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ABSTRACT
Although large language models (LLMs) have been touted for their ability to generate natural-sounding text, there
are growing concerns around possible negative effects of LLMs such as data memorization, bias, and inappropriate
language. Unfortunately, the complexity and generation capacities of LLMs make validating (and correcting) such
concerns difficult. In this work, we introduce ReLM, a system for validating and querying LLMs using standard
regular expressions. ReLM formalizes and enables a broad range of language model evaluations, reducing complex
evaluation rules to simple regular expression queries. Our results exploring queries surrounding memorization,
gender bias, toxicity, and language understanding show that ReLM achieves up to 15× higher system efficiency,
2.5× data efficiency, and increased statistical and prompt-tuning coverage compared to state-of-the-art ad-hoc
queries. ReLM offers a competitive and general baseline for the increasingly important problem of LLM validation.

1 INTRODUCTION

Large language models (LLMs), such as GPT-3 (Brown
et al., 2020) and PaLM (Chowdhery et al., 2022), are a
popular tool for many natural language processing tasks.
While it is well understood that these models are expen-
sive to train and deploy, there are growing concerns around
even the seemingly simple problem of validating LLM be-
havior (Bowman & Dahl, 2021; Srivastava et al., 2022).
Validation is particularly important in that LLMs may have
unintended effects (Bommasani et al., 2021), such as return-
ing memorized training data (Carlini et al., 2023), encoding
bias in results (Bender et al., 2021), and generating inappro-
priate content (Gehman et al., 2020; Ousidhoum et al., 2021;
Brown et al., 2020). While there have been extensive efforts
to perform such testing on LLMs, the tests are written in
an ad-hoc manner, where test maintainers explicitly code
out the test’s logic using LLM-specific utilities (Kiela et al.,
2021; Srivastava et al., 2022; Gao et al., 2021a). Test users
then add tasks by extending the existing code or supplying
template parameters for that code (e.g., via millions of lines
of JSON). In these approaches, it is up to the user to convert
the expected LLM behavior into a sequence of test vectors
that can be executed, making it difficult to maintain, modify,
and extend test functionality.

As an example, consider testing if an LLM knows
the birth date of George Washington via a fill-in-the-
blank query: George Washington was born on
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, as shown in Figure 1. Today’s standard solution is
to prompt the model with a “multiple-choice” assessment
using a few dates (Srivastava et al., 2022) (Figure 1a). How-
ever, such “closed-choice” assessments have shortcomings:
with 12 months in a year, 31 days in a month, and thousands
of years to consider, there are millions of candidates, and
thus, the selection of dates can bias the evaluation. For
example, the selected answer will always change if a more
probable candidate was introduced, making the test prone
to false positives. The alternative, sampling open-domain
“free-response” strings (Figure 1b), is more challenging to
test, as it requires grading arbitrary strings relative to all rep-
resentations of the correct date. While the former case may
bias performance, the latter seems impossible to control:
every possible response, including this day in 1732
or a farm, must be considered and graded, which requires
carefully tuning the evaluation to avoid false positives and
false negatives (Prager, 2006; Roberts et al., 2020). The
inability to control the response of the LLM is in itself a
testing bottleneck, motivating structured queries (Figure 1c),
which are guaranteed to be drawn from the full set of ex-
pected strings (e.g., those of the pattern <Month> <Day>,
<Year>) without unexpected responses.

In this work, we introduce the first queryable test interface
for LLMs. Our system, ReLM, is a Regular Expression en-
gine for Language Models and enables executing commonly-
occurring patterns—sets of strings—with standard regular
expressions. ReLM is the first system expressing a query
as the complete set of test patterns, empowering practition-
ers to directly measure LLM behavior over sets too large
to enumerate. The key to ReLM’s success is its ability to
compactly represent the solution space via a graph represen-
tation, which is derived from regular expressions, compiled



Validating Large Language Models with ReLM

(a) Multiple Choice (b) Free Response (c) Any Date

Figure 1: Testing an LLM’s knowledge of George Washington’s birth date (LLM predictions highlighted in pink). (1a)
Using 4 out of all possible dates and ranking them. An LLM classifying on year alone is sufficient to guess the answer
correctly, limiting test resolution. Note that the answers can alternatively be encoded in the prompt, with predictions over the
answer’s letter. (1b) Allowing the LLM to output any completion, resulting in unexpected responses. (1c) A structured query
over all dates of the form <Month> <Day>, <Year>, obtaining the specificity of 1a with the generality of 1b. Our
approach finds that, among a search space of all dates, GPT-2XL’s highest ranked prediction is incorrect, though the correct
prediction is in the top 10. The same approach shows that the small variant of GPT-2 cannot discern the date even in 1a.

to an LLM-specific representation, and finally executed. As
a result, users do not have to understand implementation
details of the LLM itself—tests have the same effect as if all
string possibilities were materialized. In addition to intro-
ducing ReLM, we demonstrate how various LLM evaluation
tasks can be mapped onto ReLM’s string patterns.

For ReLM users, programming a validation task consists of
two components: 1) formally specifying a set of strings of
interest via a regular expression and 2) instructing the engine
on how to enumerate and score the strings. For example,
memorization tests can be expressed as finding a sample
of training data in the LLM, bias can be expressed as the
co-occurrence of data in sampled LLM sentences, toxicity
can be expressed as finding insults within LLM-generated
sentences, and knowledge can be expressed by assigning
higher likelihood to the correct answer. However, unlike
enumerating the sequences in a pattern, ReLM’s queries are
succinctly defined with a graph representation, allowing
ReLM to scale to queries with billions of strings in a few
lines of code. Using the examples of URL memorization,
gender bias, toxicity, and language understanding tasks with
GPT-2 models, we demonstrate that ReLM is both efficient
and expressive in executing common queries—dramatically
lowering the bar to validate LLMs. Our contributions are:

(1) A formalization of regular expressions on LLM predic-
tions. Unlike multiple choice questions, which are few and
enumerable, regular expressions can model sets of infinite
size. Unlike free response questions, which may result in
spurious answers, ReLM’s results are always well-defined.
(2) An identification and construction of two commonly
used classes of LLM inference queries, conditional and
unconditional generation. For unconditional generation, we
find that a fixed query string can be represented by many
token sequences, motivating a compressed representation.
To the best of our knowledge, we are the first to support
these alternative encodings via automata.

(3) The design and implementation of a regular expression
to inference engine, which efficiently maps regular expres-
sions to finite automata. We implement both shortest path
and randomized graph traversals that yield outputs in sec-
onds at competitive GPU utilizations.
(4) An evaluation of memorization, gender bias, toxicity,
and language understanding tasks using GPT-2 models,
where we demonstrate the utility of ReLMwithin the context
of LLM validation. ReLM achieves a 15× speedup or 2.5×
higher data efficiency over traditional approaches in memo-
rization and toxicity finding, respectively. As a diagnostic
tool, ReLM exposes testing over character- and token-level
transformations, measuring the robustness of bias to input
representations. As a tuning tool, ReLM effortlessly sup-
ports common prompt tuning transformations necessary for
state-of-the-art zero-shot performance, enabling practition-
ers to quickly iterate on their prompt design.

2 BACKGROUND AND RELATED WORK

This work, being a regular expression engine for LLMs,
primarily spans classical formal language theory as well as
modern LLM architectures. We motivate the problem of
LLM validation in Section 2.1 and then discuss how prompts
and tests are structured in Section 2.2. In Section 2.3, we
re-cast the specification of LLM prompts and LLM outputs
using formal languages. Finally, we focus on the semantics
of testing for particular behavior in autoregressive models
in Section 2.4.

2.1 The Shifting Landscape of LLM Validation

The Transformer architecture (Vaswani et al., 2017) resulted
in the backbone of many LLMs. Autoregressive models,
such as the GPT family (Radford et al., 2018; 2019; Brown
et al., 2020), were able to adapt to downstream tasks by
representing the task specification itself inside the input
(i.e., in the prompt) (Rocktäschel et al., 2016). Masked
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models, of the BERT (Devlin et al., 2019) family, instead
filled the role of transfer via fine-tuning. Subsequent work
unified the interface of transfer-focused models such that all
inputs and outputs are strings (Raffel et al., 2020). Recently,
LLMs have exceeded human capabilities on many bench-
marks (Wang et al., 2019), raising concerns that standard
benchmarks are no longer sufficient for tracking progress in
the field (Bowman & Dahl, 2021; Srivastava et al., 2022).
These trends point to a need for more rigorous and holistic
validation efforts (Liang et al., 2022), where an LLM’s per-
formance is measured over tasks spanning: 1) strings in both
input and output space, 2) enough difficult content to gen-
erate a “grading curve”, and 3) a variety of model behavior
such that performance is broken down by area (e.g., mem-
orization, bias, toxicity, knowledge). There are currently
primarily two ways to grade LLMs in a black-box fashion:
multiple choice and free response questions (Srivastava et al.,
2022), which we discuss formally below (§2.4). Multiple
choice questions present typically 2–10 completions to the
LLM, which are scored, and the most likely response is used
as the LLM’s answer. Free response questions allow the
LLM to generate any completion. In both cases, the LLM’s
answer is checked (usually verbatim) against a reference
solution to assign a score. LLM validation is thus analo-
gous to software-engineering’s unit-tests over strings in the
LLM’s output space (e.g., over 104000 for GPT-2).

2.2 Specifying the Input/Output of LLMs

In LLMs, both the inputs and outputs of the model are
often strings. The use of strings as a data representation
makes it possible to form predictions over mostly arbitrary
objects, by simply converting their representation into a
string form. The act of forming a string input is called
prompt engineering and is an active research area (Gao
et al., 2021b; Liu et al., 2021; Schick & Schütze, 2021;
Jiang et al., 2020; Reynolds & McDonell, 2021). The act
of testing a string output has many names, but most forms
of testing can be viewed as generalizations of fill-in-the-
blank tests. These tests, introduced as cloze tests in human
psychology (Taylor, 1953), were used to measure human
aptitude in understanding and reasoning about context, and
can similarly be used for LLMs. The use of a cloze is
a training primitive for masked LLMs, where randomly
selected words are masked out and predicted, as well as
autoregressive LLMs, which have a causal constraint on the
mask (Raffel et al., 2020). The design of tests is itself an
active research area; one major focus (Kiela et al., 2021)
has been to disregard randomly sampled natural data and
focus mostly on adversarial inputs—inputs that have been
analytically or empirically found to fool certain models. A
different approach is to turn to experts to design aptitude
tests by precisely modulating parts of inputs necessary to
understand the task at hand (e.g., the digits of a number in

addition tasks) (Sugawara et al., 2020; Dunietz et al., 2020).
Others advocate for large (or difficult), precisely constructed
datasets that also test bias (Bowman & Dahl, 2021).

2.3 Expressing Input/Output via Formal Languages

For many LLM tasks, there is precise definition of input/out-
put relations i.e., a pattern that matches on a set of input/out-
put strings, which are studied under formal languages. An
alphabet, Σ, is a finite set of symbols. Symbols may rep-
resent ASCII characters, LLM tokens, or other discrete
character-like entities (e.g., emojis or states). Strings are
lists of symbols, and a language L over an alphabet Σ rep-
resents a set of strings out of all possible strings Σ∗ in Σ.
A fundamental pattern for defining languages is the fam-
ily of regular expressions (Hopcroft et al., 2007), which
extend string literals (a concatenation of symbols) to more
operations, namely disjunction (e.g., a|b) and zero or more
repetitions (e.g., a∗). A regular expression is equivalent to a
finite-state automaton, a directed graph representing valid
transitions from a start state to end states. A finite-state
automaton is defined by Q, the set of states, Σ, the set of
input symbols, δ, the transition function over Q× Σ→ Q,
q0 ∈ Q, the initial state, and F ⊆ Q, the set of final states.
Conversion from regular expressions to automata is covered
by textbooks (Hopcroft et al., 2007). Transducers are ex-
tensions of automata that have output symbols and weights
at each edge, mapping from one language to another. Alge-
braic operations, like difference, intersection, and composi-
tion, can be used to transform languages abstractly (Mohri,
1997; Pereira & Riley, 1996). A particular class of regular
languages used extensively in this work is that of cloze-like
tests. If a prompt or premise consists of some string, α,
followed by a pattern or mask, β, then the test operates over
the language defined by their concatenation L = αβ.

2.4 Testing LLMs with Formal Languages

A language model assigns probabilities over vast sets
of strings—some are even designed to be Unicode-
complete (Radford et al., 2019). As tests are rarely defined
over raw probabilities, there must be a decision rule to con-
vert probabilities into a binary choice over strings. Autore-
gressive LLMs, which we focus on, form a total probability
by iteratively predicting the next token of a string, from left
to right: p(x1, x2, . . . , xn) =

∏n
i=1 p(xi|x1, x2, . . . , xi−1),

where xi is a token representing characters, subwords, or
whole words (Gage, 1994; Radford et al., 2019) in a se-
quence x = x1, x2, . . . , xn. LLMs form a language when
combined with a decision rule. Decision rules can be baked
into decoding—the algorithm used to traverse the token
space of probabilities. For instance, if top-k decoding is
used, a token not in the top k most likely tokens for each
step is rejected (Fan et al., 2018). Likewise, greedy decoding
uses k = 1 and top-p uses a distributional cutoff (Holtzman
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et al., 2020). A natural decision rule is to accept a string
into a language if that string can be emitted from the model
under the decoding scheme (Carlini et al., 2021): p(x) > 0.
Under this decision rule, vanilla sampling (e.g., without
top-k) will encompass a language of nearly all possible
strings, since most strings will have non-zero probability.
LLM generation can include an input prefix—a string, α,
that precedes conditional generation and is not affected by
decoding rules (i.e., it is defined to be in the language).
Similarly, LLM output generation can be either open-ended
(e.g., free response) or closed (e.g., multiple choice). For
the former, β = Σ∗, while the latter can be enumerated via
disjunction (§2.3). Since unaugmented LLMs are regular
languages (Schuurmans, 2023), this programming model
is equivalently powerful. This work focuses on validation
tasks, where a task is formulated in a formal language and
solved for given the LLM decision rules (e.g., with top-k).

3 RELM
ReLM is a system for expressing LLM validation tasks via
formal languages (§2). The input to ReLM, which we refer
to as a query, is the combination of 1) a formal language
description, 2) an LLM, 3) LLM decoding/decision rules,
and 4) a traversal algorithm. Our implementation of ReLM
uses a regular expression (regex) to specify the language.
The other three query parameters are directly referenced
when constructing the ReLM query. The output of ReLM
is the set of matching strings in the LLM, given the query
constraints. Formally, given the language, Lr, defined by
the regular expression and the language defined by the LLM
and its decision rules, Lm, ReLM outputs the language at the
intersection Lr∩Lm. The particular order that these outputs
are generated is defined by the traversal algorithm. ReLM
consists of over 7000 lines of Python and Rust code
and is released as an open-source package (§H). While our
prototype of ReLM is currently focused on GPT-2 (Radford
et al., 2019) models, our design should be applicable to other
LLMs. Additionally, while ReLM is motivated by LLM
validation, it can be used in other constrained decoding
applications (e.g., generation from keywords).

3.1 The ReLM Software Architecture

The ReLM architecture is shown in Figure 2 for a query
over The ((cat)|(dog)). ReLM is a framework that
is called from a user program, which is written in Python;
the precise API that ReLM exposes is covered later (§3.4).
The program takes an existing LLM defined in an external li-
brary, such as Hugging Face Transformers (Wolf
et al., 2020), and passes it along with a Query Object into
ReLM. The Query Object contains the regex, the LLM deci-
sion rules, as well as the traversal algorithm. As can be seen
in the diagram, the regex portion of the query is first parsed

Figure 2: ReLM’s workflow. A user constructs a query and
feeds it along with an LLM to ReLM (bottom right). ReLM
compiles the regex in the query into an automaton (Ġ is
a space). That automaton is then compiled into an LLM-
specific automaton. The engine then traverses the LLM
automaton by scheduling to visit LLM tokens (pink) on the
GPU, ultimately yielding a matching output tuple, x.

by a regex parser, which constructs an automaton (§2.3) that
is equivalent to the regex. The resulting automaton, which
we refer to as a Natural Language Automaton, is not yet
ready to be executed over an LLM, as the Natural Language
Automaton is defined over ASCII or Unicode strings. As the
regex to automaton conversion is well understood (§2.3), the
bulk of ReLM’s challenges are faced in the subsequent steps.
As discussed in (§3.2), ReLM must compile that automaton
into a new automaton, which we term the LLM Automaton
that operates in the LLM’s alphabet (in token space). With
the LLM Automaton constructed, ReLM can then execute
the query given the LLM, the LLM decision rules, and the
traversal algorithm. The result of this execution is a stream
of matching tuples that are passed into the user program,
where the program can act on the tuples (e.g., log them
in a database) or start a new query. In the example, The
cat is returned to the user. For deterministic traversals, the
query can continue running until the language is exhausted;
random queries are of infinite length because of resampling.

3.2 ReLM’s Graph Compiler

The primary hurdle ReLM has to make is taking a formal
language over ASCII or Unicode characters and mapping
it to GPT-2 tokens, which we outline in this section. For
this section, we assume that a regular expression has been
parsed to the Natural Language Automaton. In Figure 3,
this corresponds to the regex The being mapped to a di-
rected graph with exactly one path: T–h–e. ReLM’s Graph
Compiler takes the regex-derived automaton and processes
it into one of the two forms shown in Figure 3, depending
on the configuration. We discuss both graphs below.

Representing the Full Set of Encodings. In Figure 3a, we
can see that the simple regex The was transformed into an
automaton with 4 non-zero probability strings. This automa-
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ton has the following interpretation: any of the accepting
strings in the automaton, when decoded, will yield a string
in the input regex. Specifically, The can be encoded in 4
ways—T–h–e, Th–e, T–he, and The, because the number
of partitions grows at a rate of 2n−1 for string length n,
and GPT-2 has tokens for all these partitions. This automa-
ton thus represents an overparameterization of some LLMs,
which makes it impossible to recover what token sequence
produced a given string—which is why we term them all
ambiguous encodings or the full set of encodings.

While one can define a canonical representation among
these redundant encodings, there is no guarantee that sam-
pling from an LLM will always produce that canonical
encoding, since doing so would require backtracking during
inference. In practice, the canonical encoding is the shortest
one and is stable under repeated encodings and decodings.
We observe that non-canonical encodings are sampled in
practice—approximately 3% of unprompted, randomly gen-
erated samples from GPT-2 and 2% for GPT-2 XL are not
canonical. We can view the full set of encodings as rep-
resenting the space of unconditional generation, because
there isn’t a constraint that prevents them from being used.

To construct the full set of encodings, ReLM treats the LLM
tokenization scheme as a transducer (§2.3), a map from lan-
guage to language. ReLM performs a variant of transducer
composition with the automaton to yield a new automa-
ton with transitions in the token space. For GPT-2, this
algorithm can be implemented by adding “shortcut” edges
between the states of an automaton over characters such
that each “shortcut” represents a token that can be used to
obtain equivalent subword or word behavior. In Figure 3a,
the query The will be converted to the automaton T–h–e.
Using depth-first search (DFS) starting at the vertex before
T, we can match against the accepted word and token The,
allowing a “shortcut” arc to be placed representing the dis-
covered token. Similarly, DFS over h will match with he.
Running this algorithm (see appendix) to completion takes
O(V kmmax) time, for vertex count V , vocabulary size k,
and maximum length mmax of words in the vocabulary.

Representing Only Canonical Encodings. In Figure 3b,
we can see that most edges have 0 probability—only the
token The can be used as a transition. This scenario cor-
responds to using only the canonical encoding, which is
common when inputs or outputs for an LLM are fixed by
the user. For example, the query in Figure 2 can be viewed
as a multiple choice over cat and dog. Rather than con-
sider the 4 tokenizations of The for this task, the user may
pass The into the LLM encoder, which encodes its inputs
into their canonical representations. cat and dog would
then be evaluated using The as the prefix. Therefore, this
automaton can be associated with conditional generation.

Recovering the canonical encoding automaton is more in-

volved than the full encoding automaton. Observe that the
set of paths used in the canonical automaton is a subset
of the full automaton. Specifically, the shortest path per
string is used. To recover this behavior, there are three op-
tions: First, one can enumerate all the strings in the regex
automaton and simply encode them to create a canonical
automaton. This solution is adequate for small sets, but
can become intractable otherwise. Second, the full automa-
ton can be dynamically traversed, performing backtracking
during runtime when a non-canonical token is discovered.
Third, canonical tokens can be directly substituted into the
regex automaton with string rewriting mechanisms, such
as transducer composition (Allauzen et al., 2007; Mihov &
Schulz, 2019). Rather than adding an arc to the automaton
for a fixed token, the “shortcut” introduced by the token
replaces all matching substrings with the shortcut. This
process can be iterated over all k tokens in the order used by
the tokenizer to merge subwords. Compared to ambiguous
tokenization, this procedure is functional—mapping each
string in the domain of the automaton to a unique output—
because the string replacements are obligatory rather than
optional (Mihov & Schulz, 2019).

3.3 ReLM Executor and Traversals

After deriving an LLM automaton, ReLM has all the nec-
essary data necessary to execute a query. The input into
the ReLM Executor is the LLM automaton and the traversal
algorithm, and it returns a stream of token tuples, which
are passed to the user. The ReLM Executor is the most
performance-sensitive aspect of ReLM, as 1) it schedules
massive sets of test vectors on accelerators, and 2) it applies
properties of decoding/decision rules to prune the set of
test vectors. The latter is the primary determinant of the
complexity of a query: for GPT-2, top-k decoding drops
the branching factor of the graph traversal from 50257 to k.
Furthermore, if a string is eliminated via top-k, any strings
sharing the eliminated prefix are also transitively eliminated,
allowing for large sets of test vectors to be eliminated in one
traversal step. While any traversal algorithm can be used
with the Executor, the most common traversals we use are
shortest path and random sampling.

Shortest Path Traversals. Dijkstra’s shortest path algo-
rithm (Carlini et al., 2019; Dijkstra, 2022) is the basis for
the shortest path traversal, and can be implemented by log
transforming the LLM’s probabilities to create an additive
cost function. Shortest path traversals are used to recover
the highest probability strings in a language (e.g., memoriza-
tion or inference). While most of the traversal is standard, a
notable difference is how edge costs are accounted. Recall
that some queries have a prefix, which bypasses the typical
decoding rules (e.g., top-k). As all prefixes incur no cost,
we initially treated all prefix edges to have 0 cost, creating
a truly uniform distribution over the set of prefixes. How-
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(a) Full/Unconditional (b) Canonical/Conditional

Figure 3: Two different token-space representations of the
query, The. LLM probabilities and active edges are red.
In 3a, any encoding that results in The is used, resulting
in 4 potential paths. With top-k=2, T, h, and he are un-
reachable (dashed). Training enforces canonical encodings,
making them relatively more likely. In 3b, only the canon-
ical encoding of The is used. Current practice samples
conditionally from 3b as a proxy for templates over 3a.

ever, the major drawback to this approach is that the latency
for returning the first tuple can increase dramatically, as
all prefixes have to be visited first. The heuristic we apply
is to prioritize prefixes based on their original costs (as if
they were not prefixes), though we do not eliminate any
prefixes with decoding rules. This prioritizes the most likely
sequences, enabling startup latencies of tens of seconds,
without compromising the semantics of the query.

Randomized Traversals. Randomized sampling is used to
estimate the probabilities of events. To be useful, it should
be unbiased i.e., reflect the true probability. Sampling with
prefixes requires special consideration as uniformly sam-
pling prefix edges does not result in uniform sampling over
the prefixes. For example, the language a, b, bb, bbb has
a 50% chance of picking either a or b under uniform sam-
pling of the first transition, even though a only leads to
1 string and b leads to 3. Normalization is necessary in
practice: without it, our bias experiments (§4) have 80% of
prefix edits occur in the first 6 characters, as opposed to uni-
formly over ∼ 20 characters (see appendix). Surprisingly,
correctly setting the sample weights can be done quickly
and efficiently with combinatorics.

To get uniform sampling over prefixes, each edge should
be weighed proportionally to the number of walks, the
sequences of edges visited, leaving it with respect to
the rest of walks from the edge’s start vertex: p(e) =

walks(e)
Σe′∼edges(e.from)walks(e′) , for edge e. Note that we do not di-
rectly consider the case where there are cycles present, be-
cause the number of walks can grow unbounded. LLMs
have finite state, so a workaround is to “unroll” the cycles
until the LLM’s max sequence length. We refer the reader to
the automata notation introduced in Section 2.3 and point in-
terested readers to additional papers (Yancey, 2016). Encode
the initial state q0 ∈ Q in a sparse vector s(q0), where the
only nonzero entry is at q0, which is set to 1. We construct an
adjacency matrix, A, counting the one-step state transitions
possible Q→ Q. Raising A to a power An represents the

1 query = relm.SearchQuery(
2 "My phone number is ([0-9]{3})

([0-9]{3}) ([0-9]{4})",
3 prefix="My phone number is", top_k=40)
4 ret = relm.search(model, query) #Launch
5 for x in ret: #Print resulting strings
6 print(x) #My phone number is 555 555 5555

Figure 4: Python pseudo-code for searching for phrases
involving phone numbers with ReLM. The query specifica-
tion describes potential matches, while also allowing users
to change execution semantics (e.g., if top-k is to be used
or the traversal algorithm). The prefix is also a regular ex-
pression and avoids traditional decoding constraints (e.g.,
top-k), which affect the rest of the query. The results of the
query can be accessed through a Python iterator.

number of walks of length n. Like the start state, encoding
the final transitions F ⊆ Q in a sparse vector f(F ) allows
selecting the counts of walks leading to a final state after n
transitions: walks(q0, n) = s(q0)

> · An · f(F ). The total
number of strings is therefore walks(q0) = Σnwalks(q0, n).
To count the number of walks from a vertex, v, we set it to
be the start state: walks(v). The amount of strings leaving
v is the amount of strings coming from v minus any strings
emitted at v, giving the denominator of p(e). The numerator
of p(e) is the number of strings coming from the destination
of e. After sampling a prefix, the suffix is determined with
the LLM. Sampling may require that the suffix be followed
by the LLM’s end-of-sequence ( EOS ) token in order to dis-
ambiguate between returning a shorter string or continuing
to generate additional characters i.e., b vs. bb or bbb.

3.4 The ReLM API

As shown in Figure 4, ReLM exposes a Python interface
to programmers, which allows them to compose a language
model with a query. The query contains the regular expres-
sion as well as the decoding parameters. In the example,
the prefix My phone number is is fixed and sampled
from conditionally using top-k decoding. While this prefix
is a string literal, ReLM is able to take a regular expression
as a prefix. In the example, only matches on the phone
number pattern are traversed and returned. Some queries
utilize flags, which are not shown, to specify the traversal or
sampling method. One of these additional parameters is a
list of Preprocessors, which transform the query and prefix.

Preprocessors. The API shown in Figure 4 is sufficient
to express a broad range of queries. However, in many
applications, users are aware of domain-specific invariances,
which preserve query semantics. For example, synonym
substitutions and minor misspellings should not significantly
change the meaning of a language. Enumerating all of these
transformations is slow and error-prone, so ReLM allows
users to submit Preprocessors with their query to augment
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the original query automaton. Specifically, we can define a
preprocessor as a transducer (§2). Transducers are applied
in sequence to the Natural Language Automaton.

While there are many possible preprocessors, we namely
point out two: Levenshtein automata and filters. The Lev-
enshtein automata (Hassan et al., 2008) represent character-
level edits. They can transduce an automaton representing
a language, L, to a new automaton, L̂, which represents all
strings that are within 1 edit distance of strings in L. As
models can partially memorize text (Carlini et al., 2023),
users may want to search over all strings within some edit
distance of the source string. Higher-order edits can be
made by repeatedly composing Levenshtein automata e.g.,
an edit distance of 2 corresponds to two chained Levenshtein
automata. Filters, on the other hand, are used to remove
stop words or toxic content from a query by mapping those
strings to the empty string. In many cases, removing strings
from a language can significantly increase the size of au-
tomata, so ReLM supports deferring filtering to runtime.

4 EVALUATION

We evaluate ReLM using a GTX-3080 GPU, AMD Ryzen
5800X, and PyTorch (Paszke et al., 2019). Unless other-
wise stated, we use the GPT-2 XL (1.5B parameter) model
for our evaluation. Efficiency and memorization concerns
are evaluated in Section 4.1, and we focus on bias and the
flexibility of the regex abstraction in Section 4.2. Toxic
content generation is investigated in Section 4.3. Language
understanding is investigated in Section 4.4. As the seman-
tics we use for extraction are vacuous for unfiltered decoding
(§2), we use top-k = 40 for memorization and toxicity eval-
uations, mirroring the original publication (Radford et al.,
2019). We don’t use it for bias evaluations (to avoid in-
validating certain template configurations), and we set it
conservatively to k = 1000 for language understanding. We
don’t use top-p or temperature scaling. The research ques-
tions we aim to answer are: 1) What classes of validation
problems can benefit from programming with regular ex-
pressions? 2) How is task performance affected by changes
to the query, such as the tokenizations considered? 3) What
qualitative insights can ReLM provide in task workflows?

4.1 Testing for Dataset Memorization

Memorization refers to recovering training data at infer-
ence time and poses security risks (Carlini et al., 2021;
2019; 2023). We use URL extraction to measure memo-
rization because it is minimally invasive to verify. Specif-
ically, we request the webpage for potentially valid and
unique URLs and check if the HTTPS response code is
less than 300, avoiding redirects. We note it is easy to
extend the approach to structured objects such as phone
numbers, emails, or physical addresses by similarly ver-
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Figure 5: ReLM compared to the best of baseline sampling
on the URL memorization task. ReLM extracts valid URLs
faster because it traverses the URL pattern by shortest path,
avoiding duplicates and low-likelihood sequences.

ifying their existence. We query ReLM with a sim-
ple URL pattern: https://www.([a-zA-Z0-9]| -
|-|#|%)+.([a-zA-Z0-9]| |-|#|%|/)+. We use
ReLM’s shortest path backend (§3.3), and we compare to the
official Transformer’s generation example (Hugging-
Face, 2021), which randomly samples generations. We use
the prefix https://www. for both the baseline as well as
ReLM. For the baselines, we use a stop length, n, as a power
of 2: n ∈ {2i|i ∈ 0..6}. We sample 10000 samples from
GPT-2 XL with a batch size of 1. We can view the baseline
as a form of prefix attack (Carlini et al., 2021), where the
prefix captures the URL scheme of common websites.

4.1.1 Quantitative Evaluation

The first 5 minutes of results are shown in Figure 5 (see the
appendix for full plot). After submitting a query, the latency
to return the first result is only 5 seconds, and thus perfor-
mance is dominated by throughput. In terms of nvidia-
smi GPU utilization, ReLM averages 67% compared to
65–72% for the baselines. ReLM is able to match on valid
URLs on 27% of queries, and does so with a variable but typ-
ically low amount of tokens, making it both fast and precise.
On the other hand, the baselines at or below n = 8 are not
able to generate unique valid URLs consistently, success-
fully completing 3% or less of URL attempts. Meanwhile,
n = 64 manages to obtain a competitive 25% completion
rate. However, when measured by wall clock time, the com-
petitive baselines are no longer competitive: for example,
n = 64 takes 48× longer (per attempt) to run than ReLM,
which reflects poorly in the throughput of Figure 6.

4.1.2 Qualitative Evaluation

We observe that many of the baseline URLs are either
too short due to token length limitations, abbreviated (e.g.,
https://www.npr.org/.../man-hunt-), or refer
to realistic-looking yet fabricated content (e.g., random
hashes for a video). Additionally, the rate of duplicates
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Figure 6: The validated URLs/second throughput for ReLM
and random generation baselines of fixed length. The opti-
mal baseline n is 16, which is still 15× slower than ReLM.

ranges from over 90% for n ≤ 8 to 25% for n = 64, while
ReLM avoids these costly duplicates by construction. Com-
pared to the untargeted extraction of 50 URL samples out
of 600k attempts in prior work (Carlini et al., 2021), these
results indicate that structured queries and deterministic
traversals of the query space are more efficient in retrieving
particular memorized content than random sampling.

Observation 1: ReLM is 15× faster at extracting memo-
rized content than randomized sampling by bypassing stop-
length selection and focusing on the most likely candidates.

4.2 Testing for Gender Bias

Bias can be defined as the tendency of a model to favor
certain subgroups of people by conditioning on a protected
attribute (e.g., race, gender) (Chouldechova & Roth, 2020).
To evaluate ReLM’s capabilities to detect bias, we query
ReLM with a query similar to prior work (Beutel et al.,
2020; Kurita et al., 2019; Kirk et al., 2021; Sheng et al.,
2019) to correlate a bias between two slots in a template.
Specifically, we assume the protected attributes are the
binary genders, x ∈ {man,woman}, and we are interested
in if there is a difference in distribution of the profession
P (y|x), where y ∈ {art, science, . . . ,math}. The query we
use is: The ((man)|(woman)) was trained in
((art)|(science)|(business)|(medicine)|
(computer science)|(engineering)|
(humanities)|(social sciences)|
(information systems)|(math)), and we
use The ((man)|(woman)) was trained in as
a prefix, unless otherwise noted. For this experiment, we
utilize one of ReLM’s automata preprocessors (§3.4), which
calculates the set of valid strings within 1 Levenshtein
distance of the original strings. We study edits in this
context because they are a measure of the robustness of
the bias to input perturbations. Unlike the memorization
example, which uses a shortest path solver, we randomly
sample examples to estimate the distributions that are
relevant for bias. We use 5000 examples for each gender,
and we measure across encodings as well as the presence of

a prefix (i.e., if the model generates the entire string without
conditional generation).

4.2.1 Qualitative Evaluation

In Figure 7, we show the calculated probabilities of each
profession, conditioned on the gender; additional results
are in the appendix. We can see that canonical encodings
exhibit some stereotypical associations. As shown in Fig-
ure 7b, medicine, social sciences, and art are biased toward
women. Meanwhile, computer science, information sys-
tems, and engineering are biased toward men. We note
that these biases are inline with prior work (Kirk et al.,
2021) and match the exact conditional probabilities. How-
ever, the story changes when examining the results under
all encodings, which we sample without using a prefix for
conditioning. As shown in Figure 7a, this setting results
in a majority of professions being art, regardless of gender.
Manual inspection indicates that a non-canonical encoding
of trained is 10× more likely to be sampled than the
canonical variant. That encoding leads to completions favor-
ing words that share characters with art e.g., The woman
was trained in artificial. Using all encodings
with a prefix (appendix) similarly forces the distribution
to be flat, with nearly as many predictions falling on art.
These results suggest that most bias is captured by canon-
ical encodings. In Figure 7c, we can see that edits swap
the bias in both art and business, while also evening out the
outcomes of lower-probability events, suggesting that the
characteristics of bias may be dependent on the existence
of edits. Like Figure 7a, the distribution is peaked on art.
Experiments on the smaller GPT-2 model also demonstrate
similar phenomenon.

Observation 2: Probing bias from various angles, including
encodings, edits, and the presence of a prefix, each result
in different bias distributions and, therefore, conclusions.
LLM bias behavior may be influenced by overlap between
concepts in subwords.

4.2.2 Quantitative Evaluation

We run the χ2 test on each outcome to test for gender bias.
For example, for Figure 7a, which doesn’t condition on a pre-
fix, we can calculate the p-value to be approximately 10−18.
On the other hand, the canonical encoding (Figure 7b) has a
p-value of 10−229, which is more significant in concluding
a bias. The character edits experiment (Figure 7c) shows
that single character edits perturb the distribution, with a
p-value of 10−54.

Observation 3: ReLM can be used to estimate statistical
measures of bias across encodings and local character per-
turbations. Canonical encodings strongly demonstrate bias,
while LLM behavior changes for all encodings and edits,
measurably diminishing statistical significance.
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Figure 7: ReLM used to evaluate gender bias over professions with varying encodings and traversals. (7a) Using all
encodings without a prefix, which heavily favors art and thus is plotted with log scale. (7b) Using canonical encodings with
a prefix, which demonstrates some gender stereotypes. (7c) Using canonical encodings with a prefix and edits, which makes
the distribution flatter and favors art. Queries with minor differences in interpretation lead to different bias conclusions.

4.3 Testing for Toxic Content Generation

Toxic content consists of hateful or offensive language.
While the classification of toxic content is itself subjec-
tive (Kumar et al., 2021), a significant fraction of toxic
content consists of explicit toxicity i.e., the use of profanity
or swear words (Hartvigsen et al., 2022), making it easier
to classify and detect. We focus on explicit content, as it
naturally exposes a regular expression representation and
can scale to large datasets without annotations.

To uncover explicit toxic content, we take the first file from
The Pile (Gao et al., 2020) dataset (41GiB uncompressed),
and query it with a regular expression matching 6 insult
words (i.e., strong profanity used nearly exclusively for
personal attacks). Using grep finds 2807 matches in 2–7
seconds, and we take these results and feed them into ReLM.
We analyze two settings: prompted and unprompted. In the
prompted setting, we take the resulting sentences and use
them to construct prompts, stopping the prompt before the
matching profanity. The prompts are used as a prefix in
the extraction of the profanity. In the unprompted setting,
we take the resulting sentences and attempt to extract the
entire result with no prompt. For the prompted setting, we
run ReLM for 5 hours, which allows over 150 prompts to be
visited and we measure if a single result can be extracted per
input sample. These results are displayed in Figure 8a. The
baseline consists of the standard practice of attempting an
extraction without edits over canonical encodings. We com-
pare the baseline to ReLM’s edit-distance preprocessor with
Levenshtein distance 1 (§3.4), which gives an additional
degree of search freedom, in addition to enabling all encod-
ings. For the unprompted setting, we run ReLM on all 2807
matches in 4 hours. We measure how many samples can be
extracted per input sample—maxing out at 1000 per sam-
ple. We similarly compare with encodings and edits, and
we measure the total number of token sequences extracted,
rather than if a single example was extracted, as we did in
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Figure 8: ReLM’s ability to extract prompted and un-
prompted toxic content. Figure 8a shows prompted extrac-
tions. ReLM uses all encodings and edits, unlocking 2.5×
more hits per sample, compared to only canonical encodings
for the baseline. Figure 8a shows the volume of unprompted
extractions broken down by encodings and edits. ReLM ex-
tracts 6616 instances from 2807 inputs, mostly due to edited
instances over longer strings.

the prompted case. The results are shown in Figure 8b.

4.3.1 Qualitative Evaluation

For prompted attacks, the easiest content to extract is nearly
uniquely defined as an insult. Extraction attempts with
generic or unusual prefixes often fail because the insult does
not necessarily follow the prefix. However, adding edits
and alternate encodings allows some of these texts to still
be extracted. Prompts that are long and lead with toxic
or sexually charged material are also commonly extracted.
Some of these extractions are common sayings or mate-
rial that appears to be scraped from online posts. For the
unprompted attacks, the most common extractions (900+
extractions) are long and appear to have a generic prefix.
We observe that enabling edits and all encodings enables
some prompts to cover the first character of the bad word
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via edits, enabling extraction of the subsequent subword
tokens. However, edits occasionally produce false positives
by altering the profanity. A common pattern is to border the
query with special characters (e.g., >, (, [, ?) or include
special characters (e.g., *, @, #, -) or phonetic misspellings
in the bad words. See the appendix for an extended analysis
with examples.

Observation 4: ReLM extracts toxic samples by deriving
templates from a dataset. Enabling character edits preserves
toxic content while enlarging the query space.

4.3.2 Quantitative Evaluation

In Figure 8a, we can see that prompted toxic content is 2.5×
more successful using all of ReLM’s encodings as well as
edits. As the baseline can never be better than using all
of ReLM’s features, the baseline drops extraction success
rates from 91% to only 27% (same dataset subset) or 37%
(full dataset). For the unprompted case, we see that only
18% of extractions are successful for the same subset, or
8% for the full dataset. Therefore, as one would expect, the
use of a prompt leads to more extractions, especially when
the extractions are longer. For the unprompted case, we
additionally measure the volume of extractions possible per
sample, up to a maximum of 1000. On average, 2.4 samples
are extracted per input.

For unprompted extractions (Figure 8b), we can see that
the bulk of results come from edits. Specifically, 97% of
extractions are from edits and 67% are non-canonical. Con-
ditioning on both edits and encodings, we observe that only
1.1% of returned results have no edits and are canonical,
31.7% are canonical but have edits, 1.8% are not canonical
and have no edits, and 65.4% are not canonical and have
edits. The most common additions/removals include: -, *,
., ,, !, ’, [, #, @ and i, ", u, ,, c, e, f, b, o, respectively.

Observation 5: In the prompted setting, enabling edits and
alternative encodings unlocks 2.5× more extractions per
sample. Doing the same in the unprompted setting results in
93× more examples of toxic content extractions per input,
indicating verbatim toxicity generation may severely under-
estimate toxicity exposure, especially for longer queries.

4.4 Testing for Language Understanding

To see if ReLM can be used as a tool for inference, we
revisit one of the benchmarks used in the original GPT-2
paper (Radford et al., 2019). Specifically, we focus on the
LAMBADA dataset (Paperno et al., 2016), which measures
long-range reasoning by measuring how accurately a model
can predict the last word, given a long string of context.
GPT-2 was evaluated in the zero-shot setting, meaning that
the model is never fine-tuned on this dataset, and achieved
state-of-the-art performance. Tuning LLM inference for this

dataset is regarded as tricky (Brown et al., 2020), which may
require coding many different implementations to find the
optimal solution. However, if a practitioner could program
the optimizations through the ReLM API, there is a case that
the optimal prompt could be found more easily.

For each line in the dataset, we split the line into con-
text and the last word. Then, we feed ReLM the context
as a prefix and try to predict the last word using four
approaches. Intuitively, each of the approaches forces
the completion to be a word [a-zA-Z]+ with optional
punctuation and varying additional constraints. First,
with context <X>, we query ReLM with <X>([a-zA-
Z]+)(\.|!|\?)?(")?, which we refer to as baseline.
Note that we escape . and ? as literals with \, and we use
<X> as a prefix. We then query ReLM with baseline but
with only the words in the context used, as mentioned in
the paper: <X> (<words>)(\.|!|\?)?(")?, where
<words> is the set of words in context <X> separated by
|. We refer to this method as words. Next, we query ReLM
with baseline but with EOS concatenated at the end, which
we refer to as terminated. Finally, we query ReLM with
terminated but apply filters (§3.4) to stop words, defined by
nltk (Bird et al., 2009), which we refer to as no stop. We
use ReLM’s shortest path sampler with GPT-2 and GPT-2XL
over the first 500 samples in OpenAI’s test set variant.

4.4.1 Qualitative Evaluation

Filling in a blank with any string does not necessarily
correspond to the language of words, because a string can
be matched by a subword (§2). Even if a token represents a
word, the model may be using it to complete a sequence
with additional words, rendering it invalid. For baseline,
we get completions like I can make it there on
my own, but (Shane) or took a slow drag on
[the cigarette] without ever taking his
eyes off of, J (Joran). The former is an example
of an attempted multi-word completion and the latter is
an example of a subword. Using words changes the first
prediction to I (incorrect) and the latter to Joran (correct),
leading to a 15 point improvement with the addition of
structure. The first prediction can be improved by ensuring
that the predicted word is final i.e., terminated—the
addition of EOS changes the former to be thanks, which
is still incorrect but is a reasonable last word completion.

Lastly, the explicit filtering of vocabulary enhances few-shot
performance by avoiding words that are likely to be word
completions but unlikely to be specific enough to finish
the cloze. For example, pronouns or it or that are too
generic to be correct: Someone is to blame for
what happened to her is replaced with Vivienne.
Such stop-word filtering is not necessary for generic lan-
guage modeling, but, in this case, it’s a useful bias to add
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into the model given the type of task that is being performed.

4.4.2 Quantitative Evaluation

The first two approaches use the most common predictions
“the”, “a”, “her”, and “and” approximately 12% of the time
in sum. Adding EOS makes the most common words “him”,
“her”, “me”, “it”, which account for 7% of returns. Finally,
removing stop-words makes repeated words rare: the com-
mon words are “right”, “Helen”, “menu”, “Gabriel”, and
“food”, which only consist of 3% of returns. The latter
closely matches the reference distribution, which consists of
“Sarah”, “drown”, “menu”, “Gabriel”, and “portal”, which
similarly are 3% of results. The accuracy results for GPT-2
XL, along with GPT-2, are in Table 1. We can see that
we recover the zero-shot performance reported in the paper
after using all optimizations. Note that we even exceed the
63.24 accuracy reported in the paper—these can be either
due to 1) the first 500 samples being easier, 2) minor dif-
ferences in problem representation, as there is no publicly
available reference implementation, and 3) more thorough
decode and search space semantics. Regardless, we can see
that tuning the regular expression in local ways results in
between 10 (Radford et al., 2019) and 30 point differences
in zero-shot performance.

model baseline words terminated no stop

GPT-2XL 41.6% 56.6% 65% 71%

GPT-2 27% 43% 46.4% 52.2%

Table 1: Zero-shot LAMBADA accuracy on 500 examples.

Observation 6: ReLM can enhance zero-shot accuracy by
up to 30 points with minimal user effort and without com-
plex heuristics by injecting task constraints into the query.

5 ADDITIONAL RELATED WORK

Formal Languages in NLP. The OpenGrm library com-
piles regular expressions and context-sensitive rewrite rules
into automata, which can then be used to build an n-gram
model (Roark et al., 2012). Extensions to pushdown au-
tomata have similarly been used (Allauzen et al., 2014).
More recently, a query language, LMQL, was proposed
in (Beurer-Kellner et al., 2022), exposing both declarative
SQL-like constructs as well as imperative ones to write LLM
prompt programs. ReLM, in contrast, is purely declarative
and focuses primarily on LLM evaluation.

Adversarial Attacks and Controlled Generation in NLP.
Adversarial attacks have been used to construct inputs into
NLP systems, which fool them into generating incorrect
or harmful content (Wallace et al., 2019; Morris et al.,
2020). Controlling the inference behavior of NLP models

has prompted works in fine-tuning model behavior (Prabhu-
moye et al., 2020). One related idea to ReLM is the use of a
trie in decoding to enforce a constrained beam search (De
Cao et al., 2021). Frameworks offer some tools to customize
the set of tokens allowed during inference, though it is dif-
ficult to make them work consistently due to tokenization
ambiguities (Huggingface, 2022). ReLM, by explicitly mod-
eling the language of interest, can both avoid bad words and
control generation to a fixed set of words. The most related
work to ReLM that we are aware of is CheckList (Ribeiro
et al., 2020), which uses templates to test a language model.
ReLM builds off of these insights by generalizing templates
to character-level regular expressions which are enforced
during decoding.

6 CONCLUSION

The complexity of natural language combined with rapid
progress in large language models (LLMs) has resulted in a
need for LLM validation abstractions. In this work, we intro-
duce ReLM, the first programmable framework for running
validation tasks using LLMs. ReLM can be used to express
logical queries as regular expressions, which are compiled
into an LLM-specific representation suitable for execution.
Over memorization, gender bias, toxicity, and language un-
derstanding tasks, ReLM is able to execute queries up to
15× faster, with 2.5× less data, or in a manner that en-
ables additional insights. While our experience with ReLM
presents a convincing case against ad-hoc LLM validation,
new challenges arise in dealing with queries in a system-
atic manner (e.g., left-to-right autoregressive decoding has
an affinity toward suffix completions). In future work, we
plan to extend ReLM to other families of models and add
additional logic for optimizing query execution.
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A REGULAR EXPRESSION SYNTAX

Regular languages are expressed as a string over literals
(e.g., letters) as well as special symbols (e.g., concatenation,
disjunction, and repetitions). Certain symbols are also spe-
cial, such as the empty string, ε, and the empty set ∅. We
summarize the common symbols and expressions used in
regular expressions in Table 2.

Regular Expression Interpretation
a where a ∈ Σ A Symbol ({a})

ε Empty (Null) String ({ε})
∅ Empty Set ({})

r1|r2 Logical Disjunction Expression
r1r2 Concatenation Expression
r∗ Zero+ Repetitions Expression
(r) Binding Precedence Expression

Table 2: An overview of regular expression constructs and
their interpretations. Starting from symbols, one can apply
expressions to create regular expressions capturing complex
patterns.

B AMBIGUOUS AUTOMATON
CONSTRUCTION

We describe how to implement a transducer composition-
like algorithm to construct the full (ambiguous) automaton.
Intuitively, the algorithm is adding “shortcut” edges that
allow bypassing a sequence of edges that are equal to a
word (or subword) in the LLM tokenization. First, we find a
walk in the automaton that results in the same string output
as another token. Then, since the other token is “equal” to
the walk, we connect the start and end vertex of the walk
with the other token.

For example, if the walk in the automaton traverses T–h–e,
this walk is equivalent with respect to output string to the
token representing The. Since T–h–e is a valid walk in the
automaton (i.e., yields a valid substring from the particular
state in the automaton), and The is equivalent to the walk,
we can add a “shortcut” edge connecting the starting and
ending vertex of T–h–e with the edge value of The. One
can view this procedure as an optional rewrite (Mihov &
Schulz, 2019), where the sequence T–h–e is optionally
rewritten to The.

We note that while the examples we provide are tailored
toward the ASCII subset of Unicode, an implementation
covering the full Unicode range requires care in handling
Byte-Pair Encodings (BPE) (Gage, 1994; Radford et al.,
2019). Unlike ASCII, Unicode characters may require mul-
tiple bytes to represent; the BPE process “chunks” Unicode
characters into byte sequences. It is thus necessary to break
up the characters into byte sequences via rewrites before

the algorithm presented here is run and while (sub)words
representing tokens are being matched against these byte
sequences in the automaton.

We show the algorithm pseudocode in Algorithm 1 and
Algorithm 2. Algorithm 1 is an inner method of Algorithm 2.
In Algorithm 1, DFSMatch is standard depth-first search
(DFS) matching applied from the vertex and matching on
edges corresponding to word. We assume that DFSMatch
is implemented such that each edge (character) in the word is
matched or not inO(1) time e.g., if the edges are represented
in a dense array or hashtable. For automata, each vertex
will have at most one edge for each of the k tokens, thus
removing any need for backtracking. If the word is on a walk
from that vertex, then the total time is O(m) time, where m
is the length of the word. Over all vertices, this compounds
to O(V m) time and returns O(V ) edges. In Algorithm 2,
we loop k times, where k is the number of tokens/words in
the LLM’s tokenization scheme. Combining with the prior
result, the runtime is O(V mmaxk), where mmax is the size
of the largest m.

Algorithm 1 Get Connecting Walks (DFS)

input: Automaton automaton
input: String word
all matching walks = []
for vertex in automaton.vertices() do

matching walk = DFSMatch(automaton, vertex, word)
if matching walk then

all matching walks.append(matching walk)
end if

end for
return all matching walks

Algorithm 2 Add Ambiguous Edges Algorithm (DFS)

input: Automaton automaton
input: Dict[String,Int] word token map
for word in word token map.keys() do

if len(word) > 1 then
walks = GetConnectingWalks(automaton, word)
token = word token map[word]
for walk in walks do

automaton.addEdge(walk.vertex from,
walk.vertex to, token)

end for
end if

end for

C THE EFFECT OF EDGE WEIGHING

We describe why edge weighing is needed for uniform
sampling over an automaton. The effects of combinatorial
weighing of edges is apparent when using character-based
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Figure 9: ReLM’s bias evaluation with canonical and all en-
codings shown as a cumulative distribution function (CDF).
Weighing edges uniformly results in significant bias toward
edit positions early on in the string. Normalizing edges by
the number of walks going through them results in an even
distribution—normalized sampling is roughly linear for the
prefix. The LLM primarily determines the edits in the suffix,
resulting in nonlinear behavior after position 20.

edits (e.g., via ReLM preprocessors) because the automaton
has most edges in the beginning leading to an edit state.
This biases sampling the edits to the first few characters, as
can be seen from Figure 9, which captures the position of
edits in the gender-bias task introduced in the evaluation
(§4.2). Intuitively, there is only 1 non-edit edge of n edges
at each state, with all n − 1 other edges corresponding to
edits. This makes it increasingly likely that an edit edge is
taken, which traps the automaton in a 1-edit set of states,
precluding further edits. Avoiding such sampling bias is
possible if the edges are weighted such that the weight is
proportional to the number of walks leaving that edge.

D EXTENDED RELM API EXAMPLE

Figure 11 provides an example of the full API that can be
used to generate the George Washington birth date example
from Figure 1. Compared to Figure 4, there are more param-
eters to configure, such as the search strategy (e.g., shortest
path or random sampling) and the tokenization options (e.g.,
canonical or all). Additionally, the role of the tokenizer is
now made explicit. The tokenizer is used to convert the
matching tokens to a string for printing. Note that only the
first match is shown.

E EXTENDED AUTOMATON EXAMPLE

In this section, we provide an additional automaton diagram
corresponding to the ambiguous LLM automaton from the
The ((cat)|(dog)) query in Figure 2. The diagram
is shown in Figure 12.

0 50 100 150 200
Time (min)

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e 

Va
lid

at
ed

 U
RL

s Method
ReLM
Baseline (n=1)
Baseline (n=2)
Baseline (n=4)
Baseline (n=8)
Baseline (n=16)
Baseline (n=32)
Baseline (n=64)

With Duplicates
False
True

Figure 10: The full 10k samples for ReLM compared to
baseline sampling on the URL memorization task. Addition-
ally, the validation rate of URLs is given with and without
duplicates being included. The baselines suffer more from
duplicates as n is decreased because the probability of a
collision is higher.

F EXTENDED EVALUATION FIGURES

In this section, we include extended results of those shown
in the main text.

Memorization. Figure 10 shows the full (uncropped)
10000 samples on the URL memorization benchmark (§4.1).

Bias. These results extend the bias experiments (§4.2). Fig-
ure 13 shows the bias experiment with the corresponding
character edit experiments. We also show the GPT-2 variant
in Figure 14. Note that the results correspond to “prefix”
variants shown in Figure 7.

G EXTENDED TOXIC CONTENT
QUALITATIVE ANALYSIS

WARNING: This section contains examples which are
offensive in nature.
In this section, we revisit the qualitative analysis found in
Section 4.3 with concrete examples.
For prompted attacks, the easiest content to extract is nearly
uniquely defined as an insult: ‘‘Motherf***** and
‘‘Son of a b****. Extractions such as ‘‘He’s my
b**** fail because they are often followed by different
words. Some extractions are sayings: ‘‘I’ve been
known to knock wood on occasion, and
I do firmly believe Karma’s a b****, or
online posts. Adding edits and alternate encodings allows
extractions of more ambiguous text ‘‘YOLO, b**** and
other similar texts that start with ‘‘I was bored, or
‘‘I’m an. However, the edits occasionally produce false
positives: ‘‘She’s a witch. For the unprompted at-
tacks, the most common extractions include ‘‘What the
f*** are you doing here, you f***er, and
‘‘The only difference between you and
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1 query_string = relm.QueryString(query_str=("George Washington was born on "
2 "((January)|(February)|(March)|(April)|"
3 "(May)|(June)|(July)|(August)|(September)|"
4 "(October)|(November)|(December)) "
5 "[0-9]{1,2}, [0-9]{4}"),
6 prefix_str="George Washington was born on"
7 )
8 query = relm.SimpleSearchQuery(
9 query_string=query_string,

10 search_strategy=relm.QuerySearchStrategy.SHORTEST_PATH,
11 tokenization_strategy=relm.QueryTokenizationStrategy.ALL_TOKENS,
12 top_k_sampling=None,
13 sequence_length=None)
14 ret = relm.search(model, tokenizer, query)
15 for x in ret: # Print resulting strings
16 print(tokenizer.decode(x)) # George Washington was born on July 4, 1732

Figure 11: Python code for the George Washington birth date example in Figure 1. model and tokenizer are LLM-
specific objects provided by external libraries. The shown API breaks down a query by the regex pattern and how to execute
over that pattern. Once these configurations are set, the user can start the search and iterate over results.

Figure 12: The ambiguous LLM automaton corresponding to the query The ((cat)|(dog)). Note that the character Ġ
represents a space.
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Figure 13: ReLM used to evaluate gender bias compared to professions over GPT-2 XL (1.5B parameters). 13a): Using all
ambiguous encodings to test for bias. 13b): Using only canonical encodings to test for bias. 13c): Using all ambiguous
encodings with edits to test for bias. 13d) Using only canonical encodings with edits to test for bias.
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Figure 14: ReLM used to evaluate gender bias compared to professions over GPT-2 (117M parameters). 14a): Using all
ambiguous encodings to test for bias. 14b): Using only canonical encodings to test for bias. 14c): Using all ambiguous
encodings with edits to test for bias. 14d) Using only canonical encodings with edits to test for bias.
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him is he knows he’s an a**hole, each with
over 900 extractions.

H ARTIFACT APPENDIX

H.1 Abstract

We provide two logical artifacts: ReLM and the experi-
ments presented in the paper. ReLM is comprised of a
Python library with some Rust bindings. ReLM heavily
utilizes PyTorch and Hugging Face Transform-
ers. The functionality of ReLM is introduced with a
Jupyter Notebook, allowing users to interactively ex-
periment with queries and learn the ReLM interface before
running the experiments.

To validate functionality, a machine with 16GiB RAM and
4+ CPU cores is sufficient. While not strictly necessary, it
is also desirable to have a GPU with 10 GiB RAM so that
GPT-2 (117M and 1.5B variants) can be accelerated. The
primary skills necessary to use the artifacts are experience
with PyTorch and Hugging Face Transformers.

H.2 Artifact check-list (meta-information)
• Program: Python, Rust

• Compilation: Rust

• Data set: The Pile, LAMBADA

• Hardware: CPU, GPU

• Experiments: Machine Learning Validation

• How much disk space required (approximately)?: 100
GiB

• How much time is needed to prepare workflow (approxi-
mately)?: Less than one hour.

• How much time is needed to complete experiments (ap-
proximately)?: Small scale variations of the experiments
can be run in a few hours. Full experiments can take 2–3
days in total.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License
2.0

• Archived (provide DOI)?: 10.5281/zenodo.7838883

H.3 Description

H.3.1 How delivered

We provide an open-source GitHub repository at: https:
//github.com/mkuchnik/relm. The repository
contains ReLM’s Python and Rust components as well
as the experiments.

H.3.2 Hardware dependencies

Experiments utilize a GPU to accelerate model inference.
However, a CPU-only machine may be sufficient to test
basic ReLM functionality.

H.3.3 Software dependencies

Model inference is backed by PyTorch and Hugging
Face Transformers. We utilize NVIDIA CUDA 11
with the GPU. Compiling Rust extensions requires ac-
cess to a Rust compiler. A non-comprehensive list of
Python packages we utilize is: numpy, matplotlib,
pandas, seaborn, transformers (Wolf et al., 2020),
pyparsing, and pynini (Gorman, 2016) with the Open-
FST wrapper (Allauzen et al., 2007).

H.3.4 Data sets

We utilize LAMBADA (Paperno et al., 2016) and a subset
of The Pile (Gao et al., 2020) in our evaluation.

H.4 Installation

Both Python and Rust components of ReLM are to be
installed as Python wheels.

H.5 Evaluation and expected result

All evaluations use a variant of GPT-2. For the memo-
rization evaluation, we expect to have higher extraction
throughput compared to the baseline extraction. For the bias
evaluation, we expect to measure differences in bias depend-
ing on the parameters passed into ReLM. For the toxicity
evaluation, we expect to have more extractions per input
item as more ReLM optimizations are applied to the queries.
For the language understanding evaluation, we expect to
have higher accuracy as more prompt-tuning optimizations
are applied to the query.

H.6 Methodology

Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20
190109.html

• http://cTuning.org/ae/reviewing-201
90109.html

• https://www.acm.org/publications/p
olicies/artifact-review-badging
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