction
overhead by 5 times. But this is still beneficial since the
overall search also takes longer. The number of neighbors to
return (the k) does not affect the prediction overhead, since
our model predicts the minimum termination condition to
find the top-1 neighbor.

Performance metric. We envision that both our tech-
nique and the baseline approachwould generally be deployed
with a per-application expected accuracy target. This accu-
racy is expected, because no ANN search technique can guar-
antee a specific accuracy target without knowing the ground
truth answer (in which case it could simply return the op-
timal value). The systems can, however, meet an expected
accuracy target if the online query distribution matches the
distribution of the training query vectors. This accuracy tar-
get can be met by appropriately configuring various param-
eters, such as the decision tree structure, training iterations,
fixed configuration or prediction multiplier, etc. We evalu-
ate our system for a variety of expected accuracy targets,
explained next.

To compare the performance of the baseline and proposed
approaches, we perform controlled experiments to keep the
accuracy achieved by the two approaches at the same level in
order to compare the average latency numbers. Given an ac-
curacy target, we perform binary search to find the minimum
fixed configuration for the baseline and minimum prediction
multiplier (as described in Section 4.2.3) for the proposed ap-
proach to reach this desired accuracy. Then we compare the

DEEP10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.015 ms 1.743 ms 13%
0.96 2.390 ms 1.903 ms 20%
0.97 2.857 ms 2.110 ms 26%
0.98 3.773 ms 2.496 ms 34%
0.99 5.547 ms 3.343 ms 40%
1.00 48.457 ms 21.315 ms 56%

SIFT10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 3.474 ms 2.492 ms 28%
0.96 3.980 ms 2.776 ms 30%
0.97 4.953 ms 3.232 ms 35%
0.98 6.201 ms 3.819 ms 38%
0.99 8.376 ms 5.138 ms 39%
1.00 43.304 ms 20.639 ms 52%

GIST1M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 16.142 ms 12.108 ms 25%
0.96 17.837 ms 14.544 ms 18%
0.97 19.981 ms 15.656 ms 22%
0.98 22.948 ms 17.576 ms 23%
0.99 38.068 ms 22.654 ms 40%
1.00 70.959 ms 29.875 ms 58%

Table 8: IVF index: Average end-to-end latency at dif-
ferent recall-at-1 targets.

average latency numbers at each accuracy target. Prediction
overhead is included in the end-to-end latency. For the accu-
racy target, we use recall-at-1 (the fraction of queries where
the top-1 nearest neighbor returned from search is (one of)
the ground truth nearest neighbor) for the cases without
compression. For the cases with compression, we use recall-
at-100 (the fraction of queries where the top-100 nearest
neighbors returned from search include (one of) the ground
truth nearest neighbor) as the accuracy target since it’s chal-
lenging for compression-based approaches to reach high
recall-at-1: the vector compression introduces distance preci-
sion loss which could reorder the ranks of nearest neighbors.
We search and return top-1 or top-100 nearest neighbors
corresponding to the recall-at-1/at-100 metrics. We process
the queries one by one without batching by default. And we
measure the average latency in single-thread as in previous
work [31, 41, 42].

5.2 IVF without compression
Figure 10 plots the average end-to-end latency vs. recall-
at-1, comparing fixed configuration and adaptive prediction.
Table 8 presents the corresponding detailed numbers. Overall,
our approach provides consistent latency reduction from
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Figure 11: HNSW index: Average end-to-end latency
vs. recall-at-1. Note the y-axis starts at 0.95.

13% to 58% compared to fixed configurations at recall-at-1
targets between 0.95 and 1. The relative latency reduction
increases as recall target gets higher. This is because the
baseline approach needs to use a larger fixed configuration
to reach a higher recall target, which gives our approach
more room to improve. GIST has higher average latency due
to the two reasons described in Section 3.1.

Figure 10 also includes the performance of a simple heuristic-
based approach: for each query, we search all the clusters
whose centroid-to-query distances are within x% (e.g., 140%)
of the shortest centroid-to-query distance, and we apply dif-
ferent x to reach different recall targets. Results show that
this heuristic approach is only able to provide some improve-
ment at a few cases. Since the baseline HNSW index already
employs a beam search heuristic as explained in Section 2.2.2,
we do not present another heuristic for HNSW.

5.3 HNSW without compression
Figure 11 plots the average end-to-end latency vs. recall-at-
1, comparing fixed configuration and adaptive prediction.
Table 9 presents the corresponding detailed numbers. For
DEEP and GIST we stop at 0.9955 and 0.999 recall target
due to HNSW graph connectivity issue which make both
approaches unable to find the nearest neighbor for a few
queries. Overall, our approach provides consistent latency
reduction from 2% to 86% compared to fixed configurations
at recall-at-1 targets between 0.95 and 1.

The baseline has very high latency for some recall targets.
This is because of the HNSW graph index structure. The

DEEP10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 0.865 ms 0.805 ms 7%
0.96 0.918 ms 0.856 ms 7%
0.97 1.027 ms 0.939 ms 9%
0.98 1.223 ms 1.063 ms 13%
0.99 1.737 ms 1.375 ms 21%

0.9955 48.145 ms 6.762 ms 86%

SIFT10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 0.819 ms 0.801 ms 2%
0.96 0.860 ms 0.841 ms 2%
0.97 0.923 ms 0.901 ms 2%
0.98 1.042 ms 0.966 ms 7%
0.99 1.255 ms 1.135 ms 10%
1.00 8.835 ms 4.032 ms 54%

GIST1M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.185 ms 1.801 ms 18%
0.96 2.570 ms 2.014 ms 22%
0.97 3.269 ms 2.288 ms 30%
0.98 4.529 ms 2.758 ms 39%
0.99 8.064 ms 4.588 ms 43%
0.999 353.831 ms 59.162 ms 83%

Table 9: HNSW index: Average end-to-end latency
at different recall-at-1 targets. For DEEP10M and
GIST1M we stop at 0.9955 and 0.999 recall target due
to HNSW graph connectivity issue.

performance of HNSW depends heavily on the distance be-
tween the query and the base layer start node, which acts
like a dynamic cluster centroid compared to the static cluster
centroids in IVF. When the start node is close to the query,
we can find the nearest neighbor very fast. As a result for
most of the queries it takes shorter time to find the nearest
neighbor in HNSW than IVF. On the other hand, the start
node could be far away from the query due to rare graph
connectivity issue or search difficulty issue as explained in
the end of Section 3.1. In those rare cases HNSWwould need
much more distance evaluations than IVF, which forces the
baseline approach to use an exceptionally large fixed config-
uration. Our approach could identify those rare cases and
cover them with much lower average latency. This is why
we can achieve a latency reduction up to 86%, which is a 7.1
times speedup.

5.4 IVF with OPQ compression
Table 10 presents the results when applying our approach
to IVF index with OPQ compression, which is one of the
stat-of-the-art vector quantization methods [22]. We use



DEEP10M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.446 ms 2.134 ms 13%
0.96 2.740 ms 2.318 ms 15%
0.97 3.223 ms 2.566 ms 20%
0.98 4.185 ms 3.006 ms 28%
0.99 5.952 ms 3.880 ms 35%
1.00 52.382 ms 25.284 ms 52%

SIFT10M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 3.885 ms 2.983 ms 23%
0.96 4.276 ms 3.259 ms 24%
0.97 5.308 ms 3.731 ms 30%
0.98 6.721 ms 4.413 ms 34%
0.99 8.752 ms 5.744 ms 34%
1.00 49.732 ms 24.101 ms 52%

GIST1M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 36.792 ms 35.597 ms 3%
0.96 39.629 ms 39.263 ms 1%
0.97 44.299 ms 42.504 ms 4%
0.98 53.641 ms 52.865 ms 1%
0.99 84.044 ms 67.840 ms 19%
1.00 154.962 ms 111.186 ms 28%

Table 10: IVF index with OPQ compression: Average
end-to-end latency at different recall-at-100 targets.

OPQ to transform the vectors with a compression factor
of 8 (i.e., OPQ48 for DEEP, OPQ64 for SIFT, OPQ480 for
GIST). One thing to note is that the results in Table 10 are
not directly comparable to the results in Table 8 because
the index construction, the memory overhead, and the recall
target definition are different.
Overall, our approach provides consistent latency reduc-

tion from 1% to 52% compared to fixed configurations at
recall-at-100 targets between 0.95 and 1. Our approach has
less improvement for GIST due to the distance precision
loss: GIST has higher number of dimensions than DEEP and
SIFT; With the same compression factor, larger number of
dimensions lead to larger absolute precision loss by com-
pression; This affects the precision of intermediate search
results features, which leads to lower prediction accuracy.
Nevertheless, the results show that the proposed approach
is effective when vector compression is applied.

5.5 IMI with OPQ compression
Table 11 presents the results when applying our approach
to billion-scale datasets. We choose IMI index with OPQ
compression as the baseline, which is one of the state-of-the-
art approaches for billion-scale ANN search [4]. As explained

DEEP1B Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 39.994 ms 36.911 ms 8%
0.96 52.353 ms 41.386 ms 21%
0.97 70.287 ms 48.398 ms 31%
0.98 97.558 ms 58.907 ms 40%
0.99 166.346 ms 84.936 ms 49%
0.995 288.611 ms 117.920 ms 59%

SIFT1B Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 48.217 ms 34.215 ms 29%
0.96 58.051 ms 39.120 ms 33%
0.97 72.990 ms 45.692 ms 37%
0.98 100.894 ms 55.502 ms 45%
0.99 161.553 ms 81.423 ms 50%
0.995 257.333 ms 116.777 ms 55%

Table 11: IMI index with OPQ compression: Average
end-to-end latency at different recall-at-100 targets.

in Section 2.2.1, IMI index is a variant of IVF index so that we
are able to apply the same approach to train the prediction
model. We build IMI index with (2ˆ14)ˆ2 = 268435456 clusters.
Since the database is much larger, we increase the number of
training iterations from 100 to 500 and decrease the learning
rate from 0.2 to 0.05 to improve the accuracy. We stop at
0.995 recall target because it takes too long to reach 1.0 recall
for billion-scale database. Overall, our approach provides
consistent latency reduction from 8% to 59% compared to
fixed configurations at recall-at-100 targets between 0.95 and
0.995.

5.6 Effect of batching
In many of the latency-sensitive online serving scenarios we
target, requests are often processed one by one as they arrive
in order to make real-time response. But sometimes a small
batch is also desirable. On the other hand, in offline analy-
sis scenarios, requests are often combined in a single large
batch to maximize the throughput. We set batch size = 1 (no
batching) as default in previous sections. Table 12 presents
the results with different batch sizes for DEEP10M dataset
with IVF and HNSW indices without compression. We find
that for both IVF and HNSW indices batching amortize some
fixed computation or memory allocation cost across queries,
but the amount of latency reduction from the proposed ap-
proach stays similar.

For IVF, it is faster to compute the distance between clus-
ter centroids and a batch of queries because Faiss switches
from CPU SIMD vectorization to drastically more batch-
efficient BLAS matrix-matrix operations when the batch size
reaches 20. Thus using a different batch size is equivalent to



IVF index Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency
Batch=1/100/10000 Batch=1/100/10000

0.95 2.015/1.904/1.894 ms 1.743/1.665/1.654 ms
0.96 2.390/2.274/2.266 ms 1.903/1.823/1.814 ms
0.97 2.857/2.729/2.717 ms 2.110/2.024/2.011 ms
0.98 3.773/3.633/3.620 ms 2.496/2.411/2.402 ms
0.99 5.547/5.371/5.370 ms 3.343/3.244/3.243 ms
1.00 48.457/48.164/48.198 ms 21.315/21.264/21.157 ms

HNSW index Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency
Batch=1/100/10000 Batch=1/100/10000

0.95 0.865/0.457/0.417 ms 0.805/0.387/0.369 ms
0.96 0.918/0.515/0.474 ms 0.856/0.443/0.419 ms
0.97 1.027/0.628/0.581 ms 0.939/0.523/0.498 ms
0.98 1.223/0.839/0.774 ms 1.063/0.651/0.617 ms
0.99 1.737/1.370/1.270 ms 1.375/0.952/0.912 ms

0.9955 48.145/47.732/47.300 ms 6.762/6.225/6.018 ms

Table 12: DEEP10M without compression: Average
end-to-end latency at different recall-at-1 targets with
different batch sizes. Batch size = 1 (no batching) is
used in all the previous experiments.

adding/subtracting similar amount of latency from both the
baseline and our approach.
For HNSW, an array of size n (the number of database

vectors) is allocated every time the queries are sent to the
database. This array is used to record which database vec-
tors have been visited for each query, since HNSW’s graph
traversal may reach the same node multiple times. When
batching is enabled, the array is shared by multiple queries
and the memory allocation cost is amortized.

6 RELATEDWORK
In addition to the related work mentioned in Section 2, there
are many recent works about ANN search in both database
and machine learning communities. In database communi-
ties several works focused on improving the Locality Sensi-
tive Hashing (LSH) technique: Data Sensitive Hashing im-
proves the hashing functions and hashing family based on
the data distributions [21]. Neighbor-Sensitive Hashing im-
proves approximate kNN search based on an unconventional
observation that magnifying the Hamming distances among
neighbors helps in their accurate retrieval [44]. LazyLSH
uses a single base index to support the computations in mul-
tiple metric spaces, significantly reducing the maintenance
overhead [56].
In machine learning communities several works focused

on improving the vector compression technique: SUBIC uses
deep convolutional neural networks to produce supervised,
compact, structured binary codes for visual search [30]. Wu

et al. proposed an end-to-end trainable multiscale quantiza-
tion method that minimizes overall quantization loss [53].
Several works focused on early stopping conditions for

exact nearest neighbor search. Ciaccia et al. proposed prob-
abilistic early stopping conditions for exact NN search in
high-dimensional and complex metric spaces on smaller 12K
to 100K datasets [13]. Gogolou et al. presented ideas on how
to provide probabilistic estimates of the final answer to help
users decide when to stop an exact NN search query on 100M
to 267M datasets [23].

The proposed adaptive early termination technique deals
with a similar problem in the online/progressive query an-
swering communities. Online query answering relies on user
interactions to iteratively refine the query results [26], which
is similar to the proposed adaptive search termination that
leverages machine learning models to predict the quality of
intermediate search results. Recently, Turkay et al. proposed
a cognitive model of human-computer interaction as the
underlying mechanism to determine the pace of user interac-
tion for high-dimensional data analysis such as online PCA
and clustering [48]. Northstar [35] is another interactive data
science system that uses interactive whiteboards to provide
a highly collaborative visual data science environment.

7 CONCLUSION
Approximate nearest neighbor search algorithms aim to bal-
ance accuracy and cost (latency). We show, however, that
traditional fixed configuration-based approaches lead to un-
desirably high average latency to reach high recall, because
they fail to take into account the distribution of query diffi-
culty. In this paper, we have demonstrated that there exist
opportunities to exploit the variation in search termination
conditions between queries. We have presented the first
prediction-based approach to leverage this inter-query vari-
ation and improve end-to-end performance, substantially
reducing average latency. We believe that the practicality
and effectiveness of this approach make it a must-use com-
ponent for the approximate nearest neighbor toolkit.
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