
Rateless Codes for Near-Perfect Load Balancing in
Distributed Matrix-Vector Multiplication
Ankur Mallick

ECE Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: amallic1@andrew.cmu.edu

Malhar Chaudhari
ECE Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: mschaudh@andrew.cmu.edu

Gauri Joshi
ECE Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

Email: gaurij@andrew.cmu.edu

Abstract—Large-scale machine learning and data mining ap-
plications require computer systems to perform massive compu-
tations that need to be parallelized across multiple nodes, for
example, massive matrix-vector and matrix-matrix multiplica-
tion. The presence of straggling nodes – computing nodes that
unpredictably slowdown or fail – is a major bottleneck in such
distributed computations. We propose a rateless fountain coding
strategy to alleviate the problem of stragglers in distributed
matrix-vector multiplication. Our algorithm creates a stream of
linear combinations of the m rows of the matrix, and assigns
them to different worker nodes, which then perform row-vector
products with the encoded rows. The original matrix-vector
product can be decoded as soon as slightly more than m row-
vector products are collectively finished by the nodes. This
strategy enables fast nodes to steal work from slow nodes,
without requiring the master to perform any dynamic load-
balancing. Compared to recently proposed fixed-rate erasure
coding strategies which ignore partial work done by straggling
nodes, rateless coding achieves significantly lower overall delay,
as well as small computational and decoding overhead.

I. INTRODUCTION

A. Motivation for Coded Matrix-vector multiplication

Matrix vector multiplications form the core of a plethora
of scientific computing and machine learning applications
that include solving partial differential equations [1], forward
and back propagation in neural networks [2], computing
the PageRank of graphs [3] etc. In the present age of Big
Data, most of these applications involve multiplying extremely
large matrices and vectors and the computations cannot be
performed efficiently on a single machine. This has motivated
the development of several algorithms [4], [5] that seek to
speed up matrix vector multiplication by computing it in a
distributed fashion across multiple computation nodes. These
algorithms achieve speedup by distributing the computation
equally among all the nodes in the system. The individual
nodes (the workers) perform their respective tasks in parallel
while a central node (the master) aggregates the output of
all the processors to complete the computation. Unfortunately,
such approaches are usually bottlenecked by the presence of
a few slow workers, called stragglers [6], that cause the entire
computation to be delayed since the master needs to wait for
all workers to complete the tasks assigned to them.

A natural approach to countering stragglers involves repli-
cating individual tasks at multiple worker nodes [7]–[10], and

waiting for any one copy to finish. Replication is a special
case of the more general erasure coding framework wherein
stragglers are modeled as erasures and codes are employed to
add redundancy so that only a subset of processors are required
to complete the tasks assigned to them. This is analogous
to erasure codes for communication channels which can be
used to reconstruct the original message from a subset of the
transmitted bits.

The usage of codes to provide error-resilience in computa-
tion has its origins in works on algorithmic fault tolerance [11].
Recent works such as [12]–[14] have employed Maximum
Distance Separable (MDS) codes to speed up the computation
of matrix vector products in a distributed setting. To illus-
trate the key idea of MDS coding, consider the example of
multiplying a matrix A with vector x using 3 worker nodes
and a (3, 2) MDS code. Suppose we split A along rows into
two matrices A1 and A2 such that A = [AT

1 AT
2 ]
T . The

worker nodes store matrices A1, A2 and A1+A2 respectively,
and each node multiplies its matrix with x. Results from any
two worker nodes are sufficient to obtain Ax, and thus the
system is tolerant to 1 straggling node. These codes reduce
the overall latency, but they discard the partial work done
by straggling nodes, possibly resulting in a large amount of
redundant computation.

B. Benefits of using Rateless Codes

We propose the use of rateless fountain codes [15]–[18]
for distributed matrix-vector multiplication of a m×n matrix
A with a n × 1 vector x. The rateless coded matrix-vector
multiplication algorithm generates coded linear combinations
of the m rows of matrix A and distributes them across p
worker nodes. Each node also receives a copy of the vector x.
The master node needs to wait for any m′ = m(1 + ε) row-
vector products to be completed in total by the nodes, where
ε is a small decoding overhead such that ε → 0 as m → ∞.
Rateless codes offer the following key benefits over previously
proposed coding techniques based on MDS codes.

1) Near-perfect Load Balancing: In order to adjust to
varying speeds of worker nodes and minimize the overall time
to complete the multiplication Ax, one can use a perfect load-
balancing scheme that dynamically assigns one row-vector
product computation task to each worker node, as soon as

ar
X

iv
:1

80
4.

10
33

1v
2 

 [
cs

.D
C

] 
 3

0 
A

pr
 2

01
8



the node finishes its current task. Thus, faster nodes complete
more tasks than slower nodes, and the p nodes collectively
finish m row-vector products. Our rateless coding strategy
achieves nearly the same load balancing benefit without the
communication overhead of dynamically allocating the tasks,
one row-vector product at a time. In our strategy, the nodes
need to collectively finish m′ = m(1+ε) row-vector products,
for small ε. In contrast, MDS coding strategies do not adjust to
different degrees of node slowdown; they use the results from
k nodes, and ignore the remaining p − k nodes. As a result
rateless code achieve a much lower delay than MDS coding
strategies.

2) Negligible Redundant Computation: A major drawback
of MDS coding is that if there is no straggling, the worker
nodes collectively perform mp/k row-vector products, instead
of m. Our strategy performs a maximum of m′ = m(1 + ε),
where, the overhead ε goes to zero as m, the number of rows
in the matrix A increases.

3) Maximum straggler tolerance: A (p, k) MDS coded
distributed computation is robust to p−k straggling nodes, for
k ∈ [1, 2, . . . p]. Reducing k increases straggler tolerance but
also adds more redundant computation. Rateless coding can
tolerate to up to p − 1 stragglers, with negligible redundant
computation overhead.

4) Low Decoding Complexity: Rateless codes offer a low
decoding complexity: O(m logm) for LT codes [15], and
O(m) for Raptor codes [16]. On the other hand, the decoding
complexity of MDS coding strategies is O(m3 +m2).

Rateless fountain codes have demonstrated superior per-
formance over MDS codes in providing robustness against
erasures in communication channels which has led to their
adoption in a variety of communication standards [17]. Due
to the aforementioned benefits we believe that they can enjoy
similar success in the realm of coded distributed computation
as well. In the sequel we describe the details of the rateless
coded algorithm for distributed matrix vector multiplication
and validate its effectiveness in mitigating stragglers through
theoretical analysis and numerical simulations.

C. Organization

The rest of the paper is organized as follows. In Section II
we review previous works on coded distributed computing.
Section III formally presents the system model, performance
criterion and comparison benchmarks. In Section IV we de-
scribe the proposed rateless fountain coding strategy for dis-
tributed matrix vector multiplication. Section V and Section VI
show theoretical analysis and simulation results comparing
rateless codes with other strategies in terms of delay and num-
ber of redundant computations. Finally, Section VII presents
ongoing and future research directions.

II. BACKGROUND AND RELATED WORK

A. The Problem of Stragglers

Stragglers are slow computing nodes that slow down any
distributed computation that depends on all nodes completing
the task assigned to them. Straggling of nodes is widely

observed in cloud infrastructure [6] and existing systems like
MapReduce [19] and Spark [20] generally deal with this
problem by launching replicas of straggling tasks, which are
referred to as back-up tasks. This strategy of task replication
has many variants such as [7], [8], and has been theoretically
analyzed in [9] and [10] where schemes for adding redundant
copies based on the tail of the runtime distribution at the
workers are proposed.

Erasure codes were first employed to overcome the issue
of straggling nodes in the context of content download from
distributed storage [21], [22]. A content file that is divided
into k chunks and coded using a (p, k) maximum-distance-
separable code, can be recovered by downloading any k out of
p encoded chunks. Queueing models to analyze the latency of
coded content download jobs were proposed and analyzed in
[23]–[27]. However, unlike distributed storage, erasure coding
of computing jobs is not straightforward. A job with n parallel
tasks needs to be designed such that the execution of any k
out of n tasks is sufficient to complete the job.

B. Distributed Coded Computation

The idea that error-correcting codes can be used for fault-
tolerance in computing tasks has its roots in works on algo-
rithmic fault tolerance [4], [5]. Recently, this approach has
spurred a rich body of research that uses erasure codes in
modern distributed computing tasks including matrix-vector
multiplication, matrix-matrix multiplication, and distributed
gradient descent.

Matrix-vector multiplication: Two major approaches to
computing distributed matrix vector products are the uncoded
and MDS coded approaches. In the uncoded case the m × n
matrix A is divided into p submatrices along the rows, and
each worker multiplies one sub-matrix with the vector x. The
MDS coded approach of [12] provides straggler tolerance
since the matrix-vector product can be decoded from the
results of computations at any k out of p nodes.

Subsequent works like [14], [28] build upon the MDS coded
approach by designing a sparse encoded matrix thus reducing
the amount of computation at each node. Applications of
coded matrix vector multiplication that have been proposed
include computing the Fourier Transform of a signal [29] and
the Page Rank of a graph [30].

In this work we introduce a scheme for coded distributed
matrix vector multiplication that makes use of rateless erasure
codes, specifically LT codes [15]. While the use of LT codes
for matrix-vector multiplication has been recently proposed in
[31], it does not utilize partial work done by straggling nodes,
which is the key novel contribution of our work. Due to this
our approach achieves near optimal straggler tolerance as well
as negligible overhead of redundant computation.

Matrix-matrix multiplication: A natural generalization of
matrix vector multiplication is matrix-matrix multiplication.
In the distributed setting this involves splitting the 2 matrices
to be multiplied into submatrices that are distributed and
multiplied across the worker nodes of the system with the
results being aggregated at the master. The authors of [32]



a1
a2

am

.

.

ae,1
ae,2

ae,⍺m

.

.

.

ae,3
Encode

Ae,1

Master

Ae,2

Ae,p

Worker 1

Worker 2

Worker p

.

.

.

Fig. 1: The system model for coded distributed matrix vector mul-
tiplication with a master-worker framework. The master generates
the encoded matrix Ae by applying a coding scheme to the rows
of A. a1,a2, . . .am are the rows of A, ae,1,ae,2, . . .ae,αm are the
rows of Ae. Worker i stores a submatrix of Ae denoted by Ae,i for
i = 1, . . . , p.

propose a coding scheme called Polynomial Codes in which
each node stores a linear combination of submatrices and the
final product can be recovered using polynomial interpolation
on the encoded products of submatrices obtained from the non-
straggling nodes. Works that build upon this approach show
that the minimum number of workers that need to complete
their task for the decoding to succeed can be reduced further
at the cost of increasing communication between the master
and worker nodes [33], and also construct codes that can
preserve the sparsity of input matrices by ensuring that the
each encoded submatrix is a linear combination of a small
number of submatrices of the original matrix [34].

While these are the major coded distributed computing
tasks that have been studied, there are also works dealing
with coded gradient descent [35]–[37], coded convolution
[38], and coded distributed optimization [39]. In this work
we address the original problem of coded distributed matrix
vector multiplication and propose a new encoding scheme that
uses the work done by each node in the system (including
the stragglers) and can approach perfect load balancing in
an asymptotic sense. In the future we plan to extend this
approach to other applications like computing matrix-matrix
products and coded gradient descent using the same underlying
principles as in the present work.

III. PROBLEM FORMULATION

A. System Model

Consider the problem of multiplying a m×n matrix A with
a n×1 vector x using p worker nodes. A central fusion node,
referred to as the master node collects the results of computing
tasks assigned to the worker nodes. The task allocation is
shown in Fig. 1. The worker nodes can only communicate
with the master, and cannot directly communicate with other
workers. The goal is to compute the result b = Ax in a
distributed fashion and mitigate the effect of unpredictable
node slowdown or straggling.

Straggler mitigation is achieved through coding wherein the
m × n matrix A is encoded using an error correcting code
which operates on the rows of the matrix as source symbols

to give the me×n encoded matrix Ae. The workers compute
the product Aex in a distributed fashion. Every coding scheme
adds some amount of redundant computations due to which
me > m. This added redundancy mitigates the effect of
stragglers because we only need a subset of the elements of
Aex to recover the desired matrix-vector product Ax. We
quantify the amount of redundancy added by the parameter
α = me/m.

Matrix Ae is split along its rows to give submatrices
Ae,1, . . . ,Ae,p with the task of computing the product Ae,ix
assigned to worker i. We assume that the submatrix Ae,i is
stored in memory at worker i to enable fast access which
is the case in real world distributed computing systems like
Spark [20]. The vector x is provided as input to the system
and is communicated by the master to all the workers when
the computation of the product Ax is required.

Each worker needs to compute a sequence of row vector
products of the form ae,jx where ae,j is the jth row of Ae.
The time taken by a worker node to finish computing one or
more row-vector products may be random due to variability
in the node speed, or variability in the complexity of the
computation task itself. Nodes that run on a shared computing
infrastructure may slow down significantly and unpredictably
due to several factors such as outages, virtualization, conges-
tion etc., as observed in the systems literature [6], [8]. We
theoretically analyze the effect of such slow-down on various
distributed computing schemes in Section V where we model
the time taken by a worker node to finish computing as a
random variable, and study how its probability distribution
affects the performance of different coding strategies.

The master node aggregates the computations of all, or
a subset of, the workers into the vector be, which is then
decoded to give the final result b = Ax. If be is not
decodable, the master waits until more row-vector products
are completed by the workers.

B. Performance Criterion

We use the following metrics to compare different coding
schemes for distributed matrix vector multiplication.

Definition 1 (Latency (T )). We define latency T as the
time required by the system to complete enough number of
computations so that the result b can be successfully decoded
from the worker computations aggregated in be.

Definition 2 (Computations (C)). he number of computations
C is defined as the total number of row-vector products ae,jx
performed collectively by the worker nodes until the vector
b = Ax is decoded.

The matrix in question can be the original matrix A in
the uncoded case, or the encoded matrix Ae in the coded
case. The cost of a single computation in terms of number
of symbol operations remains the same in both cases since
encoding does not change the size of the matrix rows. Thus
the overall computation cost is proportional to the total number
of computations (C) performed by the system. The minimum



m/p row-vector 
product tasks

Wait for the p 
workers to finish 
m/p tasks each

(a) Uncoded Strategy

mp/k row-vector 
product tasks

Wait for any k 
workers to finish 
mp/k tasks each

(b) MDS-Coding Strategy

1

m row-vector 
product tasks

Assign a task to 
each idle server

m

Wait for m 
tasks to be 
collectively 
finished

(c) Dynamic Load-balancing

Fig. 2: In the uncoded scheme, we wait for the p workers to finish m/p row-vector products each. With MDS-coding, we only need to wait
for k out of p workers, but each worker has to complete mp/k. The dynamic load-balancing strategy has a central queue of the m tasks,
which are dynamically assigned to idle worker nodes.

Worker 2
am/3+1

Worker 3

am/3+1
.
.
.

x

a1

am/3 xa2m/3

.

.

.

x
a2m/3

.

.

.

Worker 1
✔

✔

✔ ✔

✔✔

.

.

.

.

.

.

.

.

.

Fig. 3: In the uncoded Strategy we to wait for each worker to finish
all m/p row-vector products that are assigned to that. Orange shading
and check marks indicate completed row-vector products at the time
of successful decoding of b = Ax.

am/2

a1

a2

.

.

am

am/2+1

am/2+2

.

.

am/2 +am

a1 + am/2+1

a2 + am/2+2

.

.
x x x

Worker 1 Worker 2 Worker 3

✔

✔

✔

✔

✔

✔

.

.

.

.

.

.

✔

✔

✔

.

.

Fig. 4: In the (p, k) MDS-coded strategy we need to wait for any k
out of p workers to finish m/k row-vector products each, and ignore
the partial work done by straggling nodes. In this case we discard
Worker 1’s partial work.

number of computations that must be performed by the system
is m since we wish to compute an m-dimensional matrix-
vector product.

In Section V we analyze the trade-off between latency and
computations by modeling the delay at each worker node as
a random variable that depends on the number of row-vector
product tasks performed by that worker. Our coded computing
scheme achieves a win-win in the latency-computation trade-
off by giving significantly lower expected latency than existing
schemes for the same amount of redundant computation.
In Section VI we present simulation results to validate the
theoretical findings.

C. Benchmarks for Comparison

We compare the performance of the proposed rateless coded
strategy with three benchmarks: the uncoded, MDS-coded,
and dynamic load-balancing strategies, which are described
formally below. Fig. 2 is an illustration of the differences in

the way row-vector product tasks are completed by the worker
nodes in each of these 3 strategies.

1) The Uncoded Strategy: A simple method to parallelize
the multiplication of a m×n matrix A with a n×1 vector x is
to distribute the computation equally over p worker nodes. We
can split the rows of A into p submatrices A1, . . . ,Ap, with
m/p rows each (assume that p divides m). Each submatrix is
multiplied with x in parallel on one of the p worker nodes
and the master aggregates the result into the m× 1 vector b.
While this approach is efficient in the number of computations,
the completion of the matrix-vector multiplication job can be
bottlenecked by the slowest worker node.

2) The MDS-Coded Strategy: Recent works like [12], [13]
have applied coding to overcome the problem of stragglers in
the uncoded strategy. The strategy involves pre-multiplying A
at the central node with a suitable encoding matrix F denoting
the MDS codes. If a matrix is encoded using a (p, k) MDS
code, the matrix A is split into k matrices A1, . . . ,Ak. The
MDS code adds p−k redundant matrices Ak+1, . . . ,Ap which
are linear combinations of the matrices A1, . . . ,Ak. Worker
node i computes the product of matrix Ai with vector x.
Thus the system is robust to p − k stragglers. However this
strategy adds a significant computation overhead. When none
of the nodes are slow, the system performs mp/k row-vector
products, whereas in the uncoded case it only performs m
computations.

3) Dynamic Load Balancing: Dynamic Load Balancing
(DLB) is an ideal strategy that enjoys all the benefits of
parallelizing the matrix-vector multiplication, without any
drawbacks. Here, the matrix-vector multiplication is treated as
a job with m tasks, each task corresponding to one row-vector
product. The central node assigns one task to each of the p
workers. As soon as a worker finishes its task, it is assigned
the next task. The matrix-vector multiplication is complete
when exactly m tasks are collectively finished by the workers.
Since none of the workers are idle at any point, the system is
not bottlenecked by the slowest worker(s). The data (elements
of the corresponding matrix row) required to complete the
row-vector multiplication can be sent dynamically by the
master node. This strategy may be impractical due to the
constant communication between the master and the worker



a1	 a2	 a3	

Original Rows 

Encoded rows 

a1+a2 a1 a2+a3 a1+a3 

Fig. 5: Bipartite graph representation of the encoding of the rows
a1,a2, . . .am of matrix A. Each encoded row is the sum of d rows
of A chosen uniformly at random, where d is drawn from the Robust
Soliton degree distribution (1).

? ? ?

b1+b2 b1 b2+b3 b1+b3

b1 ? ?

b2 b1 b2+b3 b3

Decode degree 1 encoded symbols

Subtract decoded symbols from encoded products

Fig. 6: In each step of the iterative decoding process, a single degree
one encoded symbol is decoded directly, and is subtracted from all
sums in which it participates.

nodes, however, it serves as a good theoretical benchmark for
comparing more practical strategies.

IV. PROPOSED RATELESS CODING STRATEGY

In this section we propose the use of rateless codes to
mitigate the effect of stragglers in computing the matrix-
vector product b = Ax. Our algorithm achieves near-perfect
load balancing and low latency, with negligible computation
overhead. We describe our algorithm in two parts - first,
we describe how LT codes [15], one of the first practically
realizable rateless codes, can be applied to perform coded
matrix vector multiplication, and then we describe a distributed
implementation of this scheme using the master-worker frame-
work described in Section III-A.

A. LT-Coded Matrix-vector Multiplication

LT codes, described by Luby in [15] are a class of rateless
erasure codes that can be used to generate a potentially
limitless number of encoded symbols from a set of m source

symbols. The original source symbols can be recovered with
a high probability from any M ′ encoded symbols using an
iterative decoding algorithm based on belief propagation that
is commonly called the peeling decoder [15]–[17]. Here M ′ is
a random variable. In our analysis we deal with m′ = E[M ′]
which we formally define as the decoding threshold of our
algorithm.

Definition 3 (Decoding Threshold (m′)). We define decoding
threshold m′ as the expected number of encoded symbols
required to decode a set of m source symbols under the
proposed rateless coding strategy..

To apply LT codes to the task of encoding the matrix-vector
product b = Ax, we treat the rows of the matrix A as source
symbols. Each encoded symbol is the sum of a randomly
chosen subset of source symbols. Thus rows of the encoded
matrix are given by ae,j =

∑
i∈S ai where S is a random

subset of rows of A.
To choose S, we first choose the degree of the encoded

symbol according to a degree distribution. The degree d of an
encoded symbol is defined as the number of source symbols
that contribute to the encoded symbol. If there are m source
symbols (m rows), d is chosen according to the Robust Soliton
degree distribution [15] wherein the probability of choosing
d = i is proportional to

ρ(d) =


R
im + 1

m for i = 1
R
im + 1

m(m−1) for i = 2, . . . ,m/R− 1
R ln(R/δ)

m + 1
m(m−1) for i = m/R

1
m(m−1) for i = m/R+ 1, . . . ,m

(1)

R = c log(m/δ)
√
m for some c > 0 (c is a design

parameter) and δ is the failure probability of the decoding
algorithm and is thus chosen to lie in [0, 1]. Some guidelines
for choosing c, and δ can be found in [40]. The exact
probability of choosing d = i can be found by normalizing ρ
to sum to 1.

Once the degree d is chosen, encoding is performed by
choosing d source symbols uniformly at random (this deter-
mines S) and adding them to generate an encoded symbol.
The encoding process is illustrated in Fig. 5.

Once the rows of the encoded matrix Ae are generated, we
can compute the encoded matrix vector product be = Aex.
To decode the desired matrix vector product b = Ax from a
subset of m′ symbols of be we use the the iterative peeling
decoder described in [15]–[17]. If b = [b1, b2, . . . bm], the
decoder may receive symbols b1 + b2 + b3, b2 + b4, b3, b4,
and so on. Decoding is performed in an iterative fashion.
In each iteration, the decoder finds a degree one encoded
symbol, covers the corresponding source symbol, and subtracts
the symbol from all other encoded symbols connected to that
source symbols. This decoding process is illustrated in Fig. 6.
The Robust Soliton degree distribution (1) used for encoding
the rows of A ensures that with high probability there are



0 2000 4000 6000 8000 10000
Number of encoded symbols received

0

2000

4000

6000

8000

10000

N
u

m
b

er
of

so
u

rc
e

sy
m

b
ol

s
re

co
ve

re
d

c = 0.03, δ = 0.5

c = 0.01, δ = 0.5

c = 0.03, δ = 0.1

Fig. 7: The number of decoded symbols is almost constant until m =
10, 000 encoded symbols are received after which it increases rapidly.

degree one symbols at each iteration, thus leading to fast and
low-complexity decoding.

Fig. 7, shows simulation results for the number of sym-
bols decoded successfully for each encoded symbol received.
For this we perform LT-Coded multiplication of a randomly
generated 10, 000× 10, 000 matrix with a 10, 000× 1 vector.
The matrix A is encoded using an LT code with parameters c
and δ chosen according to the guidelines of [40]. We generate
a single row of the encoded matrix Ae at a time which is
then multiplied with the 10, 000 × 1 size vector x to give
a single element of the encoded matrix vector product be.
The process is repeated until we have enough symbols for
successfully decoding the entire 10, 000×1 size vector b using
the peeling decoder. The plots of Fig. 7 correspond to different
choices of c and δ. In each case we observe an avalanche
behavior wherein very few symbols are decoded up to a point
(approximately upto 10, 000 encoded symbols received) after
which the decoding proceeds very rapidly to completion.

The theoretical encoding and decoding properties of LT
codes are summarized in the following lemmas:

Lemma 1 (Theorem 13 in [15]). For any constant δ > 0, the
average degree of an encoded symbol is O(log(m/δ)) where
m is the number of source symbols.

Corollary 1. Each encoding symbol can be generated using
O(logm) symbol operations on average.

Lemma 2 (Theorem 17 in [15]). For any constant δ > 0 and
for a source block with m source symbols, the LT decoder
can recover all the source symbols from a set of me = m +
O(
√
m) log2(m/δ) with probability at least 1− δ.

Corollary 2. The decoding threshold m′ as defined in Defi-
nition 3 is given by m′ = m(1 + ε) where ε→ 0 as m→∞

Corollary 3. Since the average degree of an encoded symbol
is O(log(m/δ)) the decoding requires O(m logm) symbol
operations on average.

⍺m row-vector 
product tasks

Wait for m(1+𝜖) tasks 
to be collectively 
finished by workers

Fig. 8: Queueing model for the rateless LT-coded strategy. For large
α and m, its latency is equivalent to the dynamic load balancing
scheme shown in Fig. 2.

am/2

a1

a2+a4

.

.

am

a1 + a3

a5 + am + a2+a4

.

.

a10+ a14 +am

a1 + am/2+1

a5 + am/2+4

.

.
x x x

Worker 1 Worker 2 Worker 3

✔

✔

✔

✔

✔

a7 + a11 + am/2

✔

✔ a3 + a4✔

.

.

.

.

.

.

Fig. 9: In the rateless LT-coded strategy we need to wait for any
m′ ' m(1 + ε) row-vector products to be computed collectively by
worker nodes. Orange shading and check marks indicate completed
row-vector products at the time of successful decoding of b = Ax.
Partial work done by all nodes (indicated by check marks) is used
for decoding.

B. Distributed Implementation

We now describe the implementation of LT-Coded matrix
vector multiplication in a distributed master-worker frame-
work. The encoding and decoding tasks are performed at the
master while the workers multiply rows of the encoded matrix
with the vector x i.e. they compute products of the form ae,jx
and communicate the result to the master.

The encoding step can be treated as a pre-processing step
in that it is only performed initially. Thus the m × n matrix
A is encoded by treating the rows a1,a2, . . .am of the
matrix as source symbols to generate me = αm rows of the
encoded matrix Ae as described in Section IV-A. Since the
general motivation for performing distributed matrix vector
multiplication is that A is too large to be stored in memory
at a single machine, the encoding step can be performed by
accessing rows of A stored in a distributed file system [41]–
[43] and computing their sum to generate a row of Ae. While
the cost of communicating matrix rows over a distributed file
system may be high, we note that this is a one-time cost since
the matrix is encoded only once.

The rows of the encoded matrix are then distributed among
the worker nodes. Each worker node is assigned an equal
number of rows of Ae as illustrated in Fig. 1. The αm/p
rows assigned to each node are stored in its local memory.
This can be accomplished using distributed memory abstrac-
tions like Resilient Distributed Datasets [20]. Subsequently,
whenever we wish to multiply A with a vector x, the master
communicates x to the workers. Each worker multiplies x with
each row of Ae stored in its memory and returns the product (a
scalar) to the master. Alternately, to minimize communication,



the worker may only send progress updates to the master node
indicating the number of row-product computation tasks it has
completed, and send the products only upon request by the
master.

The master node receives coded row-vector products from
the worker nodes. Since the master is aware of the mapping,
such as in Fig. 5, from source symbols to encoded symbols,
it can use this knowledge to recover the desired matrix vector
product b = Ax from a subset of the elements of be = Aex
using the iterative peeling decoder. For a matrix with m rows,
the decoding process will require m′ = m(1 + ε) row-vector
products, in expectation, where ε is a small overhead, such
that ε→ 0 as m→∞, that depends on the parameters of the
Robust Soliton distribution defined in (1).

Once the master decodes all the elements in the product
vector b = Ax, it sends a done signal to all workers nodes
to stop their local computation. The workers will continue
sending row-vector products to the master, until the master
sends the done signal. A worker node may complete all the
αm/p row-vector products assigned to it before receiving the
done signal. This worker will then remain idle, while the
master collects more row-vector products from other workers
until it is able to decode b. Figures 8 and 9 illustrate the
queueing model, and a 3-node example of the rateless coding
strategy respectively.

While we have used LT Codes [15] for our analysis and
simulations due to their ease of implementation and fast
decoding, we note that any rateless random linear network
code which generates αm (α > 1) encoded symbols that
are linear independent with high probability can be used for
encoding the m rows of matrix A. A larger value of α implies
higher redundancy, and more tolerance to straggling nodes. In
particular one can consider more advanced rateless codes such
as Raptor Codes [16], [17] and Online Codes [44]. Raptor
Codes have better encoding and decoding properties than LT
codes and we are exploring using them instead of LT codes
in our ongoing systems implementation.

V. THEORETICAL ANALYSIS

In this section we discuss our main theoretical results, which
are summarized in Table 1. We first describe our model for
computation delays at each worker node, and then compare the
expected latency and computations of the proposed rateless LT
coding strategy with the benchmarks described in Section III.

A. Delay Model and Order Statistics Primer

We assume that worker i requires time Yi to perform Ci
computations where

Yi = Xi + τCi, for all i = 1, . . . , p (2)

and Xi ∼ exp(µ), is an exponential random variable with
rate µ. Thus, the delay involves the sum of two components
– an exponential random variable Xi that models the network
latency, initial setup time, and other random components, and
a constant shift that is linear in the number of computations. If
a worker completes Ci row-vector products this shift is Ciτ ,

Strategy Latency Computations Complexity
LT-coded τm(1+ε)

p
+ 1

µ
m(1 + ε) O(m logm)

Uncoded τm
p

+ 1
µ
log p m O(m)

MDS τm
k

+ 1
µ
log p

p−k mp/k O(m3 +m2)

DLB τm
p

+ 1
µ

m O(m)

TABLE I: Comparison of different strategies to multiply an m × n
size matrix A with vector x using p worker nodes. The latency values
are approximate, and computation values are for the case when none
of the nodes slowdown.

where τ is the time taken to perform each computation. The
distribution of the per-worker runtime can be shown to be

P(Yi ≤ t) = 1− exp(−µ(t− τC)) (3)

While this follows the shifted exponential delay models used
in [12], [14] and [38], the key difference is that the shift is
parameterized by the number of computations at each worker.
We believe this is a more realistic model since it clearly
captures the effect of increasing the amount of computations
on the delay – if a worker is assigned more computations,
there is larger delay. And unlike previous works, the decay
rate µ of the exponential part of the delay does not change
with the number of computations performed by that worker.

We now state some standard results [45] on order statistics
of exponential random variables to aid the understanding of
the latency analysis presented below. If X1, X2, . . .Xp are ex-
ponential random variables with rate µ, their kth order statistic
is denoted by Xk:p. Thus, X1:p = min(X1, X2, . . . Xp), and
Xp:p = max(X1, X2, . . . Xp). The expected value of Xk:p is
given by

E[Xk:p] =
1

µ

(
1

p
+ · · ·+ 1

p− k + 1

)
, (4)

=
Hp −Hp−k

µ
, (5)

where Hp is the pth Harmonic number

Hp ,

{∑p
i=1

1
i for p = 1, 2, . . .

0 for p = 0
(6)

For large p,Hp = log p+ γ, where γ is the Euler-Mascheroni
constant and thus we can use the approximation Hp ' log p
for large p.

B. Latency Analysis

In what follows we derive expressions for the expected
latency of each of the coded computing schemes studied so
far. We use Tuncoded, TMDS, TLT, to represent the latency of the
uncoded, MDS-coded, and LT-coded schemes respectively.

Theorem 1 (Latency of the Uncoded Strategy). The expected
latency for the uncoded strategy with p worker nodes is

E[Tuncoded] =
τm

p
+

1

µ
Hp '

τm

p
+

1

µ
log p (7)

where Hp is the pth Harmonic number.



Proof. The latency Tuncoded in the uncoded case is the time
until all p workers finish m/p tasks each, which is

Tuncoded = max(Y1, Y2, . . . , Yp), (8)
= max(X1 + τC1, X2 + τC2, . . . , Xp + τCp), (9)

where (8) is obtained by using the delay model defined in
(2). Since each worker performs m/p row-vector products, we
substitute C1 = C2 = . . . = Cp = m/p and take expectation
on both sides to obtain

E[Tuncoded] =
τm

p
+ E[max(X1, X2, . . . , Xp)], (10)

=
τm

p
+

1

µ
Hp, (11)

' τm

p
+

1

µ
log p, (12)

where (11) and (12) follow from (5) and (6).

Theorem 2 (Latency of the MDS-Coded Strategy). The ex-
pected latency for the MDS-coded case is given by

E[TMDS] =
τm

k
+

1

µ
(Hp −Hp−k) '

τm

p
+

1

µ
log

p

p− k
.

(13)

Proof. The latency in the MDS-coded case is TMDS = Yk:p,
where Yk:p is the kth order statistic of the individual worker
latencies Y1, Y2, . . . , Yp since we only wait for the fastest k
workers to finish the task assigned to them. In this case, each
of the fastest k workers performs m

k computations and thus
the expected overall latency is given by

E[TMDS] = E[Xk:p] + τ
m

k
, (14)

=
τm

k
+

1

µ
(Hp −Hp−k), (15)

' τm

k
+

1

µ
log

p

p− k
. (16)

where (15) and (16) follow from the exponential order statis-
tics results in (5) and (6).

Thus in the MDS-coded case there is a tradeoff between
the two terms in the above expression. A lower value of k
increases the number of redundant computations thus increas-
ing τm/k but it decreases the effect of straggling workers
which is quantified by the decrease in log(p/(p−k)). Thus our
delay model effectively captures the trade-off associated with
increasing k in the MDS-coded case. This is also illustrated
by our simulation results in the next section.

Theorem 3 (Latency of the Rateless Coding Strategy). For
large me i.e. α = me/m → ∞, the expected latency for the
LT-coded case has the following upper and lower bounds.

E[TLT] ≤
τm′

p
+

1

µ
+ τ, (17)

E[TLT] ≥
τm′

p
+

1

pµ
, (18)

X1Worker 1

X3

Worker 2

Worker p

X2

TLT0

Cp𝜏

C1𝜏
Time

Fig. 10: Worker i has an random exponential initial delay Xi, after
which it completes row-vector product tasks (denoted by the small
rectangles), taking τ seconds per task. The latency TLT is the time to
complete m′ tasks in total.

where m′ = m(1 + ε) is the expected number of symbols
necessary for successful decoding.

Proof. As per our model, the time taken by worker i to
perform Ci computations is given by

Yi = Xi + τCi, for i = 1, . . . , p. (19)

The latency TLT is the earliest time when
∑p
i=1 Ci = m′, as

illustrated in Fig. 10. We note that, in this case it is not nec-
essary that each worker has completed at least 1 computation.
Specifically, if TLT−Xi ≤ τ for any i then it means that worker
i has not performed even a single computation in the time that
the system as a whole has completed m′ computations (owing
to the large initial delay Xi). Therefore we define

WLT := {i : TLT −Xi ≥ τ} (20)

Here WLT is the set of workers for which Ci > 0. Thus

TLT = max
i∈WLT

Yi, (21)

= max
i∈WLT

(Xi + τCi), (22)

≥ min
i∈[1,...p]

Xi + τ max
i∈WLT

Ci, (23)

≥ min
i∈[1,...p]

Xi + τ
m′

p
, (24)

where to obtain (23), we replace each Xi in (22) by
mini∈[1,...p]Xi and then we can bring it outside the maximum.
To obtain (24), we observe that in order for the p workers to
collectively finish m′ computations, the maximum number of
computations completed by a worker has to be at least m/p.
Taking expectation on both sides we get

E[TLT] ≥ E[min(X1, X2, . . . Xp)] +
τm′

p
, (25)

=
1

pµ
+
τm′

p
. (26)

where the lower bound in (26) follows from the result (5) on
order statistics of exponential random variables.

To derive the upper bound, we note that

TLT ≤ Xi + τ(Ci + 1), for all i = 1, . . . , p (27)



This is because at time TLT each of the workers 1, . . . , p, have
completed C1, . . . , Cp row-vector product tasks respectively,
but they may have partially completed the next task. The 1
added to each Ci accounts for this edge effect, which is also
illustrated in Fig. 10.

Summing over all i on both sides, we get
p∑
i=1

TLT ≤
p∑
i=1

Xi +

p∑
i=1

τ(Ci + 1) (28)

pTLT ≤
p∑
i=1

Xi + τ(m′ + p) (29)

Taking expectation on both sides and rearranging we obtain
the upper bound,

pE[TLT] ≤
p

µ
+ τ(m′ + p), (30)

E[TLT] ≤
τm′

p
+

1

µ
+ τ. (31)

Corollary 4. The expected latency of the Dynamic Load-
Balancing (DLB) scheme described in Section III-C is identi-
cal to the LT-coded scheme with m′ = m and hence follows
the above upper and lower bounds of Theorem 3 with m′ = m.
Thus for large m, when m′ → m, the expected latency of
rateless coding converges to that of dynamic load balancing.

Remark 1. For finite values of me, if each worker is assigned
me/p computations, it is possible that not all values of Ci
that satisfy

∑p
i=1 Ci = m′ are permissible since we also need

to enforce the constraint Ci ≤ me/p. Hence we need large
redundancy (α = me/m → ∞) for the results of Theorem 3
to be strictly true. However in Section VI we show through
simulations that even for fairly small amounts of redundancy
(α = me/m = 2) the latency distribution for the LT and DLB
schemes is almost identical.

C. Computations and Decoding Complexity

Table I shows a comparison of the different strategies in
terms of the total number of row-vector product computations
performed by the workers until b can be decoded. There
are no redundant computations in the uncoded and dynamic
load balancing schemes, and thus C = m. In the MDS
coding scheme, each nodes is assigned m/k computations,
and thus if there is no node slowdown or straggling, the
total number of computations is mp/k, which is a significant
computation overhead. In the rateless LT coding scheme, the
iterative decoding process succeeds upon collectively receiving
m(1 + ε) symbols from the nodes, where ε→ 0 as m→∞.
Thus, rateless coding is asymptotically optimal in the number
of computations.

Next, let us compare the decoding complexity of the strate-
gies, which are also given in Table I. The uncoded and DLB
strategies again have an optimal decoding complexity O(m),
with O(1) operations per symbol. For MDS codes, the decod-
ing involves inverting an m ×m matrix which takes O(m3)

operations, and multiplying it with an m×1 vector which takes
O(m2) operations, resulting in an overall decoding complexity
O(m3+m2). Rateless LT codes create each encoded row with
O(logm) rows of A and use an iterative decoding process
which needs O(logm) operations per symbol, which results
in a decoding complexity O(m logm).

VI. SIMULATION RESULTS

In this section we present simulations for comparing the
latency and computations of the various distributed computing
schemes discussed so far - the uncoded scheme, the MDS-
coded scheme, the LT-coded scheme, and the Dynamic Load
Balancing (DLB) scheme. In our simulations the number of
rows m = 10, 000, and number of worker nodes p = 10. We
assume that the total time Ti taken by worker i to complete
its assigned task is given by the delay model (2) with rate
parameter µ = 5.0 and the time to compute one row-vector
product τ = µ/1000 = 0.005.

The uncoded scheme involves assigning m/p = 1000
computations to each worker and waiting for all the workers
to finish all the computations assigned to them.

For the MDS-coded scheme we use a (p, k) MDS code with
k = p − 2 = 8. Thus each processor is assigned m

k = 1250
computations and we wait for the fastest k = 8 processors to
complete all the tasks assigned to them.

For the LT coded scheme we consider two settings. In the
first setting we use an LT code with parameters R = 0.03, δ =
0.5, α = 1.25. This choice of α ensures that αm = 12, 500
and thus the number of redundant computations is the same
as that for the MDS case. In the second setting we increase
α to 2.0 due to which αm = 20, 000 to observe if it leads
to any further improvement in performance. We note that the
redundant storage in the second case is the same as the case
where each submatrix is replicated across 2 nodes which is
often done in real distributed computing systems like [19],
[20]. In the LT coded scheme we wait for the fastest m′

computations where m′ is the minimum number of rows
required for the decoding algorithm to be successful.

For the dynamic load balancing scheme we just wait for a
total of m computations to be performed across all workers.
The results of our experiments are shown in figures 11 to 13
All plots are generated using 500 Monte-Carlo simulations.

As can be seen from Figures 11 to 13, the LT-coded
approach with α = 2.0 outperforms both the uncoded and
MDS-coded scheme in terms of latency. Moreover with a high
probability, it also performs fewer computations than the MDS
coded scheme. Remarkably, the latency performance of the
LT-coded scheme with α = 2.0 is almost indistinguishable
from the ideal Dynamic Load-Balancing (DLB) scheme. Thus
with the same amount of redundant storage as present in the
replication-based schemes of existing distributed computing
systems, we are able to outperform previous coded computing
approaches and show near ideal performance.

VII. CONCLUDING REMARKS

Due to the massive size of matrices arising in modern data-
driven applications, computations such as matrix-vector multi-



10 20 30 40
t

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
T
>
t)

Uncoded

MDS (k = 8)

LT (α =1.25)

LT (α =2.0)

DLB

Fig. 11: Comparison of the tail distribution of the latency for different
coding schemes. As expected, the uncoded scheme has the heaviest
tail. The (10, 8) MDS code and LT codes with α = 1.25 = 10/8
have similar tail latency, but on increasing α to 2.0, the latency tail
achieved by LT codes approaches the ideal Dynamic Load Balancing
(DLB) scheme.

10000 10500 11000 11500 12000 12500
c

0.0

0.2

0.4

0.6

0.8

1.0

P
r(
C
>
c)

Uncoded

MDS (k = 8)

LT (α =1.25)

LT (α =2.0)

DLB

Fig. 12: In the uncoded and DLB schemes, the workers collectively
perform exactly m = 10, 000 row-vector product computations until
b = Ax can be decoded. MDS and LT coding schemes need
redundant computations in order to reduce the latency tail (as shown
in Fig. 11), but LT coded schemes (both α = 1.25 and 2.0) perform
significantly fewer redundant computations.

plication need to be parallelized across multiple nodes. In this
paper we propose an erasure coding strategy based on rateless
fountain codes to overcome bottlenecks caused by slow or
straggling nodes. For a matrix with m rows, our strategy
requires the nodes to collectively finish slightly more than
m row-vector products, and thus it can seamlessly adapt to
varying node speeds and achieve near-perfect load balancing.
Moreover, it has a small overhead of redundant computations
(asymptotically zero), and low decoding complexity. Thus, it
strikes a better latency-computation trade-off than the uncoded
and fixed-rate erasure coding strategies.

We are currently working on implementing the proposed
rateless coding scheme in a real distributed computing cluster

2.0 2.5 3.0 3.5 4.0
Average Latency

1.00

1.25

1.50

1.75

2.00

2.25

2.50

N
or

m
al

iz
ed

A
ve

ra
ge

C
om

p
u

ta
ti

on
s(
C
/m

)

MDS k = 10 (Uncoded)

MDS k = 8

MDS k = 6

MDS k = 4

LT (α =1.25)LT (α =2.0)
DLB

Fig. 13: Trade-off between average latency (T ) and normalized
average computations (C/m) for different parameter settings of
the MDS and LT coded schemes shows that adding redundancy
(decreasing k) in MDS codes eventually leads to an increase in
both latency and number of computations. However, for LT codes
adding redundancy (increasing α) reduces latency while keeping the
number of computations constant, causing it to approach the ideal
DLB scheme.

and will evaluate its performance for large-scale data pro-
cessing applications such as neural network inference and
PageRank. We also plan to investigate the theory behind LT
codes and other improved versions of fountain codes such
as Raptor-Q codes [17] and systematic fountain codes. More
broadly, this work demonstrates that rateless codes are superior
to fixed-rate coding strategies for the purpose of adapting
to variability and heterogeneity in node speeds, as well as
node failures. While we have only considered matrix-vector
multiplication so far, we believe that the core rateless coding
idea is applicable to a wide range of linear computations
such as matrix-matrix multiplication, convolution and Fourier
Transforms.

ACKNOWLEDGMENTS

The authors are grateful to Pulkit Grover, Sanghamitra
Dutta, Yaoqing Yang and Haewon Jeong for helpful discus-
sions. Author Joshi also sincerely thanks Emina Soljanin,
Alyson Fox, Fiona Knoll and Nadia Kazemi for fruitful initial
discussions during the Women in Data Science and Mathe-
matics (WiSDM) Research Collaboration Workshop held at
Brown University in July 2017.

REFERENCES

[1] William F Ames, Numerical Methods for Partial Differential Equations,
Academic Press, 2014.

[2] William Dally, “High-performance hardware for machine learning,”
NIPS Tutorial, 2015.

[3] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd,
“The pagerank citation ranking: Bringing order to the web.,” Tech.
Rep., Stanford InfoLab, 1999.

[4] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis,
Introduction to Parallel Computing: Design and Analysis of Algorithms,
vol. 400, Benjamin/Cummings Redwood City, 1994.

[5] Geoffrey C. Fox, Steve W. Otto, and Anthony JG. Hey, “Matrix
algorithms on a hypercube i: Matrix multiplication,” Parallel Computing,
vol. 4, no. 1, pp. 17–31, 1987.

[6] Jeffrey Dean and Luiz André Barroso, “The tail at scale,” Communica-
tions of the ACM, vol. 56, no. 2, pp. 74–80, 2013.



[7] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion
Stoica, Yi Lu, Bikas Saha, and Edward Harris, “Reining in the outliers in
map-reduce clusters using mantri.,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2010, vol. 10, p. 24.

[8] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica,
“Effective straggler mitigation: Attack of the clones.,” in USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2013, vol. 13, pp. 185–198.

[9] Da Wang, Gauri Joshi, and Gregory Wornell, “Efficient task replication
for fast response times in parallel computation,” in ACM SIGMETRICS
Performance Evaluation Review. ACM, 2014, vol. 42, pp. 599–600.

[10] Da Wang, Gauri Joshi, and Gregory Wornell, “Using straggler repli-
cation to reduce latency in large-scale parallel computing,” ACM
SIGMETRICS Performance Evaluation Review, vol. 43, no. 3, pp. 7–
11, 2015.

[11] Kuang-Hua Huang et al., “Algorithm-based fault tolerance for matrix
operations,” IEEE Transactions on Computers, vol. 100, no. 6, pp. 518–
528, 1984.

[12] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papail-
iopoulos, and Kannan Ramchandran, “Speeding up distributed machine
learning using codes,” IEEE Transactions on Information Theory, 2017.

[13] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr,
“A unified coding framework for distributed computing with straggling
servers,” in IEEE Global Communications Conference (GLOBECOM)
Workshops. IEEE, 2016, pp. 1–6.

[14] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover, “Short-dot:
Computing large linear transforms distributedly using coded short dot
products,” in Advances In Neural Information Processing Systems, 2016,
pp. 2100–2108.

[15] Michael Luby, “LT Codes,” in Foundations of Computer Science, 2002.
Proceedings. The 43rd Annual IEEE Symposium on. IEEE, 2002, pp.
271–280.

[16] Amin Shokrollahi, “Raptor codes,” IEEE transactions on information
theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[17] Amin Shokrollahi, Michael Luby, et al., “Raptor codes,” Foundations
and trends in communications and information theory, vol. 6, no. 3–4,
pp. 213–322, 2011.

[18] Gauri Joshi, Joong Bum Rhim, John Sun, and Da Wang, “Fountain
codes,” in Technical Report, 2010, pp. 7–12.

[19] Jeffrey Dean and Sanjay Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM, vol. 51,
no. 1, pp. 107–113, 2008.

[20] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica, “Spark: Cluster computing with working sets.,” Hot-
Cloud, vol. 10, no. 10-10, pp. 95, 2010.

[21] Longbo Huang, S. Pawar, Hao Zhang, and K. Ramchandran, “Codes
can reduce queueing delay in data centers,” in IEEE International
Symposium on Information Theory Proceedings (ISIT), July 2012, pp.
2766–2770.

[22] Gauri Joshi, Yanpei Liu, and Emina Soljanin, “Coding for fast content
download,” in Allerton Conference on Communication, Control, and
Computing. IEEE, 2012, pp. 326–333.

[23] Gauri Joshi, Yanpei Liu, and Emina Soljanin, “On the delay-storage
trade-off in content download from coded distributed storage systems,”
IEEE Journal on Selected Areas of Communications, vol. 32, no. 5, pp.
989–997, May 2014.

[24] Gauri Joshi, Emina Soljanin, and Gregory Wornell, “Queues with
redundancy: Latency-cost analysis,” ACM SIGMETRICS Performance
Evaluation Review, vol. 43, no. 2, pp. 54–56, 2015.

[25] Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran, “When do
redundant requests reduce latency?,” IEEE Transactions on Communi-
cations, vol. 64, no. 2, pp. 715–722, Feb 2016.

[26] Kangwook Lee, Nihar B. Shah, Longbo Huang, and Kannan Ramchan-
dran, “The mds queue: Analysing the latency performance of erasure
codes,” IEEE Transactions on Information Theory, vol. 63, no. 5, pp.
2822–2842, May 2017.

[27] Gauri Joshi, Emina Soljanin, and Gregory Wornell, “Efficient re-
dundancy techniques for latency reduction in cloud systems,” ACM
Transactions on Modeling and Performance Evaluation of Computing
Systems, vol. 2, no. 12, may 2017.

[28] Geewon Suh, Kangwook Lee, and Changho Suh, “Matrix sparsification
for coded matrix multiplication,” in Allerton Conference on Communi-
cation, Control, and Computing. IEEE, 2017, pp. 1271–1278.

[29] Qian Yu, Mohammad Ali Maddah-Ali, and A Salman Avestimehr,
“Coded fourier transform,” arXiv preprint arXiv:1710.06471, 2017.

[30] Yaoqing Yang, Pulkit Grover, and Soummya Kar, “Coded distributed
computing for inverse problems,” in Advances in Neural Information
Processing Systems, 2017, pp. 709–719.

[31] Albin Severinson, Alexandre Graell i Amat, and Eirik Rosnes, “Block-
diagonal and lt codes for distributed computing with straggling servers,”
arXiv preprint arXiv:1712.08230, dec.

[32] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr, “Poly-
nomial codes: an optimal design for high-dimensional coded matrix
multiplication,” in Advances in Neural Information Processing Systems,
2017, pp. 4406–4416.

[33] Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon
Jeong, Viveck Cadambe, and Pulkit Grover, “On the optimal re-
covery threshold of coded matrix multiplication,” arXiv preprint
arXiv:1801.10292, 2018.

[34] Sinong Wang, Jiashang Liu, and Ness Shroff, “Coded sparse matrix
multiplication,” arXiv preprint arXiv:1802.03430, 2018.

[35] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatzi-
akis, “Gradient coding: Avoiding stragglers in synchronous gradient
descent,” stat, vol. 1050, pp. 8, 2017.

[36] Wael Halbawi, Navid Azizan-Ruhi, Fariborz Salehi, and Babak Hassibi,
“Improving distributed gradient descent using reed-solomon codes,”
arXiv preprint arXiv:1706.05436, 2017.

[37] Songze Li, Seyed Mohammadreza Mousavi Kalan, A Salman Aves-
timehr, and Mahdi Soltanolkotabi, “Near-optimal straggler mitigation for
distributed gradient methods,” arXiv preprint arXiv:1710.09990, 2017.

[38] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover, “Coded
convolution for parallel and distributed computing within a deadline,”
in IEEE International Symposium on Information Theory (ISIT). IEEE,
2017, pp. 2403–2407.

[39] Can Karakus, Yifan Sun, and Suhas Diggavi, “Encoded distributed
optimization,” in IEEE International Symposium on Information Theory
(ISIT). IEEE, 2017, pp. 2890–2894.

[40] David JC MacKay, Information theory, Inference and Learning Algo-
rithms, Cambridge university press, 2003.

[41] John H Howard et al., An overview of the andrew file system, Carnegie
Mellon University, Information Technology Center, 1988.

[42] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, The Google
file system, vol. 37, ACM, 2003.

[43] Dhruba Borthakur et al., “Hdfs architecture guide,” Hadoop Apache
Project, vol. 53, 2008.

[44] Petar Maymounkov, “Online codes,” Tech. Rep., Technical report, New
York University, 2002.

[45] H. A. David and H. N. Nagaraja, Order statistics, John Wiley, Hoboken,
N.J., 2003.


	I Introduction
	I-A Motivation for Coded Matrix-vector multiplication
	I-B Benefits of using Rateless Codes
	I-B1 Near-perfect Load Balancing
	I-B2 Negligible Redundant Computation
	I-B3 Maximum straggler tolerance
	I-B4 Low Decoding Complexity

	I-C Organization

	II Background and Related Work
	II-A The Problem of Stragglers
	II-B Distributed Coded Computation

	III Problem Formulation
	III-A System Model
	III-B Performance Criterion
	III-C Benchmarks for Comparison
	III-C1 The Uncoded Strategy
	III-C2 The MDS-Coded Strategy
	III-C3 Dynamic Load Balancing


	IV Proposed Rateless Coding Strategy
	IV-A LT-Coded Matrix-vector Multiplication
	IV-B Distributed Implementation

	V Theoretical Analysis
	V-A Delay Model and Order Statistics Primer
	V-B Latency Analysis
	V-C Computations and Decoding Complexity

	VI Simulation Results
	VII Concluding Remarks
	References

