
This paper is included in the Proceedings of the
2018 USENIX Annual Technical Conference (USENIX ATC ’18).

July 11–13, 2018 • Boston, MA, USA

ISBN 978-1-931971-44-7

Open access to the Proceedings of the
2018 USENIX Annual Technical Conference

is sponsored by USENIX.

Geriatrix: Aging what you see and what
you don’t see. A file system aging approach

for modern storage systems
Saurabh Kadekodi, Vaishnavh Nagarajan, and Gregory R. Ganger, Carnegie Mellon

University; Garth A. Gibson, Carnegie Mellon University, Vector Institute

https://www.usenix.org/conference/atc18/presentation/kadekodi

Geriatrix: Aging what you see and what you don’t see
A file system aging approach for modern storage systems

Saurabh Kadekodi1 Vaishnavh Nagarajan1 Gregory R. Ganger1 Garth A. Gibson1,2

1Carnegie Mellon University 2Vector Institute

Abstract
File system performance on modern primary storage de-
vices (Flash-based SSDs) is greatly affected by aging of
the free space, much more so than were mechanical disk
drives. We introduce Geriatrix, a simple-to-use profile
driven file system aging tool that induces target levels of
fragmentation in both allocated files (what you see) and
remaining free space (what you don’t see), unlike pre-
vious approaches that focus on just the former. This pa-
per describes and evaluates the effectiveness of Geriatrix,
showing that it recreates both fragmentation effects bet-
ter than previous approaches. Using Geriatrix, we show
that measurements presented in many recent file systems
papers are higher than should be expected, by up to 30%
on mechanical (HDD) and up to 80% on Flash (SSD)
disks. Worse, in some cases, the performance rank or-
dering of file system designs being compared are differ-
ent from the published results.

Geriatrix will be released as open source software with
eight built-in aging profiles, in the hopes that it can ad-
dress the need created by the increased performance im-
pact of file system aging in modern SSD-based storage.

1 Introduction
The performance of a file system (FS) usually deterio-
rates over time. As FSs experience heavy churn, tech-
niques such as write-back caching to expedite writes [38,
31, 14], data prefetching to assist reads [8, 35] and self-
balancing data structures to contain search times [10]
may pay for faster normal path performance now with
more complex and fragmented on-device images as the
system ages. An important factor affecting aged FS per-
formance is poor FS layout [43, 42].

Naturally, therefore, FS benchmarking should con-
sider the effects of aging. But, despite it being an im-
portant issue known for over twenty years [44], most re-
search and benchmarks still ignore aging. For example,
65% (13 of 20) recent FS papers we examined (Table 1)
neither mention aging nor include it in their evaluations.
Unsurprisingly, our experiments confirm that aging con-
tinues to be a critical factor for FS performance.

While aging’s overall importance has not waned,
the particular aspects that have the most impact have

Figure 1: Aging impact on Ext4 atop SSD and HDD. The three
bars for each device represent the FS freshly formatted (un-
aged), aged with Geriatrix, and aged with Impressions [2]. Al-
though relatively small differences are seen with the HDD, ag-
ing has a big impact on FS performance on the SSD. Although
their file fragmentation levels are similar, the higher free space
fragmentation produced by Geriatrix induces larger throughput
reductions than for Impressions. The experimental setup is de-
tailed in Section 6.

changed over time, making previous aging approaches...
stale. Previous general purpose aging approaches, from
the work of Smith and Seltzer [44] to the state-of-the-
art Impressions [2] tool, focus on achieving representa-
tive levels of file fragmentation. Such fragmentation ex-
ists when sequential blocks of a file or related metadata /
files are scattered among logical block addresses (LBAs)
of underlying storage. For FSs atop HDDs, with time-
consuming mechanical positioning costs for accessing
scattered LBAs, these file fragmentation effects are of
most concern. For the Flash-based SSDs that now dom-
inate primary and performance-tier deployments, these
effects are less significant, due to LBA remapping and
absence of mechanical positioning.

This paper introduces Geriatrix, a new FS aging tool
for modern storage. In addition to file fragmentation,
Geriatrix aggressively induces free space fragmentation
and thereby even ages any underlying device remapping
structures. As a result, it can recreate the much more
significant aging effects seen with SSDs in real sys-
tems [36]. As one example, Figure 1 compares three
instances of an Ext4 FS: Unaged, aged by Impressions,

USENIX Association 2018 USENIX Annual Technical Conference 691

and aged by Geriatrix. On the HDD, fairly minor perfor-
mance differences are observed for this particular bench-
mark, since the workload involves small files and rela-
tively little access locality. On the SSD, however, large
differences can be seen, and the Geriatrix-aged FS pro-
duces much greater aging effects.

Additional evaluation and experiments, later in the pa-
per, confirm that these greater Geriatrix-induced effects
are consistent and correctly representative. In addition,
we recreated experiments from recent papers, showing
both, that the reported performance fails to represent re-
alistic expectations and that the rank ordering of configu-
rations compared is sometimes changed. Figure 2 shows
one such re-evaluation, in which we observe both effects.

Geriatrix uses a sophisticated profile-driven approach
that ages a FS according to a reference (old) FS. This
paper describes how Geriatrix extracts information from
a profile and exercises the FS to recreate its fragmenta-
tion properties. With both theoretical analysis and exper-
imental comparison to real FS images used as profiles,
we show that Geriatrix faithfully reproduces both file and
free space fragmentation.

Geriatrix is being released as an open source tool, to-
gether with eight built-in aging profiles and a repository
of aged images of popular FSs. We hope that its avail-
ability will help increase the use of aging in FS bench-
marking.

This paper makes three primary contributions. First, it
exposes the impact of free space fragmentation and de-
vice aging for FSs on SSDs and the failure of existing
aging approaches to recreate them. Second, it describes
a new aging approach, embodied in Geriatrix, and con-
firms that it does faithfully recreate these aging effects.
Third, it provides extensive evidence, including recreat-
ing recently published comparisons and showing that re-
sults change, of why aging must be part of benchmarking
and offers Geriatrix as an open-source tool for doing so.

2 Related work

We classify aging tools into three categories: trace re-
play tools, scripts executing real-world applications and
synthetic workload generators.

Trace replay tools are best used with FSs expecting a
highly specialized workload. Traces can be captured and
replayed at multiple levels - the network level [57], file
level [32], FS level [40, 4], system call level [50], VFS
level [20] and also at the block level [7]. Low level traces
are typically FS specific resulting in loss of usefulness
for comparing different FSs. Moreover, long traces are
not widely available and are hard to capture. Trace replay
tools rank high on reproducibility but do not represent all
workloads.

The Andrew benchmark [17], Compilebench [27] and
the Git-Benchmark [11, 12] are application benchmarks
that implicitly involve some aging. These tools emulate
user behavior by performing typical activities like ex-
tracting archives, reading files, compiling code, making
directories, cloning repositories, etc. Compilebench per-
forms these tasks on Linux kernel sources, while the Git-
Benchmark can be run using any git repository. Tools in
this category only exercise one workload pattern.

Geriatrix belongs to the category of synthetic work-
load generators, which also comprises of Smith and
Seltzer’s aging tool [44] and Impressions [2]. Smith’s
tool ages by recreating each file in a given reference
snapshot and then performing creates and deletes accord-
ing to the deltas observed in successive reference snap-
shots. It was one of the first tools to point out the degra-
dation of FS performance with age. Impressions on the
other hand is a realistic FS image creator that focuses
on several FS characteristics including file size and di-
rectory depth distributions along with file attributes and
contents. These tools take reference from already old
FSs in order to perform aging.

(a) Btrfs HDD Varmail (b) Btrfs HDD Webserver (c) Btrfs SSD Fileserver

Figure 2: All three graphs reproduce experiments from the Btrfs ACM TOS publication [39] on aged FS instances. The Paper
bars are normalized to the paper’s Ext4 FS measurements, while the experiments we recreated are normalized to the unaged Ext4
performance on our hardware. Figures 2a and 2b show aging experiments performed on a HDD using the varmail and webserver
profiles respectively. 2a shows modest slowdown (30% in Btrfs, 13% in Ext4 and 9% in Xfs), but preserves the rank ordering
published in the paper. 2b disrupts published rank ordering and displays slowdowns of 17% in Btrfs and Ext4 and 12% in Xfs.
Figure 2c shows effects of aging on SSD for the fileserver profile. Here too the published rank ordering is not preserved, but we
observe massive slowdowns of 65% in Btrfs and 72% in Ext4, Xfs.

692 2018 USENIX Annual Technical Conference USENIX Association

File System Publication Needed Aging? Performed Aging?
yFS [55] FAST 2003 Yes Yes
Nilfs2 [21] SIGOPS 2006 Yes No
TFS [9] FAST 2007 Yes Yes
Data Domain Dedup FS [56] FAST 2008 Yes Yes
Panasas Parallel FS [51] FAST 2008 Yes Yes
CA-NFS [5] FAST 2009 Yes No
HYDRAStor [46] FAST 2010 Yes No
DFS [19] FAST 2010 Yes No
SFS [34] FAST 2012 Yes Yes
BlueSky [47] FAST 2012 Maybe No
ZZFS [29] FAST 2012 Maybe No
Nested FS in Virt. Env. [23] FAST 2012 Yes No
Btrfs [39] ACM TOS 2013 Yes No
ReconFS [26] FAST 2014 Yes No
F2fs [24] FAST 2015 Yes No
App. Managed Flash [25] FAST 2016 Maybe No
NOVA [52] FAST 2016 Yes No
CFFS [54] FAST 2016 Maybe Yes
BetrFS [11, 18, 53] FAST 2015, 2016 Yes Yes in [11]
Strata [22] SOSP 2017 Yes No

Table 1: A subset of major FS publications and whether their paper reports aging experiments. The Needed Aging? column is our
understanding of whether aging could have affected published results, i.e. was aging (or commentary about it) necessary as a part
of benchmarking. The Performed Aging? column refers to whether any aging-like experiment was performed. Our analysis reveals
two FSs - yFS [55], TFS [9] performed long-running aging experiments; Data Domain FS [56] and Panasas FS [51] had production
data (and therefore had seen aging in the field), SFS [34] ran a workload twice the size of the disk and CFFS [54] ran a large trace
for aging. BetrFS [11] aged using the Git-benchmark (see § 3), which highlighted file fragmentation caused by age, but induced
limited free space fragmentation. The remaining 13 papers do not discuss aging or its effects on their FSs.

3 Why do we need another aging tool?
Aging any software artifact implies understanding how it
will stand the test of time. Aging is used for several rea-
sons, such as uncovering performance deterioration with
use, stressing the robustness of the software, and identi-
fying fault tolerance and scalability issues. This section
discusses four aspects of aging that current approaches
insufficiently satisfy.

Free space fragmentation. State-of-the-art FS aging
tools either replay a trace of FS commands or run scripts
of important applications. Smith’s aging tool [44] and
Impressions [2] come close to what we expect from an
aging tool. But, Smith’s tool is a twenty year old artifact
with dependencies on the Fast FS (FFS) [31]. Impres-
sions matches an impressive number of aged metrics, but
is focused on generating realistic FS content, not FS lay-
out. These tools only target file fragmentation using a
metric called layout score, that measures the disk conti-
guity of files after aging.

Git-benchmark [11, 12] is a recently published aging
benchmark that ages the FS by cloning a git repository,
repeatedly patching code files (via git pulls) and finally
grepping for random strings in the patched repository. In
this study as well, the authors only measure file fragmen-
tation by extending the layout score (which they call the
dynamic layout score) which additionally accounts for

the contiguity in the FS access pattern for a file.
We ran the Git-benchmark from [12] on a 20GB Ext4

partition and observed a > 7⇥ slowdown when grepping
for the same string after 3000 git pulls versus grepping
for a string after a single git pull on a fresh Ext4 parti-
tion. In order to understand the dramatic slowdowns this
workload experiences, we traced the Ext4 kernel func-
tions to find, where in the code, most of the time was
spent during the arbitrary greps. Function tracing re-
vealed that ext4 es lookup extent is the function where
most of the time is spent during grep, i.e. looking up a
FS data structure. Since the capacity utilization at the
end of 3000 git pulls was only 4%, we measured the free
space fragmentation and observed that > 75% of the free
space extents were between 1-2GB. Thus, although the
Git-benchmark successfully caused some file fragmenta-
tion, it caused little of the free space fragmentation preva-
lent in aged FSs.

To the best of our knowledge, the above mentioned
tools are the only general purpose FS aging tools; and
none of them produce the required free space fragmenta-
tion which is an inevitable consequence of aging. Geri-
atrix’s fills this void by inducing adequate free space
fragmentation, proof of which is shown in § 5 and whose
effect in aging SSDs has been exemplified in Figure 1.

Device aging. SSDs contain a complex translation

USENIX Association 2018 USENIX Annual Technical Conference 693

layer in the device firmware called a flash translation
layer (FTL). FTLs are the reason that an SSD can act as a
drop-in replacement for an HDD despite having entirely
different hardware. FTLs primarily perform the tasks of
address remapping, garbage collection and wear level-
ing. SSD device characteristics force the FTL to operate
very similarly to a complex log-structured FS [41]. With
time, the increased garbage collection work (interfering
with the foreground work) combined with fragmented
FTL mapping tables can hurt performance. Thus, in the
case of an SSD, two systems are aging simultaneously,
the FTL and the FS that the SSD has been formatted
with. Since FTLs are proprietary, users typically have
no insight into how well (or poorly) an FTL has aged.

Shingled magnetic recording (SMR) is a new hard
drive architecture wherein adjacent tracks on a HDD are
partially overlapped to increase the number of tracks on
the disk, thus increasing the disk capacity. This tech-
nology was an answer to the traditional HDDs having
surpassed the superparamagnetic effect [45], which dis-
allows increasing sectors-per-track in order to achieve
larger disk capacities. Commercially available SMR
HDDs have a firmware different from, but as complicated
as the FTL. Aghayev et al. [1] showed that the interfer-
ence of the firmware while performing foreground tasks
caused high performance fluctuations. One of the key as-
pects of a firmware driven SMR disk is the existence of
a persistent cache at the center of the drive. Suppose we
are benchmarking a fresh FS on a SMR drive, we might
conceivably never hit the persistent cache limit (which is
impossible as the drive actually ages), thus circumvent-
ing the large read-modify-write cycles that the firmware
would have performed leading to low throughput.

The churn that the FS and the device endure while
Geriatrix attempts to age according to an aging profile
forces device aging as well, providing a more realistic
aging effect.

Aging write-optimized FSs. Write-optimized FSs fo-
cus on expediting writes at the cost of possibly slower
reads. Log-structured FSs [41] are a classic example of
a write-optimized FS. Moreover, most modern storage
devices operate as log-structured FSs internally, as men-
tioned in Section 3. In this architecture, every file rewrite
causes file fragmentation because in-place updates are
disallowed. Therefore, the true impact of aging a write-
optimized FS is usually noticed when garbage collection
starts interfering with foreground activity, a well studied
problem also known as segment cleaning [41, 6, 28, 48].
These FSs are hard to age since they need to be forced
into frequent garbage collection which is only possible
at high space utilization and with significant free space
fragmentation. Geriatrix fulfills these two requirements
allowing for effective aging of write-optimized FSs.

Aging as a stress tester. An effective use of an ag-

ing exercise could be in the form of a stress tester. The
high churn expected to be exercised by an aging tool
can expose design flaws like overflows / underflows, data
structure inefficiencies, concurrency and consistency is-
sues among others. Geriatrix produces orders of mag-
nitude more churn than the state of the art aging tools
present today, rewriting data amounting to several times
the specified FS image size. Thus, Geriatrix is as much a
FS stress tester as it is an aging tool.

4 Geriatrix design and implementation
Geriatrix exercises a non-aged FS to match an aging pro-
file which is provided as input, by performing a sequence
of file create and delete operations. The profile contents
are inspired by a combination of the usual parameters
that affect a file’s on-disk layout and which are easily
obtainable from an aged instance of a FS using a single
metadata tree walk. A Geriatrix aging profile comprises
of:
• FS fullness (bytes, %): Partition size and fraction

containing user data.
• File size distribution (bytes, %; bytes, %; ...): A

histogram of file sizes.
• Directory depth distribution (1, %, # subdirs; 2,

% #subdirs; ...): Path depth to individual files and
percentage of files at that path depth along with the
aggregate number of subdirectories at each depth.

• Relative age distribution (n, %; m %; ...): A his-
togram of relative file ages, n<m< ..., where younger
files, in the first histogram bin make up the first % of
all files in the aged FS image, and so on. More specifi-
cally, we extract create timestamps of files from an ex-
isting old FS snapshot following which we sort, enu-
merate and bin files into relative age buckets. These
buckets approximate the age of each file relative to the
other files, decoupling them from the absolute time of
their creation (thus making their age unitless).

At a high level, Geriatrix aging proceeds in two distinct
phases.
1. A rapid aging phase in which files are only created

(one file creation per time instant or tick), to rapidly
achieve the fullness target. Since this phase does not
perform any deletions, there is no fragmentation in-
duced in rapid aging. It merely achieves the required
fullness while ensuring that the file size and directory
depth distributions are met.

2. A stable aging phase in which each operation (one
operation per tick) is either a file creation or a dele-
tion based on a fair coin toss. This phase is designed
to fit the relative age distribution while maintaining
all other parameters. The roughly equal number of
creations and deletions are necessary to maintain the
fullness target, and in some sense mimic the steady-
state operation of a FS operated at a certain fullness.

694 2018 USENIX Annual Technical Conference USENIX Association

We now discuss how we ensure that the distributions
of the file system being aged match the target distribu-
tions at the end of a Geriatrix run. We assume that all
input distributions are mutually independent. Thus, we
can easily achieve the size and directory depth distribu-
tions by drawing a size and directory depth value from
their respective distributions and creating or deleting a
file corresponding to those values. Note that rapid and
stable aging phases continuously strive to maintain both,
size and directory depth distributions.

However, achieving the target age distribution is
harder. Note that the relative age of a file at the end of a
Geriatrix run is the ratio of the number of ticks (or oper-
ations) that have passed since the file was created to the
total number of ticks (say T) in that run. Thus, without
knowing T , it is impossible to determine the final rela-
tive age bucket of any file. However, to direct the algo-
rithm towards the target age distribution, it is necessary
to know the final relative age bucket and thus, T . We
overcome this by theoretically estimating a sufficiently
large T within which it is possible to perform create /
delete operations that achieve the target age distribution.
Then, during the run, we use our estimate of T to com-
pute the index of the final relative age bucket of any file;
based on this, we perform clever deletions to ensure that
the target age distribution is achieved. Appendix A pro-
vides this estimate of T and shows that when we stop the
algorithm at T , it has indeed converged to the target age
distribution.

Geriatrix has a repository of eight built-in file system
aging profiles, most of which are from long-running file
system and metadata publications [3, 13, 49, 33] to as-
sist practitioners in conducting file system aging exper-
iments. Table 3 provides a description of all the pro-
files along with the age of oldest file in every profile.
We also indicate the wall-clock time it took to age these
profiles in a ramdisk along with the total workload size
generated during aging. Finally, we also show the empir-
ical proof of our relative age convergence theorem via
the perfect convergence (a root mean-squared error of
<0.01%) achieved on the relative age distribution graphs
for each aging profile (complete overlap in the graphs in
Table 3).

The aging tool is a C++ program (built using the Boost
library) designed to run on UNIX platforms. It has the
ability to age both POSIX and non-POSIX FSs.
• Reducing setup complexity: Geriatrix is profile

driven with eight built-in aging profiles. We also pro-
vide a repository of popular Linux FSs aged using the
built-in profiles for standardized comparison.

• Parallel aging: Geriatrix has a configurable thread
pool that exploits multi-threading in file systems to ex-
pedite aging substantially.

• Reproducibility: A user-defined seed governs all the

randomness in Geriatrix, thus allowing every single-
threaded Geriatrix execution to be exactly repro-
ducible. For multi-threaded executions, the operating
system scheduler may interleave threads differently re-
sulting in different execution patterns across runs.

• Rollback utility: Aging experiments can take a pro-
hibitively long time. Once a FS image has been aged,
taking a snapshot of the image to be able to restore the
same image for multiple tests is usually faster than re-
aging. This requires a whole disk overwrite, which on
today’s multi-TB disks can take several hours, so we
have developed a rollback utility to undo the effects of
a short benchmark run on an aged image without hav-
ing to replay the entire aged image again. Using the
blktrace utility [7], we monitor the blocks that were
modified during benchmark execution and effectively
“undo” the perturbation caused by benchmarking by
overwriting the dirtied blocks from the static snapshot
of the aged image. blktrace adds overhead when run-
ning a benchmark, but is often negligible and can be
mitigated further by writing the blktrace output to an
in-memory FS or sending it across the network.

• Multiple stopping conditions: For many users, wait-
ing for < 0.01% root mean square convergence of a
Geriatrix run might be overkill. Thus, we have intro-
duced multiple stopping conditions:
1. the amount of time the ager is allowed to run
2. the confidence 1 of the age distribution fit
3. the max number of disk overwrites for aging
Once any stopping condition is met, Geriatrix stops
and displays the values of all three stopping condi-
tions. The user can choose to accept the aging per-
formed, or revise the condition(s) and resume aging.

5 Evaluation of Geriatrix as an aging tool
We evaluate the fidelity of Geriatrix’s aging by compar-
ing the file and free space fragmentation it induces on a
fresh Ext4 partition to that of the source file system for
the selected built-in profile. We do this comparison for
two Geriatrix profiles: Grundman (extracted from a nine
year old 90GB FS with approximately 90% fullness) and
Dabre (extracted from a one year old 20GB FS with ap-
proximately 80% fullness). Despite being designed to
only match externally visible measures of a FS, Geriatrix
induces appropriate free space and file fragmentation by
exercising the FS extensively.

We measure the distribution of free space extents us-
ing the e2freefrag utility. Figure 3 shows results for five
file systems: the original Grundman FS image (aged nat-
urally over 9 years), a fresh FS with no aging, a fresh FS
aged by Geriatrix using the Grundman profile, a fresh FS

1Confidence of the convergence of distributions is calculated using
the chi-squared goodness-of-fit statistic.

USENIX Association 2018 USENIX Annual Technical Conference 695

(a) Extents (b) File Fragmentation

Figure 4: 4a compares the the minimum, average and maxi-
mum size of free space extents for a naturally aged Ext4 image
and an Ext4 image aged using Geriatrix for the Grundman ag-
ing profile. 4b shows the number of fragments allocated as a
result of a 2GB file being copied to both FS images.

aged by Impressions using the same file size distribution,
and a fresh FS with the Grundman image files copied to
it.

The primary takeaway is that the Geriatrix-aged FS
matches the original Grundman FS closely, which can
be seen by comparing the colorful bars, while the other
three (gray bars) do not. As expected, the freshly for-
matted Ext4 has very large free space extents, mostly
between 1-2GB. Grundman and the Geriatrix-aged FS
have much smaller extents and more spread out free
space extent distributions ranging from 4KB to 32MB.
The “Copied” and Impressions-aged FSs are similar to
the freshly-formatted file system, with low free space
fragmentation. The comparison using the Dabre profile
(graph omitted due to space constraints) shows very sim-
ilar results.

Figure 4a compares the minimum, average and max-
imum free space extent sizes for Grundman and the

Geriatrix-aged FSs. Both have the same smallest free
space extent of 4KB. The average free space extent size
of naturally-aged Grundman is only 144KB larger than
its Geriatrix counterpart, while the largest free space ex-
tent is only 7.2MB smaller. These numbers are very close
considering the total partition size of 90GB.

Figure 4b measures the fragmentation of a new 3GB
file copied to each of the naturally-aged Grundman im-
age and the Geriatrix-aged FS, using the filefrag utility.
The image aged by Geriatrix splits the file into 2250 frag-
ments while the naturally-aged FS only splits it into 1368
fragments. Despite Geriatrix over-splitting the file, its
aging is two orders of magnitude higher than the number
of fragments created writing 3GB to a freshly formatted
Ext4.

Since Geriatrix refrains from taking shortcuts, and per-
forms millions of operations before declaring a FS aged,
it closely approximates the FS state caused by natural
aging. The Geriatrix aging experiment reported in Fig-
ures 3 and 4 took approximately 420 minutes. Recreat-
ing the fragmentation naturally occurring in nine years
with only 420 minutes of aging is an acceleration of
>11000⇥.

6 How Geriatrix changes conclusions
To highlight the impact of aging, we recreated experi-
ments from Btrfs [39], F2fs [24] and NOVA [52] pub-
lications on unaged and aged FS instances. We also
produced aged instances of Ext4 (used for comparison
across all three papers) and Xfs (used for comparison in
the Btrfs and NOVA papers).

Experimental setup. We performed all our experi-
ments on an Emulab PRObE cluster [15]. The hardware
used and the setups for experiments is described in Ta-
ble 2. For fairer comparison, we matched the memory
and the number of cores in our benchmark when recreat-
ing expts. from the Btrfs [39] and F2fs [24] publications.

Figure 3: Free space fragmentation comparison of an actual old Ext4 FS image (Grundman) with Geriatrix driven by the Grundman
profile, Impressions driven by the Grundman profile’s file size distribution, a partition with the contents of the original Grundman
image copied over and a freshly formatted Ext4 partition. Other than the freshly formatted image, all other FS images are approxi-
mately 90% full. Geriatrix induces free space fragmentation very similar to the naturally aged Grundman image with no large free
space extents, hence causing appropriate free space fragmentation.

696 2018 USENIX Annual Technical Conference USENIX Association

Paper Disk RAM CPU (cores) Linux (Kernel Version)

Btrfs [39] 500GB HDD (WDC WD5000YS-01MPB0) 2GB Intel Xeon E7 (8) Ubuntu 14.04 LTS (3.13.0-33)
64GB SSD (Crucial M4-CT064M4SSD2) 2GB AMD Opteron (8) Ubuntu 14.04 LTS (3.13.0-33, 4.4.0-31)

F2fs [24] 64GB SSD (Crucial M4-CT064M4SSD2) 4GB Intel Core i7 (4) Ubuntu 14.04 LTS (4.4.0-31)
120GB SSD (ADATA SSD S510) 4GB Intel Core i7 (4) Ubuntu 14.04 LTS (4.4.0-31)

NOVA [52] 64GB NVM (Emulated in DRAM) 8GB AMD Opteron (8) Ubuntu 14.04 LTS (4.13)

Table 2: Experimental Configuration.

We used four of Geriatrix’s built-in profiles in our ex-
periments: Agrawal [3], Meyer [33], Dabre and Pramod.
We performed aging in memory and captured the result-
ing aged images. We consciously decided to not age the
FSs on the device as we wanted to prevent device aging
from affecting the FS aging. Prior to each benchmark
run we copied the corresponding aged image onto a disk
(using dd to the raw device) and mounted the FS on the
aged image. All FSs were mounted using default mount
options.

The Filebench benchmark [30] was used for all per-
formance measurements with different profiles accord-
ing to the appropriate reference publication. The primary
performance metric reported is overall operations per
second as reported by Filebench. Each benchmark run
lasted about 10 minutes and we performed three runs of
each benchmark to capture variance. We report only the
mean, since the maximum standard deviation observed
was below 2. Since our hardware is not identical to what
was used in the papers and since we are testing with code
potentially newer than the one used for publication, exact
reproduction of paper results even for unaged instances
of FSs is unlikely. With SSDs, the performance variabil-
ity across devices is especially high. For ease of com-
parison, we include raw data on the bar graphs, but nor-
malize bar heights. The published results (leftmost gray
bars) are normalized to the published Ext4 results, and
the aged FS performance numbers are normalized to un-
aged Ext4 performance on the same hardware. We chose
Ext4 because it is the default FS rolled out with most
Linux distributions today. All HDD experiments were

conducted using 100GB aged images with a 80% capac-
ity utilization target being replayed on a 100GB partition
of a 500GB HDD.

HDD experiments. Figure 2a in Section 1 compares
the performance of Btrfs, Ext4 and Xfs on an HDD
for the Filebench varmail workload, representing a mail
server workload of tiny (⇡16KB) file operations. Af-
ter aging using the Meyer profile, we see 9-30% slow-
downs, with Btrfs being most affected by aging, followed
by Ext4 and then Xfs.

Figure 2b compares the same FSs using the webserver
workload. The webserver workload is highly multi-
threaded and again, operates on tiny files, although it
avoids issuing expensive fsync operations and mimics
webservers that have to perform more whole-file reads
and log appends. Since FSs are usually more sensi-
tive to small file operations, it is perhaps understand-
ably harder to reproduce published results; indeed, un-
aged Btrfs performs 22% faster on our hardware than
reported in the paper, while unaged Xfs also performs
10% faster than the paper. We also see a minor inver-
sion of ranking, with unaged Btrfs outperforming unaged
Xfs. The performance penalties after aging are between
12-17%. We show only the Meyer aging profile in web-
server and varmail because Btrfs could not sustain aging
for the Pramod profile, and although Btrfs successfully
completed aging for Dabre and Agrawal profiles, it did
not complete execution of the benchmark despite having
the required space to do so. This exemplifies the role of
Geriatrix as a stress testing tool.

Figure 5a compares the FSs on the fileserver workload,

(a) Btrfs HDD Fileserver (b) Btrfs SSD Fileserver

Figure 5: Both graphs reproduce Filebench fileserver experiments from the Btrfs ACM TOS publication [39] on aged FS instances
on a HDD (Figure 5a) and a SSD (Figure 5b). Aged Btrfs and Ext4 performed at most 22% slower on the HDD but supported the
prior paper’s published rank ordering whereas aged Btrfs and Ext4 on a SSD degraded benchmark performance by as much as 80%,
and changed the rank ordering of compared FSs. SSD experiments in 5b were performed using the Linux kernel version 3.13.0-33

USENIX Association 2018 USENIX Annual Technical Conference 697

Figure 6: Filbench webserver recreations from the Btrfs paper
[33] on SSD. Btrfs is most affected by aging with its perfor-
mance dropping by 30%. Ext4 and Xfs performance drops by
a maximum of 10% and 15% respectively.

which consists of relatively larger file writes and reads
(⇡ 128KB) compared to thousands of tiny file operations
in webserver and varmail. We observe that unaged Btrfs
is 10% faster in our setup, unaged Ext4 is marginally bet-
ter while unaged Xfs is about 5% slower, keeping perfor-
mance similar to published results with slightly increased
performance gaps between the FSs. After aging using the
Agrawal profile, we observe a 10-22% performance drop
with Ext4 being the most affected FS.

SSD experiments. The SSD experiments were con-
ducted on a 64GB SSD with a 59GB aged FS image with
a 70% fullness target. The reason for choosing 70% was
to allow the benchmarking workload to fit after aging.
SSDs are available in a variety of product price-point
classes and have highly variable performance making re-
production of SSD results on different hardware unlikely.
This is evident from figures 2c and 5b which show a com-
pletely different rank ordering of unaged Btrfs, Ext4 and
Xfs compared to published results on the fileserver work-
load. While Btrfs had the best performance in the paper,
it ranged from being the best in aged reproduction using
the Dabre (Figure 2c) and Agrawal profiles to being the
worst in the aged reproduction using the Meyer profile.
Apart from the rank ordering, we observed massive post-
aging slowdowns on SSDs from 65-80%. As explained
in Sections 1 and 3, we attribute this performance drop
to SSD device aging along with FS aging, with both ef-
fects being exaggerated by the free space fragmentation
caused by Geriatrix.

The webserver results shown in Figure 6 also show
significant slowdowns, but are not so dramatic. Btrfs ap-
pears to be the most affected by aging, showing up to a
30% performance drop, while Xfs and Ext4 degrade by
15% and 10%, respectively.

It was typical of SSDs from a few years ago to not be
able to sustain more than 2 minutes of continuous writing
before performing inline cleaning [37]. Our benchmark-
ing technique involves writing an aged image on almost
the entire surface of the SSD, performing a 10 minute

Figure 7: Recreation of the Filebench fileserver benchmark
from the F2fs paper [24] on two SSDs - 64GB (labeled 64)
and 120GB (labeled 120). Performance on 64 drops signifi-
cantly after aging, especially for Btrfs and Ext4 resulting in a
graph that looks similar to published results. Refer Section 6
for detailed explanation. 120 seems unaffected by aging, thus
highlighting highly varied performance across different SSDs.

benchmark run followed by unmounting the FS and re-
peating the process with 100% device utilization. An en-
tire surface rewrite should be equivalent to a giant trim
obviating the need to perform any internal garbage col-
lection in the FTL, but this is dependent on firmware im-
plementation which varies widely across devices.

Figure 7 is the recreation of F2fs [24] results on SSDs
comparing Btrfs, Ext4 and F2fs using the Filebench file-
server profile. To capture variability of performance
across devices, we chose SSDs of different makes and
sizes - a 64GB Crucial SSD with 59GB aged FS images
(bars labeled 64) and a 120GB ADATA SSD with 100GB
aged FS images (bars labeled 120). Ext4 is the winning
FS when comparing unaged FS instances on 64GB SSD,
and Xfs is marginally better on the 120GB SSD, while
published results report F2fs performance was 2.4⇥ that
of Ext4. Aging on 64GB SSD shows interesting behav-
ior as the performance of all three FSs drops (61-67%
for Btrfs, 76-78% for Ext4 and 2-5% for F2fs) and the
outcome looks similar to results that the earlier paper re-
ported. The authors most likely aged the SSD firmware
by performing repeated benchmark runs resulting in be-
havior similar to what is seen when FSs are aged. In
contrast, the 100GB FSs on the 120GB SSD age much
more gracefully with only Btrfs showing as much as 7%
performance penalty after aging. This again suggests that
SSDs themselves age in different (and non-trivial) ways
along with the FSs running on them.

Emulated NVM experiments. We also perform ag-
ing experiments on NOVA [52] – a log-structured FS
intended for non-volatile memory (NVM). We used a
modified Linux kernel version 4.13 to age NOVA since
it required special kernel libraries for enabling persis-
tent memory emulation. A 64GB partition similar to the
SSD experiments was aged with 70% utilization. The
NOVA paper performed experiments with 64GB persis-

698 2018 USENIX Annual Technical Conference USENIX Association

(a) NOVA Fileserver (b) NOVA Varmail

Figure 8: Both graphs reproduce experiments from the NOVA FAST 2016 publication [52] on aged FS instances using emulated
non-volatile memory. All FSs age gracefully with Btrfs seeing the largest performance hit of 5% on the fileserver workload
(Figure 8a) and 6% on the varmail workload (Figure 8b). Graphs from the paper are for reference and in this case cannot be
compared to our reproductions because of different hardware and configuration.

(a) NOVA Fileserver Latency (b) NOVA Varmail La-
tency

Figure 9: 9a shows the latency of the slowest operations for
the fileserver workload. Aged NOVA slows down by upto 60%
on file opens and upto 2⇥ on file writes. In 9b we see slow-
downs of upto 2.3⇥ on reads of the slowest file in the varmail
workload. The aged opens are contrastingly faster for the var-
mail workload compared to the fileserver workload. Slowest
file open during the varmail workload run is 25% faster after
aging.

tent memory devoted to NOVA and 32GB DRAM for the
rest of the system. The experiment dataset size was made
slightly larger than DRAM (more than 32GB) forcing
NVM device interaction during an experiment run. How-
ever, that meant that the authors used more than half the
64GB NVM device for their benchmark run. Generally, a
<50% utilized FS would be considered too underutilized
for running a realistic post-aging benchmark. Hence,
we kept utilization at 70%, reduced the DRAM size to
8GB and exercised a workload of more than 8GB to still
ensure that the benchmarking workload was larger than
the system memory. Furthermore, the authors performed
their experiments on special Intel NVM hardware. Thus,
we discourage the direct comparison of performance in
Figures 8a and 8b with the NOVA paper results.

Figure 8a compares NOVA’s performance on the file-
server workload before and after aging with Btrfs, Ext4,

Ext4-DAX and F2fs. Ext4-DAX is Ext4 mounted with
the -o dax option to enable direct-access to the emulated
NVM device bypassing the buffer cache, thus avoiding
duplicate caching of data. With the largest difference of
5% observed in Btrfs, we see virtually no difference in
all FSs before and after aging. The same is true in the
case of the varmail workload shown in Figure 8b where
Btrfs is the most affected FS with a slowdown of approx-
imately 6%.

Although aging does not affect throughput, its effect
is seen in the tail latencies. Figure 9a shows the highest
latency encountered by Filebench categorized by oper-
ation. The slowest file open in the fileserver workload
was 60% slower after aging. Writing the slowest file
also took twice as long compared to a freshly formatted
NOVA image. Surprisingly, closing the slowest file was
5⇥ faster after aging. In the varmail workload, the slow-
est aged read was 2.3⇥ slower than the slowest unaged
read. In contrast, the opening of the slowest aged file was
approximately 25% faster. Both these observations can
be attributed to the log-structured design of NOVA, as
log-structured FSs are not read-optimized. We speculate
that reorganization of files after cleaning might have led
to the open call being executed faster.

As expected, with no mechanical parts and DRAM-
like latency, NVM or in-memory FSs do not show sig-
nificant reduction in throughput after aging. An aging
exercise for these FSs is mainly about exposing ineffi-
ciencies in FS implementations that usually get hidden
behind massive device latencies.

7 Conclusion
The Geriatrix aging tool creates representative fragmen-
tation of both files and free space. Unlike with HDDs,
file system performance on SSDs is greatly impacted
by free space fragmentation that has been largely absent
from prior aging approaches. Being released as open-
source, Geriatrix will enable file system benchmarking

USENIX Association 2018 USENIX Annual Technical Conference 699

to include aging relevant to modern storage.

8 Acknowledgements
We thank Keith Smith, Rob Johnson and the anony-

mous reviewers for their feedback and guidance. We
also thank the members and companies of the PDL
Consortium (Alibaba, Broadcom, Dell EMC, Face-
book, Google, Hewlett-Packard Enterprise, Hitachi, In-
tel, IBM, Micron, Microsoft Research, MongoDB, Ne-
tApp, Oracle, Salesforce, Samsung, Seagate, Toshiba,
Two Sigma, Veritas and Western Digital) for their inter-
est, insights, feedback, and support.

A Proof of convergence of the age distr.
Assume we need to age a FS that has K files at the end
of the rapid aging phase, and continues to have approxi-
mately K files throughout aging (i.e. one Geriatrix run).
Let T be the total number of operations (each corre-
sponding to a tick) performed in one Geriatrix run. Let
the target relative age distribution be specified by binning
the T ticks into B buckets, with the oldest bucket indexed
as b = B and the youngest bucket as b = 1 (i.e., the files
created at the end of the run will fall in b = 1). Let sb be
the relative size of the age bucket b, i.e., files created in
the first T sB operations will fall in relative age bucket B,
and those in the next T sB�1 operations in bucket B� 1
and so on). Let gb be the relative number of files in
bucket b according to the target distribution i.e., there
must be approximately Kgb files in bucket b at the end
of a run. Then we can predict the number of operations
required to achieve convergence as follows:

Theorem A.1. After

T = max

8
><

>:

2Kgb
sb

,8b < B

K
sB

.

the Geriatrix run would have converged to the target age
distribution i.e., the number of files in age bucket b would
equal Kgb (approximately).

Proof. First, let us examine how the rapid aging phase,
which consists of the first K file creations, affects the
age distribution of the system. Since the oldest bucket
corresponds to the first T sB operations, and T sB � K, all
the files created in the rapid aging phase end up falling
in bucket B.

Next, we will examine how the stable aging phase can
achieve the target age distribution. Let Ob be the total
number of stable aging operations that correspond to the
ticks corresponding to bucket b. For the oldest bucket,
OB = T sB �K and in the other buckets Ob = T sb. Fur-
ther, let Cb and Db respectively be the number of stable

aging creation and deletion operations performed corre-
sponding to bucket b. Assume that Cb ⇡ Ob

2 and Db ⇡ Ob
2

since we perform creations and deletions in the stable
aging phase using a fair coin toss.

Now note that the Cb creations corresponding to
bucket b will create files which will all fall in bucket
b. On the other hand, the Db deletions corresponding
to bucket b may be performed either on files in bucket b
or on any pre-existing file in an older bucket b0 such that
b0 > b. We will show that we can distribute these dele-
tions in such a manner that the target age distribution of
Kgb files in bucket b can be achieved for every b.

First, observe that in the youngest bucket b= 1 we cre-
ate exactly C1 = T s1/2 files. Now, since T � 2Kg1/s1,
C1 � Kg1. Thus, there would be an excess of C1�Kg1 =
T s1/2�Kg1 file creations in this bucket which need to
be deleted. Since we have D1 = T s1/2 deletion opera-
tions available for this bucket, we can use T s1/2�Kg1 of
them to remove these excess files and achieve the target
for this bucket, and use the excess Kg1 delete operations
for the older buckets.

We will now use induction to show that we can simi-
larly achieve the target number of files for the older buck-
ets (except the oldest which we will handle separately).
Specifically, assume that for operating on the files in
bucket b where b 6= B, we have K Âb�1

b0=1 gb0 excess delete
operations available from the operations corresponding
to the younger buckets (this is equal to zero for b = 1).
Next, recall that have Cb = T sb/2 file creations in this
bucket. But since T � 2Kgb/sb, Cb � Kgb. Thus, there
would be an excess of T sb/2�Kgb files in this bucket
that need to be deleted. However, we have T sb/2 dele-
tion operations available from the ticks corresponding to
this bucket and a further K Âb�1

b0=1 gb0 excess deletion op-
erations available from younger buckets. Hence, we can
delete these excess T sb/2�Kgb files to achieve the tar-
get of Kgb files in this bucket. Then, we will have the
remaining Kgb+K Âb�1

b0=1 gb0 = K Âb
b0=1 gb0 deletion oper-

ations as excess which can be used for the older buckets,
thus satisfying the induction hypothesis.

Now, for the oldest bucket we will have K ÂB�1
b0=1 gb0 =

K(1 � gB) excess deletion operations available (since
ÂB

b0=1 g0b = 1) from the younger buckets, besides T sB/2
deletions corresponding to this bucket. At the same time,
we have created K files in this bucket in the rapid ag-
ing phase and T sB/2 files in the stable aging face i.e.,
K +T sB/2 files in total. Hence, we will have an excess
of K + T sB/2�KgB = K(1� gB)+ T sB/2 files, which
happens to be equal to the total number of deletions avail-
able. Hence, we can achieve the target file number in this
bucket while using up all the available operations. Thus,
we use exactly T operations to achieve the target age dis-
tribution.

700 2018 USENIX Annual Technical Conference USENIX Association

Profile Description Age
(yrs)

Duration
(min)

Overwrites
(50 GB) Age Distribution

Douceur*

Referenced from a study of FS contents by Douceur
et al. [13] in 1998. It captures an aggregate analysis
of over 10000 commercial PCs running Microsoft
Windows.

4 NA 22422
(1 GB)

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●
● ●0%

5%

10%

15%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Agrawal

Referenced from a metadata study of Windows
desktop FSs from Microsoft in 2004 [3]. Most com-
puters ran NTFS (80%) along with FAT32 (15%)
and FAT (5%).

14 466 253

● ●
●

●

●

●

● ●

●

●0%

10%

20%

30%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Meyer

Referenced from a deduplication study conducted
on 857 Windows desktop computers at Mi-
crosoft [33]. Snapshots of the FSs were taken in
2009.

2 78 159

●

●

●

●

●

●
●

● ●

● ●

●

●
●

● ●●
●

●

●

● ● ● ●0%

10%

20%

0 20 40 60 80 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Wang-
OS

Referenced from an HPC FS environment study [49]
performed on NetApp’s WAFL [16] installations at
CMU’s Parallel Data Lab (an educational cluster
setup for systems’ research) in 2011.

22 231 34

● ●
●

●

●

●

●

●

● ●0%

10%

20%

30%

1 10 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Wang-
LANL

Referenced from the same study as Wang-OS [49]
from Panasas FS [51] installations at Los Alamos
National Lab (LANL).

11 146 28

● ● ● ●
●

●

●

●

●

●

● ●0%

5%

10%

15%

20%

25%

0.1 1.0 10.0 100.0
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Dabre Captured in 2017 from the root partition of a col-
league’s laptop running Ext4. 1 91 4042

● ● ● ● ● ● ● ●
●

●

●

●

●

●

0%

20%

40%

60%

80%

0.01 0.10 1.00 10.00 100.00
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Pramod Captured in 2017 from the root partition of a col-
league’s laptop running Ext4. 3.75 27 17

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

0%

20%

40%

60%

0.01 0.10 1.00 10.00 100.00
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

Grundman Captured in 2018 from the home partition of a col-
league’s laptop running Ext4. 8.75 142 2388

●

●

●
●

●

●

●

●

●

0%

10%

20%

30%

1 10 100
Age Buckets (%)

Distribution ● GERIATRIX REFERENCE

*Douceur 1 GB image required a 22.4 TB workload to converge, thus taking too long to converge for 50 GB.

Table 3: List of built-in aging profiles in Geriatrix with their descriptions, the age of the oldest file in each profile, the duration to
age a 50GB Xfs partition in memory with Geriatrix for every profile, and the number of disk overwrites (workload) performed.

USENIX Association 2018 USENIX Annual Technical Conference 701

References
[1] AGHAYEV, A., SHAFAEI, M., AND DESNOYERS, P. Skylighta

window on shingled disk operation. ACM Transactions on Stor-
age (TOS) (2015).

[2] AGRAWAL, N., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Generating realistic impressions for file-system
benchmarking. ACM Transactions on Computer Systems (TOCS)
(2009).

[3] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND
LORCH, J. R. A five-year study of file-system metadata. ACM
Transactions on Storage (TOS) (2007).

[4] ARANYA, A., WRIGHT, C. P., AND ZADOK, E. Tracefs: A file
system to trace them all. In USENIX File and Storage Technolo-
gies (FAST) (2004).

[5] BATSAKIS, A., BURNS, R., KANEVSKY, A., LENTINI, J., AND
TALPEY, T. Ca-nfs: A congestion-aware network file system.
ACM Transactions on Storage (TOS) (2009).

[6] BLACKWELL, T., HARRIS, J., AND SELTZER, M. I. Heuristic
cleaning algorithms in log-structured file systems. In USENIX
Annual Technical Conference (ATC) (1995).

[7] BRUNELLE, A. D. Block i/o layer tracing: blktrace. HP, Gelato-
Cupertino, CA, USA (2006).

[8] CAO, P., FELTEN, E. W., KARLIN, A. R., AND LI, K. A study
of integrated prefetching and caching strategies. ACM SIGMET-
RICS Performance Evaluation Review (1995).

[9] CIPAR, J., CORNER, M. D., AND BERGER, E. D. Tfs: A trans-
parent file system for contributory storage. In USENIX File and
Storage Technologies (FAST) (2007).

[10] COMER, D. Ubiquitous b-tree. ACM Computing Surveys (CSUR)
(1979).

[11] CONWAY, A., BAKSHI, A., JIAO, Y., JANNEN, W., ZHAN, Y.,
YUAN, J., BENDER, M. A., JOHNSON, R., KUSZMAUL, B. C.,
PORTER, D. E., ET AL. File systems fated for senescence? non-
sense, says science! In USENIX File and Storage Technologies
(FAST) (2017).

[12] CONWAY, A., BAKSHI, A., JIAO, Y., ZHAN, Y., BENDER,
M. A., JANNEN, W., JOHNSON, R., KUSZMAUL, B. C.,
PORTER, D. E., YUAN, J., ET AL. How to fragment your file
system. USENIX ;login: (2017).

[13] DOUCEUR, J. R., AND BOLOSKY, W. J. A large-scale study of
file-system contents. ACM SIGMETRICS Performance Evalua-
tion Review (1999).

[14] FEIERTAG, R. J., AND ORGANICK, E. I. The multics in-
put/output system. In ACM Symposium on Operating Systems
Principles (SOSP) (1971).

[15] GIBSON, G., GRIDER, G., JACOBSON, A., AND LLOYD, W.
Probe: A thousand-node experimental cluster for computer sys-
tems research. USENIX ;login: (2013).

[16] HITZ, D., LAU, J., AND MALCOLM, M. A. File system design
for an nfs file server appliance. In USENIX Winter Conference
(1994).

[17] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems (TOCS) (1988).

[18] JANNEN, W., YUAN, J., ZHAN, Y., AKSHINTALA, A., ESMET,
J., JIAO, Y., MITTAL, A., PANDEY, P., REDDY, P., WALSH, L.,
ET AL. Betrfs: A right-optimized write-optimized file system. In
USENIX File and Storage Technologies (FAST) (2015).

[19] JOSEPHSON, W. K., BONGO, L. A., LI, K., AND FLYNN, D.
Dfs: A file system for virtualized flash storage. ACM Transac-
tions on Storage (TOS) (2010).

[20] JOUKOV, N., WONG, T., AND ZADOK, E. Accurate and effi-
cient replaying of file system traces. In USENIX File and Storage
Technologies (FAST) (2005).

[21] KONISHI, R., AMAGAI, Y., SATO, K., HIFUMI, H., KIHARA,
S., AND MORIAI, S. The linux implementation of a log-
structured file system. ACM Operating Systems Review (SIGOPS)
(2006).

[22] KWON, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E.,
AND ANDERSON, T. Strata: A cross media file system. In ACM
Symposium on Operating Systems Principles (SOSP) (2017).

[23] LE, D., HUANG, H., AND WANG, H. Understanding perfor-
mance implications of nested file systems in a virtualized en-
vironment. In USENIX File and Storage Technologies (FAST)
(2012).

[24] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs: A new file
system for flash storage. In USENIX File and Storage Technolo-
gies (FAST) (2015).

[25] LEE, S., LIU, M., JUN, S., XU, S., KIM, J., ET AL.
Application-managed flash. In USENIX File and Storage Tech-
nologies (FAST) (2016).

[26] LU, Y., SHU, J., AND WANG, W. Reconfs: A reconstructable
file system on flash storage. In USENIX File and Storage Tech-
nologies (FAST) (2014).

[27] MASON, C. Compilebench. https://oss.oracle.com/ ma-
son/compilebench.

[28] MATTHEWS, J. N., ROSELLI, D., COSTELLO, A. M., WANG,
R. Y., AND ANDERSON, T. E. Improving the performance of
log-structured file systems with adaptive methods. In ACM Sym-
posium on Operating Systems Principles (SOSP) (1997).

[29] MAZUREK, M. L., THERESKA, E., GUNAWARDENA, D.,
HARPER, R. H., AND SCOTT, J. Zzfs: a hybrid device and cloud
file system for spontaneous users. In USENIX File and Storage
Technologies (FAST) (2012).

[30] MCDOUGALL, R., AND MAURO, J. Filebench.
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf,
2005.

[31] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J., AND FABRY,
R. S. A fast file system for unix. ACM Transactions on Computer
Systems (TOCS) (1984).

[32] MESNIER, M. P., WACHS, M., SIMBASIVAN, R. R., LOPEZ, J.,
HENDRICKS, J., GANGER, G. R., AND O’HALLARON, D. R.
//trace: Parallel trace replay with approximate causal events. In
USENIX File and Storage Technologies (FAST) (2007).

[33] MEYER, D. T., AND BOLOSKY, W. J. A study of practical dedu-
plication. ACM Transactions on Storage (TOS) (2012).

[34] MIN, C., KIM, K., CHO, H., LEE, S.-W., AND EOM, Y. I. Sfs:
random write considered harmful in solid state drives. In USENIX
File and Storage Technologies (FAST) (2012).

[35] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOL-
SKY, D., AND ZELENKA, J. Informed prefetching and caching.
In ACM Symposium on Operating Systems Principles (SOSP)
(1995).

[36] PETROVIC, S. The effects of age on file system performance.
Master’s thesis, Masaryk University, 5 2017.

[37] POLTE, M., SIMSA, J., AND GIBSON, G. Enabling enterprise
solid state disks performance. Workshop on Integrating Solid-
state Memory into the Storage Hierarchy (2009).

[38] RITCHIE, O., AND THOMPSON, K. The unix time-sharing sys-
tem. The Bell System Technical Journal (1978).

[39] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The linux b-tree
filesystem. ACM Transactions on Storage (TOS) (2013).

702 2018 USENIX Annual Technical Conference USENIX Association

[40] ROSELLI, D. S., LORCH, J. R., ANDERSON, T. E., ET AL. A
comparison of file system workloads. In USENIX Annual Tech-
nical Conference (ATC) (2000).

[41] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Transac-
tions on Computer Systems (TOCS) (1992).

[42] SELTZER, M., SMITH, K. A., BALAKRISHNAN, H., CHANG,
J., MCMAINS, S., AND PADMANABHAN, V. File system log-
ging versus clustering: A performance comparison. In USENIX
Technical Conference Proceedings (TCON) (1995).

[43] SMITH, K., AND SELTZER, M. I. File layout and file system
performance. Tech. Rep. TR-35-94, Harvard University (1994).

[44] SMITH, K. A., AND SELTZER, M. I. File system aging increas-
ing the relevance of file system benchmarks. In ACM SIGMET-
RICS Performance Evaluation Review (1997).

[45] THOMPSON, D. A., AND BEST, J. S. The future of magnetic
data storage techology. IBM Journal of Research and Develop-
ment (2000).

[46] UNGUREANU, C., ATKIN, B., ARANYA, A., GOKHALE, S.,
RAGO, S., CALKOWSKI, G., DUBNICKI, C., AND BOHRA, A.
Hydrafs: A high-throughput file system for the hydrastor content-
addressable storage system. In USENIX File and Storage Tech-
nologies (FAST) (2010).

[47] VRABLE, M., SAVAGE, S., AND VOELKER, G. M. Bluesky: a
cloud-backed file system for the enterprise. In USENIX File and
Storage Technologies (FAST) (2012).

[48] WANG, J., AND HU, Y. Wolf-a novel reordering write buffer to
boost the performance of log-structured file systems. In USENIX
File and Storage Technologies (FAST) (2002).

[49] WANG, Y. A statistical study for file system meta data on high
performance computing sites. Master’s thesis, Southeast Univer-
sity, 2012.

[50] WEISS, Z., HARTER, T., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Root: Replaying multithreaded traces
with resource-oriented ordering. In ACM Symposium on Operat-
ing Systems Principles (SOSP) (2013).

[51] WELCH, B., UNANGST, M., ABBASI, Z., GIBSON, G. A.,
MUELLER, B., SMALL, J., ZELENKA, J., AND ZHOU, B. Scal-
able performance of the panasas parallel file system. In USENIX
File and Storage Technologies (FAST) (2008).

[52] XU, J., AND SWANSON, S. Nova: a log-structured file system
for hybrid volatile/non-volatile main memories. In USENIX File
and Storage Technologies (FAST) (2016).

[53] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P., AKSHINTALA,
A., CHANDNANI, K., DEO, P., KASHEFF, Z., WALSH, L.,
BENDER, M., ET AL. Optimizing every operation in a write-
optimized file system. In USENIX File and Storage Technologies
(FAST) (2016).

[54] ZHANG, S., CATANESE, H., AND WANG, A. A.-I. The
composite-file file system: decoupling the one-to-one mapping
of files and metadata for better performance. In USENIX File and
Storage Technologies (FAST) (2016).

[55] ZHANG, Z., AND GHOSE, K. yfs: A journaling file system
design for handling large data sets with reduced seeking. In
USENIX File and Storage Technologies (FAST) (2003), vol. 3,
p. 2nd.

[56] ZHU, B., LI, K., AND PATTERSON, R. H. Avoiding the disk bot-
tleneck in the data domain deduplication file system. In USENIX
File and Storage Technologies (FAST) (2008).

[57] ZHU, N., CHEN, J., CHIUEH, T.-C., AND ELLARD, D. Tbbt:
scalable and accurate trace replay for file server evaluation. In
ACM SIGMETRICS Performance Evaluation Review (2005).

USENIX Association 2018 USENIX Annual Technical Conference 703

