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Abstract
Exploiting data locality in GPUs is critical to making more

efficient use of the existing caches and the NUMA-based memory
hierarchy expected in future GPUs. While modern GPU pro-
gramming models are designed to explicitly express parallelism,
there is no clear explicit way to express data locality—i.e., reuse-
based locality to make efficient use of the caches, or NUMA
locality to efficiently utilize a NUMA system. On the one hand,
this lack of expressiveness makes it a very challenging task for
the programmer to write code to get the best performance out
of the memory hierarchy. On the other hand, hardware-only
architectural techniques are often suboptimal as they miss key
higher-level program semantics that are essential to effectively
exploit data locality.

In this work, we propose the Locality Descriptor, a cross-
layer abstraction to explicitly express and exploit data locality
in GPUs. The Locality Descriptor (i) provides the software a
flexible and portable interface to optimize for data locality, re-
quiring no knowledge of the underlying memory techniques and
resources, and (ii) enables the architecture to leverage key pro-
gram semantics and effectively coordinate a range of techniques
(e.g., CTA scheduling, cache management, memory placement)
to exploit locality in a programmer-transparent manner. We
demonstrate that the Locality Descriptor improves performance
by 26.6% on average (up to 46.6%) when exploiting reuse-based
locality in the cache hierarchy, and by 53.7% (up to 2.8X) when
exploiting NUMA locality in a NUMA memory system.

1. Introduction
Graphics Processing Units (GPUs) have evolved into pow-

erful programmable machines that deliver high performance
and energy efficiency to many important classes of appli-
cations today. Efficient use of memory system resources is
critical to fully harnessing the massive computational power
offered by a GPU. A key contributor to this efficiency is data
locality—both (i) reuse of data within the application in the
cache hierarchy (reuse-based locality) and (ii) placement of
data close to the computation that uses it in a non-uniform
memory access (NUMA) system (NUMA locality) [1–4].

Contemporary GPU programming models (e.g., CUDA [5],
OpenCL [6]) are designed to harness the massive computa-
tional power of a GPU by enabling explicit expression of paral-
lelism and control of software-managed memories (scratchpad
memory and register file). However, there is no clear explicit
way to express and exploit data locality—i.e., data reuse,

to better utilize the hardware-managed cache hierarchy, or
NUMA locality, to efficiently use a NUMA memory system.

Challenges with Existing Interfaces. Since there is no
explicit interface in the programming model to express and
exploit data locality, expert programmers use various tech-
niques such as software scheduling [7] and prefetch/bypass
hints [8,9] to carefully manage locality to obtain high per-
formance. However, all such software approaches are sig-
nificantly limited for three reasons. First, exploiting data
locality is a challenging task, requiring a range of hardware
mechanisms such as thread scheduling [7,10–18], cache by-
passing/prioritization [8,19–28], and prefetching [29–34],
to which software has no easy access. Second, GPU programs
exhibit many different types of data locality, e.g., inter-CTA
(reuse of data across Cooperative Thread Arrays or thread
blocks), inter-warp and intra-warp locality. Often,multiple dif-
ferent techniques are required to exploit each type of locality,
as a single technique in isolation is insufficient [7,28,34–36].
Hence, software-only approaches quickly become tedious and
difficult programming tasks. Third, any software optimization
employing fine-grained ISA instructions to manage caches
or manipulating thread indexing to alter CTA scheduling is
not portable to a different architecture with a different CTA
scheduler, different cache sizes, etc [37].

At the same time, software-transparent architectural tech-
niques miss critical program semantics regarding locality
inherent in the algorithm. For example, CTA scheduling is
used to improve data locality by scheduling CTAs that share
data at the same core. This requires knowledge of which CTAs
share data—knowledge that cannot easily be inferred by the
architecture [7,16]. Similarly, NUMA locality is created by
placing data close to the threads that use it. This requires a
priori knowledge of which threads access what data to avoid
expensive reactive page migration [38, 39]. Furthermore,
many architectural techniques, such as prefetching or cache
bypassing/prioritization, would benefit from knowledge of
the application’s access semantics.

A Case Study. As a motivating example, we examine a
common locality pattern of CTAs sharing data (inter-CTA
locality), seen in the histo benchmark (Parboil [40]). histo
has a predominantly accessed data structure (sm_mappings).
Figure 1 depicts how this data structure ¬ is accessed by the
CTA grid . All threads in GPU programs are partitioned into
a multidimensional grid of CTAs. CTAs with the same color
access the same data range (also colored the same) ®. As
depicted, there is plentiful reuse of data between CTAs ¯
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Figure 1: Inter-CTA data locality in histo (Parboil).

and the workload has a very deterministic access pattern.
Today, however, exploiting reuse-based locality or NUMA

locality for this workload, at any level of the compute stack, is
a challenging task. The hardware architecture, on the one
hand, misses key program information: knowledge of which
CTAs access the same data ¯, so they can be scheduled at
the same SM (Streaming Multiprocessor); and knowledge of
which data is accessed by those CTAs °, so that data can be
placed at the same NUMA zone. The programmer/compiler,
on the other hand, has no easy access to hardware techniques
such as CTA scheduling or data placement. Furthermore,
optimizing for locality is a tedious task as a single technique
alone is insufficient to exploit locality (§2). For example, to
exploit NUMA locality, we need to coordinate data placement
with CTA scheduling to place data close to the CTAs that
access it. Hence, neither the programmer, the compiler, nor
hardware techniques can easily exploit the plentiful data locality
in this workload.

Our Approach. To address these challenges, we introduce
the Locality Descriptor: a cross-layer abstraction to express
and exploit different forms of data locality that all levels of the
compute stack—from application to architecture—recognize.
The Locality Descriptor (i) introduces a flexible and portable
interface that enables the programmer/software to explicitly
express and optimize for data locality and (ii) enables the
hardware to transparently coordinate a range of architectural
techniques (such as CTA scheduling, cache management, and
data placement), guided by the knowledge of key program
semantics. Figure 2 shows how the programmer or compiler
can use the Locality Descriptor to leverage both reuse-based
locality and NUMA locality. We briefly summarize how the
Locality Descriptor works here, and provide an end-to-end
description in the rest of the paper.

cudaMalloc(sm_mappings, size);

LocalityDescriptor ldesc(sm_mappings, size, INTER-THREAD, tile,

loc, priority);
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Figure 2: The Locality Descriptor specification for histo.

First, each instance of a Locality Descriptor describes a
single data structure’s locality characteristics (in Figure 2,
sm_mappings ¶) and conveys the corresponding address

range·. Second, we define several fundamental locality types
as a contract between the software and the architecture. The
locality type, which can be INTER-THREAD, INTRA-THREAD,
or NO-REUSE, drives the underlying optimizations used to
exploit it. In histo, INTER-THREAD ¸ describes inter-CTA
locality. The locality type ¸ and the locality semantics º,
such as access pattern, inform the architecture to use CTA
scheduling and other techniques that exploit the correspond-
ing locality type (described in §3.3). Third, we partition the
data structure into data tiles that are used to relate data to
the threads that access it. In Figure 1, each data range that
has the same color (and is hence accessed by the same set
of CTAs) forms a data tile. Data tiles and the threads they
access are described by the tile semantics ¹ (§3.3), which
informs the architecture which CTAs to schedule together and
which data to place at the same NUMA zone. Fourth, we
use a software-provided priority » to reconcile optimizations
between Locality Descriptors for different data structures in
the same program if they require conflicting optimizations
(e.g., different CTA scheduling strategies).

We evaluate the benefits of using Locality Descriptors
to exploit different forms of both reuse-based locality and
NUMA locality. We demonstrate that Locality Descriptors ef-
fectively leverage program semantics to improve performance
by 26.6% on average (up to 46.6%) when exploiting reuse-
based locality in the cache hierarchy, and by 53.7% (up to
2.8X) when exploiting NUMA locality.

The major contributions of this work are:
• This is the first work to propose a holistic cross-layer ap-
proach to explicitly express and exploit data locality in GPUs
as a first class entity in both the programming model and the
hardware architecture.
• We design the Locality Descriptor, which enables (i) the
software/programmer to describe data locality in an
architecture-agnostic manner and (ii) the architecture to
leverage key program semantics and coordinate many ar-
chitectural techniques transparently to the software. We ar-
chitect an end-to-end extensible design to connect five archi-
tectural techniques (CTA scheduling, cache bypassing, cache
prioritization, data placement, prefetching) to the Locality
Descriptor programming abstraction.
• We comprehensively evaluate the efficacy and versatility
of the Locality Descriptor in leveraging different types of
reuse-based and NUMA locality, and demonstrate significant
performance improvements over state-of-the-art approaches.

2. Motivation
We use two case studies to motivate our work: (i) Inter-

CTA locality, where different CTAs access the same data and
(ii) NUMA locality in a GPU with a NUMA memory system.

2.1. Case Study 1: Inter-CTA Locality

A GPU kernel is formed by a compute grid, which is a 3D
grid of Cooperative Thread Arrays (CTAs). Each CTA, in
turn, comprises a 3D array of threads. Threads are scheduled
for execution at each Streaming Multiprocessor (SM) at a
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CTA granularity. Inter-CTA locality [7, 11, 14–18] is data
reuse that exists when multiple CTAs access the same data.
CTA scheduling [7, 11, 14–18] is a technique that is used
to schedule CTAs that share data at the same SM to exploit
inter-CTA locality at the per-SM local L1 caches.

To study the impact of CTA scheduling, we evaluate 48
scheduling strategies, each of which groups (i.e., clusters)
CTAs differently: either along the grid’s X, Y, or Z dimensions,
or in different combinations of the three. The goal of CTA
scheduling for locality is to maximize sharing between CTAs
at each SM and effectively reduce the amount of data accessed
by each SM. Hence, as a measure of how well CTA scheduling
improves locality for each workload, in Figure 3 we plot the
minimum working set at each SM (normalized to baseline)
across all 48 scheduling strategies. We define working set
as the average number of uniquely accessed cache lines at
each SM. A smaller working set implies fewer capacity misses,
more sharing, and better locality. Figure 3 also shows the
maximum performance improvement among all evaluated
scheduling strategies for each benchmark.
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Figure 3: CTA scheduling: performance and working set.

Figure 3 shows that even though CTA scheduling signifi-
cantly reduces the working set of CTA-scheduling-sensitive
applications (on the left) by 54.5%, it has almost no impact
on performance (only 3.3% on average across all applica-
tions). To understand this minimal impact on performance,
in Figure 4 we plot the corresponding increase in L1 hit rate
for the specific scheduling strategy that produced the smallest
working set (only for the scheduling-sensitive workloads). We
also plot the increase in inflight hit rate, which we measure
as the number of MSHR hits, i.e., another thread already
accessed the same cache line, but the line has not yet been
retrieved from memory and hits at the MSHRs.
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Figure 4: CTA scheduling: L1 hit rate and L1 inflight hit rate.

Figure 4 shows that CTA scheduling has little impact in
improving the L1 hit rate (by 3% on average) with the excep-
tion of D2D and C2D. This explains the minimal performance
impact. CTA scheduling, however, a substantially increases L1
inflight hit rate (by 20% on average). This indicates that even

though there is higher data locality due to more threads shar-
ing the same data, these threads wait for the same data at the
same time. As a result, the increased locality simply causes
more threads to stall, rather than improving hit rate. Hence,
while CTA scheduling is very effective in exposing data locality,
we still need to address other challenges (e.g., threads stalling
together) to obtain performance gains from improved data
locality. Furthermore, determining which scheduling strategy
to use is another challenge, as each application requires a
different strategy to maximize locality based on the program’s
sharing pattern.

In summary, to exploit inter-CTA locality (i) the hardware-
controlled CTA scheduler needs to know which CTAs access
the same data, to choose an appropriate scheduling strategy
(this requires knowledge of program semantics) and (ii) a
scheduling strategy that exposes locality in the cache is not
necessarily sufficient for translating locality into performance
(we need to coordinate other techniques).

2.2. Case Study 2: NUMA Locality

For continued scaling, future GPUs are expected to em-
ploy non-uniform memory access (NUMA) memory systems.
This can be in the form of multiple memory stacks [3, 4],
unified virtual address spaces in multi-GPU/heterogeneous
systems [38,39,41–45] or multi-chip modules, where SMs
and memory modules are partitioned into NUMA zones or
multiple GPU modules [1,2]. Figure 5 depicts the system eval-
uated in [1] with four NUMA zones. A request to a remote
NUMA zone goes over the lower bandwidth inter-module
interconnect, has higher latency, and incurs more traffic com-
pared to local requests [1]. To maximize performance and
efficiency, we need to control (i) how data is placed across
NUMA zones and (ii) how CTAs are scheduled to maximize
local accesses.
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Figure 5: NUMA locality.

To understand why this is a challenging task, let us consider
the heuristic-based hardware mechanism proposed in [1],
where the CTA grid is partitioned across the 4 NUMA zones
such that contiguous CTAs are scheduled at the same SM.
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Data is placed at the page granularity (64KB) at the NUMA
zone where it is first accessed, based on the heuristic that
consecutive CTAs are likely to share the same page(s). Fig-
ure 5 depicts a CTA grid (¶), which is partitioned between
NUMA zones in this manner—consecutive CTAs along the
X dimension are scheduled at the same NUMA zone. This
heuristic-based mechanism works well for Access Type 1 (·),
where CTAs that are scheduled at the same NUMA zone access
the same page(s) (the color scheme depicts which CTAs ac-
cess what data). However, for Access Type 2 (·), this policy
fails as a single page is shared by CTAs that are scheduled at
different zones. Two challenges cause this policy to fail. First,
suboptimal scheduling: the simple scheduling policy [1] does
not always co-schedule CTAs that share the same pages at the
same zone. This happens when scheduling is not coordinated
with the application’s access pattern. Second, large and fixed
page granularity: more CTAs than what can be scheduled at
a single zone may access the same page. This happens when
there are fine-grained accesses by many CTAs to each page
and when different data structures are accessed by the CTAs
in different ways. For these reasons (as we evaluate in §6.2),
a heuristic-based approach is often ineffective at exploiting
NUMA locality.

2.3. Other Typical Locality Types

We describe other locality types, caused by different access
patterns, and require other optimizations for locality next.

Inter-warp Locality. Inter-warp locality is data reuse be-
tween warps that belong to the same/different CTAs. This
type of locality occurs in stencil programs (workloads such
as hotspot [46] and stencil [40]), where each thread ac-
cesses a set of neighboring data elements, leading to data
reuse between neighboring warps. Inter-warp locality is also
a result of misaligned accesses to cache lines by threads in a
warp [29,35,47], since data is always fetched at the cache line
granularity (e.g., streamcluster [46] and backprop [46]).
Inter-warp locality has short reuse distances [35] as nearby
warps are typically scheduled together and caching policies
such as LRU can exploit a significant portion of this locality.
However, potential for improvement exists using techniques
such as inter-warp prefetching [7,29,36] or CTA scheduling
to co-schedule CTAs that share data [7].

Intra-thread Locality. This is reuse of data by the same
thread (seen in LIBOR [48] and lavaMD [46]), where each
thread operates on its own working set. Local memory usage
in the program is also an example of this type of locality. The
key challenge here is cache thrashing because (i) the overall
working set of workloads with this locality type is large due to
lack of sharing among threads and (ii) the reuse distance per
thread is large as hundreds of threads are swapped in and out
by the GPU’s multithreading before the data is reused by the
same thread. Techniques that have been proposed to address
cache thrashing include cache bypassing or prioritization (e.g.
pinning) of different forms [8,19–28,49] and/or warp/CTA
throttling [7,12,50,51].

2.4. Key Takeaways & Our Goal

In summary, locality in GPUs can be of different forms
depending on the GPU program. Each locality type presents
different challenges that need to be addressed. Tackling each
challenge often requires coordination of multiple techniques
(such as CTA scheduling and cache bypassing), many of which
software has no easy access to. Furthermore, to be effective,
some of these techniques (e.g., CTA scheduling, memory
placement) require knowledge of program semantics, which
is prohibitively difficult to infer at run time.

Our goal is to design a holistic cross-layer abstraction—that
all levels of the compute stack recognize—to express and
exploit the different forms of data locality. Such an abstrac-
tion should enable connecting a range of architectural tech-
niques with the locality properties exhibited by the program.
In doing so, the abstraction should (i) provide the program-
mer/software a simple, yet powerful interface to express data
locality and (ii) enable architectural techniques to leverage
key program semantics to optimize for locality.

3. Locality Descriptor: Abstraction
Figure 6 depicts an overview of our proposed abstraction.

The goal is to connect program semantics and programmer
intent (¶) with the underlying architectural mechanisms (·).
By doing so, we enable optimization at different levels of the
stack: (i) as an additional knob for static code tuning by the
programmer, compiler, or autotuner (¸), (ii) runtime soft-
ware optimization (¹), and (iii) dynamic architectural opti-
mization (¼) using a combination of architectural techniques.
This abstraction interfaces with a parallel GPU programming
model like CUDA (º) and conveys key program semantics to
the architecture through low overhead interfaces (»).
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Figure 6: Overview of the proposed abstraction.

3.1. Design Goals

We set three goals that drive the design of our proposed ab-
straction: (i) Supplemental and hint-based only: The abstrac-
tion should be an optional add-on to optimize for performance,
requiring no change to the rest of the program, nor should it
impact the program’s correctness. (ii) Architecture-agnosticism:
The abstraction should abstract away any low-level details
of the architecture (e.g., cache size, number of SMs, caching
policy). Raising the abstraction level improves portability,
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reduces programming effort, and enables architects to flexi-
bly design and improve techniques across GPU generations,
transparently to the software. (iii) Generality and flexibility:
The abstraction should flexibly describe a wide range of local-
ity types typically seen in GPU programs. It should be easy to
extend what the abstraction can express and the underlying
architectural techniques that can benefit from it.

3.2. Example Program

We describe the Locality Descriptor with the help of the
histo (Parboil [40]) workload example described in §1. We
begin with an overview of how a Locality Descriptor is spec-
ified for histo and then describe the key ideas behind the
Locality Descriptor’s components. Figure 7 depicts a code
example from this application. The primary data structure is
sm_mappings, which is indexed by a function of the thread
and block index only along the X dimension. Hence, the
threads that have the same index along the X dimension
access the same part of this data structure.
__global__ void histo_main_kernel(…){ 

 ...  

 unsigned int local_scan_load = blockIdx.x * blockDim.x + 

threadIdx.x; 

 ...  

 while (local_scan_load < num_elements) { 

  uchar4 sm = sm_mappings[local_scan_load] 

  local_scan_load += blockDim.x * gridDim.x; 

  ... 

 } 

} 

Data is shared by all 
threads/CTAs with 
the same X index 

Figure 7: Code example from histo (Parboil).

Figure 8 depicts the data locality in this application in
more detail. ¬ is the CTA grid and  is the sm_mappings data
structure. The CTAs that are colored the same access the same
data range (also colored the same). As §1 discusses, in order
to describe locality with the Locality Descriptor abstraction,
we partition each data structure in data tiles ® that group
data shared by the same CTAs. In addition, we partition the
CTA grid along the X dimension into compute tiles ¯ to group
together CTAs that access the same data tile. We then relate
the compute and data tiles with a compute-data mapping
° to describe which compute tile accesses which data tile.
Figure 9 depicts the code example to express the locality in
this example with a Locality Descriptor. As §1 describes, the
key components of a Locality Descriptor are: the associated
data structure (¶), its locality type (·), tile semantics (¸),
locality semantics (¹), and its priority (º). We now describe
each component in detail.

3.3. An Overview of Key Ideas and Components

Figure 10 shows an overview of the components of the
Locality Descriptor. We now describe the five key components
and the key insights behind their design.
3.3.1. Data Structure (¶) We build the abstraction around
the program’s data structures (each specified with its base
address and size). Each instance of the Locality Descriptor
describes the locality characteristics of a single data structure.
Designing the Locality Descriptor around the program’s data
structures is advantageous for two reasons. First, it ensures
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1 uchar4 *sm_mappings; 

2 size_t size = X_len * Y_len * sizeof(uchar4); 

3 cudaMalloc(sm_mappings, size); 

4 Tile_t tile((X_tile, Y_len, 1), (1, GridSize.y, 1), (1, 0, 0)) 

 

5 LocalitySemantics_t loc(COACCESSED, REGULAR, X_len);  

 

6 LocalityDescriptor ldesc(sm_mappings, size, INTER_THREAD, tile,  

                                                          loc, 1); 

 

Data Tile Compute Tile Compute-Data Map 

Sharing Type Access Pattern Stride 

Data structure 1 Locality type 2 

Tile semantics 3 

Locality semantics 4 

Priority 5 

Figure 9: Locality Descriptor example for histo.

architecture-agnosticism as a data structure is a software-level
concept, easy for the programmer to reason about. Second, it
is natural to tie locality properties to data structures because
in GPU programming models, all threads typically access a
given data structure in the same way. For example, some data
structures are simply streamed through by all threads with
no reuse. Others are heavily reused by groups of threads.
3.3.2. Locality Type (·) Each instance of the Locality Descrip-
tor has an explicit locality type, which forms a contract or basis
of understanding between software and hardware. This de-
sign choice leverages the known observation that locality type
often determines the underlying optimization mechanisms
(§2). Hence, software need only specify locality type and the
system/architecture transparently employs a different set of
architectural techniques based on the specified type. We pro-
vide three fundamental types: (i) INTRA-THREAD: when the
reuse of data is by the same thread itself, (ii) INTER-THREAD:
when the reuse of data is due to sharing of data between
different threads (e.g., inter-warp or inter-CTA locality), and
(iii) NO-REUSE: when there is no reuse of data (NUMA locality
can still be exploited, as described below). If a data struc-
ture has multiple locality types (e.g., if a data structure has
both intra-thread and inter-thread reuse), multiple Locality
Descriptors with different types can be specified for that data
structure. We discuss how these cases are handled in §4.
3.3.3. Tile Semantics (¸) As data locality is essentially the
outcome of how computation accesses data, we need to ex-
press the relation between compute and data. To do this, we
first need a unit of computation and data as a basis. To this
end, we partition the data structure into a number of data tiles
(D-Tiles) and the compute grid into a number of compute tiles
(C-Tiles). Specifically, a D-Tile is a 3D range of data elements
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Figure 10: Overview of the Locality Descriptor.
in a data structure and a C-Tile is a 3D range of threads or
CTAs in the 3D compute grid (e.g., ® and ¯ in Figure 8).

This design provides two major benefits. First, it provides
a flexible and architecture-agnostic scheme to express local-
ity types. For example, to express INTER-THREAD locality, a
D-Tile is the range of data shared by a set of CTAs; and each
such set of CTAs forms a C-Tile. To express INTRA-THREAD
locality, a C-Tile is just a single thread and the D-Tile is the
range of data that is reused by that single thread. Second,
such decomposition is intrinsic and conceptually similar to
the existing hierarchical tile-based GPU programming model.
Tile partitioning can hence be done easily by the program-
mer or the compiler using techniques such as [38,39]. For
irregular data structures (e.g, graphs), which cannot be easily
partitioned, the Locality Descriptor can be used to describe
the entire data structure. This imposes little limitation as
such data structures exhibit an irregular type of locality that
cannot be easily described by software.

We further reduce complexity in expression by stipulating
only an imprecise description of locality. There are two pri-
mary instances of this. First, we use a simple 1:1 mapping
between C-Tile and D-Tile. This is a non-limiting simplifica-
tion because data locality is fundamentally about grouping
threads and data based on sharing. If multiple C-Tiles access
the same D-Tile, a bigger C-Tile should simply be specified.
In an extreme case, where the entire data structure is shared
by all threads, we should only have one C-Tile and one D-Tile.
In another case, where there is only intra-thread locality (no
sharing among threads), there is a natural 1:1 mapping be-
tween each thread and its working set. This simplification
would be an approximation in cases with irregular sharing,
which is out of the Locality Descriptor’s scope because of
the high complexity and low potential. Second, C-Tile and
D-Tile partitioning implies that the grouping of threads and
data needs to be contiguous—a C-Tile cannot access a set of
data elements that is interleaved with data accessed by a
different C-Tile. This is, again, a non-limiting requirement as
contiguous data elements are typically accessed by neighbor-
ing threads to maximize spatial locality and reduce memory
traffic. If there is an interleaved mapping between C-Tiles
and the D-Tiles they access, the C-Tiles and D-Tiles can be
approximated by merging them into bigger tiles until they

are contiguous. This design drastically reduces the expression
complexity and covers typical GPU applications.

Specifically, the tile semantics are expressed in three parts:
(i) D-Tile dimensions: The number of data elements (in each
dimension) that form a D-Tile. Depending on the data struc-
ture, the unit could be any data type. In the histo example
(® in Figure 8), the D-Tile dimensions are (X_tile, Y_len,
1), where X_tile is the range accessed by a single C-Tile
along the X dimension, Y_len is the full length of the data
structure (in data elements) along theY dimension. (ii) C-Tile
dimensions: The number of CTAs in each dimension that form
a C-Tile. The compute tile dimensions in the histo example
(¯ in Figure 8) are (1, GridDim.y, 1): 1 CTA along the X
dimension, GridDim.y is the length of the whole grid along
the Y dimension, and since this is a 2D grid, the Z dimension
is one. (iii) Compute-data map: We use a simple function
to rank which order to traverse C-Tiles first in the 3D com-
pute grid as we traverse the D-Tiles in a data structure in
X→Y→Z order. For example, the mapping function (3,1,2)
implies that when D-Tiles are traversed in the X→Y→Z or-
der, and the C-Tiles are traversed in the Y→Z→X order. In
our histo example, this mapping (° in Figure 8) is simply
(1,0,0) as the C-Tiles need only be traversed along the X
dimension. This simple function saves runtime overhead, but
more complex functions can also be used.
3.3.4. Locality Semantics (¹) This component describes the
type of reuse in the data structure as well as the access pattern.
§4 describes how this information is used for optimization.
This component has two parts: Sharing Type (») and Access
Pattern (¼). There are two options for Sharing Type (º)
to reflect the typical sharing patterns. COACCESSED indicates
that the entire D-Tile is shared by all the threads in the cor-
responding C-Tile. NEARBY indicates that the sharing is more
irregular, with nearby threads in the C-Tile accessing nearby
data elements (the form of sharing seen due to misaligned
accesses to cache lines or stencil-like access patterns [7,35]).
Sharing type can be extended to include other sharing types
between threads (e.g., partial sharing). Access Pattern (») is
primarily used to inform the prefetcher and includes whether
the access pattern is REGULAR or IRREGULAR, along with a
stride (½) within the D-Tile for a REGULAR access pattern.
3.3.5. Priority (º) Multiple Locality Descriptors may require
conflicting optimizations (e.g., different CTA scheduling strate-
gies). We ensure that these conflicts are rare by using a con-
flict resolution mechanism described in §4. When a conflict
cannot be resolved, we use a software-provided priority to
give precedence to certain Locality Descriptors. This design
gives the software more control in optimization, and ensures
the key data structure(s) are prioritized.

4. Locality Descriptor: Detailed Design
We detail the design of the programmer/compiler interface

(º in Figure 6), runtime optimizations (¹), and the architec-
tural interface and mechanisms (· and ¼)—CTA scheduling,
memory placement, cache management, and prefetching.
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4.1. The Programmer/Compiler Interface

The Locality Descriptor can be specified in the code after
the data structure is initialized and copied to global memory.
Figure 9 is an example. If the semantics of a data structure
change between kernel calls, its Locality Descriptor can be
re-specified between kernel invocations.

The information to specify the Locality Descriptor can be
extracted in three ways. First, the compiler can use static anal-
ysis to determine forms of data locality, without programmer
intervention, using techniques like [7,16] for inter-CTA local-
ity. Second, the programmer can annotate the program (as
was done in this work), which is particularly useful when the
programmer wishes to hand-tune code for performance and
to specify the priority ordering of data structures when resolv-
ing potential optimization conflicts (§3.3). Third, software
tools such as auto-tuners or profilers [52–54] can determine
data locality and access patterns via dynamic analysis.

During compilation, the compiler extracts the variables
that determine the address range of each Locality Descrip-
tor, so the system can resolve the virtual addresses at run
time. The compiler then summarizes the Locality Descriptor
semantics corresponding to these address ranges and places
this information in the object file.

4.2. Runtime Optimization

At run time, the GPU driver and runtime system determine
how to exploit the locality characteristics expressed in the
Locality Descriptors based on the specifics of the underly-
ing architectural components (e.g., number of SMs, NUMA
zones). Doing so includes determining the: (i) CTA schedul-
ing strategy, (ii) caching policy (prioritization and bypass-
ing), (iii) data placement strategy across NUMA zones, and
(iv) prefetching strategy. In this work, we provide an al-
gorithm to coordinate these techniques. Both, the set of
techniques used and the algorithm to coordinate them, are
extensible. As such, more architectural techniques can be
added and the algorithm can be enhanced. We first describe
the algorithm that determines which architectural techniques
are employed for different locality types, and then detail each
architectural technique in the following subsections.

Figure 11 depicts the flowchart that determines which opti-
mizations are employed. The algorithm depicted works based
on the three locality types. First, for INTER-THREADLocality
Descriptors, we employ CTA scheduling (§4.3) to expose
locality. We also use other techniques based on the ac-
cess pattern and the sharing type: (i) For COACCESSED shar-
ing with a REGULAR access pattern, we use guided stride
prefetching (§4.5) to overlap the long latencies when many
threads are stalled together waiting on the same data; (ii) For
COACCESSED sharing with a IRREGULAR access pattern, we
employ cache prioritization using soft pinning (§4.4) to keep
data in the cache long enough to exploit locality; (iii) For
NEARBY sharing, we use simple nextline prefetching tailored
to the frequently-occurring access pattern. Second, for
an INTRA-THREAD Locality Descriptor, we employ a thrash-
resistant caching policy, hard pinning (§4.4), to keep a part of

the working set in the cache. Third, for a NO-REUSE Locality
Descriptor, we use cache bypassing as the data is not reused.
In a NUMA system, irrespective of the locality type, we employ
CTA scheduling and memory placement to minimize accesses
to remote NUMA zones. If there are conflicts between differ-
ent data structures, they are resolved using the priority order,
as described in §4.3 and §4.6.

Locality 
Type? 

NO_REUSE INTRA_THREAD Sharing 
Type? 

INTER_THREAD 

NEARBY 

Access 
Pattern? 

COACCESSED 

REGULAR IRREGULAR 

Cache Hard Pinning 
CTA Scheduling (if NUMA) 
Memory Placement (if NUMA) 

Cache Bypassing 
CTA Scheduling (if NUMA) 
Memory Placement (if NUMA) 

CTA Scheduling  
Cache Soft Pinning 
Memory Placement (if NUMA) 

CTA Scheduling  
Guided Stride Prefetching 
Memory Placement (if NUMA) 

CTA Scheduling  
Next-line Stride Prefetching 
Memory Placement (if NUMA) 

Figure 11: Flowchart of architectural optimizations leveraging
Locality Descriptors.

4.3. CTA Scheduling

Figure 12 depicts an example of CTA scheduling for the CTA
grid (¶) from our example (histo, §3.2). The default CTA
scheduler (·) traverses one dimension at a time (X → Y →
Z), and schedules CTAs at each SM in a round robin manner,
ensuring load balancing across SMs. Since this approach does
not consider locality, the default scheduler schedules CTAs
that access the same data at different SMs (·).

1  

Y dim 

CTA Grid 

X dim 

CT0 

SM 0 SM 1 SM 2 SM 3 SM 0 SM 1 SM 2 SM 3 

Default CTA 
scheduling 

Locality Descriptor guided 
 CTA scheduling 

1 2 3 

CT1 CT4 … 

Figure 12: CTA scheduling example.

The Locality Descriptor guided CTA scheduling (¸) shows
how we expose locality by grouping CTAs in each C-Tile into
a cluster. Each cluster is then scheduled at the same SM. In
this example, we spread the last C-Tile (CT4) across three
SMs to trade off locality for parallelism. To enable such
application-specific scheduling, we need an algorithm to use
the Locality Descriptors to drive a CTA scheduling policy
that (i) schedules CTAs from the same C-Tile (that share
data) together to expose locality, (ii) ensures all SMs are
fully occupied, and (iii) resolves conflicts between multiple
Locality Descriptors. We use Algorithm 1 to form CTA clusters,
and schedule each formed cluster at the same SM in a non-
NUMA system.1 In a NUMA system, we first partition the
CTAs across the different NUMA zones (see §4.6), and then
use Algorithm 1 within each NUMA zone.

1This algorithm optimizes only for the L1 cache, but it can be extended to
optimize for the L2 cache as well.

7



Algorithm 1 Forming CTA clusters using Locality Descriptors

1: Input: LDesc1...N : all N Locality Descriptors, sorted by priority (highest first)
2: Output: CLS = (CLSX ,CLSY ,CLSZ): the final cluster dimensions
3: for i = 1 to N do . Step 1: Split C-Tiles into 2 to ensure each LDesc has enough

C-Tiles for all SMs (to load balance)
4: while CT_NUM(LDesci) < SMNUM and CT_DIM(LDesci) != (1, 1, 1,) do
5: Divide the C-Tile of LDesci into 2 along the largest dimension
6: end while
7: end for
8: CLS← CT_DIM(LDesc1) . Each cluster is now formed by each of the highest

priority LDesc’s C-Tiles after splitting
9: for i = 2 to N do . Step 2: Merge the C-Tiles of lower priority LDescs to form

larger clusters to also leverage locality from lower priority LDescs
10: for d in (X ,Y,Z) do
11: MCLSd ←CLSd× MAX (FLOOR(CT_DIM(LDesci) / CLSd) , 1) . Merge

C-Tiles along each dimension
12: end for
13: if CT_NUM(MCLS) ≥ SMNUM then . Ensure there are enough C-Tiles for all

SMs
14: CLS←MCLS
15: end if
16: end for

The algorithm first ensures that each Locality Descriptor
has enough C-Tiles for all SMs. If that is not the case, it splits
C-Tiles (lines 3–7), to ensure we have enough clusters to oc-
cupy all SMs. Second, the algorithm uses the C-Tiles of the
highest priority Locality Descriptor as the initial CTA clusters
(line 8), and then attempts to merge the lower-priority Local-
ity Descriptors (lines 9–16).2 Merging tries to find a cluster
that also groups CTAs with shared data in other lower-priority
Locality Descriptors while keeping the clusters larger than
the number of SMs (first step). By scheduling the merged
cluster at each SM, the system can expose locality for multi-
ple data structures. The GPU driver runs Algorithm 1 before
launching the kernel to determine the CTA scheduling policy.

4.4. Cache Management

The Locality Descriptor enables the cache to distinguish
reuse patterns of different data structures and apply policies
accordingly. We use two caching mechanisms that can be
further extended. First, cache bypassing (e.g., [8, 19–27]),
which does not insert data that has no reuse (NO-REUSE local-
ity type) into the cache. Second, cache prioritization, which
inserts some data structures into the cache with higher prior-
ity than the others. We implement this in two ways: (i) hard
pinning and (ii) soft pinning. Hard pinning is a mechanism
to prevent cache thrashing due to large working sets by en-
suring that part of the working set stays in the cache. We
implement hard pinning by inserting all hard-pinned data
with the highest priority and evicting a specific cache way
(e.g., the 0th way) when all cache lines in the same set have
the highest priority. Doing so protects the cache lines in other
cache ways from being repeatedly evicted. We use a timer to
automatically reset all priorities to unpin these pinned lines
periodically. Soft pinning, on the other hand, simply prior-
itizes one data structure over others without any policy to
control thrashing. As §4.2 discusses, we use hard pinning

2Although the algorithm starts by optimizing the highest priority LDesc, it
is designed to find a scheduling strategy that is optimized for all LDescs.
Only when no such strategy can be found (i.e., when there are conflicts), is
the highest priority LDesc prioritized over others.

for data with INTRA-THREAD locality type, which usually has
a large working set as there is very limited sharing among
threads. We use soft pinning for data with INTER-THREAD
locality type to ensure that this data is retained in the cache
until other threads that share the data access it.

4.5. Prefetching

As §2 discusses, using CTA scheduling alone to expose
locality hardly improves performance, as the increased
locality causes more threads to stall, waiting for the same
critical data at the same time (see the L1 inflight hit rate,
Figure 3). As a result, the memory latency to this critical data
becomes the performance bottleneck, since there are too few
threads left to hide the memory latency. We address this
problem by employing a hardware prefetcher guided by the
Locality Descriptor to prefetch the critical data ahead of time.
We employ a prefetcher only for INTER-THREAD Locality
Descriptors because the data structures they describe are
shared by multiple threads, and hence, are more critical
to avoid stalls. The prefetcher is triggered when an access
misses the cache on these data structures. The prefetcher
is instructed based on the access pattern and the sharing
type. As Figure 11 shows, there are two cases. First, for
NEARBY sharing, the prefetcher is directed to simply prefetch
the next cache line. Second, for COACCESSED sharing with a
REGULAR access pattern, the prefetched address is a function
of (i) the access stride, (ii) the number of bytes that are
accessed at the same time (i.e., the width of the data tile),
and, (iii) the size of the cache, as prefetching too far ahead
means more data needs to be retained in the cache. The
address to prefetch is calculated as: current address +
(L1_size/(number_of_active_tiles*data_tile_width)
* stride). The number_of_active_tiles is the number
of D-Tiles that the prefetcher is actively prefetching. The
equation decreases the prefetch distance when there are
more active D-Tiles to reduce thrashing. This form of
controlled prefetching avoids excessive use of memory
bandwidth by only prefetching data that is shared by many
threads, and has high accuracy as it is informed by the
Locality Descriptor.

4.6. Memory Placement

As §2.2 discusses, exploiting locality on a NUMA system
requires coordination between CTA scheduling and memory
placement such that CTAs access local data within each NUMA
zone. There are two major challenges (depicted in Figure 5
in §2.2): (i) how to partition data among NUMA zones at a
fine granularity. A paging-based mechanism (e.g., [1]) does
not solve this problem as a large fixed page size is typically
ineffective (§2.2), while small page sizes are prohibitively
expensive to manage [55], and (ii) how to partition CTAs
among NUMA zones to exploit locality among multiple data
structures that may be accessed differently by the CTAs in the
program. To address these two challenges, we use a flexible
data mapping scheme, which we describe below, and a CTA
partitioning algorithm that leverages this scheme.
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Flexible Fine-granularity Data Mapping. We enhance
the mapping between physical addresses and NUMA zones
to enable data partitioning at a flexible granularity, smaller
than a page (typically 64KB). Specifically, we use consecutive
bits within the physical address itself to index the NUMA
zone (similar to [3] in a different context). We allow using a
different set of bits for different data structures. Thus, each
data structure can be partitioned across NUMA zones at a
different granularity.3 Figure 13 shows how this is done for
the example in §2.2. As the figure shows, CTAs in each NUMA
zone ¶ access the same page (64KB) for data structure A ·,
but they only access the same quarter-page (16KB) for data
structure B ¸. If we partition data across NUMA zones only
at the page granularity [1], most accesses to data structure
B would access remote NUMA zones. With our mechanism,
we can choose bits 16-17 (which interleaves data between
NUMA zones at a 64KB granularity) and bits 14-15 (which
interleaves data at a 16KB granularity) in the physical ad-
dress to index the NUMA zone for data structures A and B
respectively. Doing so results in all accesses to be in the local
NUMA zone for both data structures.

X dim 

Y dim 

NUMA  Zone 3 

NUMA  Zone 2 

NUMA  Zone 1 

NUMA  Zone 0 

CTA Grid Data Structure A Data Structure B 1 2 3 

Len2:16KB  

Page 0 

Page 1 

Page 2 

Page 3 

Len1:64KB  

Page 3 

Page 2 

Page 1 

Page 0 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Bits to index NUMA zones  
for Data Structure B 

Z0 

Z1 

Z2 

Z3 

Bits to index NUMA zones  
for Data Structure A 

Physical Address      …… 

Figure 13: Memory placement with Locality Descriptors.

This design has two constraints. First, we can partition data
only at a power-of-two granularity. Our findings, however,
show that this is not a limiting constraint because (i) regu-
lar GPU kernels typically exhibit power-of-two strides across
CTAs (consistent with [3]); and (ii) even with non-power-of-
two strides, this approach is still reasonably effective com-
pared to page-granularity placement (as shown quantitatively
in §6.2). Second, to avoid cases where a data structure is not
aligned with the interleaving granularity, we require that the
GPU runtime align data structures at the page granularity.

CTA Scheduling Coordinated with Data Placement. To
coordinate memory placement with CTA scheduling, we use a
simple greedy search algorithm (Algorithm 2) that partitions
the CTAs across the NUMA zones and selects themost effective
address mapping bits for each data structure. The algorithm
is described in detail in our extended technical report [56].
We provide a brief overview here.

3We limit the bits that can be chosen to always preserve the minimum DRAM
burst size (128B) by always specifying a size between 128B-64KB (bits
7-16). We always use bit 16/17 for granularities larger than 64KB as we
can flexibly map virtual pages to the desired NUMA zone using the page
table. We enable flexible bit mapping by modifying the hardware address
decoder in the memory controller.

The algorithm evaluates the efficacy of all possible address
mappings for the data structure described by the highest-
priority Locality Descriptor (line 4). This is done by deter-
mining which N consecutive bits between bit 7-16 in the
physical address are the most effective bits to index NUMA
zones for that data structure (where N is the base-2-log of the
number of NUMA zones). To determine which mapping is the
most effective, the algorithm first determines the correspond-
ing CTA partitioning scheme for that address mapping using
the NUMA_PART function (line 5). The NUMA_PART function
simply schedules each C-Tile at the NUMA zone where the
D-Tile it accesses is placed (based on the address mapping
that is being tested). The 1:1 C-Tile/D-Tile compute mapping
in the Locality Descriptor gives us the information to easily do
this. To evaluate the effectiveness or utility of each address
mapping and the corresponding CTA partitioning scheme, we
use the COMP_UTIL function (line 7). This function calculates
the ratio of local/remote accesses for each mapping.

Algorithm 2 CTA partitioning and memory placement for NUMA

1: Input: LDesc1...N : all N Locality Descriptors, sorted by priority (highest first)
2: Output 1: CTA_NPART : the final CTA partitioning for NUMA zones
3: Output 2: MAP1...N : the address mapping bits for each LDesc
4: for b_hi = 7 to 16 do . Test all possible mappings for the highest-priority LDesc
5: CTA_PARTb_hi← NUMA_PART(LDesc1, b_hi) . Partition the CTAs based on the

address mapping being evaluated
6: best_util_all← 0 . best_util_all: the current best utility
7: utilb_hi← COMP_UTIL(N, LDesc1, CTA_PARTb_hi, b_hi) . Calculate the utility

of the CTA partitioning scheme + address mapping
8: for i = 2 to N do . Test other LDescs
9: T MAPi← 7 . T MAP: temporary mapping
10: best_util← 0 . best_util: the utility with the best mapping
11: for b_lo = 7 to 16 do . Test all possible address mappings
12: util← COMP_UTIL(N− i+1, LDesci, CTA_PARTb_hi, b_lo) . Calculate

overall best mapping
13: if util > best_util then
14: T MAPi← b_lo; best_util← util . update the best mapping
15: end if
16: end for
17: utilb_hi← utilb_hi +best_util . update the new best utility
18: end for
19: if utilb_hi > best_util_all then
20: MAP← T MAP; MAP1← b_hi;
21: best_util_all← utilb_hi; CTA_NPART ←CTA_PARTb_hi
22: end if
23: end for

Since we want a CTA partitioning scheme that is effective
for multiple data structures, we also evaluate how other data
structures can be mapped, based on each CTA partitioning
scheme tested for the high-priority data structure (line 8).
Based on which of the tested mappings has the highest overall
utility, we finally pick the CTA partitioning scheme and an
address mapping scheme for each data structure (line 12).

The GPU driver runs Algorithm 2 when all the dynamic
information is available at run time (i.e., number of NUMA
zones, CTA size, data structure size, etc.). The overhead is
negligible because: (i) most GPU kernels have only several
data structures (i.e., small N), and (ii) the two core functions
(NUMA_PART and COMP_UTIL) are very simple due to the 1:1
C-Tile/D-Tile mapping.

The Locality Descriptor method is more flexible and ver-
satile than a first-touch page migration scheme [1], which
(i) requires demand paging to be enabled, (ii) is limited to
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a fixed page size, (iii) always schedules CTA in a fixed man-
ner. With the knowledge of how CTAs access data (i.e., the
D-Tile-C-Tile compute mapping) and the ability to control
and coordinate both the CTA scheduler and flexibly place
data, our approach provides a powerful substrate to leverage
NUMA locality.

5. Methodology
We model the entire Locality Descriptor framework in

GPGPU-Sim 3.2.2 [57]. To isolate the effects of the cache
locality versus NUMA locality, we evaluate them separately:
we evaluate reuse-based locality using an existing single-
chip non-NUMA system configuration (based on Fermi GTX
480); and we use a futuristic NUMA system (based on [1])
to evaluate NUMA-based locality. We use the system parame-
ters in [1], but with all compute and bandwidth parameters
(number of SMs, memory bandwidth, inter-chip interconnect
bandwidth, L2 cache) scaled by 4 to ensure that the evaluated
workloads have sufficient parallelism to saturate the compute
units. Table 1 summarizes the major system parameters. We
use GPUWattch [58] to model GPU power consumption.

Table 1: Major parameters of the simulated systems.

Shader Core 1.4 GHz; GTO scheduler [50]; 2 schedulers per SM
Round-robin CTA scheduler

SM Resources Registers: 32768; Scratchpad: 48KB, L1: 32KB, 4 ways
Memory Model FR-FCFS scheduling [59,60], 16 banks/channel
Single Chip System 15 SMs; 6 memory channels; L2: 768KB, 16 ways

Multi-Chip System

4 GPMs (GPU Modules) or NUMA zones;
64 SMs (16 per module); 32 memory channels;
L2: 4MB, 16 ways; Inter-GPM Interconnect: 192 GB/s;
DRAM Bandwidth: 768 GB/s (192 GB/s per module)

We evaluate workloads from the CUDA SDK [48], Ro-
dinia [46], Parboil [40] and PolybenchGPU [61] benchmark
suites. We run each kernel either to completion or up to 1B
instructions. Our major performance metric is instruction
throughput (IPC). From the workloads in Table 2, we use
cache-sensitive workloads (i.e., workloads where increasing
the L1 by 4× improves performance more than 10%), to
evaluate reuse-based locality. We use memory bandwidth-
sensitive workloads (workloads that improve performance by
more than 40% with 2× memory bandwidth), to evaluate
NUMA locality.

6. Evaluation
We evaluate the Locality Descriptor’s efficacy and versa-

tility using two use cases: (i) leveraging reuse-based locality
to improve cache hit rates in §6.1 and (ii) improving NUMA
locality (§6.2) by placing data close to threads that use it in
a NUMA system.

6.1. Reuse-Based (Cache) Locality

We evaluate six configurations: (i) Baseline: our
baseline system with the default CTA scheduler (§4.3).
(ii) BCS: a heuristic-based CTA scheduler based on BCS [11],
which schedules two consecutive CTAs at the same SM.
(iii) LDesc-Sched: the Locality Descriptor-guided CTA sched-

Table 2: Summary of Applications

Name (Abbr.) Locality Descriptor types (§3.3)
Syrk (SK) [61] INTER-THREAD (COACCESSED, REGULAR), NO-REUSE
Doitgen (DT) [61] INTER-THREAD (COACCESSED, REGULAR), NO-REUSE
dwt2d (D2D) [46] INTER-THREAD (NEARBY, REGULAR)
Convolution-2D (C2D) [61] INTER-THREAD (NEARBY)
Sparse Matrix Vector
Multiply (SPMV) [40]

INTRA-THREAD,
INTER-THREAD (COACCESSED, IRREGULAR)

LIBOR (LIB) [48] INTRA-THREAD

LavaMD (LMD) [46] INTRA-THREAD,
INTER-THREAD (COACCESSED, REGULAR)

histogram (HS) [40] INTER-THREAD (COACCESSED, REGULAR)
atax (ATX) [61] NO-REUSE, INTER-THREAD (COACCESSED, REGULAR)
mvt (MVT) [61] NO-REUSE, INTER-THREAD (COACCESSED, REGULAR)
particlefilter (PF) [46] NO-REUSE
streamcluster (SC) [46] NO-REUSE, INTER-THREAD (NEARBY)
transpose (TRA) [48] NO-REUSE
Scalar Product (SP) [48] NO-REUSE
Laplace Solver (LPS) [48] NO-REUSE, INTRA-THREAD
pathfinder (PT) [46] NO-REUSE

uler, which uses the Locality Descriptor semantics and al-
gorithm (§4.3). Compiler techniques such as [7, 16] can
produce the same benefits. (iv) LDesc-Pref: the Locality
Descriptor-guided prefetcher, as described in §4.5. Sophisti-
cated classification-based prefetchers such as [36], can poten-
tially obtain similar benefits. (v) LDesc-Cache: the Locality
Descriptor-guided cache prioritization and bypassing scheme
(§4.4). (vi) LDesc: our proposed scheme, which uses the Lo-
cality Descriptor to distinguish between the different locality
types and selectively employs different (scheduling, prefetch-
ing, caching, and data placement) optimizations based on
Figure 11.

Figure 14 depicts the speedup over Baseline across all
configurations. LDesc improves performance by 26.6% on
average (up to 46.6%) over Baseline. LDesc always per-
forms either as well as or better than any of the techniques
in isolation. Figure 15 shows the L1 hit rate for different con-
figurations. LDesc’s performance improvement comes from a
41.1% improvement in average hit rate (up to 57.7%) over
Baseline. We make three observations that provide insight
into LDesc’s effectiveness.
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Figure 14: Normalized performance with Locality Descriptors.
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First, different applications benefit from different optimiza-
tions. Applications with INTER-THREAD type of locality (SK,
DT, HS, D2D, C2D) benefit from CTA scheduling and/or
prefetching. However, LIB, LMD, SPMV do not benefit from
CTA scheduling as there is little inter-CTA reuse to be ex-
ploited. Similarly, prefetching significantly hurts performance
in these workloads (LIB, LMD, SPMV) as the generated
prefetch requests exacerbate the memory bandwidth bot-
tleneck. As a result, significant performance degradation
occurs when the working set is too large (e.g., when there is
no sharing and only INTRA-THREAD reuse, as in LMD and LIB)
or where the access patterns in the major data structures
are not sufficiently regular (SPMV). Cache prioritization and
bypassing is very effective in workloads with INTRA-THREAD
reuse (LIB, LMD), but is largely ineffective and can even
hurt performance in workloads such as D2D and HS when a
non-critical data structure or too many data structures are
prioritized in the cache. Since LDesc is able to distinguish be-
tween locality types, it is able to select the best combination
of optimizations for each application.

Second, a single optimization is very often insufficient
to exploit locality. For the INTER-THREAD applications (SK,
DT, HS, D2D, C2D), LDesc-guided CTA scheduling signifi-
cantly reduces the L1 working set (by 67.8% on average, not
graphed). However, this does not translate into significant
performance improvement when scheduling is applied by
itself (only 2.1% on average). To understand why, we plot
the L1 in-flight hit rate in Figure 16 for the INTER-THREAD
COACCESSED workloads (SK, DT, HS): we see a 17% average
increase as a result of more threads accessing the same data.
These threads wait on the same shared data at the same time,
and hence cause increased stalls at the core. The benefit of
increased locality is thus lost. Prefetching (LDesc-Pref) is
an effective technique to alleviate effect. However, prefetch-
ing by itself significantly increases the memory traffic and
this hinders its ability to improve performance when applied
alone. When combined with scheduling, however, prefetching
effectively reduces the long memory latency stalls. Synergis-
tically, CTA scheduling reduces the overall memory traffic by
minimizing the working set. For the INTER-THREAD NEARBY
workloads (C2D, D2D), CTA scheduling co-schedules CTAs
with overlapping working sets. This allows more effective
prefetching between the CTAs for the critical high-reuse data.
In the cases described above, prefetching and CTA scheduling
work better synergistically than in isolation, and LDesc is able
to effectively combine and make use of multiple techniques
depending on the locality type.
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Figure 16: L1 in-flight hit rate with Locality Descriptors.

Third, LDesc-guided CTA scheduling is significantly more
effective than the heuristic-based approach, BCS. This is be-
cause LDesc tailors the CTA scheduling policy for each appli-
cation by clustering CTAs based on the locality characteristics
of each data structure (§4.3). Similarly, the LDesc prefetcher
and replacement policies are highly effective, because they
leverage program semantics from the Locality Descriptor
(§4.4 and §4.5).

Impact on Energy Consumption. Our energy evalua-
tions show that LDesc reduces the overall system energy
consumption by 4.0% on average. In contrast, LDesc-Pref
increases energy consumption by 5.7%. LDesc-Sched and
LDesc-Cache have a negligible impact on energy (<1%).

Conclusions. We make the following conclusions: (i) The
Locality Descriptor is an effective and versatile mechanism
to leverage reuse-based locality to improve GPU performance
and energy efficiency; (ii) Different locality types require
different optimizations—a single mechanism or set of mech-
anisms do not work for all locality types. We demonstrate
that the Locality Descriptor can effectively connect different
locality types with the underlying architectural optimiza-
tions. (iii) The Locality Descriptor enables the hardware
architecture to leverage the program’s locality semantics to
provide significant performance benefits over heuristic-based
approaches such as the BCS scheduler.

6.2. NUMA Locality

To evaluate the benefits of the Locality Descriptor in
exploiting NUMA locality, Figure 17 compares four dif-
ferent mechanisms: (i) Baseline: The baseline system
which uses a static XOR-based address hashing mecha-
nism [62] to randomize data placement across NUMA zones.
(ii) FirstTouch-Distrib: The state-of-the-art mechanism
proposed in [1], where each page (64KB) is placed at the
NUMA zone where it is first accessed. This scheme also em-
ploys a heuristic-based distributed scheduling strategy where
the compute grid is partitioned equally across the NUMA
zones such that contiguous CTAs are placed in the same NUMA
zone. (iii) LDesc-Placement: The memory placement mech-
anism described in §4.6 based on the semantics of the Locality
Descriptors, but without the accompanying CTA scheduling
strategy. (iv) LDesc: The Locality Descriptor-guided memory
placement mechanism with the coordinated CTA scheduling
strategy (§4.6). We draw two conclusions from the figure.
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Figure 17: NUMA Locality: Normalized performance.
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Conclusion 1. LDesc is an effective mechanism in NUMA
data placement, outperforming Baseline by 53.7% on av-
erage (up to 2.8×) and FirstTouch_Distrib by 31.2% on
average (up to 2.3×). The performance impact of NUMA
placement is primarily determined by two factors: (i) Access
efficiency (plotted in Figure 18), which is defined as the frac-
tion of total memory accesses that are to the local NUMA zone
(higher is better). Access efficiency determines the amount
of traffic across the interconnect between NUMA zones as
well as the latency of memory accesses. (ii) Access distribution
(plotted in Figure 19) across NUMA zones. Access distribution
determines the effective memory bandwidth being utilized
by the system—a non-uniform distribution of accesses across
NUMA zones may lead to underutilized bandwidth in one or
more zones, which can create a new performance bottleneck
and degrade performance.
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Figure 18: NUMA access efficiency.
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Figure 19: NUMA zone access distribution.

The static randomized mapping in Baseline aims to bal-
ance access distribution across NUMA zones (with an av-
erage distribution of ~25% at each zone), but is not opti-
mized to maximize access efficiency (only 22% on average).
FirstTouch-Distrib on the other hand, has higher access
efficiency in some workloads (e.g., SP, PT) by ensuring that
a page is placed where the CTA that accesses it first is sched-
uled (49.7% on average). However, FirstTouch-Distrib
is still ineffective for many workloads for three reasons:
(i) Large page granularity (64KB) often leads to high skews
in access distribution when pages are shared between many
CTAs, e.g., ATX, MVT, LIB (Figure 19). This is because
a majority of pages are placed in the NUMA zone where

the CTA that is furthest ahead in execution is scheduled.
(ii) FirstTouch-Distrib has low access efficiency when the
heuristic-based scheduler does not schedule CTAs that access
the same pages at the same NUMA zone (e.g., DT, HS, SK).
(iii) FirstTouch-Distrib has low access efficiency when
each CTA irregularly accesses a large number of pages be-
cause data cannot be partitioned between the NUMA zones
at a fine granularity (e.g., SPMV).
LDesc interleaves data at a fine granularity depending

on how each data structure is partitioned between CTAs and
schedules those CTAs accordingly. If a data structure is shared
among more CTAs than what can be scheduled at a single
zone, the data structure is partitioned across NUMA zones,
as LDesc favors parallelism over locality. Hence, LDesc tries
to improve access efficiency while reducing skew in access
distribution in the presence of a large amount of data sharing.
As a result, LDesc has an average access efficiency of 76%
and access distribution close to 25% across the NUMA zones
(Figure 19). LDesc is less effective in access efficiency in cases
where the data structures are irregularly accessed (SPMV) or
when non-power-of-two data tile sizes lead to imperfect data
partitioning (LPS, PT, LMD, HS).

Conclusion 2. From Figure 17, we see that LDesc
is largely ineffective without coordinated CTA scheduling.
LDesc-Placement retains the LDesc benefit in reducing the
skew in access distribution (not graphed). However, with-
out coordinated CTA scheduling access efficiency is very low
(32% on average).

Energy Consumption. Our energy evaluations show
that LDesc consumes 9.1% less energy on average (up
to 46.6% less) than Baseline and 9.0% less energy than
FirstTouch-Distrib (up to 32.6%).

We conclude that the Locality Descriptor approach is an
effective strategy for data placement in a NUMA environ-
ment by (i) leveraging locality semantics in intelligent data
placement and CTA scheduling and (ii) orchestrating the two
techniques using a single interface.

7. Related Work
To our knowledge, this is the first work to propose a cross-

layer abstraction that enables the software/programmer to
flexibly express and exploit different forms of data locality in
GPUs. This enables leveraging program semantics to trans-
parently coordinate architectural techniques that are critical
to improving performance and energy efficiency. We briefly
discuss prior work related to different aspects of our proposal:

Improving Cache Locality in GPUs. There is a large body
of research that aims to improve cache locality in GPUs using a
range of hardware/software techniques such as CTA schedul-
ing [7, 10–18], prefetching [29–33, 36, 63], warp schedul-
ing [50,64,65], cache bypassing [8,19–27], and other cache
management schemes [13, 28, 34–36, 47, 66–77]. Some of
these works orchestrate multiple techniques [7,13,31,34–36,
72,76] to leverage synergy between optimizations. However,
these prior approaches are either hardware-only, software-
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only, or focus on optimizing a single technique. Hence, they
are limited (i) by what is possible with the information that
can be solely inferred in hardware, (ii) by existing software in-
terfaces that limit what optimizations are possible, or (iii) in
terms of the range of optimizations that can be used. In con-
trast, the Locality Descriptor provides a new, portable and
flexible interface to the software/programmer. This interface
allows easy access to hardware techniques in order to lever-
age data locality. Furthermore, all the above prior approaches
are largely orthogonal to the Locality Descriptor as they can
use the Locality Descriptor to enhance their efficacy with the
knowledge of program semantics.

The closest work to ours is ACPM [35], an architectural
cache management technique that identifies intra-warp/inter-
warp/streaming locality and selectively applies cache pinning
or bypassing based on the detected locality type. This work is
limited to the locality types that can be inferred by hardware,
and it does not tackle inter-CTA locality or NUMA locality,
both of which require a priori knowledge of program seman-
tics and hardware-software codesign.

Improving Locality in NUMA GPU Systems. A range of
hardware/software techniques to enhance NUMA locality
have been proposed in different contexts in GPUs: multiple
GPUmodules [1], multiple memory stacks [3], andmulti-GPU
systems with unified virtual addressing [4, 38, 39, 42–44].
We already qualitatively and quantitatively compared against
FirstTouch-Distrib [1] in §6.2. Our memory placement
technique is similar to the approach taken in TOM [3]. In
TOM, frequent power-of-two strides seen in GPU kernels are
leveraged to use consecutive bits in the address to index a
memory stack. TOM, however, (i) is the state-of-the-art tech-
nique targeted at near-data processing and does not require
coordination with CTA scheduling, (ii) relies on a profiling
run to identify the index bits, and (iii) does not allow using
different index bits for different data structures. Techniques
to improve locality in multi-GPU systems [4,38,39,42–44]
use profiling and compiler analysis to partition the compute
grid and data across multiple GPUs. These works are similar
to the Locality Descriptor in terms of the partitioning used
for forming data and compute tiles and, hence, can easily
leverage Locality Descriptors to further exploit reuse-based
locality and NUMA locality in a single GPU.

Expressive ProgrammingModels/Runtime Systems/In-
terfaces. In the context of multi-core CPUs and distribut-
ed/heterogeneous systems, there have been numerous
software-only approaches that allow explicit expression of
data locality [78–86], data independence [81–83,86] or even
tiles [87,88], to enable the runtime to perform NUMA-aware
placement or produce code that is optimized to better exploit
the cache hierarchy. These approaches (i) are software-only;
hence, they do not have access to many architectural tech-
niques that are key to exploiting locality and (ii) do not tackle
the GPU-specific challenges in exploiting data locality. These
works are largely orthogonal to ours and can use Locality
Descriptors to leverage hardware techniques to exploit reuse-
based locality and NUMA locality in GPUs.

Expressive Memory (XMem) [89] is a cross-layer interface
to communicate program semantics from the application to
the system software and hardware architecture. XMem is
similar in spirit to the Locality Descriptor in providing a new
expressive abstraction to bridge the semantic gap between
software and hardware. However, XMem is primarily de-
signed to convey program semantics to aid general memory
optimization in CPUs. Expressing locality in GPUs imposes
different design challenges, requires describing a different
set of semantics, and requires optimizing a different set of ar-
chitectural techniques, leading to a very different cross-layer
design for the abstraction.

8. Conclusion
This paper demonstrates the benefits of an explicit abstrac-

tion for data locality in GPUs that is recognized by all layers
of the compute stack, from the programming model to the
hardware architecture. We introduce the Locality Descrip-
tor, a rich cross-layer abstraction to explicitly express and
effectively leverage data locality in GPUs. The Locality De-
scriptor (i) provides the software/programmer a flexible and
portable interface to optimize for data locality without any
knowledge of the underlying architecture and (ii) enables
the architecture to leverage program semantics to optimize
and coordinate multiple hardware techniques in a manner
that is transparent to the programmer. The key idea is to
design the abstraction around the program’s data structures
and specify locality semantics based on how the program
accesses each data structure. We evaluate and demonstrate
the performance benefits of Locality Descriptors from effec-
tively leveraging different types of reuse-based locality in
the cache hierarchy and NUMA locality in a NUMA memory
system. We conclude that by providing a flexible and pow-
erful cross-cutting interface, the Locality Descriptor enables
leveraging a critical yet challenging factor in harnessing a
GPU’s computational power, data locality.
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