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Abstract

When training machine learning models using stochastic gradient descent (SGD) with a
large number of nodes or massive edge devices, the communication cost of synchronizing
gradients at every iteration is a key bottleneck that limits the scalability of the system and
hinders the benefit of parallel computation. Local-update SGD algorithms, where worker
nodes perform local iterations of SGD and periodically synchronize their local models, can
effectively reduce the communication frequency and save the communication delay. In
this paper, we propose a powerful framework, named Cooperative SGD, that subsumes a
variety of local-update SGD algorithms (such as local SGD, elastic averaging SGD, and
decentralized parallel SGD) and provides a unified convergence analysis. Notably, special
cases of the unified convergence analysis provided by the cooperative SGD framework
yield 1) the first convergence analysis of elastic averaging SGD for general non-convex
objectives, and 2) improvements upon previous analyses of local SGD and decentralized
parallel SGD. Moreover, we design new algorithms such as elastic averaging SGD with
overlapped computation and communication, and decentralized periodic averaging which
are shown to be 4x or more faster than the baseline in reaching the same training loss.

Keywords: Communication-efficient training, distributed SGD with local updates, dis-
tributed optimization, federated learning, convergence analysis

1. Introduction

Stochastic gradient descent (SGD) is the backbone of most state-of-the-art machine learning
algorithms. Due to its widespread applicability, speeding-up SGD is arguably the single most
impactful and transformative problem in machine learning. Classical SGD was designed to
be run on a single computing node, and its error-convergence has been extensively analyzed
and improved in optimization and learning theory (Dekel et al., 2012; Ghadimi and Lan,
2013). However, due to the massive training datasets and deep neural network architectures
used today, running SGD at a single node can be prohibitively slow. This calls for distributed
implementations of SGD, where gradient computation and aggregation is parallelized across
multiple worker nodes.
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Limitations of Synchronous/Asynchronous Distributed SGD. A commonly used
method to parallelize gradient computation and process more training data per iteration is
the parameter server framework (Dean et al., 2012; Li et al., 2014; Cui et al., 2014). Each of
the m worker nodes computes the gradients of one mini-batch of data, and a parameter server
aggregates these gradients and updates the model parameters. Synchronization delays in
waiting for slow workers can be alleviated via asynchronous gradient aggregation (Recht et al.,
2011; Cui et al., 2014; Gupta et al., 2016; Mitliagkas et al., 2016; Dutta et al., 2018). However,
by design, parameter server framework requires gradients to be communicated between the
parameter server and workers after every iteration. Thus, it suffers from communication
delays which are especially dominant in modern on-device training on resource-constrained
computing nodes.

Local-Update Distributed SGD. To address the limitations of (a)synchronous dis-
tributed SGD, a promising idea is to allow workers to perform τ local updates to the model
instead of just computing gradients, and then periodically averaging the local models. It can
directly give τ -fold reduction in the communication delay per iteration, since communication
only happens once every τ iterations. Local-update SGD is also attractive as far as the
data locality and privacy is concerned, since users’ private data is processed locally and only
the trained model is communicated over the network. This covers the emerging topic of
federated learning (McMahan et al., 2016; Konečnỳ et al., 2016; Mohri et al., 2019), where
training tasks are performed on consumer devices (or IoT infrastructures) and only a random
subset of local models are selected to communicate instead of all workers.

We refer existing local-update SGD methods that perform periodic averaging of local
models as periodic simple averaging SGD (PSASGD) in the rest of the paper1. Extensive
empirical results have validated the effectiveness of PSASGD (Moritz et al., 2015; Zhang
et al., 2016; Povey et al., 2014; Su and Chen, 2015; Chaudhari et al., 2017; Smith et al., 2018;
Lin et al., 2018) in reducing communication delays while maintaining similar accuracy levels.
Typically, more local updates allows higher system throughput but incurs slightly higher
error at convergence. Only a few recent works (Zhou and Cong, 2017; Yu et al., 2018; Stich,
2018) give a rigorous theoretical understanding of how the convergence of PSASGD depends
on the number of local updates (or the communication period). These current theoretical
results rely on assumptions, such as uniformly bounded gradient norm and strong convexity.
We remove these assumptions and develop a more general analysis framework.

Elastic Averaging. Instead of simple averaging at each communication round, elastic-
averaging SGD (EASGD) proposed in (Zhang et al., 2015) adds a proximal term to the
objective function in order to allow some slack between the models – an idea that is drawn
from the Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011; Parikh
and Boyd, 2014). Although the efficiency of EASGD and its asynchronous and periodic
averaging variants has been empirically validated (Zhang et al., 2015; Chaudhari et al.,
2017), its convergence analysis under non-convex objectives remains an open problem. The
original paper (Zhang et al., 2015) only gives an analysis of EASGD with 1 local update
and for quadratic objective functions. A similar idea like EASGD also appears in recent

1. Other names for PSASGD in previous literature (Stich, 2018; Yu et al., 2018) include ‘local SGD’ or
‘parallel restarted SGD’
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work (Hanzely and Richtárik, 2020), which focuses on personalized federated learning and
strongly-convex settings.

Decentralized Averaging. Another approach to average local models is to perform
gossip-type averaging in a sparse-connected network topology (a ring for instance), known as
decentralized parallel SGD (D-PSGD). Each node only needs to average with its neighbors’
models, thus reducing the communication complexity significantly (Blot et al., 2016; Jin
et al., 2016; Lian et al., 2017a). D-PSGD has a rich history in the distributed and consensus
optimization community (Tsitsiklis et al., 1986; Nedic and Ozdaglar, 2009; Duchi et al., 2012;
Nedić et al., 2018). Recently, D-PSGD was successfully applied to non-convex functions
in (Zeng and Yin, 2016; Jiang et al., 2017; Lian et al., 2017a). However, their convergence
analyses do not allow workers to make more than one local updates. Analyzing decentralized
averaging with multiple local updates before each consensus round is a non-trivial extension
of vanilla decentralized SGD.

Main Contributions. A common thread in all the above communication-efficient SGD
methods is that they allow worker nodes to perform local model-updates and limit the synchro-
nization/consensus between the local models. In this paper, we propose a powerful framework
named cooperative SGD that enables us to obtain a unified analysis and comparison of
local-update distributed SGD algorithms with various model-averaging methods including
periodic simple averaging, elastic averaging and decentralized averaging. This framework
encompasses both temporal communication-reduction (by allowing multiple local updates at
nodes and reducing communication frequency) and spatial communication-reduction (by
allowing decentralized inter-node communication via a sparse network topology). More
specifically, the main contributions of this paper are as follows:

(i) We provide a unified convergence analysis for the cooperative SGD class of algorithms
(i.e., distributed SGD algorithms with local updates). By varying the number of local
updates and the model averaging protocol, the analysis can directly apply to existing
algorithms. In the cases of PSASGD and D-PSGD, our analysis yields tighter and
stronger convergence guarantee compared to previous results.

(ii) To the best of our knowledge, the unified analysis gives the first convergence guarantee
for EASGD with non-convex objective functions. The analysis also provides new in-
sights such as the best hyper-parameter choice, which can yield the lowest optimization
error bound.

(iii) Moreover, we find that the elastic-averaging protocol can help to overlap communication
and computation in distributed SGD and further improve the communication efficiency.
Empirical results show that the improved version of EASGD can achieve the same
training loss using 2× less wall-clock time than its original counterpart.

(iv) The general framework greatly enlarges the design space of local-update SGD algo-
rithms. We present several promising new communication-efficient variants, such as
periodic decentralized averaging SGD and hierarchical averaging SGD. All of these
new algorithms can be subsumed by the cooperative SGD framework and be analyzed
under the same umbrella.
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Relation to Gradient Quantization and Sparsification methods. In the context
of communication-efficient SGD algorithms, many previous works focus on reducing the
communication message size using sparsification (where only important components are
transmitted), see (Wangni et al., 2017; Lin et al., 2017; Jiang and Agrawal, 2018; Stich
et al., 2018) or quantization techniques (where only quantized gradients are transmitted),
see (Wen et al., 2017; Wang et al., 2018; Bernstein et al., 2018; Alistarh et al., 2017; Sattler
et al., 2018). These compression methods reduce the amount of information exchange while
local-update SGD methods reduce the frequency. When the network latency (e.g., time to
establish handshakes) is high and the communication is not bandwidth-limited, local-update
SGD methods will be more effective in reducing the total communication time; when the
opposite is true, the compression methods will be more effective. In general, these two kinds
of methods are orthogonal and can be combined together.

2. Preliminaries and Related Work

Notation. We use 1 to denote [1, 1, . . . , 1]> and define matrix J = 11>/(1>1). Unless
otherwise stated, 1 is a size m column vector, and the matrix J and identity matrix I are of
size m×m , where m is the number of workers. Let ‖·‖, ‖·‖

F
and ‖·‖

op
denote the `2 vector

norm, Frobenius matrix norm and operator norm, respectively.

Problem Formulation. Suppose the model parameters are denoted by x ∈ Rd and the
local training data distribution at the i-th worker node is denoted by Si. Then, the problem
of interest is to minimize the empirical risk as follows:

min
x∈Rd

F (x) = min
x∈Rd

1

m

m∑
i=1

Es∼Si [fi(x; s)]︸ ︷︷ ︸
Fi(x)

(1)

where m is the number of worker nodes, fi(·) is the loss function defined by the learning
model and Fi(x) denotes the local objective function at the i-th worker. The classic solution
to solve (1) is parallel mini-batch SGD, where workers compute stochastic gradients of the
local objectives in parallel and use the averaged gradient to update model parameters. The
update rule is written as

xk+1 = xk − η
[

1

m

m∑
i=1

gi(xk; ξ
(i)
k )

]
(2)

where η is the learning rate, ξ
(i)
k ∼ Si are randomly sampled mini-batches from the local

data distribution, and gi(x; ξ) = 1
|ξ|
∑

s∈ξ∇fi(x; s) denotes the stochastic gradient. For

simplicity, we will use gi(x) instead of gi(x; ξ) in the rest of the paper. From the update
rule (2), one can observe that the model parameters at workers are always synchronized
and exactly the same. Therefore, we refer to this method as fully synchronous SGD, the
convergence analysis of which has been well presented in (Dekel et al., 2012; Bottou et al.,
2018).

Periodic Simple-Averaging SGD (PSASGD). In this algorithm, workers are allowed
to perform local updates so as to reduce the total communication round significantly. Locally
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Table 1: Largest allowable communication period in PSASGD algorithm (larger means
tighter bounds) in order to achieve a convergence rate of 1/

√
Km (or 1/Km in the strongly

convex case), where K denotes the total iterations and m is the number of worker nodes.
IID represents for the case where local objective functions (Fi’s) are identical. (Cvx stands
for Convex; Grad. B means the stochastic gradient is uniformly bounded by a constant.)

Papers IID case Non-IID case Extra Asm. Avg. Methods

(Stich, 2018) K1/2m−1/2 K1/2m−1/2 Cvx.; Grad. B Simple Avg.

(Jiang and Agrawal, 2018) K1/2m−5/2 K1/4m−5/4 - Simple Avg.

(Yu et al., 2018) K1/4m−3/4 K1/4m−3/4 Grad. B Simple Avg.

Ours K1/2m−3/2 K1/4m−3/4 - General

trained models are averaged after every τ iterations. Its update rule can be written as

x
(i)
k+1 =

{
1
m

∑m
j=1

[
x

(j)
k − ηgi(x

(j)
k )
]
, kmod τ = 0

x
(i)
k − ηgi(x

(i)
k ), otherwise

(3)

where x
(i)
k denotes the model parameters in the i-th worker and τ is defined as the commu-

nication period (i.e., the number of local updates). A simple illustration of the update rule
is presented in Figure 1a.

The idea of periodic averaging can be at least traced back to the work of McDonald
et al. (2010), but the convergence analysis only appears in very recent works. Stich
(2018) studies the convergence of PSASGD under strongly convex objective functions. Yu
et al. (2018) provides a convergence guarantee for non-convex objectives by assuming the
stochastic gradients at workers are uniformly bounded. Jiang and Agrawal (2018) removes
this assumption and analyzes PSASGD as a special case of gradient sparsification. Our
unified analysis can yield tighter optimization error bound than the above mentioned works.
Furthermore, it is not limited to simple-averaging but can be applied to other model averaging
protocols. A comparison of the convergence results of PSASGD is presented in Table 1.
Other follow-up works that further improve the convergence rate of PSASGD, e.g., assuming
convex functions (Woodworth et al., 2020b), sharing a subset of data (Haddadpour et al.,
2019), using momentum acceleration (Yu et al., 2019; Wang et al., 2020b), using cross-client
variance-reduction (Karimireddy et al., 2019; Liang et al., 2019), analyzing under various
non-IID distributed data assumptions (Haddadpour and Mahdavi, 2019; Khaled et al., 2020)
etc. are beyond the scope of this paper.

It is also worth noting that PSASGD is related to and can be considered as a key
component of federated learning (FL) algorithms (McMahan et al., 2016). While both of
them allow multiple local updates at workers (or clients), FL algorithms typically have
additional mechanisms to address system or privacy concerns and improve the performance,
such as randomly sampling workers (Li et al., 2020), using separate client and server learning
rates (Karimireddy et al., 2019; Woodworth et al., 2020a; Wang et al., 2020b), etc. By
combining with the techniques in these literature, our framework and analysis can also be
compatible with the above mentioned additional mechanisms.
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(b) Elastic averaging SGD.

Figure 1: Illustration of PSASGD and EASGD in the model parameter space. Blue and
black arrows denote local SGD iterations and the update of auxiliary variables, respectively.
Red arrows represent averaging local models with each other or with the auxiliary variable.
In this toy example, the number of local updates τ is set to 3.

Elastic Averaging SGD (EASGD). Instead of performing a simple average of the local
models, EASGD proposed by Zhang et al. (2015) maintains an auxiliary variable zk that

serves as an an anchor while updating the local models x
(i)
k . The update rule of vanilla

EASGD2 is given by

x
(i)
k+1 =

{
x

(i)
k − ηgi(x

(i)
k )− α(x

(i)
k − zk), kmod τ = 0

x
(i)
k − ηgi(x

(i)
k ), otherwise

, (4)

zk+1 =

{
(1−mα)zk +mαxk, kmod τ = 0

zk, otherwise
(5)

where xk =
∑m

i=1 x
(i)
k /m and α is the elasticity parameter. From (5), we observe that the

auxiliary variable zk can be considered as a moving average of the averaged model xk. A
larger value of the parameter α forces more consensus between the locally trained models
and improves stability, but it may reduce the convergence speed – a phenomenon that is not
yet well-understood. While (Zhang et al., 2015) suggests that α should be smaller than 1/m,
later in Section 5.1, we will show that α can be selected in a broader range. In Figure 1b,
we show how local models move in the model parameter space. The black dots show the
movement of the anchor model, while the red arrows show the elastic force pulling the
workers’ models towards the anchor model.

Decentralized SGD (D-PSGD). In the decentralized SGD algorithm D-PSGD (also
referred as consensus-based distributed SGD), nodes perform one local update and average

2. The paper (Zhang et al., 2015) also presents periodic averaging and momentum variants of EASGD.
However, only vanilla EASGD has been theoretically analyzed, and only for quadratic loss functions.
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their models only with neighboring nodes. The update rule is given as

x
(i)
k+1 =

m∑
j=1

wji

[
x

(j)
k − ηgi(x

(i)
k )
]

(6)

where wji is the (j, i)th element of the mixing matrix W, and it represents the contribution
of node j in the averaged model at node i. The element wji is not zero if and only if node i
and node j are neighbors to each other. One can design a sparse mixing topology so as to
reduce the communication complexity. Although D-PSGD has been extensively studied in
the last decade (Nedic and Ozdaglar, 2009; Duchi et al., 2012; Scaman et al., 2018; Nedić
et al., 2018), it still remains open how to analyze the case when workers perform more than
one local updates.

3. The Proposed Framework: Cooperative SGD

In this section, we will introduce a general SGD framework called Cooperative SGD that
tracks the versions of the model at each worker in a distributed SGD system, where each
worker performs τ local model updates. We show how Cooperative SGD subsumes several
existing algorithms such as periodic simple-averaging, elastic averaging and decentralized
averaging described above and several other variants including hierarchical averaging. We
also highlight three different ways in which it reduces the communication delay per iteration,
namely by 1) performing more local updates, 2) overlapping local computation with the
communication time spent on averaging and broadcasting model updates, and 3) sparsifying
the network topology used to average locally trained models. The main advantage of having
a single local-update SGD update rule is that we can give a unified convergence analysis, as
presented in Section 4.

3.1 Key Elements and Update Rule

The local-update SGD algorithm is denoted by A(τ,W, v), where τ is the number of local
updates (or communication period), W is the mixing matrix used for model averaging at
each communication round, and v is the number of auxiliary variables. These parameters
feature in the update rule as follows.

1. Model Versions at Workers. At iteration k, the m workers have different ver-

sions x
(1)
k , . . . ,x

(m)
k ∈ Rd of the model. In addition, there are v auxiliary variables

z
(1)
k , . . . , z

(v)
k that are either stored at v additional nodes or at one or more of the

workers, depending upon implementation.

2. Gradients and Local Updates. In each iteration, the workers evaluate the gradient

gi(x
(i)
k ) for one mini-batch of data and update x

(i)
k . The auxiliary variables are only

updated by averaging a subset of the local models as described in point 3 below.

3. Model-Averaging. In iteration k, the local models and auxiliary variables decide
whether to average with neighbors according to the synchronization matrix Sk ∈

7
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R(m+v)×(m+v). To capture local updates, we use a time-varying Sk that varies as:

Sk =

{
W, kmod τ = 0

I(m+v)×(m+v), otherwise,
(7)

where the identity matrix I(m+v)×(m+v) means that there is no inter-node communica-
tion during the τ local updates, and mixing matrix W defines how local models are
averaged together at the communication round.

We now present a general update rule that combines the above elements. Define matrices
Xk,Gk ∈ Rd×(m+v) that concatenate all local models and gradients:

Xk =[x
(1)
k , . . . ,x

(m)
k , z

(1)
k , . . . , z

(v)
k ], (8)

Gk =[g1(x
(1)
k ), . . . , gm(x

(m)
k ),0, . . . ,0]. (9)

The update rule in terms of these matrices can be written as

Xk+1 = (Xk − ηGk) Sk. (10)

Remark 1 Instead of using update (10), one can use an alternative rule: Xk+1 = XkSk −
ηGk. The convergence analyses and insights in this paper can be extended to this update
rule. We choose to study the update rule (10) for all existing algorithms (PSASGD, EASGD,
D-PSGD) since fully synchronous SGD corresponds to the special case Sk = J.

3.2 Existing Algorithms as Special Cases

We now show how existing communication-efficient algorithms are special cases of the general
Cooperative SGD framework A(τ,W, v). While a detailed comparison of various algorithms
is provided in Table 2, we would like to highlight the case of EASGD A(τ,Wα, 1), in
which there is an additional auxiliary variable and the mixing matrix W is controlled by a
hyper-parameter α as follows

Wα =

[
(1− α)I α1
α1> 1−mα

]
∈ R(m+1)×(m+1). (11)

One can easily validate that the updates defined in (7), (10) and (11) are equivalent to
(4) and (5) when using the alternative update rule Xk+1 = XkSk − ηGk. We generalize
EASGD by allowing multiple auxiliary variables and general model averaging protocols in
the Cooperative SGD framework.

In addition to these special cases, the cooperative SGD framework allows us to design
other communication-efficient SGD variants, as we further describe in Section 6.

3.3 Three Types of Communication-Efficiency Offered by Cooperative SGD

The Cooperative SGD framework improves the communication-efficiency of fully synchronous
SGD in three different ways, as described below. We illustrate these in Figure 2, which
compares the execution timeline of cooperative SGD with fully synchronous SGD.
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Table 2: Cooperative SGD framework A(τ,W, v) can subsume previous algorithms as
special cases by varying three key hyper-parameters: the number of local updates τ , the
model-averaging protocol W, and the number of additional auxiliary variables v.

Algorithms Local Updates (τ) Avg. Protocol (W) Addnl. Aux. Var. (v)

Fully sync. SGD 1 Simple Avg. (W = J) 0
PSASGD Multiple Simple Avg. (W = J) 0
EASGD Multiple Elastic Avg. (W = Wα) 1
D-PSGD 1 Decentralized/Arbitrary 0

Cooperative SGD Multiple Decentralized/Arbitrary Multiple

worker1

worker2

worker3

worker4

x1 x2 x3 x4 x5

worker5

Wall clock time

(a) Fully synchronous SGD.

worker1

worker2

worker3

worker4

Aux. V. z1 z4 = z1 z5 z8 = z5 z9

x
(1)
1 x

(1)
5x

(1)
2 x

(1)
3 x

(1)
4 x

(1)
6 x

(1)
7 x

(1)
8 x

(1)
9 x

(1)
10

Wall clock time

(b) Cooperative SGD.

Figure 2: Illustration of communication-reduction strategies for τ = 4. Blue and red arrows
represent gradient computation and dependencies among workers, respectively. The grey
arrows represent the update of the auxiliary variables, which involves communication and
happens in parallel to workers gradient computation. Note that in fully synchronous SGD,
although we illustrate communication via a fully-connected topology in this figure, in practice,
the communication is typically implemented using a star topology or All-Reduce (Goyal
et al., 2017). A comparison of the communication time of these implementations is shown in
Table 3.

Periodic Averaging. By performing τ local updates at each workers and employing the
periodic averaging strategy, the communication delay of Cooperative SGD is amortized over
τ iterations and is τ times smaller than fully synchronous SGD. Moreover, periodic averaging
evens out random variations in workers’ computing time, and alleviates the synchronization
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delay in waiting for slow workers. Observe in Figure 2 that the idle time of workers is
significantly reduced. A quantitative justification can be found in a follow-up work (Wang
and Joshi, 2018).

The Effect of Auxiliary Variables: Non-blocking Execution. The auxiliary vari-
ables zk can be thought of as slightly stale versions of the average model, since they remain
the same while worker nodes conduct local updates, that is, zjτ = zjτ−1 = · · · = z(j−1)τ+1

for j ≥ 1. Observe that according to the update rule (10), the worker nodes only need
z(j−1)τ+1 before the model-averaging step from xjτ to xjτ+1. So, the auxiliary variables can
perform averaging of the previous round of local updates and broadcast their new version
while the workers perform the next set of local updates. Thus, auxiliary variables allow
the local computation to overlap with inter-node communication and enabling non-blocking
execution.

Later, in Figure 4c, we show experimental results demonstrating that this overlap of the
the update of auxiliary variable and workers’ local computation, directly reduces about 50%
training time. Although the elastic averaging SGD algorithm proposed in (Zhang et al.,
2015) allows this natural overlap between communication and computation, the authors did
not take advantage of it in a non-blocking implementation to reduce the training time. To
the best of our knowledge, this work is the first to identify and implement the non-blocking
execution pipeline; its algorithmic variants and alternative choices of the mixing matrix have
been subsequently studied in (Wang et al., 2019a, 2020a).

Sparse Averaging through a Decentralized Topology. Lastly, instead of synchroniz-
ing with all workers, a local model just needs to exchange information with its neighbors,
where the mixing topology is captured by the mixing matrix W. Thus, using a sparse mixing
matrix W reduces the overall communication delay incurred per iteration. In Table 3, we
provide a detailed comparison of the communication time between sparse (or decentralized)
averaging and fully synchronization.

Table 3: Comparison between sparse averaging (i.e., decentralized averaging) and fully
synchronization (i.e., exact averaging). When the latency to establish handshakes is dominant,
sparse averaging can provide significant reduction in communication time.

Averaging protocol # Handshakes Transmitted data size

Decentralized maxi degreei 2d ·maxi degreei
Fully synchronized (All-Reduce) m 2d

Fully synchronized (Parameter Server) m 2dm

As mentioned earlier, the three communication delay reduction avenues described above
are orthogonal to and can be combined with gradient compression or quantization methods,
which reduce the number of bits sent per inter-node communication rather than the frequency
of communication.
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4. Unified Convergence Analysis

In this section, we present the unified convergence analysis of algorithms in the cooperative
SGD framework and study how the communication period τ and model-averaging protocol
(captured by W and v) affect the error-convergence. The convergence analysis is conducted
under the following common assumptions:

1. (Smoothness): ‖∇Fi(x)−∇Fi(y)‖ ≤ L ‖x− y‖ ,∀i ∈ {1, 2, . . . ,m};

2. (Lower bounded): F (x) ≥ Finf;

3. (Unbiased gradients): Eξ|x [gi(x)] = ∇F (x);

4. (Bounded variance): Eξ|x ‖gi(x)−∇F (x)‖2 ≤ β ‖∇F (x)‖2 + σ2 where β and σ2 are
non-negative constants and in inverse proportion to the mini-batch size.

5. (Mixing Matrix): W1m+v = 1m+v, W> = W. Besides, the magnitudes of all
eigenvalues except the largest one are strictly less than 1: max{|λ2(W)|, |λm+v(W)|} <
λ1(W) = 1.

Assumptions 2 and 3 imply that all worker nodes have IID data distributions or the access
to a same training set, which is common in large-scale data centers with shared or networked
file system. For the brevity and interpretability of the results, we will first present the main
results for this IID distributed case. The analysis technique can be directly applied to the
non-IID case with alternative assumptions. A generalized version of the main theorem for
the non-IID data case is provided in Section 4.3.

4.1 Update Rule for the Averaged Model

To facilitate the convergence analysis, we firstly introduce the quantities of interests. Multi-
plying 1m+v/(m+ v) on both sides in (10), we get the vector-form update rule:

Xk+1
1m+v

m+ v
=Xk

1m+v

m+ v
− ηGk

1m+v

m+ v
(12)

where Sk disappears due to the special property from Assumption 5: W1m+v = 1m+v and
Im+v1m+v = 1m+v. Then, define the average model and effective learning rate as

uk = Xk
1m+v

m+ v
, ηeff =

m

m+ v
η. (13)

After rearranging Eqn. (12), one can obtain

uk+1 = uk − ηeff

[
1

m

m∑
i=1

gi(x
(i)
k )

]
. (14)

Observe that the averaged model uk is performing perturbed stochastic gradient descent. In
the sequel, we will focus on the convergence of the averaged model uk, which is common
practice in distributed optimization literature (Nedic and Ozdaglar, 2009; Duchi et al.,
2012; Yuan et al., 2016; Lian et al., 2017a). While these previous works of decentralized
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optimization shed light on the convergence analysis in this paper, our main contributions
include unifying local-update SGD algorithms and bounding the derivations among local
models in the presence of local updates.

Since the objective function F (x) is non-convex, the expected gradient norm is used
as an indicator of convergence (Bottou et al., 2018). We say the algorithm achieves an
ε-suboptimal solution if:

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ ε. (15)

This guarantees convergence of the algorithm to a stationary point.

4.2 Main Results and Discussions

In deep learning, it is common to keep the learning rate as a constant and decay it only
when the training procedure saturates (Goyal et al., 2017). Thus, we present the analysis
for fixed learning rate case and study the error floor (upper bound) at convergence.

Theorem 1 (Convergence of Cooperative SGD, IID case) For algorithm A(τ,W, v),
suppose the total number of iterations K can be divided by the communication period τ .
Under Assumptions 1–5 (with β = 0 3), if the learning rate satisfies

ηeffL+ 5η2
effL

2

[(
1 +

v

m

) τ

1− ζ

]2

≤ 1 (16)

where ζ = max{|λ2(W)|, |λm+v(W)|}, and all local models are initialized at a same point
u1, then the average-squared gradient norm after K iterations is bounded as follows

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ 2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m︸ ︷︷ ︸
Fully Sync. SGD

+ η2
effL

2σ2

(
1 + ζ2

1− ζ2
τ − 1

)(
1 +

v

m

)2

︸ ︷︷ ︸
Additional Network Error

(17)

where uk, ηeff are defined in (13).

Proof Check Appendix D.

Due to space limitations, we defer all proofs to the Appendix. If K is decided preemptively,
then with a proper learning rate, we obtain the following corollary. A similar technique also
appears in (Ghadimi and Lan, 2013; Lian et al., 2017a; Yu et al., 2018).

Corollary 1 (Optimized Learning Rate, IID case) For algorithm A(τ,W, v), under
Assumption 1–5, if the learning rate is η = m+v

Lm

√
m
K and the hyper-parameters satisfy:

3. Constant β in Assumption 4 only influences the constraint on the learning rate (16) and will not appear
in the expression of gradient norm upper bound (17). In order to get neater results, β is set as 0 in the
main paper. In the Appendix, we provide the proof for arbitrary β.
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10m[(1 + v
m) τ

1−ζ ]2 ≤ K, the average-squared gradient norm after K iterations is bounded by

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ 2L [F (u1)− Finf] + σ2

√
mK︸ ︷︷ ︸

Fully Sync. SGD

+
m

K

(
1 +

v

m

)2
(

1 + ζ2

1− ζ2
τ − 1

)
σ2︸ ︷︷ ︸

Additional Network Error

(18)

= O(
1√
mK

) +O(
m

K
). (19)

Furthermore, if (m+ v)2m[(1 + v
m) τ

1−ζ ]2 ≤ K, then the mean square error will be dominated

by the first term in (18) and bounded by 2[L(F (u1)− Finf) + σ2]/
√
mK = O(1/

√
mK).

Proof Check Appendix E.

Error decomposition. It is worth noting that the upper bounds (17) and (18) are
decomposed into two parts. The first two terms are same as the optimization error bound
in fully synchronous SGD (Ghadimi and Lan, 2013), except the dependence on L, σ2

due to different choices of learning rate4. The last term is network error, resulted from
performing local updates and reducing inter-worker communication, i.e., sparse model-
averaging protocol. It directly increases the optimization error bound and is a measure of
local models’ discrepancies. When all local models are fully synchronized at each iteration
(τ = 1, ζ = 0, v = 0), then the network error becomes zero.

Dependence on τ,W. Theorem 1 together with Corollary 1 state that the optimization
error bound is determined by the communication period τ and the second largest absolute
eigenvalue ζ of the mixing matrix W. In particular, the bound will monotonically increase
along with τ and ζ. The definition of ζ is common in random walks on graphs and reflects
the mixing rates of different variables. When there is no communication among local workers,
then W = Im+v and ζ = 1; When local models are fully synchronized, then W = Jm+v

and ζ = 0. Typically, a sparser W means a larger value of ζ. Besides, the network error
bound is linear to τ but proportional to (1 + ζ2)/(1− ζ2), as shown in Figure 3a. It is more
sensitive to the changes in τ .

Error-Runtime Trade-off In Figure 3b, we further evaluate various hyper-parameter
settings for training VGGNet (Simonyan and Zisserman, 2014) for image classification on
the CIFAR-10 dataset (Krizhevsky, 2009). More details about the experimental setting
can be found in the Appendix. As predicted by (18), the empirical results show that a
higher network error (larger τ or larger ζ) may lead to a slower convergence. However, the
benefit of using local updates is that it can reduce the run time per iteration, resulting much
less total training time to achieve a target accuracy. In different system settings, one can
change the communication period τ or the sparsity of the mixing topology to achieve the
best trade-off between error-convergence and communication-efficiency.

4. If we set η = m+v
m

√
m(F (u1) − Finf)/(σ2LK) in Corollary 1, then the rate of the first two terms in (18)

is exactly the same as (Ghadimi and Lan, 2013).
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(a) Numerical plot of the additional network error
bound (NEB) term in (17).
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(b) Experimental results on neural networks.

Figure 3: (a) Illustration of how the additional network error term in (17) monotonically
increases with τ and ζ; (b) Experiments on CIFAR-10 with VGG-16 and 8 worker nodes.
For the same learning rate, larger τ or larger ζ lead to a higher error floor at convergence.
Each line in (b) corresponds to a circled point in (a).

Linear Speedup. Corollary 1 also reveals that when the total iterations K is sufficiently
large, the optimization error bound will be dominated by the first term in (19). That is,
the algorithm has an asymptotic convergence rate of 1/

√
mK, which matches the rate of

fully synchronous SGD (Ghadimi and Lan, 2013). On the other hand, note that the total
iterations to achieve an error of ε is K = 1/(mε2). The algorithm requires m times less
iterations to reach the same level of error when using m times more workers. In this sense,
the cooperative SGD class of algorithms can achieve a linear speedup in terms of number of
workers.

Comparison to Previous Results. Using the unified analysis of local-update SGD
presented in Theorem 1 and corollary 1, one can directly derive novel analyses of fully
synchronous SGD, EASGD, PSASGD and D-PSGD. To be specific, by directly setting
W = J (i.e., ζ = 0) and v = 0 in Corollary 1, one can obtain the result for PSASGD. As
presented in Table 1, we get stronger convergence guarantee than previous works (Yu et al.,
2018; Jiang and Agrawal, 2018). Moreover, compared to D-PSGD analysis in Lian et al.
(2017a), our result (when τ = 1, v = 0, ζ > 0) leads to a better dependence on the number of
workers m. In particular, they suggest the total iterations K should be greater than O(m5).
But we only require K > O(m3) (see Corollary 1).

Remark 2 (Discussion on Lower Bounds) We note that the rate O(1/
√
mK) matches

the lower bound of fully synchronous SGD (i.e.mini-batch SGD) for smooth non-convex
functions as presented in Arjevani et al. (2019). There are many other classic literature
discussing the lower bounds of distributed or decentralized optimization, such as (Arjevani
and Shamir, 2015; Scaman et al., 2018). However, most of them focused on convex or
strongly-convex loss functions, and hence cannot be directly applied to our non-convex setting.
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4.3 Extension to Non-IID Distributed Case.

Now we are going to extend the main results to the non-IID data distributed setting, where
local objectives Fi are different and local data cannot be shuffled across workers. While this
challenging setting has been studied in some recent works, such as (Li et al., 2019; Koloskova
et al., 2020) and many others, the purpose of this subsection is to demonstrate that our main
results and analysis techniques under the IID case are extendable to alternative assumptions.

In this case, the stochastic gradient at each worker is no longer an unbiased estimator of
the global gradient. Specifically, we revise assumptions 3 and 4 as follows:

• (Unbiased gradients): Eξ|x [gi(x)] = ∇Fi(x);

• (Bounded variance): Eξ|x ‖gi(x)−∇Fi(x)‖2 ≤ σ2 where σ2 is a non-negative constant
and in inverse proportion to the mini-batch size;

• (Bounded dissimilarities): 1
m

∑m
i=1 ‖∇Fi(x)−∇F (x)‖2 ≤ κ2 where κ2 is a non-

negative constant.

One can also assume other kinds of assumptions to capture the dissimilarities among local
functions. Our previous theorems in IID case lay the foundation of the analysis and can be
easily adapted.

Theorem 2 (Convergence of Cooperative SGD, non-IID case) For algorithm A(τ,W, v),
under the new assumptions stated above, if the learning rate satisfies ηeffL ≤ 1, and all local
models are initialized at a same point u1, then the average-squared gradient norm after K
iterations is bounded as follows

2

[
2[F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+ η2

effL
2σ2

(
1 + ζ2

1− ζ2
τ − 1

)(
1 +

v

m

)2
]

︸ ︷︷ ︸
Error Bound in IID Case

+Cκ2 (20)

where uk, ηeff are defined in (13), and constant C is defined as

C =
6η2L2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
≤ 1

2
. (21)

Proof Check Appendix F.

Comparison to the IID Case. Theorem 2 shows that the first term in the error upper
bound of non-IID case (20) is nearly identical to the bound of IID case (17), except a constant.
Furthermore, there is an additional term (Cκ2) in (20) which depends on the dissimilarities
among local objectives. Due to this additional term, now the new error bound (20) is in an
order of τ2 while the error bound (17) only linearly increases with the communication period
τ . In other words, cooperative SGD is less robust to the choice of τ in the non-IID case
than the IID case, since the algorithm requires a smaller τ (less communication reduction)
in order to achieve the same error floor as the IID case.
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5. Novel Analyses of Existing Algorithms and Insights

Using the unified analysis of Cooperative SGD presented in Section 4, one can directly derive
novel analyses of EASGD, PSASGD, D-PSGD. In particular, as mentioned in Section 2,
when W = Wα and v = 1, the local-update SGD algorithm reduces to EASGD (Zhang
et al., 2015). We highlight this special case in this section, since the unified analysis not
only provides the first convergence guarantee but also gives new insights to further improve
the communication efficiency with the help of auxiliary variables.

5.1 Convergence Analysis of EASGD A(τ,Wα, 1) and Optimal Choice of α

Recall that EASGD uses hyper-parameter α to control the eigenvalues of mixing matrix.
For Wα defined in (11), the second largest eigenvalue magnitude is

ζ = max{|1− α|, |1− (m+ 1)α|}. (22)

In order to let Wα satisfy the conditions in Assumption 5, it is required that ζ < 1, namely
0 ≤ α < 2/(m+ 1). This condition suggests that α can be selected in a broader range than
the original paper (Zhang et al., 2015) suggested (0 ≤ α < 1/m). Intuitively, a larger α
forces more consensus between the locally trained models and improves stability. However,
from equation (22), we observe that there exists a best α that minimizes the value of ζ.

Lemma 1 (Best Choice of α) If α = 2/(m+ 2), then the second largest absolute eigen-
value of Wα, given in (22), achieves the minimal value m/(m+ 2); If 0 < α < 2/(m+ 1),
then ζ < 1.

Accordingly, by choosing the best α, the optimization error upper bounds (17) and (18) can
also be minimized. To be specific, we have the following theorem.

Theorem 3 (Convergence of EASGD with the best α, IID case) When α is set to
2/(m+ 2) as suggested by Lemma 1, the error of EASGD A(τ,Wα, 1) can be bounded as
follows:

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

1

2
η2

effL
2σ2(m+ 1) [1 + C(τ − 1)]

(23)

where uk and ηeff are defined in (13), and C = 1 + 2(1 + 1/m)2.

By setting ηeff = 1
L

√
m
K , one can also obtain a finite horizon result as Corollary 1. To the

best of our knowledge, this theorem is the first convergence guarantee for EASGD with
general non-convex objectives and also the first theoretical justification for the best choice
of elasticity parameter α.

Empirical Validation. Although the best α is obtained by minimizing an error upper
bound, the empirical results indicate that this theoretical approximation works well in
practice. As shown in Figures 4a and 4b, the best choice α = 2/(m+ 2) = 0.2 yields the
fastest convergence and the least discrepancies between workers and the auxiliary variable.
When α is greater than 2/(m+ 1) ≈ 0.2222, we observe the algorithm cannot converge.

16



Cooperative SGD: A Unified Framework for the Analysis of Local-Update SGD

Overlapping Communication and Computation via Auxiliary Variables. From
the update rule of EASGD, we observe that if each worker node maintain a local copy of
the auxiliary variable z, then local models can be updated without any communication in
the model-averaging step (see Eqn. (4)). After averaging with the local copy of z, each
local model will directly start next round of local updates. Meanwhile, a communication
thread on each worker node can use non-blocking (asynchronous) communication to obtain
the averaged model and use it to update the local copy of auxiliary variable (see Eqn. (5)).
As long as the number of local updates τ is large enough, the communication can be fully
overlapped with the local computation. In Figure 4c, we show that by overlapping the
update of auxiliary variable and workers computation, it directly reduces about 50% training
time in EASGD, even though worker nodes only perform 1 local SGD iteration.
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(a) Average training loss of local
models.
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Figure 4: EASGD training on CIFAR-10 with VGG-16. Since there are 8 worker nodes and 1
auxiliary variable, the best value of α given by Lemma 1 is 2/(m+ 2) = 0.2, which performs
better than the empirical choice α = 0.9/m = 0.1125 suggested in Zhang et al. (2015). The
best choice of α yields the lowest training loss and the least discrepancies between workers
and auxiliary variable.

5.2 Convergence Analysis of PSASGD A(τ,J, 0)

By directly setting W = J (i.e., ζ = 0) and v = 0 in Theorem 1, one can obtain the
convergence guarantee for PSASGD.

Corollary 2 (Convergence of PSASGD) For A(τ,J, 0), under the same assumptions
as Theorem 1, if the learning rate satisfies ηL+ η2L2τ(τ − 1) ≤ 1, then we have

E

[
1

K

K∑
k=1

‖∇F (xk)‖2
]
≤2 [F (x1)− Finf]

ηK
+
ηLσ2

m
+ η2L2σ2(τ − 1). (24)

If we set the learning rate as η = 1
L

√
m
K and 10mτ2 ≤ K, then

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ 2L [F (u1)− Finf] + σ2

√
mK

+
m(τ − 1)σ2

K
(25)

= O(
1√
mK

) +O(
m(τ − 1)

K
). (26)
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Moreover, plugging the error of IID case (24) back into (20), one can directly obtain the
error upper bound of PSASGD in the non-IID setting.

The notable insight provided by Corollary 2 is that there exists a trade-off between the
error-convergence and communication-efficiency. While a larger communication period leads
to higher error at convergence, it directly reduces the communication delay by τ times and
enables higher throughput. The primary advantage of PSASGD is that one can easily change
the communication period and find the best one that has the fastest convergence rate with
respect to wall-clock time. The best value of τ should depend on the bandwidth/latency of
the communication network and vary in different environments.

On the other hand, we note that when K ≥ m3τ2, the first term in (26) will dominate
the error bound and hence, PSASGD achieves the same rate 1/

√
mK as fully synchronous

SGD. This puts a constraint on the largest value of communication period. Furthermore, in
the non-IID setting, the second term in (26) increases with τ2. Therefore, in order to achieve
the rate 1/

√
mK, the communication period should satisfy K ≥ m3τ4. We summarize and

compare our results with previous works in Table 1.

Extension to Federated Averaging. When worker nodes have IID data distribution,
then Corollary 2 can be directly applied to the federated averaging (FedAvg) algorithm
proposed by McMahan et al. (2016). At each round in FedAvg, only a fraction c of the m
workers are selected at random. These selected worker nodes perform local updates and
send the updates back to the central server which aggregates them and updates the global
model. In the IID case, since the workers’ local data are statistically identical, sampling a
subset of cm out of m workers (c is the fraction of workers chosen per round) is equivalent
to reducing the total number of workers. Therefore, changing m to cm in Corollary 2, where
scalar c denotes the worker sampling ratio, we obtain the convergence guarantee for FedAvg
in IID case. The analysis of FedAvg with both non-IID data distributions and random client
sampling is a non-trivial extension and has been considered in some recent works, such as
(Li et al., 2020; Karimireddy et al., 2019).

Empirical validation. In Figure 5, we show the trade-off in PSASGD with different
learning rate choices. One can see that even though PASGD with τ = 24 finishes the
training first, it has the highest loss after the same number of iterations (or epochs).
Comparing Figure 5 (a) and (b), observe that the small learning rate reduces the gap
between different communication periods. This phenomenon has already been discussed in
Theorem 1: small learning rate can alleviate the relative effect of the network error term.
Besides, for completeness, we present the test accuracy of PSASGD in Figure 5 (c) and
(d). An interesting observation is that PSASGD with large communication period has even
better generalization performance than fully synchronous SGD before the learning rate is
changed. A similar observation also appears in (Lin et al., 2018).

5.3 Convergence Analysis of D-PSGD A(1,W, 0)

In decentralized parallel SGD (D-PSGD), local models are sparsely averaged according
to a decentralized topology. Setting τ = 1 and v = 0 in Theorem 1, we directly get the
convergence guarantee for D-PSGD.
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(a) Learning rate equals to 0.04.
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(b) Learning rate equals to 0.4.
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(c) Learning rate equals to 0.04.
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(d) Learning rate equals to 0.4.
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(e) Learning rate equals to 0.04.
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Figure 5: Illustration of error-convergence and communication-efficiency trade-off in PSASGD.
We train a VGG-16 on CIFAR-10 with 8 worker nodes. Each line was trained for 200 epochs
and the learning rate is decayed by 10 at epoch 100, 150. After the same number of epochs,
a larger communication period leads to higher training loss but costs much less wall clock
time.
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Corollary 3 (Convergence of D-PSGD) For A(1,W, 0), under the same assumptions

as Theorem 1, if the learning rate satisfies ηL + η2L2 2ζ
1−ζ

(
ζ

1+ζ + 1
1−ζ

)
≤ 1, where ζ =

max{|λ2(W)|, |λm(W)|}, then we have

E

[
1

K

K∑
k=1

‖∇F (xk)‖2
]
≤2 [F (x1)− Finf]

ηK
+
ηLσ2

m
+ η2L2σ2 2ζ2

1− ζ2
. (27)

If the learning rate is η = 1
L

√
m
K and the hyper-parameters satisfy: 10m(1− ζ)−2 ≤ K, the

average-squared gradient norm after K iterations is bounded by

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ 2L [F (u1)− Finf] + σ2

√
mK

+
mσ2

K

2ζ2

1− ζ2
(28)

= O(
1√
mK

) +O(
m

K

ζ2

1− ζ2
). (29)

Moreover, plugging the error of IID case (27) back into (20), one can directly obtain the
error upper bound of D-PSGD in the non-IID setting.

From Eqn. (29), we conclude that if K ≥ O(m3), then the first term in (29) will dominate
the error upper bound and D-PSGD can achieve the same rate 1/

√
mK as fully synchronous

SGD. Compared to previous result in (Lian et al., 2017a) which suggests K ≥ O(m5), we
slightly improve the dependence on the number of workers. Compared to literature in the
decentralized optimization community (Duchi et al., 2012; Yuan et al., 2016; Zeng and Yin,
2016), we remove the assumption of uniformly bounded gradients and focus on non-convex
objective functions and stochastic gradients.

Comparison of PSASGD and D-PSGD The general framework enables easy compar-
isons between different communication reduction strategies. Here, we compare periodic
communication and sparse averaging (decentralized averaging) strategies. Note that when
PSASGD A(τ,J, 0) and D-PSGD A(1,W, 0) have the same error floor at convergence (i.e.,
when (24) equals to (27)), we have

2ζ2
τ

1− ζ2
τ

= τ − 1⇒ ζτ =

√
1− 2

τ + 1
. (30)

Equation (30) provides a threshold for ζ. As long as we design a mixing matrix such that
ζ ≤ ζτ , D-PSGD A(1,W, 0) would perform better than PSASGD A(τ,J, 0) in terms of the
worst-case final error at convergence. Along with the increase of τ , the value of threshold ζτ
rapidly converges to 1. Therefore, when τ becomes large, D-PSGD has a lower error floor in
a very broad range of ζ.

As for communication efficiency, the benefit of sparse or decentralized averaging relies on
the number of workers. It at most reduces the communication overhead by m times, since
at least one connection should be preserved for each worker. As the mixing matrix affects
the communication delay implicitly, it is not trivial to design a good mixing matrix that
not only has small eigenvalues but also enables efficient implementation. On the contrary,
periodic averaging has higher flexibility without such limitations. If we set τ ≥ m, then
PSASGD always has shorter training time than D-PSGD.
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6. Designing New Local-Update SGD Algorithms

As shown in Sections 4 and 5, the Cooperative SGD framework enables us to analyze and
compare existing communication-efficient SGD algorithms such as PSASGD, EASGD and
D-PSGD. The Cooperative SGD framework can also be used to design new algorithms that
combine the communication-efficiency strategies adopted by these algorithms.

6.1 Decentralized Periodic Averaging

For a fixed topology worker network where W is prescribed, increasing the number of local
updates τ can be an effective way to speedup the training procedure. In Figure 6, one can
observe that by using more local updates, decentralized periodic averaging SGD (τ = 10, ζ =
0.75) has significant speedup over the original D-PSGD algorithm (τ = 1, ζ = 0.75) in terms
of wall-clock time to achieve the same training loss. The new algorithm can be useful in the
setting of decentralized federated learning, where workers are connected in an arbitrarily
connected topology and can only communicate local models with neighbors, see a follow-up
work (Li et al., 2019).
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Figure 6: Decentralized periodic averaging on CIFAR-10 with VGG-16. Fully synchronous
SGD corresponds to (τ = 1, ζ = 0). Allowing more local updates (higher τ) leads to slower
convergence in terms of epochs. But it requires about 4x less wall-clock time to achieve a
training loss of 0.1.

6.2 Generalized Elastic Averaging

In generalized elastic averaging A(1,W′, 1), we modify D-PSGD with mixing matrix W
by adding an auxiliary variable (with elasticity parameter α) stored at a new node that
is connected to all m worker nodes. Recall that a sparse mixing matrix W can reduce
communication delay, but it may have large ζ that leads to inferior convergence. Introducing
the auxiliary variable results in the mixing matrix W′ shown in (31) below. The second
largest eigenvalue of this matrix is (1− α) lower than ζ as shown by Theorem 4.

Theorem 4 Suppose there is a m-dimension symmetric matrix W such that W1 = 1, and
its eigen-values satisfy −1 ≤ λm(W) ≤ · · · ≤ λ1(W) ≤ 1. Let ζ = max{|λ2(W)|, |λm(W)|}.
Then, for matrix W′ which is defined as:

W′ =

[
(1− α)W α1
α1> 1−mα

]
, (31)
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we have

ζ ′ = max{|λ2(W′)|, |λm+1(W′)|} (32)

= max{(1− α)ζ, |1− (m+ 1)α|}. (33)

Setting α = 1+ζ
m+1+ζ yields the minimum ζ ′ = mζ

m+1+ζ .

The proof is given in the Appendix Appendix H. Theorem 4 implies that by setting
α = 1+ζ

m+1+ζ , the new algorithm A(1,W′, 1) gives a lower error bound at convergence as

compared to D-PSGD A(1,W, 0) as ζ ′ < ζ. Furthermore, since the updates and broadcast
of the auxiliary variable can overlap with the local computation at workers (as explained in
Section 3.3), we do not expect an increase in the training time. Thus, adding an auxiliary
variable is a highly effective method to increase the consensus between loosely connected
workers.

6.3 Elastic Hierarchical Averaging SGD.

As mentioned in Section 5, auxiliary variables in the cooperative SGD framework can help
to overlap communication and computation. This feature is beneficial when the inter-worker
communication is expensive, since the costly communication can be totally hidden by using
the elastic averaging protocol with fine-tuned number of local updates. In particular, consider
that workers are divided into groups that cannot directly communicate with each other.
Local models in each group will be averaged via an auxiliary node. On the other hand,
expensive inter-auxiliary node communication can occur concurrently with local updates at
workers. A brief illustration is provided in Figure 7. Our unified convergence analysis can
be applied to this hierarchical averaging model and ongoing research includes finding the
node structure that gives the best convergence.
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Figure 7: Illustration of a variant of local-update SGD: elastic hierarchical averaging. Blue,
red, grey arrows represent gradient computation, communication among workers, and update
of auxiliary variables respectively.
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7. Concluding Remarks

In this paper, we propose a general framework named Cooperative SGD, in which worker
nodes are allowed to have different model versions and these local models are synchronized
infrequently via various model-averaging protocols (e.g., simple averaging, elastic averaging
and decentralized averaging). This formulation subsumes many existing communication-
efficient distributed SGD variants, including periodic simple averaging SGD (i.e., local SGD),
elastic averaging SGD, and decentralized parallel SGD. Our general framework not only
bridges these separate studied algorithms together but also greatly enlarges the design space
of local-update SGD algorithms. We present several novel instances of the Cooperative
SGD algorithm, such as periodic decentralized SGD, generalized elastic averaging SGD, and
hierarchical averaging SGD.

By analyzing Cooperative SGD for general non-convex objectives in both IID and
non-IID data partitions settings, we provide strong convergence guarantees for existing
communication-efficient distributed SGD variants, and to the best of our knowledge, the first
general analysis of elastic averaging SGD. The unified analysis reveals how the number of local
updates and the averaging protocol influence the convergence rate and brings novel insights
including comparisons of different model-averaging protocols, the best hyper-parameter
choice in EASGD, and the communication overlapping via auxiliary variables.

Further exploration of the local-update SGD design space and analyses of new variants
are ripe for future investigation. We list some promising directions below.

• Extensions of Cooperative SGD framework: In our proposed cooperative SGD
algorithm, the mixing matrix W is a fixed matrix across iterations. However, much
looser synchronization protocols are also possible. For example, Koloskova et al. (2020);
Wang et al. (2019b) extended our framework by allowing random mixing matrices.
Besides, by using the techniques in (Assran et al., 2018; Pu et al., 2020), it is easy to
relax the constraint on W from doubly stochastic to row (or column) stochastic.

• Asynchronous local-update SGD: When the worker nodes have different comput-
ing speeds, waiting for the slowest nodes (the stragglers) to finish their local updates
before performing model aggregation can result in a long tail latency. In order mitigate
stragglers, we can use one of two possible asynchronous strategies: 1) fix a time window,
allow the workers to perform a variable number of local updates within that time and
then aggregate the updates by assigning appropriate weights to each worker, or 2)
each worker performs the same number τ of local updates, but it averages with the
central or anchor models in an asynchronous and lock-free manner, allowing certain
workers to have stale versions of the central model. The convergence analysis of these
asynchronous local-update SGD variants is a challenging problem – it requires addi-
tional assumptions bounding the degree of staleness in order to guarantee convergence,
see (Dutta et al., 2018; Lian et al., 2015, 2017b).

• Adding momentum or gradient tracking mechanism to accelerate local-
update SGD: Momentum has been shown to be effective in improving the training
and generalization performance of stochastic optimization. Investigating variants of
Cooperative SGD with momentum is a timely and interesting research direction. Two
such momentum variants have recently been proposed in the follow-up works (Yu et al.,
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2019; Wang et al., 2020b). On the other hand, gradient tracking (Shi et al., 2015;
Xin et al., 2020) is a popular technique to accelerate the convergence of decentralized
SGD. We would expect this technique can be directly apply to PSASGD (or federated
averaging), because we have shown in this paper that decentralized SGD and PSASGD
are just different facets of a general algorithm. Some algorithmic variants have already
been investigated in Liang et al. (2019); Karimireddy et al. (2019).

• Handling non-IID data: In the unified analysis presented in this work, we show
that Cooperative SGD class of algorithms may suffer from dissimilarities among local
data distributions. It is important to design some new mechanisms to mitigate this
additional error. Follow-up works along this direction includes Sahu et al. (2018);
Haddadpour et al. (2019); Karimireddy et al. (2019); Liang et al. (2019). There also
exists some very recent works focusing on the convergence analysis of PSASGD using
other forms of dissimilarity assumptions, see Haddadpour and Mahdavi (2019); Khaled
et al. (2020).

• Overlapping communication and computation: In this paper, we show that the
auxiliary variables in elastic averaging protocol can help to overlap communication
and computation delay. But the mixing matrix used in EASGD may not be optimal.
In our follow-up work (Wang et al., 2020a), we propose Overlap-Local-SGD which uses
a column-stochastic mixing matrix instead of the doubly-stochastic one in EASGD.
Empirically, Overlap-Local-SGD outperforms EASGD in both IID and non-IID data
settings.

• Combination with gradient compression: As mentioned in the introduction,
gradient compression (i.e., sparsification and quantization) is an orthogonal way to
reduce the communication overhead – it reduces the amount of bits communicated per
round whereas local-update SGD reduces the frequency of communication. Combining
Cooperative SGD and gradient compression techniques may enjoy the advantages in
both worlds. Following this idea, Reisizadeh et al. (2019); Basu et al. (2019) propose
the quantized and sparsified version of PSASGD.
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Appendix A. Experimental Setting

All experiments presented in the main paper is conducted on CIFAR-10 (Krizhevsky, 2009)
dataset, which consists of 60, 000 color images (50, 000 for training and 10, 000 for validation).
Without special explanations, we train a deep neural network VGG-16 (Simonyan and
Zisserman, 2014) for 200 epochs. The initial learning rate is 0.4 and decays by 10 after 100
and 150 epochs. The mini-batch size per worker is 128. Besides, we use a network of 8
machines, each of which has one NVIDIA Titan X GPU and a 40 Gbps/s Ethernet interface.
The algorithms were implemented with Pytorch and MPI4Py.

Appendix B. Proof Preliminaries

For the ease of writing, we first define some notations. Let Ξk denote the set {ξ(1)
k , . . . , ξ

(m)
k }

of mini-batches at m workers in iteration k. We use notation Ek to denote the conditional
expectation EΞK |Xk

. Besides, define averaged stochastic gradient and averaged full batch
gradient as follows:

Gk =
1

m

m∑
i=1

g(x
(i)
k ), Hk =

1

m

m∑
i=1

∇F (x
(i)
k ). (34)

Similar to Xk and Gk, we stack all full batch gradients in a d× (m+ v) dimension matrix:

∇F (Xk) = [∇F (x
(1)
k ), . . . ,∇F (x

(m)
k ),0, . . . ,0]. (35)

Accordingly, the Frobenius norm of full batch gradients is ‖∇F (Xk)‖2F =
∑m

i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2

.

In order to facilitate reading, the definitions of matrix Frobenius norm and operator norm
are also provided here.

Definition 5 (Horn and Johnson (1990)) The Frobenius norm defined for A ∈Mn by

‖A‖2
F

= |Tr(AA>)| =
n∑

i,j=1

|aij |2. (36)

Definition 6 (Horn and Johnson (1990)) The operator norm defined for A ∈Mn by

‖A‖
op

= max
‖x‖=1

‖Ax‖ =
√
λmax(A>A). (37)

All notations used in the proof are listed below.

Appendix C. A Supporting Lemma for Theorem 1

Before providing the proof of Theorem 1, we prefer to first present an important lemma that
describes the basic intuition for the convergence of cooperative SGD: the discrepancies of
local models have a negative impact on the convergence. The proof of Theorem 1 will be
built upon this lemma.
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Number of workers m
Number of auxiliary variables v
Total iterations K
Communication period τ
Mixing matrix W
Learning rate η
Lipschitz constant L
Variance bounds for stochastic gradients β, σ2

Table 4: List of notations.

Lemma 2 (Error decomposition) For algorithm A(τ,W, v), under Assumption 1–5, if
the learning rate satisfies ηeffL(1 +β/m) ≤ 1 and all local model parameters are initialized at
the same point x1, then the average-squared gradient after K iterations is bounded as follows

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤ 2 [F (x1)− Finf]

ηeffK
+
ηeffLσ

2

m︸ ︷︷ ︸
fully sync SGD

+
L2

K

K∑
k=1

E ‖Xk(I− J)‖2
F

m︸ ︷︷ ︸
network error

(38)

where uk, ηeff are defined in (13) and both I and J are (m+ v)× (m+ v) matrices.

C.1 Proof of Lemma 2

C.1.1 Lemmas

Lemma 3 Under Assumption 3 and 4, we have the following variance bound for the averaged
stochastic gradient:

EΞK |Xk

[
‖Gk −Hk‖2

]
≤ β

m2
‖∇F (Xk)‖2F +

σ2

m
. (39)

Proof According to the definition of Gk,Hk (34), we have

EΞK |Xk

[
‖Gk −Hk‖2

]
(40)

=EΞK |Xk

∥∥∥∥∥ 1

m

m∑
i=1

[
g(x

(i)
k )−∇F (x

(i)
k )
]∥∥∥∥∥

2

(41)

=
1

m2
EΞK |Xk

 m∑
i=1

∥∥∥g(x
(i)
k )−∇F (x

(i)
k )
∥∥∥2

+
m∑
j 6=l

〈
g(x

(j)
k )−∇F (x

(j)
k ), g(x

(l)
k )−∇F (x

(l)
k )
〉
(42)

=
1

m2

m∑
i=1

E
ξ
(i)
k |Xk

∥∥∥g(x
(i)
k )−∇F (x

(i)
k )
∥∥∥2

+

1

m2

m∑
j 6=l

〈
E
ξ
(j)
k |Xk

[
g(x

(j)
k )−∇F (x

(j)
k )
]
, E

ξ
(l)
k |Xk

[
g(x

(l)
k )−∇F (x

(l)
k )
]〉

(43)
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where equation (43) is due to {ξ(i)
k } are independent random variables. Now, directly

applying Assumption 3 and 4 to (43), one can observe that all cross terms are zero. Then,
we have

EΞK |Xk
‖Gk −Hk‖2 ≤

1

m2

m∑
i=1

[
β
∥∥∥∇F (x

(i)
k )
∥∥∥2

+ σ2

]
(44)

=
β

m

‖∇F (Xk)‖2F
m

+
σ2

m
. (45)

Lemma 4 Under Assumption 3, the expected inner product between stochastic gradient and
full batch gradient can be expanded as

Ek [〈∇F (uk), Gk〉] =
1

2
‖∇F (uk)‖2 +

1

2m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2
− 1

2m

m∑
i=1

∥∥∥∇F (uk)−∇F (x
(i)
k )
∥∥∥2

(46)

where Ek denotes the conditional expectation EΞK |Xk
.

Proof

Ek [〈∇F (uk), Gk〉] = Ek

[〈
∇F (uk),

1

m

m∑
i=1

g(x
(i)
k )

〉]
(47)

=
1

m

m∑
i=1

〈
∇F (uk), ∇F (x

(i)
k )
〉

(48)

=
1

2m

m∑
i=1

[
‖∇F (uk)‖2 +

∥∥∥∇F (x
(i)
k )
∥∥∥2
−
∥∥∥∇F (uk)−∇F (x

(i)
k )
∥∥∥2
]

(49)

=
1

2
‖∇F (uk)‖2 +

1

2m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2
− 1

2m

m∑
i=1

∥∥∥∇F (uk)−∇F (x
(i)
k )
∥∥∥2

(50)

where equation (49) comes from 2a>b = ‖a‖2 + ‖b‖2 − ‖a− b‖2.

Lemma 5 Under Assumption 3 and 4, the squared norm of stochastic gradient can be
bounded as

Ek

[
‖Gk‖2

]
≤
(
β

m
+ 1

) ‖∇F (Xk)‖2F
m

+
σ2

m
.
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Proof Since Ek[Gk] = Hk, then we have

Ek

[
‖Gk‖2

]
= Ek

[
‖Gk −Ek[Gk]‖2

]
+ ‖Ek[Gk]‖2 (51)

= Ek

[
‖Gk −Hk‖2

]
+ ‖Hk‖2 (52)

≤ β

m

‖∇F (Xk)‖2F
m

+
σ2

m
+ ‖Hk‖2 (53)

≤ β

m

‖∇F (Xk)‖2F
m

+
σ2

m
+

1

m
‖∇F (Xk)‖2F (54)

=

(
β

m
+ 1

) ‖∇F (Xk)‖2F
m

+
σ2

m
, (55)

where (53) follows Lemma 3 and (54) comes from the convexity of vector norm and Jensen’s
inequality:

‖Hk‖2 =

∥∥∥∥∥ 1

m

m∑
i=1

∇F (x
(i)
k )

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2

=
1

m
‖∇F (Xk)‖2F . (56)

C.1.2 Proof of Lemma 2

According to Lipschitz continuous gradient assumption, we have

Ek [F (uk+1)]− F (uk) ≤ −ηeffEk [〈∇F (uk), Gk〉] +
η2

effL

2
Ek

[
‖Gk‖2

]
. (57)

Combining with Lemmas 4 and 5, we obtain

Ek [F (uk+1)]− F (uk) ≤−
ηeff

2
‖∇F (uk)‖2 −

ηeff

2m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2

+
ηeff

2m

m∑
i=1

∥∥∥∇F (uk)−∇F (x
(i)
k )
∥∥∥2

+

η2
effL

2m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2
·
(
β

m
+ 1

)
+
η2

effLσ
2

2m
(58)

≤− ηeff

2
‖∇F (uk)‖2 −

ηeff

2

[
1− ηeffL

(
β

m
+ 1

)]
· 1

m

m∑
i=1

∥∥∥∇F (x
(i)
k )
∥∥∥2

+

η2
effLσ

2

2m
+
ηeffL

2

2m

m∑
i=1

∥∥∥uk − x
(i)
k

∥∥∥2
. (59)

After minor rearranging and according to the definition of Frobenius norm, it is easy to show

‖∇F (uk)‖2 ≤
2 [F (uk)−Ek [F (uk+1)]]

ηeff
+
ηeffLσ

2

m
+
L2

m

m∑
i=1

∥∥∥uk − x
(i)
k

∥∥∥2
−[

1− ηeffL

(
β

m
+ 1

)]
1

m
‖∇F (Xk)‖2F . (60)
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Taking the total expectation and averaging over all iterates, we have

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

L2

Km

K∑
k=1

m∑
i=1

E
∥∥∥uk − x

(i)
k

∥∥∥2
−

[
1− ηeffL

(
β

m
+ 1

)]
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

. (61)

If the effective learning rate satisfies ηeffL(β/m+ 1) ≤ 1, then

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

L2

Km

K∑
k=1

m∑
i=1

E
∥∥∥uk − x

(i)
k

∥∥∥2
. (62)

Recalling the definition uk = Xk1m+v/(m+ v) and adding a positive term to the RHS, one
can get

m∑
i=1

∥∥∥uk − x
(i)
k

∥∥∥2
≤

m∑
i=1

∥∥∥uk − x
(i)
k

∥∥∥2
+

v∑
j=1

∥∥∥uk − z
(j)
k

∥∥∥2
(63)

=
∥∥∥u1>m+v −Xk

∥∥∥2

F

(64)

=

∥∥∥∥∥Xk
1m+v1

>
m+v

m+ v
−Xk

∥∥∥∥∥
2

F

= ‖Xk(I− J)‖2
F

(65)

where I,J are (m+v)×(m+v) matrices. Plugging the inequality (65) into (62), we complete
the proof.

Appendix D. Proof of Theorem 1: Convergence of Cooperative SGD

D.1 Lemmas

Lemma 6 (Kahan (2013)) Consider two real matrices A ∈ Rd×m and B ∈ Rm×m. If B
is symmetric, then we have

‖AB‖
F
≤ ‖B‖

op
‖A‖

F
. (66)

Proof Assume the rows of matirx A are denoted by a>1 , . . . ,a
>
d and I = {i ∈ [1, d] : ‖ai‖ 6=

0}. Then, we have

‖AB‖2
F

=

d∑
i=1

∥∥∥a>i B
∥∥∥2

=

d∑
i∈I
‖Bai‖2 (67)

=

d∑
i∈I

‖Bai‖2

‖ai‖2
‖ai‖2 (68)

≤
d∑
i∈I
‖B‖2

op
‖ai‖2 = ‖B‖2

op

d∑
i∈I
‖ai‖2 = ‖B‖2

op
‖A‖2

F
(69)
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where the last inequality follows the definition of matrix operator norm.

Lemma 7 (Kahan (2013)) Suppose there are two matrices A ∈ Rm×n and B ∈ Rn×m.
Then, we have

|Tr(AB)| ≤ ‖A‖
F
‖B‖

F
. (70)

Proof Assume a>i ∈ Rn is the i-th row of matrix A and bi ∈ Rn is the i-th column of
matrix B. According to the definition of matrix trace, we have

Tr(AB) =
m∑
i=1

n∑
j=1

AijBji (71)

=
m∑
i=1

a>i bi. (72)

Then, Cauchy-Schwartz inequality yields

|
m∑
i=1

a>i bi|2 ≤
(

m∑
i=1

‖ai‖2
)(

m∑
i=1

‖bi‖2
)

(73)

= ‖A‖2
F
‖B‖2

F
. (74)

Lemma 8 Suppose there is a m×m matrix W that satisfies Assumption 5. Then∥∥Wj − J
∥∥

op
= ζj (75)

where ζ = max{|λ2(W)|, |λm(W)|}.

Proof Since W is a real symmetric matrix, then it can be decomposed as W = QΛQ>,
where Q is an orthogonal matrix and Λ = diag{λ1(W), λ2(W), . . . , λm(W)}. In particular,
since the largest eigenvalue of W is 1 and W1 = 1, the corresponding eigenvector (i.e.,
the first column of Q) is 1√

m
. Similarly, matrix J can be decomposed as QΛ0Q

> where

Λ0 = diag{1, 0, . . . , 0}. Then, we have

Wj − J = (QΛQ>)j − J = Q
(
Λj −Λ0

)
Q>. (76)

According to the definition of matrix operator norm,∥∥Wj − J
∥∥

op
=
√
λmax((Wj − J)>(Wj − J)) =

√
λmax(W2j − J). (77)

Since W2j−J = Q
(
Λ2j −Λ0

)
Q>, the maximal eigenvalue will be max{0, λ2(W)2j , . . . , λm(W)2j} =

ζ2j . As a consequence, we have
∥∥Wj − J

∥∥
op

=
√
λmax(W2j − J) = ζj .
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D.2 Proof of Theorem 1

Recall the intermediate result (61) in the proof of Lemma 2:

E

[
1

K

K∑
k=1

‖∇F (uk)‖2
]
≤2 [F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

L2

Km

K∑
k=1

‖Xk(I− J)‖2
F
−

[
1− ηeffL

(
β

m
+ 1

)]
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

. (78)

Our goal is to provide an upper bound for the network error term L2

Km

∑K
k=1 ‖Xk(I− J)‖2

F
.

First of all, let us derive a specific expression for Xk(I− J).

D.2.1 Decomposition.

According to the update rule (10) in Section 3, one can observe that

Xk(I− J) = (Xk−1 − ηGk−1) Sk−1(I− J) (79)

=Xk−1(I− J)Sk−1 − ηGk−1(Sk−1 − J) (80)

where (80) follows the special property of doubly stochastic matrix: Sk−1J = JSk−1 = J
and hence (I− J)Sk−1 = Sk−1(I− J). Then, expanding the expression of Xk−1, we have

Xk(I− J) = [Xk−2(I− J)Sk−2 − ηGk−2(Sk−2 − J)] Sk−1 − ηGk−1(Sk−1 − J) (81)

=Xk−2(I− J)Sk−2Sk−1 − ηGk−2(Sk−2Sk−1 − J)− ηGk−1(Sk−1 − J) (82)

Repeating the same procedure for Xk−2,Xk−3, . . . ,X2, finally we get

Xk(I− J) =X1(I− J)Φ1,k−1 − η
k−1∑
s=1

Gs(Φs,k−1 − J) (83)

where Φs,k−1 =
∏k−1
l=s Sl. Since all optimization variables are initialized at the same point

X1(I− J) = 0, the squared norm of the network error term can be directly written as

E ‖Xk(I− J)‖2
F

=η2E

∥∥∥∥∥
k−1∑
s=1

Gs(Φs,k−1 − J)

∥∥∥∥∥
2

F

. (84)

Then, let us take a closer look at the expression of Φs,k−1. Without loss of generality,
assume k = jτ + i, where j denotes the index of communication rounds and i denotes the
index of local updates. As a result, matrix Φs,k−1 can be expressed as follows:

Φs,k−1 =



I, jτ < s < jτ + i

W, (j − 1)τ < s ≤ jτ
W2, (j − 2)τ < s ≤ (j − 1)τ

· · ·
Wj , 0 < s ≤ τ

. (85)
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For the ease of writing, define accumulated stochastic gradient within one local update

period as Yr =
∑(r+1)τ

s=rτ+1 Gs for 0 ≤ r < j and Yj =
∑jτ+i−1

s=jτ+1 Gs. Similarly, define accumu-

lated full batch gradient Qr =
∑(r+1)τ

s=rτ+1∇F (Xs) for 0 ≤ r < j and Qj =
∑jτ+i−1

s=jτ+1∇F (Xs).
Accordingly, we have

τ∑
s=1

Gs(Φs,k−1 − J) = Y0(Wj − J), (86)

2τ∑
s=τ+1

Gs(Φs,k−1 − J) = Y1(Wj−1 − J), (87)

. . . (88)

jτ+i−1∑
s=jτ+1

Gs(Φs,k−1 − J) = Yj(I− J). (89)

Thus, summing all these terms we get

k−1∑
s=1

Gs(Φs,k−1 − J) =

j∑
r=0

Yr(W
j−r − J). (90)

Note that the network error term can be decomposed into two parts:

E ‖Xk(I− J)‖2
F

=η2E

∥∥∥∥∥
j∑
r=0

Yr(W
j−r − J)

∥∥∥∥∥
2

F

(91)

=η2E

∥∥∥∥∥
j∑
r=0

(Yr −Qr)(W
j−r − J) +

j∑
r=0

Qr(W
j−r − J)

∥∥∥∥∥
2

F

(92)

≤ 2η2E

∥∥∥∥∥
j∑
r=0

(Yr −Qr)(W
j−r − J)

∥∥∥∥∥
2

F︸ ︷︷ ︸
T1

+ 2η2E

∥∥∥∥∥
j∑
r=0

Qr(W
j−r − J)

∥∥∥∥∥
2

F︸ ︷︷ ︸
T2

(93)

where (93) follows ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2. Next, we are going to separately pro-
vide bounds for T1 and T2. Recall that we are interested in the average of all iterates
L2

Km

∑K
k=1 ‖Xk(I− J)‖2

F
. Accordingly, we will also derive the bounds for L2

Km

∑K
k=1 T1 and

L2

Km

∑K
k=1 T2.

32



Cooperative SGD: A Unified Framework for the Analysis of Local-Update SGD

D.2.2 Bounding T1.

For the first term T1, we have

T1 =2η2
j∑
r=0

E
∥∥(Yr −Qr)(W

j−r − J)
∥∥2

F
(94)

≤2η2
j∑
r=0

E ‖Yr −Qr‖2F
∥∥Wj−r − J

∥∥2

op
(95)

=2η2
j∑
r=0

E ‖Yr −Qr‖2F ζ2(j−r) (96)

=2η2
j−1∑
r=0

E ‖Yr −Qr‖2F ζ2(j−r) + 2η2E ‖Yj −Qj‖2F (97)

where (95) follows Lemma 6, (96) comes from Lemma 8. Recall that ζ = max{|λ2(W)|, |λm+v(W)|}.
Then for any 0 ≤ r < j,

E
[
‖Yr −Qr‖2F

]
=E

∥∥∥∥∥∥
(r+1)τ∑
s=rτ+1

[Gs −∇F (Xs)]

∥∥∥∥∥∥
2

F

 (98)

=
m∑
i=1

E

∥∥∥∥∥∥
(r+1)τ∑
s=rτ+1

[
g(x(i)

s )−∇F (x(i)
s )
]∥∥∥∥∥∥

2 (99)

=

m∑
i=1

E

 (r+1)τ∑
s=rτ+1

∥∥∥g(x(i)
s )−∇F (x(i)

s )
∥∥∥2

+

E

∑
s 6=l

〈
g(x(i)

s )−∇F (x(i)
s ), g(x

(i)
l )−∇F (x

(i)
l )
〉 . (100)

Now we show that the cross terms are zero. For any s < l, according to Assumption 4, one
can obtain

E
[〈
g(x(i)

s )−∇F (x(i)
s ), g(x

(i)
l )−∇F (x

(i)
l )
〉]

=E
x
(i)
s ,ξ

(i)
s ,x

(i)
l

E
ξ
(i)
l |x

(i)
s ,ξ

(i)
s ,x

(i)
l

[〈
g(x(i)

s )−∇F (x(i)
s ), g(x

(i)
l )−∇F (x

(i)
l )
〉]

(101)

=E
[〈
g(x(i)

s )−∇F (x(i)
s ), E

ξ
(i)
l |x

(i)
s ,ξ

(i)
s ,x

(i)
l

[
g(x

(i)
l )−∇F (x

(i)
l )
]〉]

(102)

=E
[〈
g(x(i)

s )−∇F (x(i)
s ), 0

〉]
= 0. (103)
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As a result, we have

E
[
‖Yr −Qr‖2F

]
=E

 (r+1)τ∑
s=rτ+1

m∑
i=1

∥∥∥g(x(i)
s )−∇F (x(i)

s )
∥∥∥2

 (104)

≤β
(r+1)τ∑
s=rτ+1

m∑
i=1

E
[∥∥∥∇F (x(i)

s )
∥∥∥2
]

+ τmσ2 (105)

=β

(r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F + τmσ2 (106)

where (105) is according to Assumption 4. Using the same technique, one can obtain that

E ‖Yj −Qj‖2F ≤β
jτ+i−1∑
s=jτ+1

‖∇F (Xs)‖2F + (i− 1)mσ2. (107)

Substituting (106) and (107) back into (97), we have

T1 ≤2η2
j−1∑
r=0

ζ2(j−r)

β (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F + τmσ2

+ 2η2β

jτ+i−1∑
s=jτ+1

‖∇F (Xs)‖2F + 2η2(i− 1)mσ2

(108)

≤2η2mσ2

[
ζ2

1− ζ2
τ + i− 1

]
+ 2η2β

j−1∑
r=0

ζ2(j−r)

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

+ 2η2β

jτ+i−1∑
s=jτ+1

‖∇F (Xs)‖2F

(109)

where (109) follows the summation formula of power series:

j−1∑
r=0

ζ2(j−r) ≤
j−1∑
r=−∞

ζ2(j−r) ≤ ζ2

1− ζ2
. (110)

Next, summing over all iterates in the j-th local update period (from i = 1 to i = τ):

τ∑
i=1

T1 ≤η2mσ2

[
2ζ2

1− ζ2
τ2 + τ(τ − 1)

]
+ 2η2βτ

j−1∑
r=0

ζ2(j−r)

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

+

2η2βτ

(j+1)τ−1∑
s=jτ+1

‖∇F (Xs)‖2F (111)

≤η2mσ2

[
2ζ2

1− ζ2
τ2 + τ(τ − 1)

]
+ 2η2βτ

j∑
r=0

ζ2(j−r)

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

 .
(112)
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Then, summing over all periods from j = 0 to j = K/τ − 1, where K is the total iterations:

K/τ−1∑
j=0

τ∑
i=1

T1 ≤
K

τ
η2mσ2

[
2ζ2

1− ζ2
τ2 + τ(τ − 1)

]
+ 2η2βτ

K/τ−1∑
j=0

j∑
r=0

ζ2(j−r)

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F


(113)

=Kη2mσ2

[
1 + ζ2

1− ζ2
τ − 1

]
+ 2η2βτ

K/τ−1∑
j=0

j∑
r=0

ζ2(j−r)

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

 .
(114)

Expanding the summation in (114), we have

K/τ−1∑
j=0

τ∑
i=1

T1 ≤Kη2mσ2

[
1 + ζ2

1− ζ2
τ − 1

]
+ 2η2βτ

K/τ−1∑
r=0

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

K/τ−1∑
j=r

ζ2(j−r)


(115)

≤Kη2mσ2

[
1 + ζ2

1− ζ2
τ − 1

]
+ 2η2βτ

K/τ−1∑
r=0

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

+∞∑
j=r

ζ2(j−r)


(116)

≤Kη2mσ2

[
1 + ζ2

1− ζ2
τ − 1

]
+

2η2βτ

1− ζ2

K/τ−1∑
r=0

 (r+1)τ∑
s=rτ+1

‖∇F (Xs)‖2F

 (117)

=Kη2mσ2

[
1 + ζ2

1− ζ2
τ − 1

]
+

2η2βτ

1− ζ2

K∑
k=1

‖∇F (Xk)‖2F . (118)

Here, we complete the first part.

D.2.3 Bounding T2.

For the second term in (93), since ‖A‖2
F

= Tr(A>A), we have

T2 =2η2
j∑
r=0

E
∥∥Qr(W

j−r − J)
∥∥2

F
+ 2η2

j∑
n=0

j∑
l=0,l 6=n

E
[
Tr
(

(Wj−n − J)Q>nQl(W
j−l − J)

)]
.

(119)

According to Lemma 7, the trace can be bounded as:

|Tr
(

(Wj−n − J)Q>nQl(W
j−l − J)

)
| ≤
∥∥∥(Wj−n − J)Q>n

∥∥∥
F

∥∥∥Ql(W
j−l − J)

∥∥∥
F

(120)

≤
∥∥Wj−n − J

∥∥
op
‖Qn‖F ‖Ql‖F

∥∥∥Wj−l − J
∥∥∥

op

(121)

≤1

2
ζ2j−n−l

[
‖Qn‖2F + ‖Ql‖2F

]
(122)
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where (121) follows Lemma 6 and (122) is because of 2ab ≤ a2 + b2. Then, it follows that

T2 ≤2η2
j∑
r=0

E ‖Qr‖2F
∥∥(Wj−r − J)

∥∥2

op
+ η2

j∑
n=0

j∑
l=0,l 6=n

ζ2j−n−lE
[
‖Qn‖2F + ‖Ql‖2F

]
(123)

=2η2
j∑
r=0

ζ2(j−r)E ‖Qr‖2F + 2η2
j∑

n=0

j∑
l=0,l 6=n

ζ2j−n−lE ‖Qn‖2F (124)

=2η2
j∑
r=0

ζ2(j−r)E ‖Qr‖2F + 2η2
j∑

n=0

ζj−nE ‖Qn‖2F
j∑

l=0,l 6=n
ζj−l (125)

=2η2

j−1∑
r=0

ζ2(j−r)E ‖Qr‖2F +

j−1∑
n=0

ζj−nE ‖Qn‖2F
j∑

l=0,l 6=n
ζj−l + E ‖Qj‖2F + E ‖Qj‖2F

j−1∑
l=0

ζj−l


(126)

≤2η2

[
j−1∑
r=0

ζ2(j−r)E ‖Qr‖2F +

j−1∑
n=0

ζj−n

1− ζE ‖Qn‖2F + E ‖Qj‖2F + E ‖Qj‖2F
ζ

1− ζ

]
(127)

where (124) uses the fact that indices n and l are symmetric and (127) is according to the
summation formula of power series:

j∑
l=0,l 6=n

ζj−l ≤
j∑

l=−∞
ζj−l ≤ 1

1− ζ , (128)

j−1∑
l=0

ζj−l ≤
j−1∑
l=−∞

ζj−l ≤ ζ

1− ζ . (129)

After minor rearranging, we have

T2 ≤2η2
j−1∑
r=0

[(
ζ2(j−r) +

ζj−r

1− ζ

)
E ‖Qr‖2F

]
+

2η2

1− ζE ‖Qj‖2F (130)

=2η2
j−1∑
r=0

(ζ2(j−r) +
ζj−r

1− ζ

)
E

∥∥∥∥∥
τ∑
s=1

∇F (Xrτ+s)

∥∥∥∥∥
2

F

+
2η2

1− ζE
∥∥∥∥∥
i−1∑
s=1

∇F (Xjτ+s)

∥∥∥∥∥
2

F

(131)

≤2η2τ

j−1∑
r=0

[(
ζ2(j−r) +

ζj−r

1− ζ

) τ∑
s=1

E ‖∇F (Xrτ+s)‖2F

]
+

2η2(i− 1)

1− ζ
i−1∑
s=1

E ‖∇F (Xjτ+s)‖2F .

(132)
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where (132) follows the convexity of Frobenius norm and Jensen’s inequality. Next, summing
over all iterates in the j-th period, we can get

τ∑
i=1

T2 ≤2η2τ2
j−1∑
r=0

[(
ζ2(j−r) +

ζj−r

1− ζ

) τ∑
s=1

E ‖∇F (Xrτ+s)‖2F

]
+

η2τ(τ − 1)
1

1− ζ
τ−1∑
s=1

E ‖∇F (Xjτ+s)‖2F . (133)

Now, we are going to provide a bound for the summation over all periods (from j = 0 to
j = K/τ − 1). For clarity, let us first focus on the r-th local update period (r < j). The
coefficient of

∑τ
s=1 E ‖∇F (Xrτ+s)‖2 in (133) is

ζ2(j−r) +
ζj−r

1− ζ . (134)

Accordingly, the coefficient of
∑τ

s=1 E ‖∇F (Xrτ+s)‖2 in
∑K/τ−1

j=0

∑τ
i=1 T2 can be written as:

K/τ−1∑
j=r+1

(
ζ2(j−r) +

ζj−r

1− ζ

)
≤

∞∑
j=r+1

(
ζ2(j−r) +

ζj−r

1− ζ

)
(135)

≤ ζ2

1− ζ2
+

ζ

(1− ζ)2
. (136)

As a result, we have

K/τ−1∑
j=0

τ∑
i=1

T2 ≤2η2τ2

(
ζ2

1− ζ2
+

ζ

(1− ζ)2

)K/τ−1∑
j=1

τ∑
s=1

E ‖∇F (Xjτ+s)‖2F +

η2τ(τ − 1)

1− ζ

K/τ−1∑
j=0

τ−1∑
s=1

E ‖∇F (Xjτ+s)‖2F (137)

Replacing all indices by k,

K/τ−1∑
j=0

τ∑
i=1

T2 ≤2η2τ2

(
ζ2

1− ζ2
+

ζ

(1− ζ)2

) K∑
k=1

E ‖∇F (Xk)‖2F +
η2τ(τ − 1)

1− ζ
K∑
k=1

E ‖∇F (Xk)‖2F

(138)

=
η2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

) K∑
k=1

E ‖∇F (Xk)‖2F . (139)

We complete the second part.
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D.2.4 Final result.

According to (93), (118) and (139), the network error can be bounded as

1

Km

K∑
k=1

E ‖Xk(I− J)‖2
F
≤ 1

Km

K/τ−1∑
j=0

τ∑
i=1

(T1 + T2) (140)

≤η2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+

2η2βτ

1− ζ2

1

K

K∑
k=1

‖∇F (Xk)‖2F
m

+

η2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

. (141)

Substituting the expression of network error back to inequality (61), we obtain

1

K

K∑
k=1

E ‖∇F (uk)‖2 ≤
2(F (x1)− Finf)

ηeffK
+
ηeffLσ

2

m
+ η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
−

[
1− ηeffL

(
β

m
+ 1

)
− 2η2L2βτ

1− ζ2

]
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

+

η2L2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

. (142)

When the learning rate satisfies

ηeffL

(
β

m
+ 1

)
+

2η2L2βτ

1− ζ2
+
η2L2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
≤ 1, (143)

we have

1

K

K∑
k=1

E ‖∇F (uk)‖2 ≤
2(F (x1)− Finf)

ηeffK
+
ηeffLσ

2

m
+ η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
(144)

where ηeff = mη/(m+ v) and ζ = max{|λ2(W)|, |λm+v(W)|}. Setting β = 0, the condition
on learning rate (143) can be further simplified as follows:

m

m+ v
ηL+

η2L2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
(145)

=
m

m+ v
ηL+

η2L2τ2

(1− ζ)2

(
2ζ2(1− ζ)

1 + ζ
+ 2ζ +

τ − 1

τ
(1− ζ)

)
(146)

≤ m

m+ v
ηL+

η2L2τ2

(1− ζ)2
(2 + 2 + 1) (147)

=
m

m+ v
ηL+

5η2L2τ2

(1− ζ)2
≤ 1. (148)

Here, we complete the proof.

38



Cooperative SGD: A Unified Framework for the Analysis of Local-Update SGD

Appendix E. Proof of Corollary 1 (Optimized Learning Rate)

Directly substituting η = m+v
Lm

√
m
K into (144), we have

1

K

K∑
k=1

E ‖∇F (uk)‖2 ≤
2L(F (x1)− Finf)√

mK
+

σ2

√
mK

+
m

K

(
1 +

v

m

)2
(

1 + ζ2

1− ζ2
τ − 1

)
σ2.

(149)

Note that the learning rate should satisfy the condition in (148). That is, the total iterations
should satisfy: √

m

K
+

5m

K

[(
1 +

v

m

) τ

1− ζ

]2

≤ 1. (150)

When K is sufficiently large, the first term can be arbitrarily small. In particular, when
K > 4m, the first term will be smaller than 1/2. Then, it is enough to show the second
term is smaller than 1/2 as well.

5m

K

[(
1 +

v

m

) τ

1− ζ

]2

≤ 1

2
(151)

⇒K ≥ 10m

[(
1 +

v

m

) τ

1− ζ

]2

. (152)

Here, we complete the proof of the first part. Furthermore, when the communication period
and total iterations satisfy

1√
mK

≥ (m+ v)

K

(
1 +

v

m

)(1 + ζ2

1− ζ2
τ − 1

)
(153)

then the last term in (149) is smaller than the second term. As a result, we have

1

K

K∑
k=1

E ‖∇F (uk)‖2 ≤
2L(F (x1)− Finf)√

mK
+

2σ2

√
mK

. (154)

In order to get a lower bound on K from (153), it is enough to show

(m+ v)

K

(
1 +

v

m

)(1 + ζ2

1− ζ2
τ − 1

)
(155)

≤(m+ v)

K

(
1 +

v

m

) 1 + ζ2

1 + ζ

τ

1− ζ (156)

≤(m+ v)

K

(
1 +

v

m

) τ

1− ζ ≤
1√
mK

(157)

⇒K ≥ (m+ v)2m

[(
1 +

v

m

) τ

1− ζ

]2

. (158)

Once m+ v ≥
√

10 ≈ 3.1, (158) is more strict than (152).
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Appendix F. Proof of Theorem 2: Analysis of Non-IID Case

Now, we are going to present the theorems for the non-i.i.d. distributed data case. To start
with, we need to slightly revise the assumptions since the stochastic gradient is no longer
unbiased estimator of the global objective’s gradient. Recall that Fi(x) denotes the local
objective function and let gi(x) denote the stochastic gradient computed by the i-th worker.
Then, we have the following assumptions:

1. (Smoothness): ‖∇Fi(x)−∇Fi(y)‖ ≤ L ‖x− y‖;

2. (Lower bounded): F (x) ≥ Finf;

3. (Unbiased gradients): Eξ|x [gi(x)] = ∇Fi(x);

4. (Bounded variance): Eξ|x ‖gi(x)−∇Fi(x)‖2 ≤ σ2 where σ2 is a non-negative constant
and in inverse proportion to the mini-batch size.

5. (Bounded Dissimilarities): 1
m

∑m
i=1 ‖∇Fi(x)−∇F (x)‖2 ≤ κ2 where κ2 is a non-

negative constant.

6. (Mixing Matrix): W1m+v = 1m+v, W> = W. Besides, the magnitudes of all
eigenvalues except the largest one are strictly less than 1: max{|λ2(W)|, |λm+v(W)|} <
λ1(W) = 1.

The main parts of the proof just follow the proof of Theorem 1. We only need to re-prove
Lemma 2 in the context of new assumptions.

Since the objective function is L-smooth, we have

Ek [F (uk+1)]− F (uk) ≤ −ηeffEk [〈∇F (uk), Gk〉] +
η2

effL

2
Ek

[
‖Gk‖2

]
, (159)

where Gk = 1
m

∑m
i=1 gi(x

(i)
k ). For the first term on RHS,

Ek [〈∇F (uk), Gk〉] =

〈
∇F (uk),

1

m

m∑
i=1

∇Fi(x(i)
k )

〉
(160)

=
1

2

‖∇F (uk)‖2 + ‖Hk‖2 −
∥∥∥∥∥∇F (uk)−

1

m

m∑
i=1

∇Fi(x(i)
k )

∥∥∥∥∥
2
 (161)

=
1

2

‖∇F (uk)‖2 + ‖Hk‖2 −
∥∥∥∥∥ 1

m

m∑
i=1

(
∇Fi(uk)−∇Fi(x(i)

k )
)∥∥∥∥∥

2
 ,

(162)
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where Hk = 1
m

∑m
i=1∇Fi(x

(i)
k ) and the last equality comes from the definition of the global

objective function F (x) = 1
m

∑m
i=1 Fi(x). Then, using Jensen’s inequality, one can obtain

−Ek [〈∇F (uk), Gk〉] ≤−
1

2

[
‖∇F (uk)‖2 + ‖Hk‖2 −

1

m

m∑
i=1

∥∥∥∇Fi(uk)−∇Fi(x(i)
k )
∥∥∥2
]
(163)

≤− 1

2

[
‖∇F (uk)‖2 + ‖Hk‖2 −

L2

m

m∑
i=1

∥∥∥uk − x
(i)
k

∥∥∥2
]

(164)

≤− 1

2

[
‖∇F (uk)‖2 + ‖Hk‖2 −

L2

m
‖Xk(I− J)‖2

F

]
. (165)

For the second term in (159), one can directly reuse the result in Lemma 5 as follows:

Ek

[
‖Gk‖2

]
= Ek

[
‖Gk −Ek[Gk]‖2

]
+ ‖Ek[Gk]‖2 (166)

= Ek

[
‖Gk −Hk‖2

]
+ ‖Hk‖2 (167)

≤ σ2

m
+ ‖Hk‖2 . (168)

Plugging (165) and (168) back into (159), we have

Ek [F (uk+1)]− F (uk) ≤−
ηeff

2
‖∇F (uk)‖2 −

ηeff

2
(1− ηeffL) ‖Hk‖2 +

η2
effLσ

2

m
+

ηeffL
2

m
‖Xk(I− J)‖2

F
. (169)

When ηeffL ≤ 1,

Ek [F (uk+1)]− F (uk) ≤−
ηeff

2
‖∇F (uk)‖2 +

η2
effLσ

2

m
+
ηeffL

2

m
‖Xk(I− J)‖2

F
. (170)

Then, taking the total expectation and summing over all iterates,

K∑
k=1

E [F (uk+1)− F (uk)] ≤−
ηeff

2

K∑
k=1

E ‖∇F (uk)‖2 +
η2

effLσ
2

m
+
ηeffL

2

m

K∑
k=1

E ‖Xk(I− J)‖2
F
.

(171)

After minor rearranging and taking the average over all iterates, we have

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤2[F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

L2

mK

K∑
k=1

E
[
‖Xk(I− J)‖2

F

]
. (172)

The above bound is exactly the same as the i.i.d. case. Then, we’re going to bound the last
term: the discrepancies among local models. For this part of proof, we can directly reuse
the result in Appendix D.2, since we do not use the identity distributed assumption there.
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The only change needed to be made is the definition of matrix ∇F (Xk). Now, we define it
as follows:

∇F (Xk) = [∇F1(x
(1)
k ),∇F2(x

(2)
k ), . . . ,∇Fm(x

(m)
k ),0, . . . ,0]. (173)

Then, it directly follows that

1

Km

K∑
k=1

E
[
‖Xk(I− J)‖2

F

]
≤η2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+

η2τ2

1− ζ

(
2ζ2

1 + ζ
+

2ζ

1− ζ +
τ − 1

τ

)
1

K

K∑
k=1

E ‖∇F (Xk)‖2F
m

. (174)

For the ease of writing, we define C1 = 2ζ2

1+ζ + 2ζ
1−ζ + τ−1

τ . For the last term in (174), we have

‖∇F (Xk)‖2F =
m∑
i=1

∥∥∥∇Fi(x(i)
k )
∥∥∥2

(175)

≤3
m∑
i=1

[∥∥∥∇Fi(x(i)
k )−∇Fi(uk)

∥∥∥2
+ ‖∇Fi(uk)−∇F (uk)‖2 + ‖∇F (uk)‖2

]
(176)

≤3L2 ‖Xk(I− J)‖2
F

+ 3mκ2 + 3m ‖∇F (uk)‖2 . (177)

where the last inequality (177) comes from Assumption 4. Plugging (177) into (174),

L2

Km

K∑
k=1

E
[
‖Xk(I− J)‖2

F

]
≤η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+

3η2L2τ2C1

1− ζ

[
L2

Km

K∑
k=1

E
[
‖Xk(I− J)‖2

F

]
+ κ2 +

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]]
.

(178)

After minor rearranging, we get

(1− C2)
L2

Km

K∑
k=1

E
[
‖Xk(I− J)‖2

F

]
≤η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+ C2κ

2 +
C2

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
(179)

where C2 = 3η2L2τ2C1

1−ζ . Then, plugging (179) back into (172),

1− 2C2

1− C2

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤2[F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m
+

η2L2σ2

1− C2

(
1 + ζ2

1− ζ2
τ − 1

)
+

C2κ
2

1− C2
. (180)
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That is,

1

K

K∑
k=1

E
[
‖∇F (uk)‖2

]
≤
[

2[F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m

]
1− C2

1− 2C2
+[

η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+ C2κ

2

]
1

1− 2C2
(181)

≤2

[
2[F (u1)− Finf]

ηeffK
+
ηeffLσ

2

m

]
+

2

[
η2L2σ2

(
1 + ζ2

1− ζ2
τ − 1

)
+ C2κ

2

]
(182)

where the last inequality comes from the fact: C = 2C2 ≤ 1/2. By setting ηeff = 1
L

√
m
K , we

can get another version of Corollary 1.

Appendix G. Proof of Lemma 1 and Theorem 3: Best Choice of α in
EASGD

Recall that in EASGD, ζ = max{|1− α|, |1− (m+ 1)α|}. It is straightforward to show that

ζ =

{
(m+ 1)α− 1, 2

m+2 < α ≤ 2
m+1

1− α, 0 ≤ α ≤ 2
m+2

. (183)

When α = 2
m+2 , one can get the minimal value of ζ, which equals to 1−α = (m+ 1)α− 1 =

m
m+2 . Then, substituting ζ = m

m+2 , τ = 1, v = 0 into Theorem 1, we complete the proof of
Theorem 3.

Appendix H. Proof of Theorem 4: Generalized Elastic Averaging

Theorem 4 is built upon a known result about the eigenvalues of block matrices.

Lemma 9 (Fiedler (1974)) Let A be a symmetric m×m matrix with eigenvalues λ1, λ2, . . . , λm,
let u, ‖u‖ = 1, be a unit eigenvector corresponding to λ1; let B be a symmetric n× n matrix
with eigenvalues β1, β2, . . . , βn, let v, ‖v‖ = 1, be a unit eigenvector corresponding to β1.
Then for any ρ, the matrix

C =

[
A ρuv>

ρvu> B

]
(184)

has eigenvalues λ2, . . . , λm, β2, βn, γ1, γ2, where γ1, γ2 are eigenvalues of the matrix:

Ĉ =

[
λ1 ρ
ρ β1

]
. (185)

In our case, recall the definition of W′:

W′ =

[
(1− α)W α1
α1> 1−mα

]
. (186)
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In order to apply Lemma 9, let us set A = (1− α)W. Accordingly, the eigenvalues of A are
1− α, (1− α)λ2, . . . , (1− α)λm. The eigenvector corresponding to 1− α is 1√

m
. Moreover,

set B = 1−mα. Then, it has only one eigenvalue 1−mα and the corresponding eigenvector
is scalar 1. Substituting A, B into W′, we have

W′ =

[
A α

√
m · 1√

m

α
√
m · 1>

√
m

B

]
. (187)

According to Lemma 9, the eigenvalues of W′ are (1− α)λ2, . . . , (1− α)λm, γ1, γ2, where
γ1, γ2 are eigenvalues of the matrix:

Ĉ =

[
1− α α

√
m

α
√
m 1−mα

]
. (188)

For matrix Ĉ we have

γ2 − [2− (m+ 1)α] γ + 1− (m+ 1)α = 0 (189)

The above equation yields γ1 = 1, γ2 = 1− (m+ 1)α.
Finally, we have ζ ′ = max{|(1−α)λ2|, |(1−α)λm|, |1− (m+ 1)α|} = max{(1−α)ζ, |1−

(m+ 1)α|}. As a consequence, when (1− α)ζ = (m+ 1)α− 1, i.e., α = 1+ζ
m+1+ζ , the value of

ζ ′ is minimized.
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