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Abstract
Machine Learning (ML) is an increasingly popular applica-
tion in the cloud and data-center, inspiring new algorithmic
and systems techniques that leverage unique properties of
ML applications to improve their distributed performance
by orders of magnitude. However, applications built using
these techniques tend to be static, unable to elastically adapt
to the changing resource availability that is characteristic
of multi-tenant environments. Existing distributed frame-
works are either inelastic, or offer programming models
which are incompatible with the techniques employed by
high-performance ML applications.

Motivated by these trends, we present Litz, an elastic
framework supporting distributed ML applications. We
categorize the wide variety of techniques employed by these
applications into three general themes — stateful workers,
model scheduling, and relaxed consistency — which are
collectively supported by Litz’s programming model. Our
implementation of Litz’s execution system transparently
enables elasticity and low-overhead execution.

We implement several popular ML applications using
Litz, and show that they can scale in and out quickly to
adapt to changing resource availability, as well as how a
scheduler can leverage elasticity for faster job completion
and more efficient resource allocation. Lastly, we show that
Litz enables elasticity without compromising performance,
achieving competitive performance with state-of-the-art
non-elastic ML frameworks.

1 Introduction
Modern clouds and data-centers are multi-tenant envi-
ronments in which the set of running jobs and available
resources (CPU, memory, etc.) at any given time are
constantly changing [5, 45, 27]. At the same time, Machine
Learning (ML) is quickly becoming a dominant application
among modern distributed computing workloads. It is there-
fore highly desirable for ML applications executing in such
an environment to be elastic, being able to opportunistically
use additional resources when offered, and gracefully release
acquired resources when requested. Elasticity is beneficial
for both the individual job and for the cluster as a whole.
An elastic job can make use of idle resources to complete
within a shorter amount of time, and still make progress
when some of its resources are removed. A cluster-wide job
scheduler can dynamically re-allocate resources to speed up
urgent real-time or interactive jobs, and ensure fairness by
preventing jobs from holding highly contested resources for
long periods of time.

Recent advancements in algorithmic and systems
techniques for distributed ML applications have improved
their performance by an order of magnitude or more.
New algorithms such as AdaptiveRevision [39], NO-
MAD [42], and LightLDA [55] can better scale in distributed
environments, possessing favorable properties such as
staleness tolerance [39, 28], lock-free execution [42, 56],
and structure-aware parallelization [20, 55]. Systems
and frameworks such as GraphLab [38], Petuum [53],
Adam [15], and various parameter servers [36, 28] are able
to support and exploit these properties to achieve even higher
performance, using techniques such as bounded-staleness
consistency models [17], structure-aware scheduling [33],
bandwidth management/re-prioritization [50], and network
message compression [52, 15].

Although significant work is being done to push the
boundaries of distributed ML in terms of performance and
scalability, there has not been as much focus on elasticity,
thus limiting the resource adaptability of ML applications
in real-world computing environments.

General-purpose distributed frameworks such as
Hadoop [1] and Spark [57] are well integrated with cloud
and data-center environments, and are extensively used
for running large-scale data processing jobs. They are
designed to support a wide spectrum of conventional tasks—
including SQL queries, graph computations, and sorting and
counting—which are typically transaction-oriented and rely
on deterministic execution. However, their programming
models are incompatible with the algorithmic and systems
techniques employed by distributed ML applications,
abstracting away necessary details such as input data par-
titioning, computation scheduling, and consistency of shared
memory access. As a result, the performance of ML appli-
cations built using these frameworks fall short of standalone
implementations by two orders of magnitude or more [51].

Consequently, distributed ML applications are often
implemented without support from elastic frameworks, re-
sulting in jobs that hold a rigid one-time allocation of cluster
resources from start to finish [50, 33, 56, 15]. The lack of an
elastic framework, along with a suitable programming model
which can support the various distributed ML techniques,
is a key roadblock for implementing elastic ML applications.

Although the algorithmic and systems techniques
employed by these standalone applications are diverse, they
typically arise from only a few fundamental properties of
ML that can be collectively supported by an elastic ML
framework. This observation exposes an opportunity to
design a framework that is able to support a large variety



of distributed ML techniques by satisfying a smaller
set of more general requirements. We summarize these
properties of ML and how they guide the design of an elastic
framework below, and further elaborate on them in Sec. 2.
First, ML computations exhibit a wide variety of memory
access patterns. Some mutable state may be accessed when
processing each and every entry of a dataset, while other state
may only be accessed when processing a single data entry.
To improve locality of access, ML applications explicitly
co-locate mutable model parameters with immutable dataset
entries [55]. Each worker machine in the computation may
contain a non-trivial amount of mutable state, which needs
to be properly managed under an elastic setting.

Second, ML models contain a wide variety of dependency
structures. Some sets of model parameters may safely be
updated in parallel, while other sets of parameters must be
updated in sequence. Guided by these dependency structures,
ML applications carefully schedule their model updates by
coordinating tasks across physical worker machines [20].
An elastic ML framework should abstract the physical
cluster away from applications while still providing enough
flexibility to support this type of task scheduling.

Furthermore, ML algorithms are often iterative-convergent
and robust against small errors. Inaccuracies occurring
in their execution are automatically corrected during later
stages of the algorithm. Distributed ML applications
have been able to attain higher performance at no cost to
correctness by giving up traditionally desirable properties
such as deterministic execution and consistency of memory
access [28]. Framework mechanisms for elasticity should
not rely on a programming model that restricts this way of
exploiting the error-tolerance of ML algorithms.

Thus, to efficiently support ML applications, an elastic
ML framework should support stateful workers, model
scheduling, and relaxed consistency. It should provide an
expressive programming model allowing the application
to define a custom scheduling strategy and to specify how
the consistency of memory accesses can be relaxed under
it. Then, it should correctly execute this strategy within
the specified consistency requirements, while gracefully
persisting and migrating application state regardless of its
placement with respect to input data.

Motivated by the needs and opportunities for elasticity
of ML applications, we designed and implemented Litz1,
an elastic framework for distributed ML that provides a
programming model supporting stateful workers, model
scheduling and relaxed consistency.

Litz enables low-overhead elasticity for high-performance
ML applications. When physical machines are added to
or removed from an active job, state and computation are
automatically re-balanced across the new set of available
machines without active participation by the application.

1Meant to evoke the strings of a harp, sounding out as many or as few.
Litz is short for “Wurlitzer”, a well-known harp maker.

Litz’s programming model can express key distributed ML
techniques such as stateful workers, model scheduling and
relaxed consistency, allowing high-performance ML applica-
tions to be implemented. Furthermore, a cluster job scheduler
can leverage Litz’s elasticity to achieve faster job completion
under priority scheduling, and optimize resource allocation
by exploiting inherent resource variability of ML algorithms.

Our main contributions are:

1. Event-driven Programming Model for ML: Litz
exposes an event-driven programming model that
cleanly separates applications from the physical
cluster they execute on, enabling stateful workers
and allowing the framework to transparently manage
application state and computation during elastic events.
Computation is decomposed into micro-tasks which
have shared access to a distributed parameter server.

2. Task-driven Consistency Model for ML: Micro-
tasks can be scheduled according to dependencies
between them, allowing the application to perform
model scheduling. Access to the parameter server
is controlled by a consistency model in which a
micro-task always observes all updates made by
its dependencies, while having intentionally weak
guarantees between independent micro-tasks.

3. Optimized Elastic Execution System: Litz’s exe-
cution system transparently re-balances workload
during scaling events without active participation
from the application. It exploits Litz’s programming
and consistency models to implement optimizations
that reduce system overhead, allowing applications
using Litz to be as efficient as those using non-elastic
execution systems.

The rest of this paper is organized as follows. In Sec. 2,
we review ML algorithm properties and opportunities for
elasticity, while Sec. 3 and Sec. 4 describes the Litz design
and optimizations. In Sec. 5, we evaluate the effectiveness
of Litz’s optimizations in the distributed elastic setting, as
well as its performance versus two other ML frameworks
that are specialized to certain ML optimization techniques.
Sec. 6 reviews related work, and Sec. 7 concludes the paper
with a discussion towards future work.

2 Background
While ML algorithms come in many forms (e.g. matrix fac-
torization, topic models, factorization machines, deep neural
networks), nearly all of them share the following common-
alities: (1) they possess a loss or objective function L (A,D),
defined over a vector (or matrix) of model parameters A and
collection of input data D, and which measures how well the
model parameters A fit the data D; (2) their goal is to find
a value of A that maximizes (or alternatively, minimizes) the
objective L (A,D), via an iterative-convergent procedure
that repeatedly executes a set of update equations, which



gradually move A towards an optimal value (i.e. hill-
climbing). These update equations follow the generic form

A(t)=A(t−1)+∆(A(t−1),D), (1)

where A(t) is the vector (or matrix) of model parameters at
iteration t, and ∆() is a function that computes updates to A
using the previous value A(t−1) and the input data D. The re-
mainder of this section provides detailed background on spe-
cific properties of ML programs, and then presents two pop-
ular ML applications (Multinomial Logistic Regression and
Latent Dirichlet Allocation) which we shall use as examples
throughout this paper and as the subjects of our evaluation.

2.1 Data-parallelism and Parameter Server
Arising from the iid (independent and identically distributed)
assumption on input data, the update function ∆ can often
be decomposed as

∆(A,D)=
P

∑
i=1

∆i(A,Di), (2)

where D1, ... ,DP partition the input data D and each ∆i
computes a partial update using Di which, when aggregated,
form the final update ∆. This allows each update to be
calculated in a data-parallel fashion with input data and
update calculations distributed across a cluster of workers.
Parameter Server: Eq. 2 shows that the model parameters
A are used by the calculations of every partial update ∆i. In a
data-parallel setting it is natural to place the model parameters
in a shared location accessible by every machine, known as
a parameter server. Typically, implementations of this archi-
tecture consists of two types of nodes: 1) worker nodes which
partition the input data and calculate partial updates and 2)
parameter server nodes which partition the model parameters
and aggregate/apply the partial updates sent by worker nodes.
The parameter server architecture has proven to be a near-
essential component of efficient distributed ML and is used
in numerous applications and frameworks [50, 18, 36, 28].
Stateful Workers: Even though the model term A appears in
the calculations of each partial update, not all of it is necessar-
ily used. In particular, there may be parts of the model which
are only used when processing a single partition Di of the in-
put data. A large class of examples includes non-parametric
models, whose model structures are not fixed but instead
depends on the input data itself, typically resulting in model
parameters being associated with each entry in the input data.
In such applications, it is preferable to co-locate parts of the
model on worker nodes with a particular partition of input
data so they can be accessed and updated locally rather than
across a network. This optimization is especially essential
when the input data is large and accesses to such associated
model parameters far outnumber accesses to shared model
parameters. It also means that workers are stateful, and an
elastic ML system that supports this optimization needs to
preserve worker state during elastic resource re-allocation.

2.2 Error Tolerance & Relaxed Consistency
ML algorithms have several well-established and unique
properties, including error-tolerance: even if a perturbation
or noise ε is added to the model parameters in every iteration,
i.e. A(t)=A(t−1)+∆(A(t−1),D)+ε, the ML algorithm will
still converge correctly provided that ε is limited or bounded.
Bounded Staleness Consistency: An important application
of error tolerance is bounded staleness consistency mod-
els [28, 17, 13], which allow stale model parameters to be
used in update computations, i.e. A(t)=A(t−1)+∆(A(t−s),D),
where 1≤s≤k for small values of k. ML algorithms that use
such consistency models are able to (1) execute in a partially
asynchronous manner without sacrificing correctness, thus
mitigating the effect of stragglers or slow workers [16, 25];
and (2) reduce the effect of network bottlenecks caused by
synchronization by allowing cached parameter values to
be used. Stale-Synchronous Parallel (SSP) [28] is such a
consistency model, under which a set of distributed workers
may read cached values from a shared parameter server as
long as their staleness do not exceed a fixed limit.
Staleness-aware ML Algorithms: Beyond simply apply-
ing bounded staleness consistency to existing algorithms,
the ML community has developed new staleness-aware
algorithms [39, 58, 55, 12, 29, 10, 37] which modify each
update ∆() according to the staleness s that it experiences.
The modifications usually take the form of a scaling factor
∆()← c∆(), which are computationally light-weight and
do not create new bottlenecks. In the presence of staleness,
these algorithms converge up to an order of magnitude faster
than their non-staleness-aware counterparts.

2.3 Dependencies and Model Scheduling
Another key property of ML algorithms is the presence of im-
plicit dependency structures: supposing A1 and A2 are differ-
ent elements of A, then updating A1 before A2 does not neces-
sarily yield the same result as updating A2 before A1; whether
this happens or not depends on the algebraic form of L () and
∆(). As a consequence, the convergence rate and thus the run-
ning time of ML algorithms can be greatly improved through
careful scheduling of parallel model parameter updates.
Dependency-aware ML Algorithms: Like the many
existing staleness-aware algorithms that exploit error toler-
ance, there is a rich set of algorithms that use dependency
structures in their models to perform better scheduling of
updates [44, 55, 20, 18, 35, 49, 38]. A typical example is
to partition the model into subsets, where the parameters
inside a subset must be updated sequentially, but multiple
subsets can be updated in parallel. Two parameters A1 and
A2 are placed into the same subset if the strength of their
dependency exceeds a threshold dep(A1,A2)> ε. As with
staleness-aware algorithms, dependency-aware algorithms
converge up to an order of magnitude faster than their
non-dependency-aware counterparts.



3 Litz Programming Model and API
The main goal and challenge of designing Litz’s pro-
gramming model is striking a balance between being
expressive enough to support the wide variety of proven
techniques in distributed ML, while exposing enough
structure in the application that the underlying execution
system can take control under elastic conditions. Guided
by the insights presented in Sec. 2, we describe how Litz’s
programming model naturally arises from the properties of
ML applications, and how it enables an efficient and elastic
run-time implementation. For reference, a detailed summary
of Litz’s API can be found in Table 1.
Input Data Over-Partitioning Across Executors: Eq. 2
shows that the input data and update calculations of ML
applications can be partitioned and distributed across a
number of workers, but it does not specify any particular
partitioning scheme, nor does it require the number of
partitions to be equal to the number of physical machines.
Instead of directly assigning input data, Litz first distributes
it across a set of logical executors, which are in turn mapped
to physical machines. Elasticity is enabled by allocating
more executors than physical machines and migrating excess
executors to other machines as they become available. This
separation also lets Litz support stateful workers by allowing
executor state to be defined and mutated by the application
while being treated as a black box by the run-time system.
Micro-Tasks and Parameter Server: Update calculations
are decomposed into short-lived (typically shorter than 1 sec-
ond) units of computation called micro-tasks, each of which
calculates a partial update using the input data on a single
executor. At the end of each micro-task, control is yielded
back to the run-time system, exposing frequent opportunities
for executors to be migrated. During its execution, a micro-
task is granted read/update access to a global parameter
server via a key-value interface (PSGet/PSUpdate in
Table 1) and applies partial updates to model parameters by
modifying application state in the executor and/or updating
globally-shared values in the parameter server.
Model Scheduling and Relaxed Consistency: Litz enables
both model scheduling and relaxed consistency using
application-defined dependencies between micro-tasks. If
micro-task A is a dependency of micro-task B, then (1) B
is executed before A and (2) B observes all updates made
by A. This strict ordering and consistency guarantee lets
the application perform model scheduling by defining an
ordering for when certain updates are calculated and applied.
On the other hand, if neither A nor B is a dependency of the
other, then they may be executed in any order or in parallel,
and may observe none, some, or all of the updates made
by the other. This critical piece of non-determinism lets the
application exploit relaxed consistency models by allowing
the run-time system to cache and use stale values from the
parameter server between independent micro-tasks.
Micro-Task Dispatch and Completion: A common way

to specify dependencies between tasks is through a directed
”dependency” graph in which each vertex corresponds to a
micro-task, and an arc from vertex A to vertex B means task
A is a dependency of task B. However, due to a potentially
large number of micro-tasks, explicitly specifying such
a graph up-front may incur significant overhead. Instead,
each Litz application defines a driver which dynamically
dispatches micro-tasks during run-time via the Dispatch-
Task method. When a micro-task completes, Litz invokes
the HandleTaskCompletion method on the driver,
which can then dispatch any additional micro-tasks.

Without an explicit dependency graph, Litz needs an
alternative way to decide when a micro-task should be able
to observe another micro-task’s updates. Otherwise, its
execution system does not have enough information to know
when it is safe for a micro-task to use cached parameter val-
ues, thus giving up a significant opportunity for performance
optimization. To overcome this issue, Litz uses the sequence
of micro-task dispatch and completion events to infer causal
relationships between micro-tasks, which can then be used
to generate the dependencies needed to implement its cache
coherence protocol. According to the following two cases:

1. If micro-task B is dispatched before being informed
of the completion of micro-task A, then Litz infers that
the completion of A did not cause the dispatch of B.
A is not a dependency of B, and B may observe some,
all, or none of the updates made by A.

2. If micro-task B is dispatched after being informed of the
completion of micro-task A, then Litz infers that A may
have caused the dispatch of B. A may be a dependency
of B, and B will observe all updates made by A.

This consistency model is similar to Causal Memory [11],
in which causally related read/write operations are observed
in the same order by all nodes. We discuss how Litz’s
consistency model and its cache coherence protocol can be
implemented efficiently in Sec. 4.
4 Litz Implementation and Optimizations
Litz is implemented in approximately 6500 lines of C++
code using the ZeroMQ [8] library for low latency commu-
nication and Boost’s Context [2] library for low overhead
context-switching between micro-tasks. The run-time system
is comprised of a single master thread along with a collection
of worker threads and server threads, as shown in Fig. 1.
The application’s driver exists in the master thread and its
executors exist in the worker threads. The key/value pairs
comprising the parameter server are distributed across a set
of logical PSshards stored in the server threads. Additional
worker and server threads may join at any time during the
computation, and the run-time system can re-distribute its
load to make use of them. They may also gracefully leave
the computation after signaling to the master thread and
allowing their load to be transferred to other threads.

The master thread coordinates the execution of the
application. First, it obtains micro-tasks from the driver



Method Name Part Of Defined By Description
DispatchInitialTasks() Driver Application Invoked by the framework upon start-up to dispatch the first set of micro-tasks.

HandleTaskCompletion(result) Driver Application Invoked by the framework when a micro-task completes so that the driver can dispatch
a new set of micro-tasks.

DispatchTask(executor,args) Driver Framework Invoked by the application to dispatch a micro-task to the specified executor.
RunTask(args) Executor Application Invoked by the framework to perform a micro-task on the executor.

SignalTaskCompletion(result) Executor Framework Invoked by the application to indicate the completion of a micro-task.
PSGet(key) Executor Framework Returns a specified value in the parameter server.

PSUpdate(key,update) Executor Framework Applies an incremental update to a specified value in the parameter server.

Table 1: The programming interface for Litz, an application should define DispatchInitialTasks and HandleTaskComple-
tion on the driver, as well as RunTask on the executor.

Figure 1: High-level architecture of Litz. The driver in the master
thread dispatches micro-tasks to be performed by executors on the
worker threads. Executors can read and update the global model
parameters distributed across PSshards on the server threads.

by initially invoking DispatchInitialTasks and
then continuously invoking HandleTaskCompletion,
sending them to worker threads to be executed. Second, the
master thread maintains the dynamic mappings between ex-
ecutors and worker threads, as well as between PSshards and
server threads. When worker or server threads join or leave
the computation, it initiates load re-distribution by sending
commands to move executors between worker threads or
PSshards between server threads. Third, the master thread
periodically triggers a consistent checkpoint to be taken of
the entire application state, and automatically restores it when
a failure is detected. Each thread registers with an external
coordination service such as ZooKeeper [31] or etcd [4] in
order to determine cluster membership and detect failures.
In order to transfer and checkpoint the driver and executors,
Litz requires the application to provide serialization and
de-serialization code. The programming burden on the
developer is low since (1) it does not actively participate
in elasticity and checkpointing, but simply invoked by the
execution system when needed, and (2) third-party libraries
can be used to reduce programming overhead [3].

Worker Thread Elasticity: Each worker thread maintains
the state of and runs the micro-tasks for a subset of all
executors. After any worker threads join the active compu-

tation, executors are moved to them from the existing worker
threads (scaling out). Similarly, before any worker threads
leave the active computation, executors are moved from them
to the remaining worker threads (scaling in).When an execu-
tor needs to be moved, the worker thread first finishes any of
its ongoing micro-tasks for that executor, buffering any other
pending micro-tasks for that executor. The worker thread
then sends the executor’s state and its queue of buffered
micro-tasks over the network to the receiving worker thread.

The transfer of the executor’s input data is treated
differently in the scale-in and scale-out cases. When scaling
in, Litz aims to free the requested resources as quickly as pos-
sible. The input data is discarded on the originating worker
thread to avoid incurring extra network transfer time, and
re-loaded on the target worker thread from shared storage.
When scaling out, Litz aims to make use of the new worker
thread as quickly as possible. The input data is sent directly
from the memory of the originating worker thread to avoid
incurring extra disk read time on the target worker thread.
Parameter Server Elasticity: Similar to worker threads
and executors, each server thread stores and handles the re-
quests and updates for a subset of all PSshards, which are re-
distributed before scaling in and after scaling out. However,
since requests and updates are continuously being sent to
each PSshard and can originate from any executor, their trans-
fer requires a special care. In particular, a worker thread may
send requests or updates to a server thread that no longer con-
tains the target PSshard, which can occur if the PSshard has
been moved but the worker thread has not yet been notified.

A naı̈ve approach is to stop all micro-tasks on every
executor, then perform the transfer, then notify all worker
threads of the change, and finally resume execution. This
method guarantees that requests and updates are always sent
to server threads that contain the target PSshard, but incurs
high overhead due to suspending the entire application.
Instead, the server threads perform request and update
forwarding, and executors are never blocked from sending a
parameter request or update. When a server thread receives a
message for a PSshard it no longer contains, it forwards the
message to the server thread it last transferred the PSshard
to. Forwarding can occur multiple times until the target
PSshard is found, the request/update is performed, and the
response is sent back to the originating worker thread. This



way, execution of micro-tasks can proceed uninterrupted
during parameter server scaling events.
Consistent Checkpoint and Recovery: To achieve fault
tolerance, Litz periodically saves a checkpoint of the appli-
cation to persistent storage, consisting of (1) the state of the
driver, (2) the buffered micro-tasks for each executor, (3) the
state of each executor, and (4) the key-value pairs stored in
each PSshard. Input data is not saved, but is re-loaded from
shared storage during recovery. When a failure is detected
through the external coordination service, Litz triggers an
automatic recovery from the latest checkpoint. The saved
driver, executors, buffered micro-tasks, and parameter server
values are restored, after which normal execution is resumed.
Parameter Cache Synchronization: The consistency
model outlined in Sec. 3 exposes an opportunity for the run-
time system to optimize execution by caching and re-using
values from the parameter server instead of retrieving them
over the network for each access. Specifically, a micro-task
A is allowed to use a cached parameter if its value reflects
all updates made by all micro-tasks that A depends on. This
means that (1) multiple accesses of the same parameter by
micro-task A can use the same cached value, and (2) a micro-
task B whose dependencies are a subset of A’s can use the
same cached values that were used by A. By only using
the sequence of micro-task dispatch and completion events
to infer dependencies, Litz enables both (1) and (2) to be
implemented efficiently. In particular, the dependencies of
micro-task B are a subset of the dependencies of micro-task
A if the total number of micro-tasks that have been completed
when B was dispatched is at most the total number of micro-
tasks that have been completed when A was dispatched.

To implement this cache coherence protocol, the master
thread maintains a single monotonically increasing version
number that is incremented each time HandleTaskCom-
pletion is invoked. Whenever the driver dispatches a
micro-task, the master thread tags the micro-task with the
version number at that time. After micro-task A retrieves
a fresh value from the parameter server, it caches the value
and tags it with A’s version. When micro-task B wants to
access the same parameter, it first checks if its own version
is less than or equal to the version of the cached value. If
so, then the cached value is used; otherwise a fresh copy
of the parameter is retrieved from the parameter server and
tagged with B’s version. A cache exists on each Litz process
running at least one worker thread, so that it can be shared
between different worker threads in the same process.

This cache coherence protocol allows Litz to automatically
take advantage of parameter caching for applications that use
bounded staleness. For example, to implement SSP (Sec. 2.2)
with staleness s, all micro-tasks for iteration i are dispatched
when the last micro-task for iteration i−s−1 is completed.
Thus, every micro-task for the same iteration has the same
version and share cached parameter values with each other.
Since the micro-tasks for iteration i are dispatched before

those for iterations between i−s and i−1 finish (when s≥1),
the values they retrieve from the parameter server may not
reflect all updates made in those prior iterations, allowing
staleness in the parameter values being accessed.
Parameter Update Aggregation: Updates for the same
parameter value may be generated many times by different
micro-tasks. Since the parameter updates in ML applications
are incremental and almost always additive, they can be
aggregated locally before sending to the parameter server in
order to reduce network usage. To facilitate the aggregation
of updates, each Litz process contains an update log
which maps parameter keys to locally aggregated updates.
Whenever a micro-task invokes PSUpdate, the update is
first aggregated with the corresponding entry in the update
log, or is inserted into the update log if the corresponding
entry does not exist. Therefore, an update sent to the
parameter server can be a combination of many updates
generated by different micro-tasks on the same Litz process.

In order to maximize the number of updates that are
locally aggregated before being sent over the network, the
results of micro-tasks are not immediately returned to the
master thread after they are completed. Doing this allows the
updates from many more micro-tasks to be sent in aggregated
form to the server threads, reducing total network usage. The
update log is periodically flushed by sending all updates it
contains to the server threads to be applied. After each flush,
all buffered micro-task results are returned to the master
thread, which then informs the driver of their completion.
The period of flushing can be carefully tuned, but we find
that the simple strategy of flushing only when all micro-tasks
on a worker thread are finished works well in practice.
Co-operative Multitasking: Litz employs co-operative
multitasking implemented using co-routines [2]. When
one task is blocked on an invocation of PSGet waiting
for a value to be returned from a server thread, the worker
thread will switch to executing another micro-task that
is not blocked so that useful work is still performed.
Each micro-task is executed within a co-routine so that
switching between them can be done with low-latency,
entirely in user-space. Using co-routines provides the
benefit of overlapping communication with computation,
while retaining a simple-to-use, synchronous interface for
accessing the parameter server from micro-tasks.
5 Evaluation
We start by evaluating Litz’s elasticity mechanism and
demonstrate its efficacy along several directions. First, with
its parameter caching, update aggregation, and co-operative
multi-tasking, Litz is able to sustain increasing numbers of
executors and micro-tasks with minimal performance impact.
Second, a running Litz application is able to efficiently make
use of additional nodes allocated to it, accelerating its time
to completion. Third, a running Litz application is able
to release its nodes on request, quickly freeing them to be
allocated to another job.



Next, we discuss how Litz’s elasticity can be leveraged by
a cluster job scheduler to (1) reduce the completion time of
an ML job that yields resources to a higher-priority job, and
(2) improve resource allocation by exploiting the inherent
decreasing memory usage of many ML algorithms.

Lastly, we evaluate Litz’s performance when executing
diverse applications which make use of stateful workers,
model scheduling, and relaxed consistency. With the
multinomial logistic regression (MLR) application, we show
that our implementation on Litz is faster than the built-in
implementation in Bösen [50], a non-elastic ML system for
data-parallel SSP workloads. With the latent Dirichlet allo-
cation (LDA) application, we show that our implementation
on Litz is competitive with the built-in implementation in
Strads [33], a non-elastic ML system for model scheduling.
Furthermore, to evaluate Litz for the special case of deep
learning, we implement a deep feed-forward neural network
and compare its performance with Tensorflow [9].

ML Applications: MLR and LDA are popular ML applica-
tions used for multi-class classification and topic modeling,
respectively. The goal of our evaluation is to show that
Litz enables elasticity for these applications at little cost to
performance when compared with state-of-the-art non-elastic
systems. Thus, we closely follow their implementations in
Bösen and Strads, using SGD and the SSP relaxed consis-
tency model for MLR, and block-scheduled Gibbs sampling
with stateful workers for LDA. For details of these imple-
mentations of MLR and LDA, we refer readers to their de-
scriptions in Wei et al. [50] and Kim et al. [33], respectively.

Cluster Setup: Unless otherwise mentioned, the exper-
iments described in this section are conducted on nodes
with the following specifications: 16 cores with 2 hardware
threads each (Intel Xeon E5-2698Bv3), 64GiB DDR4-2133
memory, 40GbE NIC (Mellanox MCX314A-BCCT),
Ubuntu 16.04 Linux kernel 4.4. The nodes are connected
with each other through a 40GbE switch (Cisco Nexus
3264-Q), and access data stored on an NFS cluster connected
to the same switch. Each machine runs one Litz process
which contains both worker threads and server threads; the
master thread is co-located with one of these processes.

Input Datasets: Unless otherwise mentioned, we run MLR
on the full ImageNet ILSVRC2012 dataset [43] consisting of
1.2M images labeled using 1000 different object categories.
The dataset is pre-processed using the LLC feature extraction
algorithm [48], producing 21K features for each image,
resulting in a post-processed dataset size of 81GB. We
run LDA on a subsample of the ClueWeb12 dataset [19]
consisting of 50M English web pages. The dataset is
pre-processed by removing stop words and words that rarely
occur, resulting in a post-processed dataset with 10B tokens,
2M distinct words, and total size of 88GB.
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Figure 2: Average time per epoch for MLR and LDA when running
with various numbers of executors per worker thread. In both cases
the overhead of increasing the number of executors is insignificant.
We define one epoch as performing a single pass over all input data.

5.1 Elasticity Experiments
Before discussing elastic scaling, we evaluate Litz’s
performance characteristics over increasing numbers
of executors. The worker threads achieve elasticity by
re-distributing executors amongst themselves when their
numbers change, and by over-partitioning the application’s
state and computation across larger numbers of executors,
Litz is able to scale out to larger numbers of physical cores
and achieve a more balanced work assignment. Thus it is
critical for Litz applications to still perform well in such
configurations. We run the MLR application on 4 nodes and
the LDA application on 12 nodes, varying the number of
executors from 1 to 16 per worker thread. Fig. 2 shows how
the throughput of each application changes when the number
of executors increases. Using a single executor per worker
thread as the baseline, the execution time for MLR does not
noticeably change when using 4× the number of executors,
and gradually increases to 1.11× the baseline when using
16× the number of executors. For LDA, the execution time
initially decreases to 0.94× the baseline when using 2×
the number of executors, and thereafter gradually increases
to 1.23× the baseline when using 16× the number of
executors. We believe the overhead introduced by increasing
the number of executors is quite an acceptable trade-off for
elasticity and can still be reduced with further optimizations.

5.1.1 Elastic Scale Out

As jobs finish in a multi-tenant setting and previously used
resources are freed up, additional allocations can be made to
a currently running job. It is therefore important for the job
to be capable of effectively using the additional resources
to speed up its execution. In this section, we evaluate
Litz’s performance characteristics when scaling a running
application out to a larger number of physical nodes. We
run experiments scaling MLR jobs from 4 to 8 nodes, and
LDA jobs from 12 to 24 nodes. Each node runs both worker
threads and server threads, so both executors and PSshards
are rebalanced during scaling. The experiments for LDA in
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Figure 4: LDA execution on Litz with 12 nodes, with 24 nodes,
and with an elastic execution that scales out from 12 nodes to 24
nodes. For the scale-out execution, the nodes are added at about
55 minutes into execution. For the scale-in execution, the nodes
are removed at about 33 minutes into execution.

this section were performed using m4.4xlarge instances on
AWS EC2, each with 16 vCPUs and 64GiB of memory.

To evaluate the speed-up achieved, we compare our scale-
out experiments with static executions of the applications
using both the pre-scaling number of nodes and the post-
scaling number of nodes. Fig. 3 shows the convergence plots
for MLR, 4 new nodes added after ≈40min of execution.
The static 4 node execution completes in ≈157min while
the scale-out execution completes in≈122min, resulting in
a 22% shorter total run-time. Fig. 4 shows the convergence
plots for LDA, 12 new nodes added after ≈55min of
execution. The static 12 node execution completes in
≈183min while the scale-out execution completes in
≈134min, resulting in a 27% shorter total run-time.

5.1.2 Ideal Scale Out

Next, we evaluate the amount of room for improvement
still achievable over Litz’s current scale-out performance.
Following a similar construction as Pundir et al. [41], we
define and compare with a simple ideal scale-out execution
time which intuitively measures the total run-time of a job
that instantly scales out and adapts to use the additional
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Figure 5: Static, scale-out, and ideal scale-out (See Sec. 5.1.1)
execution times for MLR and LDA implemented on Litz. We scale
out MLR from 4 nodes to 8 nodes, and LDA from 12 nodes to 24
nodes. Each experiment was performed several times, error bars
are omitted due to their negligible size.

nodes. For example, consider a job that scales out from 4
to 8 nodes after completing 30% of its iterations, its ideal
scale-out execution time is the sum of the time at which the
scale-out was triggered and the time it takes a static 8 node
execution to run the last 70% of its iterations.

Fig. 5 compares the static pre-scaling, static post-scaling,
scaling, and ideal execution times for both MLR and LDA.
For MLR, the static 8 node execution completes in≈107min,
giving an ideal scale-out execution time of≈121min. The
actual scale-out execution time is≈122min, indicating a less
than 1% difference from the ideal. Similarly for LDA, the
static 24 node execution completes in≈101min, giving an
ideal scale-out execution time of≈127min. The actual scale-
out execution time is≈134min, indicating a 5% difference
from the ideal. LDA’s higher overhead stems from the large
worker state that is inherent to the algorithm, which need to
be serialized and sent over the network before the transferred
executors can be resumed. We believe this overhead can be re-
duced further through careful optimization of the serialization
process, by minimizing the number of times data is copied
in memory and compressing the data sent over the network.

5.1.3 Elastic Scale In

As new and higher-priority jobs are submitted in a multi-
tenant environment, the resource allocation for a currently
running job may be reduced and given to another job. In this
section, we evaluate Litz’s scale-in performance based on two
key factors. First, we show that Litz applications continue to
make progress after scaling in, with performance comparable
to the static execution on the fewer nodes. Second, we
show that running Litz jobs can release resources with low
latency, quickly transferring executors and PSshards away
from requested nodes so that they can be used by another
job. We measure the time between when the scale-in event
is triggered and when the last Litz process running on a
requested node exits. This represents the time an external job
scheduler needs to wait before all requested resources are free
to be used by another job. As with the scale-out experiments,



these experiments were run using m4.4xlarge EC2 instances.
We run each experiment at least three times and report the

average. Fig. 3 shows the convergence plots for MLR with
the scale-in event. We start the job with 8 nodes, and remove
4 nodes ≈30 minutes into execution. The convergence
plot closely follows the plot of 8-node static execution until
the scale-in event, and the plot of 4-node static execution
after that. Similarly, Fig. 4 shows the convergence plots
for LDA with the scale-in event. We start the job with 24
nodes, and remove nodes≈33 minutes into execution. The
convergence plot closely follows the plot of 24-node static
execution until the scale-in event, and the plot of 12-node
static execution after that.

For MLR, the scale-in event takese 2.5 seconds on
average, while for LDA the average is 43s. The low latency
for MLR is due to a combination of its stateless workers and
Litz’s default behavior of discarding input data upon scaling
in. As a result, the only state that needs to be transferred are
the PSshards residing on the server threads of each requested
node, which total≈10MiB when split between 8 nodes. The
executors in LDA, on the other hand, are stateful and contain
a portion of its model parameters. When distributed across
all nodes, each node contains≈4.6GiB of executor state that
need to be transferred away. A benchmark of cluster network
showed that it can sustain a bandwidth of 2.0Gbps between
pairs of machines, meaning that the 4.6GiB of LDA executor
state can ideally be transfered within 20s. Nevertheless,
the current transfer times are reasonable for an external
scheduler to wait for. For comparison, even a pre-emptive
environment like the AWS Spot Market gives users a
warning time of 120s before forcefully evicting their nodes.

5.2 Elastic Scheduling
Elasticity has many potential applications in both the cloud
and data-center. In the cloud, elasticity can be leveraged to
take advantage of transient nodes in spot markets [26] and
drastically reduce the monetary cost of renting computation
resources. In the data-center, a cluster-wide scheduler can
optimize resource utilization by adaptively consolidating
applications into fewer physical machines [30].

We present two specific instances where the elasticity
enabled by Litz can benefit job scheduling. First, when
a high-priority job needs to be scheduled, an elastic ML
application can avoid preemption by cooperatively releasing
resources. Second, the inherent resource variability of many
ML applications allow Litz to automatically release memory
throughout the lifetime of an ML job, freeing resources to
be used by other jobs. Serious design and implementation
of such a scheduler and its policies is deserving of thorough
investigation, which we leave for future work.

5.2.1 Priority Scheduling

In multi-tenant computing environments, users frequently
submit jobs (both ML and non-ML) which can have
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Figure 6: Priority scheduling experiments as described in
Sec. 5.2.1. The graphs show the resource allocation over time in the
cases of (a) LDA job which is uninterrupted, (b) LDA job which
is killed when a higher-priority job is submitted, and (c) LDA job
which elastically scales in when a higher-priority job is scheduled.
We ran each experiment three times and saw negligible variation
between each instance.

differing priorities. To meet the stricter SLA requirements
of high-priority jobs, a scheduler must sometimes re-allocate
some resources used by a lower-priority job. If the
lower-priority job is inelastic, then it may be killed or
suspended, leaving the rest of its resources under-utilized
and delaying its completion time. For long-running jobs
such as training ML models, their resources may need to
be re-allocated several times during their lifetimes.

However, with the elasticity mechanism enabled by Litz,
a long-running ML application can simply scale-in to use a
fewer amount of resources, while the higher-priority job uses
the released resources. After the higher-priority job com-
pletes, it can scale-out again, uninterrupted. We implemented
this priority scheduling policy on a cluster of 16 m4.4xlarge
nodes, and launched an LDA job on all 16 machines that
runs for≈100min if left uninterrupted (Fig. 6(a)). A higher-
priority job is launched 60min into its runtime, requiring 4
nodes for 30min. Without elasticity, the LDA job is killed and
re-started after the higher-priority job ends, requiring a total
of≈190min to complete (Fig. 6(b)). However, by leveraging
elasticity to scale-in the LDA job, it can continue to run using
12 nodes and completes in≈120min (Fig. 6(c)). At the same
time, waiting for LDA to scale-in only increased the comple-
tion time of the high-priority job from 30min to 31min.

5.2.2 ML Resource Variability

The iterative-convergent nature of ML algorithms presents
opportunities for resource scheduling not usually found in
other computing tasks. One advantage of elasticity in an
ML framework is that in addition to scaling in and out based
on the directions from a cluster scheduler, an elastic ML
framework can leverage resource variability that is inherent
in ML applications to autonomously give up resources.
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Figure 8: Multinomial Logistic Regression (MLR) running on
8 nodes using 25% of the ImageNet ILSVRC2012 dataset. Litz
achieves convergence about 8× faster than Bösen.

In particular, many ML algorithms, including LDA, may
find their model parameters becoming sparse (ie. mostly
zeros) as they approach convergence [33], allowing memory
usage to be reduced by using a more memory-efficient
storage format (ie. sparse vector). Although LDA running
on Strads has a similar decreasing memory usage, the lack
of elasticity in Strads does not allow it to leverage this
phenomenon for efficient scheduling.

Litz, on the other hand, can detect variability in the
resource usage and reduce the number of worker and server
threads accordingly. Fig. 7 shows the breakdown of memory
usage during LDA. Server threads that store the model start
with 6 GiB and drop to around 1 GiB by the 10th epoch,
suggesting that the server threads can be reduced by 80%.
Similarly, the worker threads start with 370 GiB of memory
and reduce to about 300 GiB by the 10th epoch, suggesting
that their count can be reduced by 20% and respective
resources can be released. This dynamic resource usage
of ML jobs, when exposed through an elastic framework
like Litz, can inform the policies of a cluster scheduler that
allocates resources between many jobs.

5.3 Performance Experiments
We compare our Litz implementations of MLR and LDA
with those built-in with the open-source versions of Bösen
and Strads, respectively. All three systems along with their
applications are written using C++, and to further ensure
fairness, we compiled all three using the -O2 -g flags
and linked with the TCMalloc [21] memory allocator. These
settings are the default for both Bösen and Strads.
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Figure 9: Latent Dirichlet Allocation (LDA) training algorithm
running on Strads and Litz with the subsampled ClueWeb12 dataset.
Litz completes all 34 epochs roughly 6% slower than Strads, but
achieves a better objective value.

MLR Comparison with Bösen: We compare Litz with
Bösen running the MLR application on 25% of the ImageNet
ILSVRC2012 dataset2 using 8 nodes. The open-source
version of Bösen differs from the system described
by Wei et. al. [50] in that it does not implement early
communication nor update prioritization, but is otherwise
the same and fully supports SSP execution. Both MLR
instances were configured to use the same SSP staleness
bound of 2 as well as the same SGD tuning parameters such
as step size and minibatch size. As Fig. 8 shows, our MLR
implementation on Litz converges about 8× faster than that
on Bösen. Our profiling of Bösen and cursory examination
of its code shows that it does not fully utilize CPUs due to
lock contention. We believe the wide gap in performance is
not due to fundamental architectural reasons, and that Bösen
should be able to narrow the gap on such SSP applications
given a more optimized implementation.
LDA Comparison with Strads: We next compare Litz with
Strads running the LDA application using 12 nodes. The
open-source version of Strads is the same implementation
used in Kim et. al. [33]. Both LDA instances were
configured to use the same number of block partitions as
well as the same LDA hyper-parameters α and β . We
ran each application until 34 epochs have been completed,
where an epoch is equivalent to a full pass over the input
data. As Fig. 9 shows, our LDA implementation on Litz
completes all epochs roughly 6% slower than that on Strads.
However, it also achieves a better objective value (measured
in log-likelihood), resulting in faster convergence than Strads
overall. Even though more investigation into the per-epoch
convergence difference is needed, we can attribute the
throughput difference to the optimizations built into Strads,
which employs a ring-topology specifically optimized for the
block-partitioned model scheduling strategy used by LDA.
Deep Neural Networks (DNNs): To evaluate Litz with
DNNs, we implemented a particular deep learning model
called a deep feed-forward network [22], which forms the

2With the full dataset, the Bösen baseline does not complete within a
reasonable amount of time.



basis of many deep learning applications. We used a network
with two hidden layers with ReLU activation and one output
layer with Softmax activation. We trained this model using
both Litz and TensorFlow [9] on 4 m4.4xlarge EC2 instances,
with the CIFAR-10 [34] dataset. This dataset consists of
60K images, which are pre-processed into vectors of≈98K
features, labeled using 10 classes. Both systems used the
same data-parallel SGD algorithm, and were configured with
the same tuning parameters such as a learning rate of 0.0001
and mini-batch size of 64. The training using Tensorflow
progressed at a pace of ≈79s per batch, while the training
using Litz progressed 3.4× faster at a pace of≈23s per batch.

6 Discussion and Related Work
Recently, there has been a growing interest in utilizing tran-
sient nodes in the cloud spot markets for big-data analytics.
The systems developed for this setting try to execute jobs
with the performance of on-demand nodes at a significantly
cheaper cost, using transient nodes. The challenge for these
systems is to deal with the bulk revocations efficiently by
choosing right fault-tolerance mechanism. For example, Spo-
tOn [47] dynamically determines the fault-tolerance mech-
anism that best balances the risk of revocation with the over-
head of the mechanism. While SpotOn applies these fault-
tolerance mechanisms at the systems level—using virtual
machines or containers—Flint [46] argues that application-
aware approach is preferable and can improve efficiency by
adapting the fault-tolerance policy. Flint, which is based on
Spark, proposes automated and selective checkpointing poli-
cies for RDDs, to bound the time Spark spends recomputing
lost in-memory data after a bulk revocation of transient
nodes. TR-Spark [54] argues that RDDs—the checkpointing
unit in Spark—are too coarse-grained, making Spark unfit to
run on transient resources, and takes Flint’s approach further
by providing fine-grained task-level checkpointing.

Unlike Flint and TR-Spark that adapt a general-purpose
Spark framework to achieve cost-effective analytics with
transient resources, Proteus [26] adapts a specialized ML
framework to achieve significantly faster and cheaper
execution, while introducing elasticity optimizations tuned
for the setting. Specifically, Proteus stores the ML model on
parameter servers that run on reliable on-demand nodes, and
makes the workers stateless so that they can be run on tran-
sient node, effectively pushing workers’ states to parameter
servers, along with the model. This is a reasonable approach
for the spot market setting where bulk revocations can take
offline a large number of workers without notice. Although
it works well for applications with small worker state, with
an increasing data and model size, the approach may run into
performance problems due to the communication overhead
between workers and their state stored on the parameter
servers. Litz, on the other hand, keeps the worker state in
the workers and assumes a cooperative cluster scheduler
that will ask the running application to give up nodes and
wait for state to be transferred away. This approach results

in high performance while still providing elasticity.

7 Conclusion and Future Work
We present the design and implementation of Litz, an evo-
lutionary step in the elastic execution of ML applications in
clouds and data-centers. We identify three important classes
of distributed ML techniques—stateful workers, model
scheduling, and relaxed consistency—and designed Litz’s
programming model to collectively support each of them.
By adopting an event-driven API, Litz is able to control
the execution of its applications, transparently migrating
their state and computation between physical machines. Litz
achieves elasticity—the ability to scale out and in based on
changing resource availability—without compromising the
state-of-the-art efficiency of non-elastic ML systems.

Furthermore, we describe the inherent dynamic memory
usage of ML applications. We show that Litz is able to
expose these patterns and significantly decrease its demand
for memory across the lifetimes of ML jobs. Resource vari-
ability during the runtime of large data-analytics jobs is well
known, and many schedulers have been introduced to exploit
this variability for an efficient scheduling of jobs [32, 24, 23].
However, no previous work exists that exploit the specific
resource usage patterns of ML applications. In future work,
we plan to further investigate and identify the resource usage
patterns of distributed ML applications, and then leverage
their resource variability together with the elasticity of Litz
for more efficient scheduling of ML jobs.

Lastly, we identify deep learning and elastic GPU com-
puting as another interesting direction for future work. In
particular, how does the relatively low-level event-driven API
of Litz fit together with the higher-level symbolic program-
ming models of deep learning frameworks like TensorFlow,
MXNet [14], and DyNet [40]? With the current trend towards
using compiler techniques to separate deep learning program-
ming and execution [6, 7], we believe that frameworks like
Litz will play an important role in the elastic and efficient
execution of many future deep learning applications. The
answers to these problems deserve thorough investigation.
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